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Abstract—A signal-sensor-based indoor pedestrian navi-
gation system is developed. The proposed system: 1) utilizes
a foot-mounted inertial navigation system (INS), in which
the accumulated errors are mitigated via a zero velocity
update (ZUPT) approach; 2) exploits opportunistically cellular
long-term evolution (LTE) signals in a deep neural network
(DNN)-based synthetic aperture navigation (SAN) framework,
in which the pedestrian’s motion is utilized to suppress
multipath-inducederrors. The proposed DNN-SAN-LTE-ZUPT-
INS (DUALS) indoor pedestrian navigation system utilizes the
complementary the desirable characteristics of both subsys-
tems, coupled via two architectures: (a) loosely-coupled and
(b) tightly-coupled. This paper designs and assesses both
architectures experimentally in an indoor environment. The experimental study demonstrates a pedestrian traversing
a trajectory of 600 m in 14 minutes, including a stationary period, straight segments, up/down the stairs, and riding in
an elevator, while receiving signals from 4 LTE base stations (also known as evolved node Bs (eNodeBs)). The proposed
tightly-coupled DUALS system exhibited a three-dimensional (3-D) position root mean-squared error (RMSE) of 1.34 m,
outperforming the loosely-coupled DUALS, ZUPT-aided INS, and LTE-DNN-SAN, which achieved a position RMSE of 1.38,
1.49, and 1.97 m, respectively.

Index Terms— Beamforming, multipath mitigation, DNN, navigation, synthetic aperture, LTE, IMU, zero velocity
update.

I. INTRODUCTION

REALIZING a system that enables accurate pedestrian
navigation in unknown indoor environments without

having to erect dedicated infrastructure has been an ongoing
challenge for decades. This problem is becoming ever more
critical for public safety (e.g., first responders [1]), as the time
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that people spend indoors is increasing dramatically. Virtually
all solutions to-date require installing infrastructure, prior
knowledge of the environment, and/or favorable conditions.

Existing navigation technologies can be categorized into
sensor-based solutions, signal-based solutions, or a combina-
tion thereof [2]. Sensor-based technologies use dead reckoning
processes to extract relative motion information [3]. However,
these sensors provide local position estimates and accumulate
errors unboundedly in the absence of external aiding sources.

Signal-based approaches provide global position estimates
and overcomes the shortcomings of sensor-based systems [4].
Some signals (e.g., cellular 4G long-term evolution (LTE) and
5G) are received with sufficiently high power indoors, allowing
a receiver to track them and subsequently produce navigation
observables [5]. However, attenuation and multipath pose sig-
nificant challenges to signal-based approaches, limiting their
accuracy and availability [6].

This paper proposes a signal-sensor-based indoor navigation
approach for pedestrians. The proposed approach, on one
hand, exploits downlink LTE cellular signals opportunistically
to provide a global position estimate, in which a deep neural
network (DNN)-based synthetic aperture navigation (SAN)
approach is developed to spatially mitigate multipath. On the
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other hand, the proposed approach uses a zero-velocity update
(ZUPT)-based inertial navigation to provide more accurate
short-duration local position estimate. This paper makes
the following three contributions: (i) develop a pedestrian
indoor system termed DUALS: DNN-SAN-LTE—ZUPT-INS,
(ii) design two integration schemes for fusing the information
from the signal and sensor systems, (iii) evaluate the proposed
system experimentally using real LTE signals in a multipath-
rich environment. An experimental study is presented showing
a pedestrian traversing a trajectory of 600 m in 14 minutes,
including a stationary period, straight segments, up/down the
stairs, and riding in an elevator, with a shoe-mounted inertial
measurement unit (IMU) while receiving signals from 4 LTE
base stations (also known as evolved node Bs (eNodeBs)). The
proposed tightly-coupled DUALS system exhibited a three-
dimensional (3-D) position root mean-squared error (RMSE)
of 1.34 m, outperforming the loosely-coupled DUALS,
ZUPT-aided inertial navigation system (INS), and
LTE-DNN-SAN, which achieved a position RMSE of
1.38, 1.49, and 1.97 m, respectively.

The remainder of the paper is organized as follows.
Section II discusses related work about: (i) synthetic aperture
(SA)-based multipath mitigation and (ii) ZUPT-based inertial
navigation. Section III presents a high-level block diagram of
the proposed system. Section V develops the navigation frame-
work, in which two different integration schemes: (i) loosely-
coupled and (ii) tightly-coupled are presented. Section VI
validates and assesses experimentally the proposed system for
both integration schemes. Section VII concludes the paper.

