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Introduction
quick search of the phrase “Global Positioning System 
(GPS)” on the Aviation Safety Reporting System (ASRS) 
returns 579 navigation-related incidents since Janu-
ary 2000. The ASRS is a publicly available reporting 

system established by NASA to identify and address issues 
reported by frontline personnel in the aviation system [1]. 
A deeper look at the data reveals that, out of these 579 inci-
dents, a malfunction or failure was detected in navigation 
sensors with the following occurrences: 508 in “GPS & Oth-
er Satellite Navigation,” 34 in “Navigational Equipment and 
Processing,” 14 in “Flight Dynamics Navigation and Safety,” 
12 in “Altimeter,” and 6 in “Positional/Directional Sensing.” 
Among these incidents, 100 are suspected to be due to GPS 
jamming and interference, leading to the loss of the main 
and auxiliary GPS units in some cases. What is alarming 
is the increasing trend of GPS interference—the majority of 
the aforementioned incidents took place since 2019. What 
is more, previously undisclosed U.S. Federal Aviation Ad-
ministration data for a few months in 2017 and 2018 detail 
hundreds of aircraft losing GPS reception. On a single day in 
March 2018, 21 aircraft reported GPS problems to air traffic 
controllers near Los Angeles, CA, USA [2]. These and other 
incidents uncover the vulnerabilities of existing aircraft 
navigation systems, which are highly dependent on global 

navigation satellite system (GNSS) signals and their aug-
mentation systems (e.g., ground-based augmentation sys-
tems and space-based augmentation systems) [3], [4]. There 
is an urgent need for complementary robust and accurate 
navigation systems to ensure aviation safety.

In 2019, the International Civil Aviation Organization 
issued a working paper titled “An Urgent Need to Address 
Harmful Interferences to GNSS,” where it concluded that 
harmful radio-frequency (RF) interference to GNSS sig-
nals would prevent the full continuation of safety and ef-
ficiency benefits of GNSS-based services. Moreover, there 
was a call for supporting multidisciplinary development 
of alternative positioning, navigation, and timing strategy 
and solutions to complement the use of GNSS in avia-
tion [5]. In 2021, the U.S. Department of Transportation 
released the “Complementary Positioning, Navigation, and 
Timing (PNT) and GPS Backup Technologies Demonstra-
tion Report” to Congress. The report concluded that, while 
there are suitable, mature, and commercially available 
technologies to back up or complement GPS, none of these 
systems alone can universally back up the PNT capabili-
ties provided by GPS and its augmentations, necessitating 
a diverse universe of PNT technologies [6]. Moreover, in 
2021, the National Institute of Standards and Technology 
issued a report on “Foundational PNT Profile: Applying the 

A

Abstract—This article presents the first demonstration of navigation with cellular signals of opportunity (SOPs) on 
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semiurban, and 3) urban. A multitude of flight trajectories and altitudes above ground level (AGL) was exercised in 
the three flights: 1) a 51-km trajectory of grid maneuvers with banking and straight segments at about 5,000 ft AGL, 
2) a 57-km trajectory of a teardrop descent from 7,000 ft AGL down to touchdown at the runway, and 3) a 55-km tra-
jectory of a holding pattern at about 15,000 ft AGL. The estimated aircraft trajectory is computed for each flight and 
compared with the trajectory from the aircraft’s onboard navigation system, which utilized a GPS receiver coupled 
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Cybersecurity Framework for the Responsible Use of PNT 
Services,” where it identified signals of opportunity (SOPs) 
and terrestrial RF sources (e.g., cellular) as a mitigation 
category that applies to the PNT profile [7].

Among terrestrial RF SOPs, cellular signals have shown 
tremendous potential as an alternative PNT source [8] be-
cause of their inherently desirable attributes:

■■ Abundance: Cellular base stations are abundant in most 
locales, with the number of base stations slated to in-
crease dramatically with future cellular generations.

■■ Geometric diversity: Cellular base stations are placed in 
favorable geometric configurations by construction of 
the cellular infrastructure.

■■ Frequency diversity: In contrast to GNSS signals, cellular 
signals are transmitted at a wide range of frequencies, 
which makes them more difficult to be simultaneously 
jammed or spoofed.

■■ High received power: The received cellular carrier-to-
noise ratio (CNR) is commonly tens of decibels higher 
than that of GNSS signals, even in deep urban canyons 
and indoor environments [9].

