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Abstract— A cognitive approach is proposed to detect unknown
beacons of terrestrial signals of opportunity (SOPs). Two scenar-
ios are considered in the paper: (i) detection of unknown beacons
with integer constraints (IC) and (ii) detection of unknown
beacons with no integer constraint (NIC). An example of beacons
with IC is the pseudo-noise (PN) sequences in cellular code
division multiple access (CDMA) signals. On the other hand,
the reference signals (RSs) in orthogonal frequency-division mul-
tiplexing (OFDM)-based systems can be considered as beacons
signals with NIC. Matched subspace detectors are proposed for
both scenarios, and it is shown experimentally that the proposed
matched subspace detectors are capable of detecting cellular
third-generation (3G) cdma2000 signals and fifth-generation (5G)
OFDM signals. A low complexity method is derived to simplify
the matched subspace detector with IC for M -ary phase shift
keying (MPSK) modulation. The effect of symbol errors in the
estimated beacon signal on the carrier to noise ratio (CNR)
is characterized analytically. Closed-form expressions for the
asymptotic probability of detection and false alarm are derived.
Experimental results are presented showing an application of
the proposed cognitive approach by enabling an unmanned
aerial vehicle (UAV) to detect and exploit terrestrial cellular
signals for navigation purposes. In one experiment, the UAV
achieved submeter-level accurate navigation over a trajectory
of 1.72 km, by exploiting signals from four 3G cdma2000
transmitters. In another experiment, the UAV achieves a position
root mean-squared error (RMSE) of 4.63 m over a trajectory of
416 m, by exploiting signals from two 5G transmitters.

Index Terms— Cognitive radio, navigation, signals of opportu-
nity, blind symbol detection.

I. INTRODUCTION

GLOBAL navigation satellite system (GNSS) signals suf-
fer from constraining limitations in deep urban environ-

ments and are prone to jamming and spoofing. In spite of these
limitations, we live in a world rich with man-made signals of
opportunity (SOPs), which have been demonstrated as feasible

Manuscript received 23 November 2021; revised 30 June 2022 and
19 October 2022; accepted 1 December 2022. Date of publication 17 January
2023; date of current version 14 August 2023. This work was supported
in part by the Air Force Office of Scientific Research (AFOSR) under
Grant FA9550-22-1-0476. The associate editor coordinating the review of this
article and approving it for publication was Q. Liu. (Corresponding author:
Zaher M. Kassas.)

Mohammad Neinavaie and Zaher M. Kassas are with the Department of
Electrical and Computer Engineering, The Ohio State University, Columbus,
OH 43210 USA (e-mail: zkassas@ieee.org).

Joe Khalife was with the Department of Mechanical and Aerospace
Engineering, University of California, Irvine, CA 92697 USA (e-mail:
khalifej@uci.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TWC.2023.3235681.

Digital Object Identifier 10.1109/TWC.2023.3235681

complements or alternatives to GNSS in challenging environ-
ments [1]. SOP navigation receivers typically rely on known
synchronization sequences or beacons transmitted by SOP
sources to draw time-of-arrival (TOA), direction-of-arrival
(DOA), and frequency-of-arrival (FOA) measurements [2], [3],
[4], [5].

Cognitive opportunistic navigation [6] has been recently
introduced to addresses the following challenges of navigation
with SOPs:

Unknown reference signals in private networks: Oppor-
tunistic navigation frameworks usually rely on the broadcast
reference signals (RSs), which are used to derive DOA and
TOA [3]. For public networks, these signals are known at
the user equipment (UE) and are universal across network
operators. Hence, they can be exploited for positioning without
the need for the UE to be a network subscriber. However,
in private networks, the signal specifications of some SOP
sources may not be available to the public, which makes
acquiring and tracking these signals impossible for conven-
tional opportunistic navigation receivers [6]. Private networks
and broadband providers do not usually disclose the transmit-
ted signal structure to protect their intellectual property. For
instance, very limited information is available about Starlink
satellite signals.

Dynamic nature and ultra-lean transmission of the fifth-
generation (5G) new radio (NR) and beyond networks: In
cellular long-term evolution (LTE) networks, several RSs, such
as the cell-specific reference signal (CRS), are broadcast at
regular and known time intervals, regardless of the number of
UEs in the environments. This always-on type of transmitted
RSs reduces the network’s energy efficiency and increases
operational expenses and interference. One of the main fea-
tures of 5G NR, is ultra-lean transmission, which minimizes
the transmission of always-on signals. For instance, CRS
which used to be an always-on RS in LTE, is not necessarily
being continuously transmitted in 5G signals. On the other
hand, the RSs in 5G networks and beyond can be dynamic
and may continuously change [7]. As such, designing cog-
nitive receivers that can cognitively acquire partially known,
unknown, or dynamic beacon signals is an emerging need for
the future of cognitive navigation [6], [8], [9], [10].1

1In this paper, only the length of the beacon signals is assumed to be known
at the receiver. It should be pointed out that period estimation techniques,
e.g., [11], can be used to estimate the length of the beacon sequence in a
preprocessing stage.
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This paper considers a cognitive opportunistic approach to
detect the unknown beacon of terrestrial SOPs to enable
exploitation of these signals for positioning and navigation
purposes. Two scenarios are considered: (i) unknown beacon
signals with integer constraints (IC) on the symbols of the
beacon, and (ii) unknown beacon signals with no integer
constraints (NIC). An example of beacons with IC is pseudo-
noise (PN) sequences in cellular code division multiple access
(CDMA), while an example of beacons with NIC are the RSs
in orthogonal frequency-division multiplexing (OFDM)-based
systems. Since the symbols of PN sequences in CDMA signals
are drawn from a set with a finite alphabet size, e.g., phase
shift keying (PSK) set, they can be categorized as beacons
with IC. On the other hand, the RSs in OFDM-based systems,
e.g., secondary synchronization signal (SSS) in cellular LTE
and 5G NR, are arbitrary complex numbers in the time domain
and, therefore, can be categorized as beacon signals with NIC.

The main contributions of this paper are as follows:
• A cognitive opportunistic navigation method is pro-

posed, whereby unknown beacons of terrestrial SOPs are
detected, enabling exploitation of these signals for navi-
gation purposes. To this end, matched subspace detectors
are implemented practically for two different scenarios:
(i) beacons with IC, e.g., the symbols of the beacon
are drawn from M -ary PSK (MPSK) modulation set,
and (ii) beacon with NIC, i.e., the beacon signal are not
constrained to take integer values and can assume any
arbitrary complex-valued number.

• A near-optimal algorithm which has a lower computa-
tional complexity compared to the traditional detectors
with IC is proposed. The effect of the symbol errors
in the detected beacon signal on the carrier-to-noise
ratio (CNR) is characterized analytically. The proposed
matched subspace detectors are shown to be capable of
detecting multiple unknown real 5G NR and 3G signals
with a relatively low computational complexity.

• For the NIC scenario, closed-form expressions for
the probability of detection and false alarm are
derived. The effective signal to noise ratio (SNR) is
calculated and the effect of Doppler estimation error
on the performance of the detector is analyzed. It is
shown that the coherence processing interval (CPI) can
be selected optimally in the sense that it maximizes the
probability of detection. The estimated CPI is shown
to provide better estimation of the beacon signal in a
practical scenario. To the best of the authors’ knowledge,
the estimation of CPI has not been previously studied in
the literature.

• Experimental results are presented showing an appli-
cation of the proposed cognitive approach by enabling
an unmanned aerial vehicle (UAV) to detect and
exploit terrestrial cellular signals for navigation purposes.
In one experiment, the UAV achieved submeter-level
accurate navigation over a trajectory of 1.72 km,
by exploiting signals from four 3G cdma2000 transmit-
ters. In another experiment, the UAV achieves a position
root mean-squared error (RMSE) of 4.63 m over a
trajectory of 416 m, by exploiting signals from two 5G

transmitters. It should be pointed out that the number of
currently active 5G transmitters are relatively lower than
that of the previous generations. The 5G NR navigation
results will be improved dramatically with more active
5G transmitters.