II. RELATED WORK

This section overviews relevant previous work in the litera-
ture that relates to the proposed system, which can be classified
as: (i) SA-based multipath mitigation and (ii) ZUPT-based
inertial navigation.

A. SA-Based Multipath Mitigation
The effect of multipath has been extensively studied in

the literature. Multipath mitigation could be performed at the
radio front-end stage using customized antennas (also known
as smart antennas) [7]. Other approaches mitigate multipath
at the receiver design level using advanced signal process-
ing techniques. In [8], an adaptive estimator of the spectral
parameters of incoming multipath signals using the associated
signal-to-noise (SNR) for Global Positioning System (GPS)
differential carrier phase measurements was developed. In [9],
a cell-averaging constant false alarm rate (CA-CFAR)-based
approach for adaptive calculation of the LOS detection thresh-
old was developed. In the proposed approach, a continu-
ous track of the noise variance is maintained to account
for channel variations in dynamic environments. Other sig-
nal processing-based techniques include various correlation
techniques [10]. Recent studies have considered multipath
mitigation via machine learning (ML). In [11], a nonlinear
ML-based model was developed to mitigate periodic GNSS
multipath signals. ML has been also applied to identify non-

line-of-sight (NLOS) conditions [12]. However, in multipath-
rich environments, such as indoors, small-delay multipath
signals tend to add constructively or propagate through a less-
attenuated path, resulting in a dominant NLOS component(s)
over the LOS component. Hence, the NLOS identification may
be faulty or insufficient to maintain a reliable navigation solu-
tion compared to the approaches in which the non-dominant
LOS component is utilized. The proposed approach utilizes
the non-dominant LOS component by spatially suppressing the
NLOS components and enhancing the LOS component power.

Multipath can also be mitigated via spatial discrimi-
nation of incoming signals via beamforming. Spatial dis-
crimination can be applied to geometrically-diverse signals,
which are collected using physical antenna arrays [13], [14]
or via synthetic aperture navigation (SAN) frameworks
[15]–[17]. Spatial discrimination techniques rely on the ability
of beamforming towards the LOS direction while mitigating
the multipath components.

At the receiver side, the accuracy of spatial discrimination
is dependent on the performance of each beamforming stage;
thus, the limiting factors of the beamforming process can
be listed as: (i) the number of antenna elements, (ii) the
limited ability of conventional spatial pre-filtering approaches
to resolve for the correlation between the incoming spatially-
correlated signals (which is the case in multipath scenarios),
at a cost of decreasing the degree-of-freedom (DOF) of the
system, i.e., the number of received multipath signals that
could be estimated effectively, (iii) the ability of conventional
model order estimators in estimating the order of the system,
which is limited by the reduced DOF resulting from the pre-
filtering stage, and (iv) the accuracy of conventional DOA
estimators. This limitation can be related to the model rep-
resentation and the limited number of features therein. In ML
terminology, this is known as representation learning. A repre-
sentation learning algorithm can extract the features for a task
using datasets, where designing these features manually for
complex nonlinear tasks may take decades and an entire com-
munity of researchers [18]. In [19], a DNN-based spatial dis-
criminator was proposed to compensate for the limitations of
conventional beamforming approaches, especially at the stages
of prefiltering, model order estimation (MOE), and direction-
of-arrival (DOA) estimation. The proposed LTE-DNN-SAN
showed a significant improvement in positioning accuracy
compared to LTE-SAN proposed in [20].

B. ZUPT-Based Inertial Navigation
The successful miniaturization of IMUs has enabled pedes-

trians to use INS, which performs localization by dead
reckoning based on IMU measurements [21]. Due to noise
and stochastic time-varying biases of MEMS-based IMUs,
navigation errors of an INS accumulate quickly and can exceed
several meters within just a few seconds of navigation [22],
which does not meet the localization requirements of many
public safety personnel, such as firefighters and first respon-
ders. To enhance the navigation performance, pedestrian INS
deploys IMUs on different parts of a human body, including
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head [23], pocket [24], and foot [25], and utilizes local bio-
mechanical information as an augmentation approach.

Among pedestrian INS solutions, foot-mounted INS have
drawn attention for their ability to implement a Zero velocity
UPdaTe (ZUPT) algorithm [26], which significantly enhances
the performance of a strapdown INS. The ZUPT algorithm
utilizes the biomechanical information that foot velocity of a
pedestrian when on the ground during walking is very close to
zero, and, therefore, the algorithm periodically resets velocity
errors of the INS when the stance phase is detected [27].
The ZUPT-aided INS has been experimentally demonstrated to
achieve an error of less than 1% of the traveling distance with
an industrial-grade IMU [28]. Nevertheless, the ZUPT-aided
INS has errors contributed from various sources, including
sensor errors, modeling errors, and detection inconsistency of
zero velocity events [29].