■■ High bandwidth: Downlink cellular signals can be up 
to 20 MHz [in 4G long-term evolution (LTE)] and even 
higher in future generations, which yields precise time-
of-arrival estimates.

■■ Free to use: The cellular infrastructure is already opera-
tional; thus, with specialized receivers, navigation ob-
servables (pseudorange, carrier phase, and Doppler) can 
be extracted from the “always-on” transmitted signals.
Recent results have shown the ability of cellular SOPs 

to yield meter-level-accurate navigation on ground vehi-
cles [10], [11] in urban environments and submeter-level-
accurate navigation on unmanned aerial vehicles (UAVs) 
[12], [13]. Moreover, the robustness and availability of 
cellular SOPs have been demonstrated in a GPS-jammed 
environment [14].

Assessing cellular signals for aerial vehicles has been 
the subject of several studies recently [15]. These studies 
span radio channel modeling [16], [17]; evaluation of signal 
quality in terms of received signal power [18], [19], interfer-
ence from cellular transmitters [20], [21], [22], and coverage 
and connectivity [23], [24], [25]; and standards recommen-
dations [26], [27]. However, the majority of these studies 
focused on evaluating cellular signals for communication 
purposes with little attention to evaluating them for naviga-

tion purposes [28]. Moreover, they 
considered UAVs flying at low alti-
tudes (up to 500 ft) and slow speeds 
(up to 50 km/h). A recent study re-
vealed that cellular signals can be 
acquired and tracked at altitudes as 
high as 23,000 ft above ground level 
(AGL) and at horizontal distances 
of more than 100 km from cellular 

transmitters [29]. However, the potential of cellular SOPs 
for high-altitude aircraft navigation has not been thorough-
ly assessed. This article aims to perform the first assess-
ment of cellular SOPs for aircraft navigation by addressing 
the following question: Can cellular SOPs be received and 
exploited at aircraft altitudes to produce a robust naviga-
tion solution?

To answer this question, an unprecedented aerial flight 
campaign was conducted in March 2020 by the Autonomous 
Systems Perception, Intelligence, and Navigation (ASPIN) 
Laboratory in collaboration with the U.S. Air Force (USAF) 
at the Edwards Air Force Base (AFB), CA, USA. The cellu-
lar software-defined radios (SDRs) of the ASPIN Laboratory 
were flown over on a USAF Beechcraft C-12 Huron, a fixed-
wing aircraft, to collect ambient cellular signals. This unique 
dataset consists of combinations of flight runs over three 
different environments (rural, semiurban, and urban) with 
altitudes ranging up to 23,000 feet and a multitude of trajec-
tories and maneuvers, including straight segments, banking 
turns, holding patterns, and ascending and descending tear-
drops performed by members of the USAF Test Pilot School. 
During these large-scale experiments, terabytes of samples 
of 3G code-division multiple access (CDMA) and 4G LTE sig-
nals were recorded under various conditions.

This article provides the first extensive demonstra-
tions of their kind of utilizing cellular SOPs for navigation 
purposes on high-altitude aircraft. The aim of these dem-
onstrations is to show that, should GNSS signals become 
unavailable or unreliable mid-flight, cellular SOPs could 
be used to produce a sustained and accurate navigation so-
lution over trajectories spanning tens of kilometers.

To demonstrate the feasibility of aircraft navigation with 
cellular SOPs, three flights are performed in three different 
regions: 1) rural, 2) semiurban, and 3) urban. A multitude 
of flight trajectories and altitudes AGL was exercised in the 
three flights: 1) a 51-km trajectory of grid maneuvers with 
banking and straight segments at about 5,000 ft AGL, 2) a 
57-km trajectory of a teardrop descent from 7,000  ft AGL 
down to touchdown at the runway, and 3) a 55-km trajec-
tory of a holding pattern at about 15,000 ft AGL.

The aircraft’s trajectory is estimated for each flight ex-
clusively from cellular SOPs using an extended Kalman 
filter (EKF). The estimated aircraft trajectory is com-
pared with the aircraft’s onboard navigation system, which 
used a GPS-aided inertial navigation system (INS) and an 

The cellular SOPs produced remarkable navigation accuracy in 
all three flights, achieving a position RMSE of 10.53 m, 4.96 m, 
and 15.44 m, respectively.
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altimeter. The cellular SOPs pro-
duced remarkable navigation accu-
racy in all three flights, achieving 
a position root mean-squared er-
ror (RMSE) of 10.53 m, 4.96 m, and 
15.44 m, respectively.