• The OFDM frame of 5G signals are reconstructed in
a blind fashion. On-demand and always-on beacons are
demonstrated in the OFDM signal structure of real 5G
signals. To the best of the authors’ knowledge, the blind
reconstruction of the OFDM frame of 5G signals has not
been done in any other work in the current literature.

The rest of this paper is organized as follows. Section II
surveys relevant related work. Section III presents the received
baseband signal model. Section IV derives the generalized
likelihood ratio (GLR) detector for beacons of terrestrial
SOPs, when the elements of the beacons are drawn from
MPSK modulation, while Section V analyzes the perfor-
mance of the derived detector. Section VI derives the GLR
detector for beacons of terrestrial SOPs when the elements
of the beacons are arbitrary complex numbers. Section VII
presents experimental results for cognitive detection of both
beacons with IC and without NIC as well as an application
of the proposed approach in the context of UAV navigation.
Section VIII gives concluding remarks.

II. RELATED WORK

A. Positioning With Terrestrial Signals
Opportunistic navigation with different SOPs has been

demonstrated in the literature [12]. Cellular [13], digital televi-
sion [14], AM/FM [15], Wi-Fi [16], and low Earth orbit (LEO)
satellite signals [17], are SOP examples which have been
considered in the literature. In particular, terrestrial signals
have attracted considerable attentions due to their desirable
attributes, namely: (i) abundance, (ii) diversity in transmis-
sion frequency, (iii) high received carrier-to-noise ratio, and
(iv) free usage. Moreover, some SOPs (e.g., cellular) transmit
high bandwidth signals which yield precise TOA estimates and
are placed in favorable geometric configuration, which yield
low dilution of precision (DOP) measures.

Although meter-level and submeter-level SOP-based naviga-
tion solutions have been demonstrated on ground vehicles and
UAVs, such results have been achieved with methods which
require knowledge of the beacons transmitted by the SOP.
These methods would fail if the beacon signal is unknown
and/or some signal parameters change due to the dynamic
nature of wireless protocols. The approach proposed in this
paper addresses these issues by cognitively detecting all the
active sources and estimating the underlying beacons with
minimal prior knowledge for both CDMA and OFDM-based
communication systems.

B. Detection of Signals With IC: CDMA
The detection problem for both IC and NIC scenarios

leads to matched subspace detectors, which have been widely
studied in the classic detection literature [18], [19], [20], [21].
In the detection problem with IC, the integer constraint of
the beacon symbols in the matched subspace detectors leads
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to a class of integer least square problems [22], [23], [24].
One example of beacons with IC is the PN sequence in
CDMA-based communication systems. A low computational
complexity approach to estimate the beacon symbols is the
symbol by symbol (SBS) estimation which suffers from a poor
performance in low SNR regimes. In [25], an SBS estimation
scheme was considered to blindly estimate the symbols of
the PN sequences of Galileo and Compass satellites, and a
1.8 m high-gain antenna was used to accumulate enough signal
power. The optimal algorithm proposed in [23] and [24] can
be used to solve the integer least squares problem with a
polynomial computational complexity.

The computational and hardware complexity of the integer
least squares problem are two of the main challenges that
should be addressed in a cognitive opportunistic navigation
framework. In this paper, a near optimal beacon detector
with linear computational complexity is proposed to reduce
the computational complexity of the detection problem of
terrestrial signals with IC.

C. Signals With NIC: LTE and 5G
The beacon signals in LTE and 5G signals are not consid-

ered to be taking integer values and can assume any arbitrary
complex-valued numbers. Therefore, they can be considered as
beacons with NIC. The positioning capabilities of LTE signals
have been investigated in the literature over the past few
years [13], [26], [27], [28], [29], and several software-defined
receivers (SDRs) have been proposed to extract TOA and
DOA from real and laboratory-emulated LTE signals [3], [30],
[31], [32], [33]. Experimental results demonstrated navigation
solutions with different types of LTE RSs in different environ-
ments, achieving meter-level [30], [34], [35] and sub-meter-
level [36] accuracy. Positioning with 5G signals has also been
studied in the literature [37], [38], [39]. High data rate in
5G signals necessitates a higher transmission bandwidth and
more advanced spatial and time domain-based multiplexing
techniques. However, since the unlicensed spectrum in lower
frequencies is scarce, millimeter waves (mmWaves) have been
considered for 5G [40]. To mitigate the high path loss of prop-
agated mmWave signals different beamforming techniques and
massive multiple-input, multiple-output (mMIMO) antenna
structures are proposed for the 5G protocol [41]. Since beam-
forming in 5G requires the knowledge of the user’s location,
5G-based positioning is essential for resource allocation [42].
The signal characteristics of mmWave for positioning were
studied in [43]. The Cramér-Rao lower bounds (CRLBs) of
the direction-of-departure (DOD), DOA, and TOA promisses
a sub-meter positioning error and sub-degree orientation error
with both uplink and downlink mmWave signals [44], [45].
A two-stage Kalman filter was used to estimate the DOD and
UE’s position using the signal strength from multiple base
stations in [46], showing sub-meter-level three-dimensional
(3-D) position accuracy. A two-way distributed localization
protocol was proposed in [47] to remove the effect of the
clock bias in TOA estimates. In [48], the joint estimation of the
position and orientation of the UE, as well as the location of
reflectors or scatterers in the absence of the line-of-sight (LOS)
path were considered, showing less than 15 m position RMSE

and less than 7 degree orientation RMSE. Using the DOD and
TOA of the received signal, a positioning method for multiple-
output single-input systems was proposed in [42]. In [49], esti-
mation of signal parameters via rotational invariant techniques
(ESPRIT) was used to estimate the DOA and DOD of the
signal. Reference [50] focuses on the integrated positioning
methodology of GNSS and device to device (D2D) mea-
surements in 5G communication networks. In [39], a tensor-
based method for channel estimation in mmWave systems
is presented which enables positioning and mapping using
diffuse multipath in 5G mmWave communication systems.
Experimental results in [51] showed meter-level navigation
using TOA estimates from 5G signals.

All the aforementioned methods relied on the knowledge
of the beacon signals. The proposed cognitive framework in
this paper, is capable of detecting unknown beacons, of ter-
restrial SOPs, with IC (e.g., CDMA) and NIC (e.g., OFDM),
which enables the exploitation of these SOPs, for navigation
purposes. In other words, regardless of the communication
scheme, the proposed cognitive framework is capable of
detecting terrestrial SOPs, estimate the Doppler frequencies,
and detect the beacon signals.

D. Cognitive Navigation

In the navigation literature, detection of unknown signals
has been studied to design frameworks which are capable
of navigating with unknown or partially known signals. The
problem of detecting Galileo and Compass satellites signals
was studied in [25], which revealed the spread spectrum codes
for these satellites. Preliminary experiments on navigation with
partially known and unknown signals from low and medium
Earth orbit satellites were conducted in [9], [10], [17], [52],
and [53]. While these approaches yielded useful insights,
a more comprehensive study is required to develop a general
framework for the detection of cellular CDMA and 5G signals.
A cognitive method for navigation with 5G signals was also
presented in [6].

The method presented in [6] considers beacons with NIC.
The NIC-based method presented in this paper is computa-
tionally more efficient than the method presented in [6]. The
acquisition stage in [6] requires a sequential detection scheme
whose computational complexity grows as a polynomial func-
tion of the number of unknown sources in the environment.
On the other hand, the detection method presented in this
paper has a fixed computational complexity of the number of
unknown sources. Moreover, this paper analyzes the detection
performance of the NIC-based detector and assesses analyti-
cally the effect of Doppler estimation error.

III. RECEIVED BASEBAND SIGNAL MODEL

Let c(t) denote the beacon signal consisting of L consec-
utive symbols with symbol duration Ts. The beacon signal
is continuously transmitted at a period of LTs. After channel
propagation and baseband sampling, the received signal can
be modeled as

y[n] = α exp (j2πΔfn)
∞∑

i=−∞
c[n − iL − nd] + w[n], (1)
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where y[n] is the complex baseband sample at the nth time

slot, Δf � fDTs is the normalized Doppler frequency, fD

is the true Doppler frequency in Hz, w[n] models noise and
interference, nd is the unknown delay of the received beacon
signal, and α is an unknown complex amplitude. The periodic
discrete-time beacon signal is defined as s[n] =

∑∞
i=−∞ c[n−

iL − nd].
For convenience of notation, define the kth truncated vector

of received samples of length L as

yk � [y[kL], y[kL + 1], . . . , y[(k + 1)L − 1]]T.