Sensor fusion solutions, which take advantage of measure-
ments obtained from other non-inertial sensing modalities
(e.g., barometer [30], ultrasonic sensors [31], [32], magne-
tometer [33], cameras [34], and dynamic vision sensors [35]),
are popular approaches to enhance the localization perfor-
mance of standalone ZUPT-aided INS. The purposes of sensor
fusion solutions can be classified into two categories: 1) to
improve the stance phase detection performance and 2) to
bound the error growth of the estimated localization states,
mitigating the sensor errors and modeling errors. In the first
category, non-inertial measurements are combined with IMU
measurements in a generalized likelihood ratio test (GLRT)
framework to increase the accuracy of zero velocity event
detection [36]. The sensor modalities may include magne-
tometers [37], electromyography (EMG) [38], shoe-embedded
pressure sensors [39], downward-facing radio frequency (RF)
sensors [32], and dynamic vision sensors [35]. It is worth
mentioning that the stance phase detection, also commonly
known as the zero-velocity detection in the ZUPT-aided INS,
identifies the periods of foot having contacts with the ground.
During this period, pseudo measurements of zero velocity are
feedback to correct the velocity state of the system. Further
discussions about this topic can be found in [32].

In the second category of sensor fusion solutions, non-
inertial measurements are usually stacked with the pseudo-
measurements of zero velocity to form an augmented
measurement vector of the extended Kalman filter (EKF). For
example, barometric altimeters can be used with the ZUPT
algorithm to bound the position error growth in the vertical
direction [30]. To increase the observability of yaw angle esti-
mation in the ZUPT algorithm, magnetometers are a popular
choice to be integrated into the system [40], [41]. Measure-
ments of a relative distance between two shoes obtained from
a pair of shoe-mounted ultrasonic sensors have been shown to
provide compensation to the yaw angle and extend the usage
of ZUPT-aided INS [34], [42]. Biomechanical constraints of
human bodies while performing daily pedestrian activities
have also been exploited to bound the error growth in the
navigation state estimation. These methods include restricting
the maximum separation length between the two feet of a
pedestrian [43] and fixing the relative position between the feet
and the calves [44]. Besides measurements from self-contained

sensors, signal-based systems, such as ultra-wideband
(UWB) [45], WiFi [46], and GNSS [47], which directly or
indirectly provide position information, were also studied to
augment the ZUPT-based INS. Positions estimated by the aug-
mented ZUPT-aided INS have been shown to achieve a higher
global consistency and reliability in a long-term navigation
task, as compared to the standalone ZUPT-based INS.

III. PROPOSED SYSTEM

This section presents a high-level block diagram of the
proposed pedestrian indoor navigation system. The proposed
framework contains two main components: (i) a signal-based
component that exploits LTE signals opportunistically to
extract navigation observables to estimate the pedestrian’s
states in a global frame and (ii) a sensor-based component
that produces a navigation solution in a local frame using
the ZUPT-aided inertial navigation systems based on a foot-
mounted IMU.

The signal-based component operates in a base/rover navi-
gation framework. Imagine firefighters approaching the build-
ing with a fire truck outside the building. The truck is equipped
with a GNSS antenna and LTE cellular antennas, which
are connected to an RF front-end to down-mix signals to
baseband. The baseband in-phase and quadrature components
of the mixer are fed to a stationary unit denoted by “base.”
The base is essentially an LTE carrier phase-based receiver
(e.g., [20]) that collects LTE signals from multiple carrier
frequencies, transmitted by multiple LTE eNodeBs in the
environment. The positions of the eNodeBs are pre-surveyed
and assumed to be known. Moreover, the base is outdoors and
has access to GNSS signals, so it can estimate its position.
The firefighters will step into the building while equipped
with a unit denoted by “rover.” Each rover includes (i) a
shoe-mounted IMU and (ii) a copy of the same LTE receiver
used in the base unit; however, this LTE receiver is integrated
with a DNN-SAN correction block in which the motion
of the firefighters is utilized to synthesize a geometrically-
separated antenna array from time-separated snapshots. This
allows for beamforming towards the LOS from the rover to
the LTE eNodeB, while suppressing multipath components.
This process requires obtaining the LOS steering vector, which
is obtained by taking the nearest DOA estimate from the
proposed DNN-DOAE to the LOS DOA estimated using
the current estimate of the rover’s receiver and the known
LTE eNodeB position. Further details about this stage can
be found in [20]. A DNN is trained to replace three stages
of the beamforming process: prefiltering, MOE, and DOA
estimation. The DNN-SAN correction block refines the carrier
phase estimates and feeds the refined estimate in a feedback
fashion to the receiver. The “known” ranges between the base
and the eNodeBs are removed and the base measurements
{φ(u)