The rest of this article is organized 
as follows. The “Model Description” 
section describes the aircraft dynam-
ics and cellular SOP measurement model. The “Navigation 
Framework” section formulates the EKF navigation frame-
work. The “Experimental Setup and Flight Regions” section 
describes the experimental setup with which the aircraft 
was equipped and overviews the environments in which 
the flight campaigns took place. The “Aerial Navigation 
Results” section presents experimental aircraft navigation 
results exclusively with cellular signals. The “Conclusion” 
section gives concluding remarks.

Model Description
This section describes the aircraft dynamics and cellular 
SOP measurement models used in the rest of the article.

Aircraft Dynamics Model
Depending on the aircraft’s motion and sensor suite, differ-
ent dynamic models can be used to describe its dynamics. 
The goal of this article is to assess the minimum perfor-
mance of aircraft navigation with cellular SOPs exclusively. 
As such, a simple, yet effective continuous Wiener process 
acceleration model is employed, which upon discretization 
at a constant sampling interval T, is given by
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where ,  denotes the Kronecker product, and SNED _u  
, , ,q q qdiag N E Du u u6 @  where ,qNu  ,qEu  and qDu  are the NED jerk 

continuous-time noise power spectra, respectively. It should 
be noted that more complicated dynamic models can 
be used to describe the aircraft’s dynamics, e.g., Singer 

acceleration, mean-adaptive acceleration, circular motion, 
curvilinear motion, and coordinated turn, among others 
[30]. Of course, if an INS is available, its measurements can 
be used to describe the aircraft’s motion, while the INS is 
aided with cellular SOPs [31].

Clock Error Dynamics Model
Wireless standards require cellular base stations to be 
synchronized to within a few microseconds, which is order 
of magnitudes higher than the nanosecond requirements 
in GNSS. As such, the base station clock errors, which are 
dynamic and stochastic, must be accounted for in the navi-
gation filter when navigating with cellular SOPs. A typical 
model for the dynamics of the clock error states is the so-
called two-state model, composed of the clock bias td  and 
clock drift ,t

.
d  given by

	 ( ) ( )x x wk k k1 Fclk clk clk clk+ = +^ h � (2)

where wclk  is a discrete-time zero-mean white noise se-
quence with covariance ,Qclk  and
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The power spectra Sw tdu  and Sw t
.
du  are determined by the 

quality of the oscillator from which the clock signal is de-
rived [32].

SOP Measurement Model
ASPIN Laboratory’s SDR, called the Multichannel Adaptive 
Transceiver Information Extractor (MATRIX), produces 
several types of navigation observables. To get the highest 
possible precision, carrier phase observables are exploited 
for navigation, which after some manipulations can be 
modeled as [14]

( ) ( ) ( ) ( ), , , ,r rz k k c t k v k n N1 2n r s n n2n fd= - + + = � (4)

where rsn  is the nth cellular base station’s 3D position vec-
tor; c is the speed of light; tnd  is the overall clock error in the 
nth carrier phase measurement, which combines the effect 
of receiver and base station clock biases and the initial car-
rier phase ambiguity; N is the total number of available base 

ASPIN Laboratory’s SDR, called the Multichannel Adaptive 
Transceiver Information Extractor, produces several types of 
navigation observables.
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stations; and ( )v kn  is the measurement noise, which is mod-
eled as a discrete-time zero-mean white Gaussian sequence 
with variance ( ).kn

2v  The measurement noise variance can 
be modeled as a function of the CNR [33], [34].

Altimeter Measurement Model
Since cellular base stations appear to have similar altitudes 
for a high-flying aircraft, their vertical dilution of precision 
(VDOP) will be very large. To circumvent this issue, the al-
timeter data zalt  derived from the aircraft’s onboard naviga-
tion system is used in addition to the cellular carrier phase 
measurements in the measurement-update step in the EKF.

Navigation Framework
This section formulates the EKF navigation framework based 
on the models presented in the “Model Description” section.