The analysis herein applies for a CPI of K consecutive
beacon periods, in which Δf and α are assumed to be
constant. Therefore, without loss of generality, k is limited
to the set {0, 1, . . . , K − 1}.

Considering a CPI of length KL samples, the observation
vector can be constructed as y � [y1,y2, . . . ,yK ]T. Conse-
quently, the system model can be written as

y = αHs + weq, (2)

where, s = [s[1], . . . , s[L]]T, weq is the equivalent noise
vector, and the KL × L Doppler matrix is defined as

H� [D, exp (j2πΔfL)D, . . . , exp (j2πΔf(K−1)L)D)]T,

(3)

where D � diag {1, exp (j2πΔf) , . . . , exp (j2π(L − 1)Δf)}
and diag{a, b, . . . , c} is a diagonal matrix with a, b, . . . , c on
its diagonal elements.

Remark 1: In the signal model (1), the channel between the
transmitter and the receiver is modeled as h[n] = αδ[n− nd],
where α is the complex channel gain between the transmitter
and the receiver and nd is the corresponding code-delay.
In other words, it is assumed that the channel has a single tap.
This model assumes a scenario that a strong enough LOS com-
ponent exists between the transmitter and the receiver. It will
be shown in Section VII that the considered signal model is
valid for the conducted experiments in this paper. A frequency

selective channel scenario (i.e., h[n] =
∑M

j=1 αjδ[n − ndj ],
where M is the number of paths) can be considered in future
work.

IV. TERRESTERIAL SIGNAL ACTIVITY

DETECTION WITH IC

In this section, GLR detector is derived to detect the beacon
signals of terrestrial SOPs when the elements of the beacon
s are drawn from MPSK modulation. One example of this
type of beacons is the PN sequences in CDMA-based systems.
Globalstar LEO satellites employ a 4PSK CDMA system. The
spreading sequence structure is comprised of an inner PN
sequence pair and an outer PN sequence which are drawn
from 4PSK modulation scheme. Another example of this
type of beacons is transmitted by Orbcomm satellites. The
Orbcomm communication system utilizes the classic symmet-
ric differential phase shift keying (SDPSK) as the modulation
scheme for the downlink signals. The following Remark
explains how (2) is descriptive of a CDMA-based system
scenario.

Remark 2: In CDMA systems, several logical channels
are multiplexed on the same physical channel. For example,
there is a total of 128 logical channels multiplexed onto the
cdma2000 physical forward channel: (i) one pilot channel,
(ii) one sync channel, (iii) up to seven paging channels,
and (iv) traffic on the remaining channels. Each of these
logical channels is spread orthogonally by a 128-Walsh code,
multiplexed with the rest of the channels, and the resulting
signal is multiplied by a complex PN sequence which consists
of a pair of maximal-length sequences. In such a system, and
CDMA systems in general, the signal on the pilot channel
simplifies to the complex PN sequence, which is the beacon
of interest. Therefore, one can look at the CDMA signal as
the sum of (i) the signal on the pilot channel, or the beacon
signal and (ii) the sum of the remaining channels. Due to
the properties of Walsh codes and assuming the symbols
on the sync, paging, and traffic channels are uncorrelated,
one can model the aforementioned second term as noise.
In fact, for a large number of logical channels such as in
cdma2000 and Globalstar, the central limit theorem practically
applies and the resulting noise can be modeled as a zero-mean
Gaussian random sequence with a determined variance [54].
Consequently, the CDMA signal can be modeled according to
(1), where s[n] is the beacon on the pilot channel, and w[n]
captures channel noise and the effect of the rest of the logical
channels.

The following binary hypothesis test is considered{H0 : y = weq

H1 : y = αHs + weq,
(4)

where weq is an independent and identically distributed (i.i.d.)
Gaussian noise vector whose elements are zero-mean with
variance σ2. Also, consider the set S consisting all ML vector
combinations whose elements are the integers between 0 to
M − 1. For MPSK, a beacon sequence is s = exp

(
j2π
M q

)
where q ∈ S. The GLR detector for (4) is derived as (see
Appendix A)

LIC =
maxq∈S,Δf | exp

(− j2π
M qH

)
HHy|2

K2‖y‖2

H1

≷
H0

ηIC, (5)

where the superscript H denotes Hermitian transpose, and
ηIC is selected such that the probability of false alarm equals
desired value.

A. Integer Least Squares Problem

To derive the constrained GLR detector in (5), the following
integer least squares problem should be solved

argmax
q∈S,Δf

∣∣∣∣ zH exp
(

j2π

M
q
)∣∣∣∣ , (6)

where, z � 1
K HHy. A solution to the optimization prob-

lem (6) consists of a linear search over Doppler candidates
and an exponential exhaustive search over all possible values
of q. Denoting the number of Doppler search candidates by
D, the order of the overall search is DML. The detection
algorithm presented in [23] can be used to solve (6), optimally,
with a complexity of order O(DL log L). However, due to the
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large size of the beacon signals in practice, the resulting com-
putational complexity of existing methods is still significant.
The following Lemma establishes a reduced number of search
candidates.

Lemma 1: The optimal solution of the optimization prob-
lem (6) can be obtained by searching over DL candidates.
Proof: See Appendix B.

In what follows, a low-complexity beacon signal detection
(LCBSD) algorithm of complexity O(DL) to solve (6) is
presented. Next, using numerical analysis it is shown that the
proposed LCBSD algorithm performs almost similarly as the
maximum likelihood (ML) estimator.

B. LCBSD Algorithm
Under H1, the ML estimate of α for known beacon q is

given by

α̂ML =
1
L

[
exp

(
j2π

M
q
)]H

z. (7)

Let ql and zl denote the vectors containing the first l elements
of q and of z, respectively, and let q̂l denote the corresponding
estimate. From (7), the estimate of α obtained from q̂l is

α̂l =
1
l

[
exp

(
j2π

M
q̂l

)]H

zl. (8)

Note that ql and q̂l correspond to symbols 0 to l−1 and their
estimates, respectively. To estimate the lth symbol, α̂l is used
to wipe-off the effect of α in the lth observation, then an SBS
estimator is used according to

q̂l � argmax
ql∈{0,1,...,M−1}

�
{

αlz
H
l exp

(
j2π

M
ql

)}
, (9)

where �{·} denotes the real part, zl is the lth observation, and
ql is the lth element of q and q̂l its corresponding estimate.
Solving (9) yields

q̂l = round
[
(∠zl − ∠α̂l)M

2π

]
mod M. (10)

Next, l is set to l + 1 and the recursion continues. Let q̂
be the final estimate of the beacon. For the case l = 0,
an initial estimate of q0 is needed. It is important to note
from Appendix B that the ML estimate of q will have
an ambiguity of M . This ambiguity results in a constant
phase rotation in the estimated beacon, which does not affect
the absolute value of the correlation function and the TOA
estimation performance. To this end, q̂0 is chosen arbitrarily
from {0, 1, . . . , M − 1}.

V. PERFORMANCE ANALYSIS

This section defines the performance metrics of interest
in a cognitive opportunistic navigation scenario and presents
theoretical and numerical analyses of these metrics.

A. Carrier-to-Noise Ratio and TOA Measurements
Error Variance

The navigation performance in TOA-based navigation
depends on two main factors: (i) the DOP and (ii) the TOA
estimation error variance. The DOP is strictly a function of

the geometry between the transmitters and receiver. However,
the TOA estimation error variance is a function of the CNR.
From (1), it can be seen that the carrier power is given by C =
|α|2. SOP receivers correlate the received signal with known,
local replicas of the beacons to draw TOA measurements.
The correlation function peaks at the TOA. Consequently, the
TOA estimation performance is determined by the peak-to-
noise ratio, which, in the case of fully known beacon, is the
CNR. In cognitive opportunistic navigation, this peak-to-noise
ratio, or apparent CNR, is less than the actual CNR since
the magnitude of the correlation function peak is reduced due
to errors in the detected beacon symbols. It was mentioned
in the previous section that the LCBSD algorithm yields an
ambiguity of M in the SOP receiver’s local beacon symbols.
This ambiguity translates to an initial phase rotation in the
correlation function; therefore, it does not affect its amplitude.
As a result, the magnitude of the correlation peak will be
preserved, which in turn preserves the CNR.