base}U
u=1 are subtracted from the corresponding rover mea-

surements {φ(u)
rov}U

u=1 to eliminate the eNodeBs’ clock biases,
where U is the total number of eNodeBs. However, in this
paper, the experimental demonstration is performed in post-
processing fashion; thus, the rover was assumed to have access
to the base measurements and the communication part is
not discussed in the paper. In summary, the navigation filter

Authorized licensed use limited to: The Ohio State University. Downloaded on October 13,2023 at 15:14:12 UTC from IEEE Xplore.  Restrictions apply. 



ABDALLAH et al.: PEDESTRIAN INDOOR NAVIGATION SYSTEM 5191

Fig. 1. Overview of the proposed system.

Fig. 2. Convectional versus DNN-based spatial discrimination.

estimates the position, velocity, orientation, and clock bias,
and drift of the rover. The IMU measurements are used to
propagate the states of the rover, as discussed next.

The sensor-based component produces local navigation
solutions by implementing the ZUPT-based INS. A detailed
discussion of the algorithm can be found in [27]. In this
approach, one IMU is mounted on the shoe of a pedestrian.
In the proposed implementation, the IMUs are mounted at the
toe side of the shoe, and the EKF framework is used to fuse the
INS solution with the ZUPT measurements. In the prediction
step of the EKF, navigation states were propagated according
to the standard strapdown inertial navigation systems using
IMU measurements. In the update step, pseudo-measurements
of zero velocity were utilized to converge the velocity states
to zeros when a stance phase is automatically detected. The
stance phase detector used in this paper was the stance
hypothesis optimal detection (SHOE) detector. Fig. 1 presents
an overview of the proposed system.

IV. DNN-BASED SPATIAL DISCRIMINATION

This section discusses the DNN-based spatial discrimination
for multipath mitigation. In conventional approaches, the spa-
tial discrimination-based multipath mitigation process can be
divided into four stages: (i) spatial smoothing (SS), (ii) MOE,
(iii) DOA estimation (DOAE), and (iv) multipath mitigation.
In the proposed approach, two cascaded DNNs were designed
to perform two tasks: (i) prefilter data and estimate the
system order and (ii) estimate the DOAs of incoming signals

impinging on the synthetic antenna array, respectively. The
first task is nothing but a “regression” task between the input
vector i1 and a scalar output o1. The second task depends
on the output of the first task, which makes it a mix of
“regression” and “semi-structured output” tasks, where input
i2 and output o2 are both vectors [18]. The rest of the section
discusses the training process and design of the proposed
DNN-MOE and DNN-DOAE.

A. Training Process
For the training process, a major challenge is to generate real

datasets from real experiments due to the intractable properties
of the application, where it is almost impossible to get the
true order of the system and the DOA of different incoming
signals in real scenarios. An alternative solution is to rely
on simulating datasets that describe real scenarios as much
as possible. For this purpose, the LTE simulator developed
in [19] is adopted to provide high fidelity channel impulse
response (CIR) estimates assuming channel parameters for an
indoor office building presented in [48], [49].

B. DNN Design
DNN design requires defining the terms that characterize

its performance shape such as: (i) the total number of layers
in the network (excluding the input layer), (ii) the number
of neurons in each layer, (iii) the total number of neurons in
the network, (iv) the connections between different layer and
nodes in the network, and (v) the functions that the network
is capable of learning. When designing an artificial network,
there is no analytical way to find the optimal number of layers
and neurons for each layer. However, a decent estimate of the
optimal number of layers can be chosen based on the number
of sequential instructions that must be executed in the model-
based approach. To address this challenge, the experimentation
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Fig. 3. The final training error and selection error of the proposed
(a) DNN-MOE and (b) DNN-DOAE for different number of layers and
neurons.

approach was applied to predict the model of interest, which is
mainly following a sequence of experiments to discover what
works the best [18].