EKF Model
Let , , ,x x x xpv clk clkN1 f_

R R RR6 @  denote the state to be estimat-
ed, where , .x c t c tn nclkn _ d d

Ro6 @  Using (1) and (2), one can 
write the dynamics of x as

	 ( ) ( ) ( )x x wk k k1 F+ = + � (5)

where , , ,diagF F F Fpva clk clkf_ 6 @ and ( )w k  is the overall 
process noise vector, which is a zero-mean white sequence 
with covariance , ,diagQ Q Qpva clk_ r6 @  and
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where Qclkr  and Q n
N

1clksn =" ,  have the same form as in (3), ex-
cept that Sw tdu  and Sw t

.
du  are replaced with the receiver and nth 

base station’s clock process noise spectra, respectively. Note 
that the cross correlations in Qclkr  come from combining the 
effect of the receiver and cellular base station clocks in the 
same state. Since the receiver clock bias is common to all 
clock states, the cross correlations in Qclkr  will be the receiv-
er clock’s process noise covariance [35].

The measurement vector defined by ( ) ( ),z k z kalt_ 6  
( ), , ( )z k z kN1 f R@  is used to estimate x in the EKF. In vec-

tor form, the measurement equation is given by

	 ( ) ( ) ( )z h x vk k k= +6 @ � (6)

where ( )h x k6 @  is a vector-valued function defined as 
( ) ( ) , ( ) , , ( )h x x x xk h k h k h kN1alt f_ R6 6 6 6 6@ @ @ @@  w i t h 

( ) ( ) ( ),xh k z k v kralt alt= +6 @ ( ) ( )x r rh k kn r s 2n_ - +6 @  
( ),c t knd  and ( ) ( ), ( ), , ( )v k v k v k v kN1alt f_ R6 @  is the mea-

surement noise vector, which is modeled as a zero-mean 
white Gaussian random vector with covariance ( )kR _  

( ), ( ), , ( ) .k k kdiag N1
2 2

alt
2 fv v v6 @

An EKF is implemented given the dynamics and mea-
surement models in (5) and (6) to produce an estimate of 

( )x k  using all measurements up to time step k, denoted by 
( ),x k k;t  and an associated estimation error covariance de-

noted by ( ).k kP ;  The EKF is initialized from two succes-
sive position priors according to the framework discussed 
in [35]. The EKF process and measurement noise covari-
ances are described in the next section.

EKF Settings
The measurement rate was /. ;T 0 08 3 s=  the jerk process noise 
spectra were chosen to be / ,q 18 m sN

2 5=u  / ,q 18 m sE
2 5=u  

and /. ;q 0 5 m sD
2 5=u  and the receiver and base station clock 
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.
.

.

.
9 57 10
2 52 10

2 52 10
1 89 10

Q ,r

5

8

8

6clk
#

#

#

#
=

-

-

-

-
= G� (7)

	
.
.

.
.

.
3 11 10
2 52 10

2 52 10
1 89 10

Q ,s

7

11

11

9clk n

#

#

#

#
=

-

-

-

-
= G � (8)

These clock process noise covariance matrices assumed 
the receiver to be equipped with a typical temperature-
compensated crystal oscillator (TCXO), while the cellular 
base stations are equipped with a typical oven-controlled 
crystal oscillator (OCXO) [8].

The altimeter measurement error variance ( )k2
altv  was 

assumed to be .5 m2  The cellular measurement noise vari-
ances were calculated as a function of the CNR and receiver 
parameters, as discussed in [33] and [34]. The range of values 
taken by the measurement noise variances is explicitly stat-
ed for each region in the “Aerial Navigation Results” section.

Experimental Setup and Flight Regions
This section overviews the experimental setup used for data 
collection and processing. It also describes the flight regions.

Hardware and Software Setup
The C-12 aircraft was equipped with a universal software 
radio peripheral (USRP) with consumer-grade cellular 
antennas to sample three cellular bands and store the 
samples on a desktop computer for offline processing. The 
stored samples were postprocessed with the 3G and 4G cel-
lular modules of MATRIX. The SDR produces navigation 
observables: Doppler frequency, carrier phase, and pseu-
dorange, along with corresponding CNRs. The hardware 
setup is shown in Figure 1.

The aircraft’s ground-truth trajectory was taken from the 
C-12’s onboard Honeywell H764-ACE EGI INS/GPS, which 
provided time–space–position information at a 1-Hz data 
rate. The accuracy specifications are tabulated in Table 1.

Flight Regions
Three flights are reported in this article, each of which took 
place in one of three regions: 1) Region A: a rural region in 
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Edwards AFB, CA; 2) Region B: a semiurban region in Palm-
dale, CA; and 3) Region C: an urban region in Riverside, CA. 
Different maneuvers were planned over the three regions to 
test several aspects of aircraft navigation with cellular SOPs.