B. Probability of Error Definition
As mentioned above, the ambiguity in the detected beacons

does not affect the TOA estimation performance. Hence, unlike
the classic definition of the probability of error in symbol
demodulation, the number of errors in the detected symbols
of the beacon is not a suitable definition for the probability of
error. Consequently, the probability of error Pe is defined as

Pe � min
m∈{0,1,...,M−1}

1
L

L−1∑
l=0

Pr [((q̂l − m) mod M) �= ql] .

(11)

Let m� denote the minimizer. The above expression cannot be
computed straightforwardly since Pr[((q̂l − m�) mod M) �=
ql] varies with l. To see this, the symbol error probability
curves were computed numerically from 106 Monte Carlo
noise weq realizations for L = 211, M = 4, and SNR of
4 and 10 dBs, and are shown Fig. 1.

Fig. 1 shows that the LCBSD performance converges to that
of the ML as l increases. Comparing 1(a) and 1(b) shows that
the rate of convergence is faster for larger values of SNR.
It can be also seen that the ML and the proposed LCBSD
algorithm outperform the SBS estimation dramatically. While
SBS is adopted in [25] and [52] for beacon symbol recovery,
it yields a poor probability of error. LCBSD-aided SBS
performs SBS estimation for all the beacon symbols after
convergence of α̂l. This step eliminates the transient of the
LCBSD symbol error probability. It should be pointed out
that in Fig. 1, the LCBSD-aided SBS, the ML method, and the
method with known α are achieving almost equal probability
of error in the considered SNR values. Moreover, Fig. 1 shows
that both the ML in [23] and the LCBSD error probabilities
converge to the case that α is known. To this end, in the CNR
analysis in Section V-C, the probability of error is assumed
constant over l and is equal to that of SBS estimation when
α is known.

C. Apparent Carrier-to-Noise Ratio

The apparent CNR is calculated from the correlation func-
tion of s with its estimate ŝ. Let sl and ŝl denote the l-th
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Fig. 1. Error probability Pr [((q̂l − m�) mod M) �= ql] for (i) SBS
detector (ii) the ML estimator, (iii) the proposed LCBSD algorithm, and
(iv) the LCBSD-aided SBS detector versus l, for L = 210, M = 4: for
(a) SNR = 4 dB, and (b) SNR = 10 dB.

symbol and its estimate, respectively. Note that ŝl is a random
variable whose support is the MPSK constellation, and the
probability of each symbol is computed from the observation
probability density function (pdf). Subsequently, the apparent
carrier power C̄ can be derived according to

C̄ = |α|2
∣∣∣∣∣E

[
1
L

L−1∑
l=0

s∗l ŝl

]∣∣∣∣∣
2

= |α|2
∣∣∣∣∣ 1
L

L−1∑
l=0

s∗l E [ŝl]

∣∣∣∣∣
2

.

(12)

Due to the symmetry of MPSK systems, it can be readily
shown that E [ŝl] = βsl, where it can be further shown
that β = 1 − 2Q(

√
2SNR) for BPSK systems and β =

1−2Q(
√

SNR) for QPSK systems. Subsequently, the apparent
carrier-to-noise ratio is computed according to

C̄/N0 = |α|2β2/N0 = β2C/N0, (13)

and it simplifies to C̄/N0 = [1 − 2Q(
√

2SNR)]2C/N0 for

BPSK and C̄/N0 = [1 − 2Q(
√

SNR)]2C/N0 for QPSK.

D. Numerical Analysis

A numerical analysis is conducted to assess the effect of
the proposed LCBSD algorithm in comparison to the ML
algorithm on the apparent CNR. To this end, 106 Monte Carlo
noise weq realizations were generated for a beacon signal of
length L = 211 with M = {2, 4}. The apparent CNR of the
simplified GLR (SGLR) method in [22] is also compared with
that of the proposed algorithm and the ML algorithm. The
ratio β2 is calculated and plotted as a function of the SNR,
which is given by SNR = 1

σ2 . Fig. 2 shows that the proposed
LCBSD algorithm is near optimal and obtains equal apparent
CNR with the SGLR algorithm in [22] for BPSK and QPSK
modulation schemes.

Remark 3: The method in [23] requires L divisions and
the sorting operation, which can be accomplished by L log L
complex operations. A total number of L logL+4L−3 com-
plex operations per Doppler bin is required for [23]. The

Fig. 2. Monte Carlo results for β2 of (1) the ML estimator, (2) the proposed
LCBSD algorithm, (3) the SGLR algorithm, and (4) the theoretical value (13)
versus the SNR for L = 211 and M = {2, 4}.

total number of complex operations for the proposed method
is 4L − 3 per Doppler bin. It should be pointed out that
the proposed method is as complex as the SBS algorithm
after the convergence of α̂l. In many practical scenarios, the
coherence time of the channel might be of the order of tens
to thousands of symbols [54]. During the channel coherence
time, the algorithm does not need to keep updating α̂l after
it converges. According to Fig. 1, the convergence rate of α̂l

depends on the operating SNR and is relatively high.

VI. TERRESTRIAL SIGNAL ACTIVITY

DETECTION WITH NIC

In this subsection, a GLR detector is proposed to detect
the beacon signals when the elements of the beacon s are
arbitrary complex numbers. In OFDM-based systems such
as LTE and 5G NR, the beacon sequences such as primary
synchronization signal (PSS) and secondary synchronization
signal (SSS) still have integer constraints. However, at the
transmitter, the symbols are input to the inverse discrete
Fourier transform (IDFT). Therefore, in the time domain, the
equivalent beacon’s elements are arbitrary complex numbers.
The following Remark explains how (2) can be descriptive of
an OFDM-based system.

Remark 4: NR adopts an OFDM scheme, as was the
case in 4G LTE. In OFDM-based transmission, the symbols
are mapped onto multiple carrier frequencies, referred to as
subcarriers, with a particular spacing known as subcarrier
spacing. Once the subcarrier spacing is configured, using
a higher level signaling, the frame structure is identified.
In LTE and 5G, a frame has a duration of 10 ms and consists
of 10 subframes with durations of 1 ms [55]. To provide
frame timing to the user, an OFDM-based system such as 5G
NR, broadcasts synchronization signals (SS) on pre-specified
symbol numbers. An SS includes a PSS and SSS, which
provide symbol and frame timing, respectively. The SS and the
data symbols are input to the IDFT. In [56], it is shown that
the complex envelope of the OFDM signals can be considered
to be asymptotically white and Gaussian. Therefore, in (2), s
contains the complex elements of the IDFT of the SS and weq

captures the effect of receiver noise and data symbols which
can be considered to be white Gaussian with variance σ2.

Since there is no integer constraint on s, the effect of α and
matrix D can be lumped into s. It should be pointed out that

Authorized licensed use limited to: The Ohio State University. Downloaded on October 13,2023 at 15:32:15 UTC from IEEE Xplore.  Restrictions apply. 



NEINAVAIE et al.: COGNITIVE DETECTION OF UNKNOWN BEACONS OF TERRESTRIAL SOPs FOR LOCALIZATION 5619

|α|2DHD = |α|2I. Therefore, the correlation properties of αs
and αDs are identical. Hence, the system model (2) can be
rewritten as

y = Hs + weq, (14)

where weq is the equivalent noise vector, and the KL × L
Doppler matrix is defined as

H � [IL, exp (j2πΔfL)IL, . . . , exp (j2πΔf(K − 1)L) IL)]T,
(15)

where IL is an L × L identity matrix. The following binary
hypothesis test is considered{H0 : y = weq

H1 : y = Hs + weq.
(16)

The GLR detector for the testing hypothesis (4) is known as
matched subspace detector, and is derived as [18]

LNIC = max
Δf

yHPHy
yHP⊥

Hy
, (17)

where PH � H(HHH)−1HH denotes the projection matrix to
the column space of H, P⊥

H � IL−PH denotes the projection
matrix onto the space orthogonal to the column space of H.
Since HHH = KIL,

yHPHy
yHP⊥

Hy
=

1
‖y‖2

1
K2 ‖HHy‖2 − 1

, (18)

which is a monotonically increasing function of ‖HHy‖2

‖y‖2 .
Hence, the GLR detector (17) is equivalent to

max
Δf

‖HHy‖2

‖y‖2

H1

≷
H0

ηNIC, (19)

where ηNIC is determined according to the desired probability
of false alarm.