1) DNN-MOE: Conventional MOEs, like minimum descrip-
tion length (MDL) criterion and Akaike information criterion
(AIC), perform a 2-D clustering of the eigenvalues of the
estimated data covariance matrix and divide the spanned
space into two subsets: signals subspace and noise subspace.
Then, the minimum depth of the proposed DNN-MOE can be
achieved by a 2-layer multi-layer perceptron (MLP). How-
ever, this is assuming that the DNN is going to learn the
same model, which is neither necessary nor desirable. Thus,
experimentation is performed to evaluate the optimal size
of the proposed network. To do so, an incremental order
selection (IOS) algorithm is applied, in which the size of
the DNN started with 1-2-DNN1 and increased gradually to
50-25-DNN. For each training configuration, the samples are
divided into 60% for training, 20 % for testing, and 20%
for selection; where selection data is used to determine how
the network performs with new data which determines the
generality of the trained DNN. The normalized squared error
was used as a performance metric, where the final training and
selection errors were recorded for assessment. Eight datasets
corresponding to N ∈ {4, 8, 12, · · · , 32} antenna array sizes
were generated. Each sample in the datasets was chosen ran-
domly from a uniform distribution with support 1 through N .
The upper limit N was chosen to enable fair comparison with
conventional model order estimators: MDL and AIC. The final
selection and training errors for a specific size were averaged
over the eight datasets, in order to find a sub-optimal design
that is applicable to different antenna array sizes. For each
dataset, the input vector i1,N is of length N , and contains the
eigenvalues of the estimated data covariance matrix of the LTE
signals impinging on the antenna array.

Fig. 3(a) illustrates the training results, from which the
following can be concluded:

• Two-layer DNNs appear to be a good design for the
DNN-MOE; however, a sub-optimal performance was
achieved for 4-2-DNN.

1i- j-DNN denotes a DNN with j layers and i neurons in each layer

• The training and selection errors increase monotonically
for the most time with the size of the DNN.

• The errors start to increase significantly as the DNN size
increases, which can be attributed to oversized DNN and
the overfitting of training process.

2) DNN-DOAE: For conventional DOA estimators,
e.g., the standard ESPRIT algorithm, it is virtually impossible
to track the number of sequential instructions required
to produce DOA estimates given the eigenvectors of
the data covariance matrix. This rises the importance of
experimentation in designing the DNN and come up with
a sub-optimal design for the proposed DNN-DOAE. The
DNN-DOAE training settings are identical to that of the
DNN-MOE. Fig. 3(b) illustrates the training results, from
which the following can be concluded:

• The DNN-DOAE results in higher training and selection
errors, which can be justified due to the nature and
complexity of the task compared to the previous one. The
sub-optimal performance was achieved for 5-5-DNN.

• Unlike DNN-MOE, the errors here possess a non-
monotonic behavior, where it starts high, then decreases
as size increases, and at some point, it starts to increase
back as the size increases. This convex shape can be
justified by the high errors due to underfitting for small
DNN sizes and oversized DNN for large sizes.

V. NAVIGATION FRAMEWORKS

This section presents two navigation frameworks: (i) a
loosely-coupled DUALS and (ii) a tightly-coupled DUALS.
The frameworks differ in the way they fuse the shoe-mounted
sensors and LTE-DNN-SAN system to produce an integrated
navigation solution. For simplicity, in the EKF implemen-
tation, the loosely-coupled and tightly-coupled integration
schemes are denoted by LC and TC, respectively.

A. Standalone Frameworks
A summary of the standalone LTE-DNN-SAN and

ZUPT-aided INS EKF implementation is presented in this
Subsection. Further details of the standalone LTE EKF imple-
mentation can be found in [50].

1) LTE-DNN-SAN Framework: An EKF is used to estimate
the state vector from cellular LTE measurements zLTE defined
as

zLTE =
[
z(1), · · · , z(U )

]T
, (1)

where U is the number of eNodeBs. The state vector xLTE is
defined as

xLTE �
[

rT, ṙT, xT
clk

]T ∈ R
8×1, (2)

where r and ṙ are position and velocity, respectively, which
are defined in a north-east-down (NED) Cartesian coordinate
frame. The clock state vector xclk is defined as

xclk � xclkrov − xclkbase

= [
c(δtrov − δtbase), c(δ̇t rov − δ̇tbase)

]T
, (3)

where δtrxi and δ̇t rxi are the clock bias and drift of the
i -th receiver, respectively, where rx ∈ {rov, base}; and c is
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the speed of light. The rover’s motion is assumed to evolve
according to a nearly constant velocity dynamics with a
discrete-time state transition matrix and process noise covari-
ance matrix denoted by Frov and Qrov, respectively. The clock
error dynamics are assumed to evolve according to standard
double integrator model with a discrete-time state transition
matrix and process noise covariance matrix denoted by Fclk
and Qclk � Qclknav +Qclkbase , respectively. The propagated state
vector and the corresponding covariance matrix are denoted
by x̂LTE(k| j) and PLTE(k| j), respectively, where k and j are
discrete-time instances such that k > j . It is worth mentioning
that the LTE navigation observables are obtained at the LTE
OFDM frame rate which is 100 Hz [51].