Figure 2 shows the regions in which the experiments 
were performed as well as the aircraft trajectory for each 
flight. The 3G base transceiver stations (BTSs) and 4G eNo-
deBs were mapped via the method described in [36]. The 
mapped towers were cross-checked via Google Earth and 
online databases and are shown in Figure 2. This article 
investigates the potential of cellular SOPs for navigation; 
therefore, mapping the SOPs will not be discussed.

Aerial Navigation Results
This section presents experimental results demonstrat-
ing high-altitude aircraft navigation using the framework 
discussed in the “Model Description” section in the three 
regions shown in Figure 2.

Aerial Navigation in Region A
The test trajectory in Region A consisted of 1) a 24-km straight 
segment, followed by 2) a 270° banking turn of length 18 km, 
and 3) a final 9-km straight segment. The total distance 
traveled by the aircraft was more than 51 km, completed in 

9 min. The aircraft maintained an altitude of approximately 
5,000  ft AGL throughout the trajectory. During this flight, 
three RF channels were sampled at 1) 881.52 MHz, which 
is a 3G channel allocated for the U.S. cellular provider 
Verizon Wireless; 2) 731.5 MHz, a 4G LTE channel allocated 
for T-Mobile; and 3) 751 MHz, also a 4G LTE channel allo-
cated for Verizon. A total of 11 cellular SOPs were heard dur-
ing the experiment: six 3G BTSs and five 4G eNodeBs. 
The 11 cellular SOPs were acquired at different times and 
tracked for different durations based on signal quality. 
Figure 3(a)–(c) shows the time history of the 1) measured 
CNRs, 2) pseudorange measurements, and 3) pseudorange 
error (pseudorange minus the true range) for all 11 cellu-
lar SOPs, respectively. One can see from Figure  3(c) that 

Metric Blended INS/GPS Accuracy 

Position 5 m, spherical error probable

Velocity 0.01 m/s 

Heading 0.015° 

Pitch/Roll 0.01° 

Table 1. Honeywell H764-ACE EGI accuracy.

Layer A

Layer B
Layer C

Power
Strip

BCellular Antennas

C-12 Aircraft Ms. Mabel

Equipment Rack

Hardware Setup

Quad-Channel
USRP-2955

Aircraft GPS Antenna

Aircraft
Navigation
System

3 Laird Antennas
4G at 731.5 MHz, T-Mobile
or 4G at 1,955 MHz, AT&T

4G at 751 MHz, Verizon
or 4G at 739 MHz, AT&T
or 4G at 2,145 MHz, T-Mobile

3G at 881.52 MHz, Verizon

GPS Antennas

Power Strip A

FIG 1 Hardware setup with which the C-12 aircraft was equipped.
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pseudorange tracking is lost for some of the cellular SOPs at 
or around 300 s, which is when the aircraft starts banking 
to perform the 270° turn. In addition to the high dynamics 
of the banking turn, it is suspected that the aircraft’s wings 
and body block or severely attenuate some of the signals 
during banking, causing loss of tracking. Using the expres-
sions of the measurement noise variances as a function of 
the CNR and receiver parameters in [33] and [34], ( )knv  was 
found to vary between 1.44 and 9.47 m.

Next, the state vector x of the aircraft was estimated 
using the carrier phase measurements obtained from the 
cellular SOP receivers via the EKF discussed in the “EKF 
Model” section. The total position RMSE was calculated to 

be 10.5  m over the 51-km trajec-
tory, traversed in 9 min. Figure 4 
shows the aircraft’s true and esti-
mated trajectories. Figure 5 shows 
the EKF estimation error plots and 
corresponding sigma bounds for 
the aircraft’s position and velocity 
states. It is important to note that 
the position error in the EKF is 

the largest during the turn. This is due to 1) the measure-
ment errors due to the high dynamics of the banking turn, 
which severely stressed the tracking loops, and 2) the mis-
match in the dynamics model assumed in the EKF since 
a 270° banking turn has significantly different dynamics 
than the assumed continuous Wiener process acceleration 
model. However, as mentioned earlier, the purpose of this 
study is to highlight the minimum performance that can 
be achieved with cellular SOPs. It is important to note that 
the average distance between the aircraft and the BTSs or 
eNodeBs was around 30 km over the entire trajectory, with 
eNodeB 4 being tracked at a 100-km distance in the first part 
of the trajectory.