A. Derivation of Probability of Detection and False Alarm
In this subsection, closed-form expressions for the asymp-

totic probability of detection and false alarm are derived in the
presence of Doppler estimation error and for a large CPI K .
To this end, the pdfs of the numerator and the denominator
of the likelihood function (17) are derived. Next, it is shown
that the numerator and the denominator are statistically inde-
pendent. Finally, for large values of K , the pdf of the ratio
of the numerator and denominator is derived. The likelihood
function (17) can be rewritten as

N(y)
D(y)

=
K(L − 1)

L

1
σ2 yHP̂Hy
1

σ2 yHP̂⊥
Hy

, (20)

where P̂H and P̂⊥
H are the estimated projection matrices

when the estimate of Doppler is replaced in PH and P⊥
H,

respectively. The numerator of the likelihood can be written
as N(y) = K(L−1)

σ2 ŝHC−1ŝ, where C � 1
σ2 ĤHĤ and

ŝ = (ĤHĤ)−1ĤHy =
1
K

ĤHs +
1
K

ĤHweq. (21)

The following lemma gives the distribution of N(y).
Lemma 2: Assuming that the r × 1 vector v is a complex

Gaussian random vector distributed as v ∼ CN (µ,C), where

µ is the r×1 mean vector and C is the r×r covariance matrix,
the scalar vHC−1v is distributed as

vHC−1v ∼
{

χ2
2r, µ = 0

χ′2
2r(λ), µ �= 0,

(22)

where χ2
2r denotes a chi-squared random variable with 2r

degrees of freedom, χ′2
2r(λ) denotes a noncentral chi-squared

random variable with 2r degrees of freedom and non-centrality
parameter λ, and λ = µHC−1µ [57].

According to Lemma 2, for the numerator of the likelihood
function, one obtains

1
σ2

yHP̂Hy ∼
{

χ2
2L H0

χ′2
2L(λ) H1,

(23)

where λ =
sH(ĤHH)s

σ2 . According to the definition of the
Doppler matrix, one has

ĤHH = ρI, (24)

where

ρ =
∣∣∣∣ sin (KπΔfeL)

sin (πΔfeL)

∣∣∣∣ , (25)

and Δfe = Δf − Δ̂f is the Doppler estimation error. Hence,
the non-centrality parameter of the numerator under H0 can be

written as λ = ρ‖s‖2

σ2 . It should be pointed out that 0 ≤ ρ ≤ K .
The maximum value of ρ is obtained when Δfe → 0. It will
be shown that the probability of detection is characterized by
λ. In other words, λ is the equivalent SNR for the GLR
detector (17). Thus, when the Doppler estimation error Δfe

tends to zero, the equivalent SNR, i.e., λ, is maximized.
It should be noted; however, that ρ, and in turn λ, may decay as
the CPI increases in the case where Δfe is not small enough.
One can show that a sufficient condition for ρ to approach K
as the latter increases is that

Δfe 
 1
2KL

. (26)

For the denominator of the likelihood function, one has

1
σ2

yHP̂⊥
Hy =

(
Hs
σ

+
w
σ

)H

P̂⊥
H

(
Hs
σ

+
w
σ

)
(27)

The following Lemma is used to derive the pdf of (27).
Lemma 3: If the r × 1 vector v is distributed as v ∼

CN (µ, I), and A is an r × r Hermitian matrxi, vHAv has
non-central complex chi-squared distribution with rank(A)
degrees of freedom and non-centrality parameter µHAµ,
if and only if A is an idempotent matrix [57].

According to Lemma 3, and since P⊥
H is an idempotent

matrix of rank K(L − 1), one has

1
σ2

yHP⊥
Hy ∼

{
χ2

2K(L−1), H0

χ′2
2K(L−1)(λ

′), H1,
(28)

where λ′ = 1
σ2

(
K − ρ

K

) ‖s‖2, and ρ is defined in (25).
The pdf of numerator and denominator can be obtained

using (23) and (28). Now, the independence of the numerator
and the denominator of the likelihood function (17) is assessed
using the following lemma.
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Lemma 4: Let the vector v be an r × 1 complex Gaussian
vector with mean µ and covariance matrix C, and let A and
B be r× r Hermitian matrices. If ACB = 0 then vHAv and
vHBv are statistically independent [57].

Since P̂⊥
H and P̂H are orthogonal matrices, according to

Lemma 4, yHP̂Hy and yHP̂⊥
Hy are statistically independent.

If (26) is satisfied, then

lim
K→∞

sin (K2πΔfeL)
sin (2πΔfeL)

= K,

hence, according to (25), lim
K→∞

λ′ = 0. A non-central chi-

squared random variable with a non-centrality parameter of
zero equals a central chi-square with the same parameters,
under H1. Therefore, for a large number of K , one has
1

σ2 yHP⊥
Hy ∼ χ′2

2K(L−1)(0) ≡ χ2
2K(L−1), Finally, using the

following lemma, the pdf of the likelihood function can be
obtained under both hypotheses.

Lemma 5: If x1 ∼ χ′2
r1

(λ′) and x2 ∼ χ2
r2

are independent,
then x1/r1

x2/r2
∼ F ′

r1,r2
(λ), where F ′

r1,r2
(λ) denotes a non-central

F-distribution with pdf

f(x) = exp
(
−λ

2

) ∞∑
k=1

(λ/2)k

k!
(r1/r2)

1
2 r1+k

B
(

r1+2k
2 , r2

2

)
x

r1
2 +k−1

(
1 +

r1

r2
x

)− 1
2 (r1+r2)−k

, (29)

with r1 and r2 degrees of freedom, where λ is the noncentrality
parameter, and B

(
r1+2k

2 , r2
2

)
is the beta function defined as

B(x, y) �
∫ 1

0
tx−1(1 − t)y−1dt [57].

According to Lemma 4 and Lemma 5, under H1, if Δfe 

1

2KL , it follows that K(L−1)
L

1
σ2 yHP̂Hy
1

σ2 yHP̂⊥
Hy

∼ F ′
2KL,2K(L−1)(λ),

and under H0, K(L−1)
L

1
σ2 yHP̂Hy
1

σ2 yHP̂⊥
Hy

∼ F2KL,2K(L−1). Hence, the

probability of detection and false alarm are

PD = QF ′
2KL,2K(L−1)(λ) (ηNIC) , (30)

and
PFa = QF2KL,2K(L−1) (ηNIC) , (31)

receptively, where QF ′
2KL,2K(L−1)(λ)(x) is the right

tail probability of noncentral F-distribution defined as
QF ′

2KL,2K(L−1)(λ)(x) �
∫∞

x
f(x)dx, and f(x) is defined

in (29).
Remark 5: It can be observed from (30) that the probability

of detection is characterized by λ. On one hand, if (26) is
satisfied, then λ will tend to ∞ as K increases, in which case
PD tends to one. On the other hand, λ may approach zero as
K increases if (26) is not satisfied, in which case PD tends
to zero. It should be pointed out that the prabability of false
alarm is not a function of unknown parameters. Therefore,
if (26) is satisfied then the detector is a constant false alarm
rate (CFAR) detector.