Once an LTE measurement is received, an EKF measure-
ment update is performed. The LTE measurement Jacobian is
defined as

HLTE(k) =
[

H(1)
T
(k), · · · , H(U )T(k)

]T
,

H (u)(k) =
[ [

r̂(k| j) − rs,u
]T∥∥r̂(k| j) − rs,u
∥∥

2

, 01×3, 1, 0

]
, (4)

where
{

rs,u
}U

u=1 are the LTE eNodeBs locations in the NED
coordinate frame. The LTE measurement noise covariance
matrix RLTE at instance k is defined as

RLTE(k) = diag
[
σ 2

1 (k), · · · , σ 2
U (k)

]
,

where
{
σ 2

u(k)
}U

u=1 are tuned to be inversely proportional
to the carrier-to-noise (C/N0) ratio for the u-th eNodeB as
dicussed in [52].

2) ZUPT-Aided INS Framework: ZUPT-aided INS uses an
EKF to estimate the pedestrian’s state vector xped defined as

xped �
[
qT, ṙT, rT, ba

T, bg
T
]T ∈ R

15×1, (5)

where q is attitude states expressed in quaternion, which
is a 3 × 1 vector instead of 4 × 1 as a result of alttitude
error calculation [27]. ba , and bg are accelerometers biases,
and gyroscope biases of a foot-mounted IMU, respectively.
The ZUPT-aided INS discrete-time propagation function, state
transition matrix, the corresponding process noise covariance
matrix, propagated state vector, and the corresponding covari-
ance matrix are denoted by f ped(k| j), Fped(k| j), Qped(k| j),
x̂ped(k| j), and Pped(k| j), respectively.

Once a ZUPT event is detected by a stance phase detector,
the system feeds back a pseudo-velocity-measurement vector
zZUPT = 03×1. The ZUPT measurement covariance matrix
is set as RZUPT = diag[ε2, ε2, ε2], where ε is a small value
representing fictitious measurement noise variance determined
according to the pedestrian’s activity (e.g., walking, running,
etc.). In this paper, the SHOE detector for the stance phase
detection is used [36]. The ZUPT measurement matrix HZUPT
of the update step is given by

HZUPT = [
03×3 I3×3 03×9

]
.

Further details of the standalone ZUPT-aided INS EKF
implementation can be found in [27].

B. Loosely-Coupled DUALS
In the loosely-coupled architecture, the standalone LTE

navigation solution is used to aid the shoe-mounted sen-
sors. The proposed loosely-coupled navigation solution is
obtained by fusing the LTE’s position estimate in the mea-
surement update of the ZUPT-aided INS EKF discussed in
Subsection V-A.2. The advantage of using a loose-coupling
architecture is to extract desirable attributes from both sub-
systems while suppressing the undesirable attributes of each,
i.e., the loosely-coupled DUALS navigation solution features
the relatively-short-term accuracy of the shoe-mounted system
in the local frame and the bounded errors of the LTE system
in a global frame.

The EKF estimates the state vector xLC � xped defined
in (5). The propagation step is exactly the same as the
standalone ZUPT-aided INS framework and the propagated
state vector and the corresponding covariance matrix are
denoted by x̂LC(k| j) and PLC(k| j), respectively. However,
in the measurement update, the LC measurement vector is
defined as

zLC(k) �
[

zT
ZUPT(k), r̂T

LTE(k)
]T

, (6)

where r̂T
LTE is the standalone LTE estimated position as

discussed in Subsection V-A.1. To this end, a measurement
update is performed according to

x̂LC(k|k) = x̂LC(k| j) + KLC(k)νLC(k), (7)

where νLC and KLC are the innovation vector and Kalman
gain, respectively, given by

νLC(k) � zLC(k) − ẑLC(k| j), (8)

ẑLC(k| j) =
[ ˆ̇rT(k| j), r̂T(k| j)

]T
(9)

KLC(k) � PLC(k| j)HT
LC(k)S−1

LC(k), (10)

S(k) � HLC(k)PLC(k| j)HT
LC(k) + RLC(k), (11)

where RLC is the LC measurement noise covariance matrix
given by RLC(k) = blkdiag

[
RZUPT, PLTE,rrov(k|k)

]
and HLC

the LC Jacobian matrix defined as

HLC(k) =
[
HT

ZUPT(k) HT
LTE,LC

]T
, (12)

HLTE,LC = [
03×6 I3×3 03×6

]
. (13)

The estimation error covariance matrix is updated according
to

PLC(k|k) = [I − KLC(k)HLC(k)] PLC(k| j). (14)

Fig. 4 depicts the loosely-coupled navigation framework,
where node A is connected to 1.