Edwards (Rural)

Palmdale (Semiurban)

Riverside (Urban)

California, USA

Region C

Region B

Region A

(a) (b)

FIG 2 (a) Regions A, B, and C in which the flight campaigns took place. The yellow pins represent 3G and 4G cellular towers that were mapped and 
analyzed in this study. (b) The aircraft trajectories in all regions (shown in red). Geographic points of interest in each region, shown by green crosses, 
were chosen according to the designed trajectories.

It is suspected that the aircraft’s wings and body block or 
severely attenuate some of the signals during banking,  
causing loss of tracking.
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Aerial Navigation in Region B
The test trajectory in Region B consisted of 1) an approach to 
General William J. Fox Airfield, followed by 2) a touch and 
go. The total distance traveled by the aircraft was more than 
57 km completed in 11 min. The aircraft descended from an 
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FIG 3 (a) Time history of the CNRs for all of the base stations used to 
compute the navigation solution in Region A. (b) Time history of the 
pseudoranges estimated by the cellular SOP receivers and the 
corresponding true range in Region A. The initial values of the 
pseudoranges and ranges were subtracted out for ease of comparison. 
(c) Time history of the pseudorange error (pseudorange minus the true 
range) for all cellular SOPs in Region A. The error is driven by a common 
term, which is the receiver’s clock bias. The errors increase significantly 
at around 300 s, which is when the turn starts. The high dynamics of a 
banking turn inject stress on the tracking loops. The initial values of the 
pseudorange errors were subtracted out for ease of comparison.
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2
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3G at 881.52 MHz
4G at 731.50 MHz
4G at 751.00 MHz

Region A at 5,000 ft AGL

Ground Truth
Estimated

10.4 m

1.1 km
20

 k
m

FIG 4 Experimental layout and results in Region A showing BTS and 
eNodeB positions, true aircraft trajectory, and aircraft trajectory estimated 
exclusively using cellular SOPs. The aircraft traversed a total distance of 
51 km in 9 min during the experiment. The position RMSE over the entire 
trajectory was found to be 10.5 m.
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altitude of 7,000 ft AGL. During this flight, three RF chan-
nels were sampled at 1) 881.52 MHz, which is a 3G channel 
allocated for the U.S. cellular provider Verizon Wireless; 
2) 731.5 MHz, a 4G LTE channel allocated for T-Mobile; and 
3) 739 MHz, also a 4G LTE channel allocated for AT&T. A 
total of 14 cellular SOPs were heard during the experiment: 
nine 3G BTSs and five 4G eNodeBs. The 14 cellular SOPs 
were acquired at different times and tracked for different 
durations based on signal quality. Figure 6(a)–(c) shows the 
time history of 1)  measured CNRs, 2)  pseudorange mea-
surements, and 3) pseudorange error (pseudorange minus 
the true range) for all 14 cellular SOPs, respectively. Using 
the expressions of the measurement noise variances as a 
function of the CNR and receiver parameters in [33] and 
[34], ( )knv  was found to vary between 1.3 to 4.43 m.

Next, the state vector x of the aircraft was estimated using 
the carrier phase measurements obtained from the cellular 
SOP receivers via the EKF discussed in the “EKF Model” sec-
tion. The total position RMSE was calculated to be 4.95 m over 
the 57-km trajectory, traversed in 11 min. Figure 7 shows the 
aircraft’s true and estimated trajectories. Figure 8 shows the 
EKF estimation error plots and corresponding sigma bounds 
for the aircraft’s position and velocity states. It is important to 
note that the aircraft’s position estimate on touchdown is less 

than 3 m away from the true position and is well within the 
runway. In addition, the geometric diversity becomes poor af-
ter the sixth minute as the aircraft is flying on one side of the 
SOPs. This explains the increasing sigma bounds in Figure 8.