B. Numerical Versus Theoretical Probability of Detection

Numerical simulations were conducted in order to compare
the derived probability of detection with simulations. To this

Fig. 3. Monte Carlo simulation results comparing theoretical (30) and simu-
lated probability of detection. It can be seen that increasing the CPI improves
the probability of detection if the Doppler estimation error satisfies (27).

end, 5G signals were simulated and the CPI length was varied
from K = 10 to K = 50 for a set of Doppler estimation errors
of Δfe ∈

{
0, 1.6 × 10−5, 2 × 10−5, 2.4 × 10−5Hz

}
. It should

be pointed out that these values are close to the typical Doppler
estimation error values which are observed in the experiments.
The SNR was considered to be 20 dB. A total of 106

Monte Carlo noise weq realizations were used to numerically
calculate PD. The results are shown in Fig. 3. It can be seen
from the figure that as the Doppler estimation error increases,
the probability of detection decreases. It can be also seen
that if the condition in (26) is violated, the probability of
detection decays with the CPI. This is a direct consequence of
Remark 5 which shows that the obtained theoretical analysis
is corroborated with the numerical simulations.

Remark 6: The detection performance curves in Fig. 3
demonstrate an optimal regime of CPIs for a given Doppler
estimation error. Assuming that the Doppler is estimated
perfectly, increasing the CPI results in a higher probability
of detection, which leads to a more reliable estimation of
the beacon. Due to the Doppler estimation error in practice,
an optimal regime of CPIs exists in which the probability
of detection is maximized. If one thinks of the subspace
spanned by the columns of H as the “signal subspace”
and the orthogonal subspace as the “noise subspace,” then
the test statistic (17) is an estimated SNR for the proposed
method. The ML estimation of the CPI can be obtained by
maximizing (17) over different values of the CPI. It will be
shown in Section VII that the ML estimation of the CPI
can be obtained using the likelihood (17). It will be also
shown that the estimated beacon using the ML estimate of the
CPI is cleaner than the estimated beacon using an arbitrarily
chosen CPI.

After obtaining coarse estimates of the Doppler frequencies
and estimates of the beacons, the receiver refines and maintains
these estimates. Specifically, conventional phase-locked loops
(PLLs) are employed to track the carrier phases of the detected
RSs and carrier-aided delay-locked loops (DLLs) are used to
track the RSs’ code phases [58].

VII. EXPERIMENTAL RESULTS

This section presents experimental results demonstrating
the proposed cognitive approach to detect unknown beacons
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Fig. 4. Environment layout and UAV trajectory for the cdma2000 experiment.

of terrestrial SOPs with IC and NIC to enable cognitive
opportunistic navigation of a UAV with real cdma2000 and
5G NR signals. In the detection algorithms, the thresholds are
selected according to (31) for PFA = .001.

A. Experiment 1: Cognitive Detection and Navigation With
Unknown Beacons With IC–cdma2000 Signals

The first experiment aims to show the performance of the
proposed cognitive framework with unknown beacons with IC,
corresponding to terrestrial cellular 3G cdma2000 signals.

1) Experimental Setup: A UAV was equipped with an
Ettus E312 universal software radio peripheral (USRP) to
sample cdma2000 signals, a consumer-grade 800/1900 MHz
cellular antenna, and a small consumer-grade GPS antenna to
discipline the on-board oscillator. The receiver was tuned to a
882.75 MHz carrier frequency, which is a cdma2000 channel
allocated for the U.S. cellular provider Verizon Wireless. All
the 3G base transceiver stations (BTSs) in this experiment
transmit at 882.75 MHz. Samples of the received signals were
stored for off-line post-processing. The ground-truth reference
for the UAV trajectory was taken from its on-board navigation
system, which uses a GNSS receiver, an inertial measurement
unit (IMU), and other sensors. The UAV’s total traversed
trajectory was 1.72 km, which was completed in 3 minutes.
Over the course of the experiment, the receiver on-board
the UAV was listening to four BTSs, whose positions were
mapped prior to the experiment. The experimental setup and
environment is shown in Fig. 4.

2) Detection Results: The cdma2000 PN sequence was
estimated from the forward link signal, using the LCBSD
algorithm. Fig. 5 shows the likelihood function (5) in terms of
Doppler frequency. As it can be seen, four BTSs are detected
in this experiment. Fig. 6(a) shows a scatter plot of z in (6)
which resembles the scatter plot of a rotated noisy 4PSK
modulated signal. Fig. 6(b) shows the correlation function
between the estimated and true cdma2000 forward channel
PN sequence using the LCBSD algorithm, whose clean peak
indicates that the estimated sequence can be reliably used to
despread the cdma2000 signal. The value of β was found to
be 0.486, which from Fig. 2, indicates that the receiver was
operating in less than unity SNR regime.

3) Navigation Results: The detected PN sequence was used
to acquire and track the received cdma2000 signals and
produce TOA-like measurements using the receiver implemen-
tation discussed in [58]. It is worth noting that a carrier-aided

Fig. 5. The likelihood (5) in terms of Doppler frequency (solid blue) and
the threshold (dotted red). Four BTSs are detected in this experiment.

Fig. 6. (a) Scatter plot of z from real cdma2000 forward channel sig-
nals. (b) Correlation function between the detected and true cdma2000 PN
sequence.

delay-locked loop (DLL) was used to estimate the TOA, which
yields smoother and more precise estimates than a standalone
DLL. Next, the estimation of the position of the UAV-mounted
receiver, denoted rr, from TOA measurements from the four
BTSs is discussed. The UAV’s altitude was assume to be
known, e.g., using an altimeter, and only its two-dimensional
(2–D) position was estimated. The TOA, expressed in meters,
from the n-th BTS, where n ∈ {1, 2, 3, 4}, can be modeled as

zn(k)=‖rr(k)−rsn‖+c · [δtr(k)−δtsn(k)]+vn(k), (32)

where rsn is the 2–D position of the n-th BTS, c is the speed
of light, δtr and δtsn are the receiver and n-th BTS’s clock
biases, respectively, and vn is the measurement noise, which
is modeled as a zero-mean white Gaussian sequence with
variance σ2

n. The terms c · [δtr(k) − δtsn(k)] are combined
into one term as they do not need to be estimated separately,
yielding cδtn(k) � c · [δtr(k) − δtsn(k)] . The cellular BTSs
possess tighter carrier frequency synchronization than time
(code phase) synchronization (the code phase synchronization
requirement as per the cellular protocol is reported to be
within 10 μs in [59], and was experimentally observed to be
within 3 μs in [60]). Therefore, the resulting clock biases
in the TOA estimates will be very similar, up to an initial
bias, as shown in Fig. 7. Consequently, one may leverage this
relative frequency stability to eliminate parameters that need
to be estimated.

Motivated by Fig. 7, the following re-parametrization is
proposed

cδ̄tn(k) � cδtn(k) − cδtn(0) ≡ cδt(k) + εn(k), ∀n (33)

where cδt is a time-varying common bias term independent
of the nth BTS, and εn is the deviation of cδ̄tn from this
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Fig. 7. Experimental data showing cδtn(k)−cδtn(0) obtained from carrier
phase measurements over 24 hours for three neighboring BTSs. It can be
seen that the clock biases cδtn(k) in the carrier phase measurement are very
similar, up to an initial bias cδtn(0) which has been removed.

common bias and is treated as measurement noise. Using
(33), the TOA measurement (32) can be re-parameterized as
zn(k) = ‖rr(k) − rsn‖ + cδt(k) + cδt0n + ηn(k), where
cδt0n � cδtn(0) and ηn(k) � εn(k) + vn(k) is the overall
measurement noise. Note that cδt0n can be obtained by
knowing the initial receiver’s position and from the initial
measurement zn(0), according to cδt0n ≈ zn(0) − ‖rr(0) −
rsn‖. This approximation ignores the contribution of the initial
measurement noise.