C. Tightly-Coupled DUALS
In the tightly-coupled architecture, the measurement pro-

duced by the shoe-mounted sensors and LTE receivers are
fused to produce a single navigation solution. In general,
and in the case of pseudoranges and IMU measurements
only, the tight architecture provides a more accurate solution
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Fig. 4. The proposed navigation framework.

than loose integration as established in the navigation liter-
ature [53]. However, it is hard to assume the same behav-
ior in our systems due to the presence of other types of
observables in the measurement update. Although the tight-
coupling looses the redundancy that results from having two
independent navigation solutions when compared to the loose-
coupling, it can exploit any number of LTE pseudorange
measurements available in the environment (even if it is a
single measurement).

The EKF estimates the state vector xTC �
[

xT
ped, xT

clk

]T
,

where xclk is defined in (3). The TC state transition
and process noise covariance matrices are defined as
FTC = blkdiag

[
Fped, Fclk

]
and QTC = blkdiag

[
Qped, Qclk

]
,

respectively. The propagated state vector and the correspond-
ing covariance matrix are denoted by x̂TC(k| j) and PTC(k| j),
respectively.

In the measurement update, the TC measurement vector is
defined as

zTC =
[

zT
ZUPT, zT

LTE

]T
. (15)

To this end, a measurement update is performed according
to the same equations in (7-11) except for

ẑTC(k| j) =
[ ˆ̇rT(k| j), ẑ(1), · · · , ẑ(U )

]T
(16)

ẑ(u) = ∥∥r̂(k| j) − rs,u
∥∥

2 + cδ̂t (17)

HTC(k) =
[
HT

ZUPT(k) HT
LTE(k)

]T
, (18)

RTC(k) = blkdiag [RZUPT, RLTE(k)] . (19)

The estimation error covariance matrix is updated according
to (14). Fig. 4 depicts the tightly-coupled navigation frame-
work, where node A is connected to 2.

VI. EXPERIMENTAL RESULTS

This section presents experimental results to evaluate the
performance of the DUALS integrated navigation system for
both integration schemes.

TABLE I
LTE ENODEBS’ CHARACTESTICS

A. Experimental Setup and Environmental Layout
The experiment was conducted at the Engineering Gate-

way (EG) building at the University of California, Irvine, USA.
The pedestrian-mounted received signals from three U.S.
cellular providers: T-Mobile, Verizon, and AT&T, transmit-
ting at four different frequencies. The locations of the LTE
eNodeBs relative to the building are shown in Fig. 5(b).
The receiver was equipped with four consumer-grade cel-
lular omni-directional Laird antennas and a quad-channel
National Instruments (NI) universal software radio periph-
eral (USRP)-2955 to simultaneously down-mix and synchro-
nously sample LTE signals at 10 Msps. The LTE eNodeBs’
characteristics are summarized in Table I. The pedestrian’s
shoe was mounted with a tactical-grade Analog IMU Device
ADIS16497-3 [54]. It is worth mentioning that the sampling
rate of the IMU and LTE measurements were 1000 Hz and
100 Hz, respectively. To synchronize both sensors’ mea-
surements, the USRP-2955 was programmed to register the
time stamp of the first LTE sample. For the IMU, the time
stamps provided are in local time frame; however, the initial
time shift is determined using the local time of the laptop,
which is synchronized to an internet time server. Fig. 6
shows the experimental setup. The pedestrian’s ground truth
was obtained using a combination of manually-marked check
points in the building and a post-processing of a video that
was while the agent was performing the experiment. The
pedestrian’s trajectory is mapped into a highly-accurate 3D
point cloud map of the EG building, which was produced using
a Lidar-camera scanning system. Fig. 5(a) shows the 3D map
along with the traversed trajectory, where the only 10% of the
points are shown to be able to visualize the trajectory between
walls.