Aerial Navigation in Region C
The test trajectory in Region C consisted of a holding pat-
tern over Riverside Municipal Airport. The total distance 
traveled by the aircraft was more than 55 km, completed 
in 8.5 min. The aircraft maintained an altitude of approxi-
mately 15,000 ft AGL throughout the trajectory. During this 
flight, two RF channels were sampled at 1) 881.52  MHz, 
which is a 3G channel allocated for the U.S. cellular pro-
vider Verizon Wireless; 2) 1,955 MHz, a 4G LTE channel 
allocated for AT&T; and 3) 2,145 MHz, a 4G LTE channel al-
located for T-Mobile. A total of 11 cellular SOPs were heard 
during the experiment: seven 3G BTSs and four 4G eNo-
deBs. The 11 cellular SOPs were acquired at different times 
and tracked for different durations based on signal qual-
ity. Figure 9(a)–(c) shows the time history of 1) measured 
CNRs, 2) pseudorange measurements, and 3) pseudorange 
error (pseudorange minus the true range), for all 9 cellular 
SOPs, respectively. Similar to the first flight, one can see 
from Figure 9(c) that pseudorange tracking is lost for some 
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FIG 5 EKF plots showing the time history of the position and velocity errors in Region A as well as the 3! v  bounds. As expected, the EKF performs 
poorly in the second leg, where the mismatch between the true aircraft dynamics and the assumed EKF model is highest.
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of the cellular SOPs when the aircraft starts banking to 
perform the turns in the holding pattern. Using the expres-
sions of the measurement noise variances as a function of 
the CNR and receiver parameters in [33] and [34], ( )knv  
was found to vary between 1.73 and 5.69 m.

Next, the state vector x of the aircraft was estimated us-
ing the carrier phase measurements obtained from the cel-
lular SOP receivers via the EKF discussed in the “EKF Model” 
section. The total position RMSE was calculated to be 15.44 m 
over the 55-km trajectory, traversed in 8.5 min. Figure 10 
shows the aircraft’s true and estimated trajectories. Figure 11 
shows the EKF estimation error plots and corresponding sigma 
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FIG 6 (a) Time history of the CNRs for all of the base stations used to 
compute the navigation solution in Region B. (b) Time history of the 
pseudoranges estimated by the cellular SOP receivers and the 
corresponding true range in Region B. The initial values of the 
pseudoranges and ranges were subtracted out for ease of comparison. 
(c) Time history of the pseudorange error (pseudorange minus the true 
range) for all cellular SOPs in Region B.
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FIG 7 Experimental layout and results in Region B showing BTS and 
eNodeB positions, true aircraft trajectory, and aircraft trajectory estimated 
exclusively using cellular SOPs. The aircraft traversed a total distance of 
57 km in 11 min during the experiment. The position RMSE over the 
entire trajectory was found to be 4.96 m. Note that the position estimate 
on touchdown is less than 3 m away from the true aircraft position and is 
well within the runway.
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bounds for the aircraft’s position and velocity states. As expect-
ed, the measurement errors and the mismatch in the dynamics 
model assumed in the EKF are more severe during the turns.

Discussion
The navigation performance in all three regions is sum-
marized in Table 2.

The achieved results unveiled the remarkable potential of 
utilizing cellular SOPs for sustained accurate high-altitude 
aircraft navigation. The results presented herein, although 
promising, can be further improved upon in several ways. 
The following are key takeaways and design considerations 
for reliable aircraft navigation with cellular SOPs:

■■ Accounting for the aircraft dynamical model mismatch: 
Aircraft, such as the C-12, can perform a variety of 

highly dynamic maneuvers. The 
dynamics model employed in the 
EKF in this study did not perfect-
ly capture the aircraft dynamics 
throughout its trajectory, leading 
to an increased estimation error 
due to the mismatch between the 
actual aircraft’s dynamics and 
the dynamical model assumed by 

the EKF. This mismatch can be mitigated by using ap-
propriate dynamical models for fixed-wing aircraft or 
more elaborate dynamical models (e.g., Wiener pro-
cess acceleration, Singer acceleration, mean-adaptive 
acceleration, a semi-Markov jump process, circular 
motion, curvilinear motion, and coordinated turns, 
among others [30]) coupled with adaptive estimation 
techniques [37], [38], [39], [40], [41], [42]. Alternatively, 
if access to raw inertial measurement unit (IMU) data 
is available, a kinematic model with IMU measurements 
can be used as is the case with most INS-aiding tech-
niques [10], [31].

■■ Accounting for statistical model mismatch: The air-
craft’s process noise covariance assumed by the EKF’s 
dynamical model was found via offline tuning and by 
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FIG 8 EKF plots showing the time history of the position and velocity errors in Region B as well as the 3! v  bounds.

The achieved results unveiled the remarkable potential of 
utilizing cellular SOPs for sustained accurate high-altitude 
aircraft navigation.

Authorized licensed use limited to: The Ohio State University. Downloaded on October 13,2023 at 15:30:15 UTC from IEEE Xplore.  Restrictions apply. 



IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE  •  161  •  JULY/AUGUST 2023IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE  •  160  •  JULY/AUGUST 2023

analyzing the aircraft’s maneuvers from ground-truth 
data. In addition, the process noise covariances of the 
aircraft’s receiver clock were set at typical TCXO val-
ues, and the cellular SOP transmitter clocks were set 
at typical OCXO values. While these values represent 
good approximations for the aircraft’s receiver clock 
quality as well as the quality of typical cellular SOP 
transmitters, mismatches between the assumed values 
and the actual values can be mitigated via adaptive esti-
mation techniques [43], [44], [45], which would improve 
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FIG 9 (a) Time history of the CNRs for all of the base stations used to 
compute the navigation solution in Region C. (b) Time history of the 
pseudoranges estimated by the cellular SOP receivers and the 
corresponding true range in Region C. The initial values of the 
pseudoranges and ranges were subtracted out for ease of comparison. 
(c) Time history of the pseudorange error (pseudorange minus the true 
range) for all cellular SOPs in Region C. The error is driven by a common 
term, which is the receiver’s clock bias.
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FIG 10 Experimental layout and results in Region C showing BTS and 
eNodeB positions, true aircraft trajectory, and aircraft trajectory estimated 
exclusively using cellular SOPs. The aircraft traversed a total distance of 
55 km in 8.5 min during the experiment. The position RMSE over the 
entire trajectory was found to be 15.44 m.
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the estimation performance. Adaptive estimation tech-
niques would also mitigate the errors arising from 
mismatches between the actual measurement noise 
variances and calculated measurement noise variances.

■■ Vertical dilution of precision: At high altitudes, there is 
very little vertical diversity with respect to terrestrial 

cellular towers. As such, the aircraft’s cellular-based 
navigation solution VDOP will be large. Nevertheless, 
the aircraft’s vertical position can still be estimated from 
the pseudoranges extracted from cellular towers, albeit 
with less accuracy compared to the results presented in 
this article, which fused altimeter-based measurements.

■■ Mapping cellular SOPs: This article assumed cellular 
SOPs to be mapped a priori. This was achieved via a 
mapping campaign according to the method described 
in [36]. Nevertheless, such an assumption can be relaxed 
via the radio simultaneous localization and mapping 
framework, which maps the unknown SOPs simultane-
ously with localizing the aircraft [14], [31].

Conclusion
This article demonstrated robust high-altitude aircraft 
navigation with 3G CDMA and 4G LTE cellular SOPs. An 
EKF was used to fuse cellular carrier phase measurements 
to estimate the aircraft’s position, velocity, and time. The 
EKF utilized a simple, yet effective continuous Wiener pro-
cess acceleration model to describe the aircraft dynamics. 
A multitude of flight trajectories and altitudes AGL was 
exercised in the three flights: 1) a 51-km trajectory of grid 
maneuvers with banking and straight segments at about 
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FIG 11 EKF plots showing the time history of the position and velocity errors in Region C as well as the 3! v  bounds. As expected, the EKF performs 
poorly in the second leg, where the mismatch between the true aircraft dynamics and the assumed EKF model is highest.

Metric Region A Region B Region C

Cellular towers {3G,4G} {6,5} {9,5} {7,4}

Cellular frequencies (MHz) 881.52 881.52 881.52 

731.5 731.5 1,955 

751 739 2,145 

Flight duration (min) 9 11 8.5 

Flight length (km) 51 57 55 

Altitude AGL (ft) 5,000 0–7,000 15,000 

Position RMSE (m) 10.53 4.96 11.67 

Velocity RMSE (m/s) 0.58 0.5 0.71 

Maximum position error (m) 22.67 15.04 25.89 

Maximum velocity error (m/s) 2.29 3.19 3.94 

Table 2. Navigation performance with cellular signals.
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5,000 ft AGL, 2) a 57-km trajectory 
of a teardrop descent from 7,000 ft 
AGL down to touchdown at the run-
way, and 3) a 55-km trajectory of a 
holding pattern at about 15,000  ft 
AGL. Cellular SOPs produced re-
markable navigation accuracy in all 
three flights, achieving a 3D position 
RMSE of 10.53 m, 4.96 m, and 15.44 m, respectively. These 
unprecedented results demonstrate the potential of cellular 
signals as a viable alternative to GNSS for high-altitude air-
craft navigation. While the presented outcomes are encour-
aging, more accurate navigation results can be achieved by 
fusing cellular SOP observables with an INS.
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