The TOA measurements were fed to an extended
Kalman filter (EKF) to estimate the state vector x �[
rT

r , ṙT
r , cδt, cδ̇t

]T

, where ṙr is the UAV’s 2–D velocity vector

and δ̇t is the clock drift. A white noise acceleration model was
used for the UAV’s dynamics, and a standard double integrator
driven by process noise was used to model the clock bias
and drift dynamics [13]. As such, the discrete-time dynamics
model of x is given by

x(k + 1) = Fx(k) + w(k), (34)

where F = diag [Fpv,Fclk] with Fpv =[
I2 T I2

02×2 I2

]
, Fclk =

[
1 T
0 1

]
, and T is the time interval

between two measurements; w(k) is the process noise, which
is modeled as a zero-mean white random sequence with
covariance matrix Q = diag [Qpv,Qclk] where

Qpv =

⎡⎢⎢⎢⎣
q̃x

T 3

3 0 q̃x
T 2

2 0
0 q̃y

T 3

3 0 q̃y
T 2

2

q̃x
T 2

2 0 q̃xT 0
0 q̃y

T 2

2 0 q̃yT

⎤⎥⎥⎥⎦ ,

Qclk = c2

[
Sw̃δt

T + Sw̃δ̇t

T 3

3 Sw̃δ̇t

T 2

2

Sw̃δ̇t

T 2

2 Sw̃δ̇t
T

]
, (35)

where the x, y acceleration process noise spectra of the white
noise acceleration model were set to q̃x = q̃y = 5 m2/s3, the
time interval between two measurements was T = 0.0267 s,
and the receiver’s clock process noise spectra were chosen
to be Sw̃δt

= 1.3 × 10−22 and Sw̃δ̇t
= 7.9 × 10−25

which are that of a typical temperature-compensated crystal
oscillator (TCXO) [13]. Note that rr is expressed in an ENU
frame centered at the UAV’s true initial position. The EKF
state estimate was initialized at x̂(0) = 06×1 with an initial
covariance of P(0) = diag[3 · I2×2, I2×2, 10−2, 10−4]. The
measurement noise covariance was set to R = I2×2.

Fig. 8. True UAV trajectory and the estimated trajectory using the proposed
cognitive opportunistic navigation framework.

Fig. 9. Environment layout and UAV trajectory for the 5G NR UAV
experiment.

The UAV’s position was estimated using the aforementioned
EKF and the total position RMSE was found to be 77.1 cm
over the entire trajectory. The true and estimated trajectories
are shown in Fig. 8.

B. Experiment 2: Cognitive Detection and Navigation With
Unknown Beacons With NIC–5G Signals

In the second experiment, the GLR detector with no integer
constraint (19) is used to detect 5G NR downlink signals. The
location of the gNBs was mapped prior to the experiment.

1) Experimental Setup: In this experiment, the navigator
was an Autel Robotics X-Star Premium UAV equipped with a
single-channel Ettus 312 USRP connected to a consumer-grade
800/1900 MHz cellular antenna and a small consumer-grade
GPS antenna to discipline the on-board oscillator. The cel-
lular receivers were tuned to the cellular carrier frequency
632.55 MHz, which is a 5G NR frequency allocated to the
U.S. cellular provider T-Mobile. All the 5G gNBs in this
experiment use 632.55 MHz carrier frequency. Samples of
the received signals were stored for off-line post-processing.
The UAV traversed a trajectory of 416 m. Fig. 9 shows the
environment layout and the vehicle trajectory. The acquisition
results are presented next.

2) Detection of 5G gNBs and the Corresponding RSs:
Fig. 10 demonstrates the likelihood function (19) in terms of
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Fig. 10. The likelihood (19) in terms of Doppler frequency (solid blue) and
the threshold (dotted red). Three gNBs are detected in this experiment.

Fig. 11. The OFDM frame structure of the estimated RS. The always-on
synchronization signals, i.e., SS/PBCH block, can be seen in the estimated
OFDM frame (the block of symbols and subcarriers with the highest power
located in the red box).

Fig. 12. Correlation of the detected RS with three different PSSs of 5G NR.

Fig. 13. Carrier phase error for the three detected RS at 4 Hz, 12 Hz,
and 15 Hz. The carrier phase error of the detected source at 15 Hz is not
converging.

Doppler frequency. It can be seen that three different sources
are detected at Doppler frequencies of 4 Hz, 12 Hz, and 15 Hz
using the GLR test. In 5G NR, the always-on synchronization

Fig. 14. The likelihood (19) in terms of different values of CPI.

Fig. 15. The estimated RS at 4Hz for K = 20 and K = 60. The estimated
RS for the optimal CPI (K = 60) is less noisy than the estimated RS for the
arbitrarily chosen CPI (K = 20).

Fig. 16. UAV’s ground-truth and estimated trajectories using the proposed
cognitive opportunistic navigation framework versus the method in [51], which
uses the known always-on beacons for 5G NR signals. Map data: Google
Earth.

signal includes PSS and SSS, which provide symbol and frame
timing, respectively. The PSS and SSS are transmitted along
with the physical broadcast channel (PBCH) signal and its
associated demodulation reference signal (DM-RS) on a block
called SS/PBCH block. The SS/PBCH block consists of four
consecutive OFDM symbols and 240 consecutive subcarri-
ers [61]. Fig. 11, demonstrates the reconstructed OFDM frame
of the estimated RS at 4 Hz. The always-on synchronization
signals, i.e., SS/PBCH block, can be seen in the estimated
OFDM frame (the block of symbols and subcarriers with the
highest power in the red box). It can be seen that other than
the always-on beacons, on-demand beacons are also estimated
which are spread periodically in different OFDM symbols and
subcarries.
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Fig. 17. The environment layout and the physical channel between the gNB and the UAV.

In 5G NR, the PSS is transmitted in one form of three
possible sequences, each of which maps to an integer rep-
resenting the sector ID of the gNB [61]. In order to assess
the performance of the detector, the estimated RS of the
source at 4 Hz is correlated with the three possible 5G NR
PSSs, as shown in Fig. 12. A strong correlation between
the estimated RS and the third PSS is observed, while the
correlations with the first two are negligible. This implies that
the gNB at 4 Hz was actually transmitting the third PSS in
the sector within which the UAV was flying.

False alarm: A detected source can be either a valid
transmitter or a false alarm. A false alarm may occur due
to multipath or an unwanted interfering source. The estimated
RSs are fed to tracking loops to get carrier phase and code
phase observables. If a source is mistakenly detected, the
tracking loops will fail to track the signal. Fig. 13 demonstrates
the carrier phase error for the three detected sources at 4 Hz,
12 Hz, and 15 Hz. It can be seen that the carrier phase error of
the two sources at 4 Hz and 12 Hz are converging, while the
carrier phase error of the source at 15 Hz is not converging.
Hence, the method identifies this source as a false alarm.

ML estimation of the CPI: Fig. 14 demonstrates the like-
lihood function for different values of CPI. As discussed in
Remark 6, the ML estimation of the CPI can be obtained
by maximizing the likelihood function (17). A CPI of K =
60 maximizes the likelihood for the first gNB and a CPI of
K = 36 maximizes the likelihood corresponding to the second
gNB. It should be pointed out that the optimal choice of the
CPI depends on the channel statistics and the dynamics of the
UAV. In a scenario where the Doppler is changing rapidly,
the ML estimate of the CPI becomes smaller. On the other
hand, in a static scenario, the receiver will have more time
to coherently accumulate the received samples and obtain a
better estimate of the RS. Fig. 15 demonstrates the estimated
PRNs for the first gNB for two different values of CPI: (i) an
arbitrary CPI of K = 20, and (ii) the ML estimate of a CPI of
K = 60. It can be seen that the estimated RS for K = 60 is
cleaner than that of the arbitrarily chosen CPI.

3) Navigation Results: The estimated beacon is used to
produce TOA measurements using the receiver implementa-
tion discussed in [6]. Note that since the UAV’s altitude is

known using an altimeter, only its two-dimensional position is
estimated. Similar measurement models as in Section VII-A.3
are considered. The TOA measurements were fed to an
extended Kalman filter (EKF) to estimate the state vector

x �
[
rT

r , ṙT
r , cδt, cδ̇t

]T

, where ṙr is the UAV’s 2–D velocity

vector and δ̇t is the clock drift as discussed in Section VII-A.3.
The x, y acceleration process noise spectra in the nearly
constant velocity model were set to q̃x = q̃y = 5 m2/s3,
the time interval between two measurements was T = 1 s,
and the receiver’s clock process noise spectra were chosen
to be Sw̃δt

= 1.3 × 10−22 and Sw̃δ̇t
= 7.9 × 10−25. The

EKF state estimate was initialized at x̂(0) = 06×1 with an
initial covariance of P(0) = diag[3 ·I2×2, I2×2, 10−2, 10−4].
The measurement noise covariance was set to R = I2×2.
The position RMSE of the UAV was calculated to be 4.63 m
with the aforementioned parameters. The true and estimated
UAV trajectories with the proposed method versus the receiver
in [51] which uses the known beacon are shown in Fig. 16.
It can be seen that the proposed cognitive opportunistic
framework achieves lower position RMSE compared to the
method presented in [51]. This is due to the fact that the
method in [51] only relies on always-on signals, whereas
the cognitive opportunistic navigation framework exploits all
the available bandwidth of the received signal, which in turn
results in a more accurate TOA estimation and, consequently,
less positioning RMSE [6].