B. Results
Before starting the experiment, the foot-mounted IMU was

calibrated by standing stationary for 30 seconds on the ground
while implementing the ZUPT algorithm to estimate the initial
biases of the 3-axis accelerometers and the x-and y- axes gyro-
scopes. The initial bias of the z-axis gyroscope was estimated
by taking the average of the measurements collected during
the calibration period. It was assumed that the pedestrian
entered the building from outside and had access to GNSS
signals at k = 0 and k = 1. This allows the pedestrian to
estimate its position and initialize its state vector, including
the clock bias and drift. As the pedestrian started moving,
the rover started producing LTE navigation observables from
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Fig. 5. Environmental layout: (a) Lidar/camera-based 3D point cloud map of the Engineering Gateway (EG) building, (b) LTE eNodeBs’ positions,
and (c) a satellite view of the EG building. Images: Google Earth and MATLAB.

Fig. 6. Experimental software and hardware setup.

TABLE II
INDOOR POSITIONING PERFORMANCE COMPARISON

the eNodeBs presented in Table I. The pedestrian traversed a
600 m trajectory in 14 minutes, which includes terrains of flat
surfaces, slopes, stairs, and an elevator.

Table II and Fig. 7 compare the performance of the dif-
ferent navigation frameworks: (i) standalone LTE-DNN-SAN,
(ii) standalone ZUPT-aided INS, (iii) loosely-coupled DUALS,
and (iv) tightly-coupled DUALS.

C. Discussion
Among the different navigation frameworks, it can be seen

that the tightly-coupled DUALS outperformed the other three
frameworks achieving the a 3-D position RMSE of about
1.34 m compared to 1.38, 1.49, and 1.97 m, with the loosely-
coupled DUALS, ZUPT-aided INS, and LTE-DNN-SAN
frameworks, respectively. Nevertheless, the performance of all
frameworks is very comparable and accurate enough for many
practical applications. The standalone LTE framework exhibits
3-D errors up to 7.74 m. The tightly-coupled framework per-
formed better than the loosely-coupled framework, in which
the LTE measurement update rate was set to TLC � 0.5 Hz
due to the high correlation observed in the position estimates
of the LTE-DNN-SAN EKF. The standalone ZUPT-aided INS
framework exhibited an accurate navigation solution for a
total duration of 14 minutes. It is worth mentioning that
85 seconds of this duration was stationary, where ZUPT-aiding
is very powerful in constraining the velocity errors. Given this,
it is worth mentioning that the short-time accurate velocity
estimates of the ZUPT-aided INS can be exploited to enhance
the formation of the synthesized antenna array; consequently,
improve the multipath suppression in the beamforming stage.
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Fig. 7. The pedestrian’s ground truth trajectory versus the navigation solution from: (i) Standalone LTE-DNN-SAN, (ii) Standalone ZUPT-aided INS,
(iii) loosely-coupled DUALS, and (iv) tightly-coupled DUALS.

Yet, the performance of the presented standalone ZUPT-aided
INS framework significantly outperforms the up-to-date ZUPT
approaches, which exhibit around 1% accumulated position
errors relative to the traversed trajectory [55] (i.e., 6 m com-
pared to 1.34 m achieved in the proposed approach). To this
end, only a relatively small improvement was showcased
by aiding the ZUPT-aided INS approach with LTE signals.
However, the errors of the ZUPT-aided INS are expected to
keep growing with time, in which case the LTE aiding will
bound the error growth enabling navigation over much longer
periods indoors.

VII. CONCLUSION

This paper presented a DNN-SAN-LTE—ZUPT-INS
(DUALS) indoor pedestrian navigation system. The proposed
system uses: (i) LTE signals with a DNN-SAN approach in a
base/rover framework and (ii) shoe-mounted IMU measure-
ments enhanced by the ZUPT algorithm. DUALS benefits
from the local accuracy attributed to ZUPT-aided INS while
bounding the dead-reckoning global position errors provided
by LTE-DNN-SAN carrier phase measurements. The system
is designed and assessed for two integration architectures:
loosely-coupled architecture and tightly-coupled architecture.
An experiment was conducted in a multipath-rich indoor envi-
ronment, in which a pedestrian traversed a distance of 600 m
in 14 minutes, while equipped with a shoe-mounted IMU
and receiving signals from 4 LTE eNodeBs. The tightly-
coupled DUALS exhibited a 3-D position RMSE of 1.34 m
and outperformed the loosely-coupled DUALS, ZUPT-aided
INS, and LTE-DNN-SAN with position RMSE of 1.38, 1.49,
and 1.97 m, respectively.
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