Ultimate Navigation Chip: Synthetic Aperture Navigation with Cellular Signals and IMU

NIST Public Safety Broadband Stakeholder Meeting

Abdallah, A.
Shamaei, K.
Shkel, A.
Kassas, Z.

2019-07-10
Ultimate Navigation Chip:
Synthetic Aperture Navigation with Cellular Signals and IMU

Ali A. Abdallah, Kimia Shamaei, Andrei M. Shkel, and Zaher M. Kassas

Motivation
- Americans spend, on average, 90% of their time indoors
- No single infrastructure-free technology exists today that provides submeter-level or meter-level localization indoors

Our Approach
Exploit cellular long-term-evolution (LTE) signals of opportunity due to their inherent desirable characteristics:
- **High received carrier-to-noise-ratio:** $C/N_0 \approx 55-80$ dB-Hz in different indoor environments
- **Free to use:** exploit LTE reference signals (dataless) without being a subscriber
- **Abundant:** dozens of nearby eNodeBs corresponding to different providers are available
- **High bandwidth:** up to 20 MHz and even higher with LTE-Advanced (up to 100 MHz)
- **Favorable geometry:** geometrically diverse by construction to provide maximum communication coverage

Challenges
- Unknown eNodeBs’ states (position, clock bias, and clock drift)
- LTE eNodeBs’ clocks are less stable than GNSS clocks and not perfectly synchronized
- **Short-delay multipath**
- **No multipath**
- **Multipath**
- **Multichannel CR**
- **Overall CR**

Framework 1: LTE-IMU

Framework 2: LTE-SAN

Experiment 1: LTE-IMU

Experiment 2: LTE-SAN

Acknowledgment
This work was performed under the financial assistance award 70NANB17H192 from U.S. Department of Commerce, the National Institute of Standards and Technology (NIST).
REFERENCES