C. Signal Model Validation
In the signal model (1), a single tap channel which cor-

responds to the LOS path with arbitrary channel gain α is
considered. More precisely, the channel impulse response is
modeled as h[n] = αδ[n − nd], where α is the complex
channel gain between the transmitter and the receiver, and
nd is the code-delay corresponding to the transmitter and the
receiver. This channel model considers a flat fading scenario,
where the effect of multiple “close” paths is considered in
a single path gain α. Based on the underlying distribution
of α, the considered h[n] can model a Rayleigh or Rician
flat fading channel [54]. To justify the single tap flat fading
channel model for the UAV scenario, the channel impulse

Authorized licensed use limited to: The Ohio State University. Downloaded on October 13,2023 at 15:32:15 UTC from IEEE Xplore.  Restrictions apply. 



NEINAVAIE et al.: COGNITIVE DETECTION OF UNKNOWN BEACONS OF TERRESTRIAL SOPs FOR LOCALIZATION 5625

Fig. 18. (a) The channel impulse response magnitude between the gNB and
the UAV at t = 0. (b) The code-delay corresponding to the corresponding
between the gNB and the UAV during the course of the experiment.

response between the UAV and one of the gNBs is assessed.
The physical environment between the gNB and the UAV
is demonstrated in Fig. 17. In this figure, the term clear
LOS refers to a scenario where the signal is not blocked by
an obstacle, e.g., a building. It can be seen that there is a
clear LOS between the gNB and the UAV. The magnitude
of the channel impulse response is plotted in Fig. 18(a). The
magnitudes of the channel impulse responses are estimated
by reconstructing the frame as described in [62]. Fig. 18(b)
demonstrates the true and estimated code delay between the
gNB and the UAV. It can be observed from Fig. 18 that the
channel impulse response |h(τ)| does not exhibit multiple taps
(i.e., h[n] =

∑M
i=1 αiδ[n − ndi ], where M is the number

of paths). Hence, considering a single tap flat fading model
is valid for the conducted experiments. Frequency selective
channels can be considered in future work.

VIII. CONCLUSION

This paper proposed the idea of cognitive opportunistic nav-
igation as a solution for exploiting SOPs with partially known
signal specifications. Two main challenges of a cognitive
opportunistic framework were addressed. Two scenarios were
considered in the paper: (i) detection of unknown beacons with
IC and (ii) detection of unknown beacons with NIC. Matched
subspace detectors were proposed for both scenarios and it
is shown experimentally that the matched subspace detector
with integer constraint on the beacon symbols was capable
of detecting cdma200 signals. A low complexity method was
derived to simplify the matched subspace detector with integer
constraint. The effect of symbol errors in the estimated beacon
signal on the CNR was characterized analytically. Moreover,
the matched subspace detector with no integer constraint was
used to detect real 5G NR signals. Experimental results were
presented showing a UAV navigating with the proposed frame-
work with real cdma2000 signals, achieving submeter-level
accuracy over a trajectory of 1.72 km. Another experiment
with beacons with NIC also shows navigation results with real
5G signals on a UAV navigating using the proposed framework
over a 416 m trajectory with a position RMSE of 4.63 m.

APPENDIX A
GLR DETECTOR FOR (4)

It should be pointed out that the derivation of the GLR
detector for (4) is similar to that of the matched subspace

detector in [18] and the general linear model in [57]. The main
difference here is the structure of the subspace matrix H which
simplifies the detector. The integer constraint should also be
considered for the derivation of the detector. For the complete-
ness of the paper, this appendix presents the derivation of the
GLR detector for (4). To this end, the ML estimates of the
unknown parameters, i.e., α, σ2, Δf , and s, are substituted
in the pdfs of the observation vector z under each hypothesis.
Under H1, the pdf of the observation vector z is f(y|H1) =

1
(πσ2)KL exp

(− 1
σ2 ‖y − αHs‖2

)
. Under H0, the pdf of the

observation vector z is f(z|H0) = 1
(πσ2)KL exp

(− 1
σ2 ‖y‖2

)
.

By maximizing the above pdfs over α and σ2, the ML
estimates of these variable are obtained as α̂ = 1

KLsHHHy,
σ̂2
H1

= 1
KL‖y− α̂Hs‖2, and σ̂2

H0
= 1

KL‖y‖2. The estimation
of the noise variance under H1 can be expanded as

σ̂2
H1

=
1

KL
‖y‖2 − 2

(KL)2
|sHHHy|2

+
1

(KL)3
|sHHHy|2sHHHHs. (36)

The elements of the vector s are drawn from MPSK modu-
lation. Therefore, sHs = L and since HHH = K , one can
obtain σ̂2

H1
= 1

KL‖y‖2 − 1
(KL)2 |sHHHy|2. Consequently, the

likelihood ratio is

f(y|H1)
f(y|H0)

=
1

KL‖y‖2

1
KL‖y‖2 − 1

(KL)2 |sHHHy|2 .

It can be seen that the likelihood ratio is a monotonically
increasing function of |sHHHy|2

K2‖y‖2 . Therefore, by maximizing the
likelihood over the integer vector q and the unknown Doppler
Δf ,the GLR test for the constrained problem (4) is obtained
by (5).

APPENDIX B
PROOF OF LEMMA 1

In order to calculate the number of search candidates,
first the coherent detector of q for a given phase complex
amplitude α is considered. Note that the coherent detector
does not depend on the magnitude of α, but only depends
on its phase φ. More precisely, for a given value of φ, one

has
{
q̂φ, Δ̂f

}
= argmax

q,Δf
�{

exp(−jφ)zHexp
(
j2π
M q

)}
[63].

Due to the nature of i.i.d noise and the independence of
the elements of q, the coherent detector simplifies to a SBS
MPSK detector for a given Δf and φ. Hence, the lth element
of q̂φ, denoted by q̂φl

, is obtained by mapping the phase of
exp(jφ)zl, where zl is the lth element of z, to the closest
multiple of 2π

M , i.e.

q̂φl
= round

[
(φl + φ)

M

2π

]
mod M, (37)

where mod is the modulus operator and φl � ∠zl. Thus, for
a given Δf , one can find the optimal q by searching over all
possible values for φ. However, it can be readily shown from
(37), that q̂φ and q̂φ+ 2π

M
result in the same likelihood function

in (6). Consequently, the search space for φ is limited to the
interval [0, 2π

M ).
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Since φ is limited to the interval [0, 2π
M ), the lth detected

MPSK symbol q̂φl
can take on two values, based on which

symbol in the MPSK constellation is closest to it. Define
c1 � q̂φ=0 and c2 � q̂φ= 2π

M
, where it can be shown through

(37) that c2l
= (c1l

+ 1) mod M , where c1l
and c2l

are the
lth elements of c1 and c2, respectively. It can also be shown
using (37) that the boundary angle between two symbols in
the MPSK constellation is given by γl � 2π

M c1l
+ π

M −φl [64].
Subsequently, each candidate MPSK symbol will be given by

q̂φl
=

{
c1l

φ ≤ γl,
c2l

φ > γl.
(38)

For convenience of notation, define
{(

c′1l
, γ′

l

)}L−1

l=0
as the set

of the sorted values of (c1l
, γl) in an ascending order of γl

such that γ′
l+1 ≥ γ′

l . Consequently, each candidate q̂φ is of
the form[

c′11
+ 1 − u(γ′

1 − φ), . . . , c′1L
+ 1 − u(γ′

L − φ)
]T

, (39)

where u(·) is the unit step function. Equation (39) implies
that for different values of φ, L different candidates A =
{a1, . . . ,aL} are available. Each candidate should be plugged
in (6) to get the optimal q̂. Finally, by searching over Doppler,
one can get the total number of DL search candidates. �
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