Title
Navigation with Cellular CDMA Signals

Permalink
https://escholarship.org/uc/item/4dq3h3hc

Authors
Khalife, J.
Shamaei, K.
Kassas, Z.

Publication Date
2016-04-22
Navigation with Cellular CDMA Signals

JOE KHALIFE, KIMIA SHAMAEI, AND ZAHER M. KASSAS

**Motivation**

Global navigation satellite system (GNSS) is at the heart of autonomous vehicles navigation systems. However, GNSS signals are unreliable due to:

- Severe attenuation in deep urban canyons
- Intentional and/or unintentional jamming
- Spoofing

**Approach: Exploit SOPs**

Ambient signals of opportunity (SOPs) may enhance and assist conventional navigation techniques.

**Challenges**

- Unavailability of SOP models for navigation purposes
- Unavailability of receiver architectures for navigation observables extraction
- Unknown SOP emitters' states (position and clock)
- Less stable clocks than GNSS satellite vehicles

**Cellular CDMA as SOPs**

- Uses code division multiple access (CDMA), which is suitable for ranging
- Abundant and free to use
- Higher received power and bandwidth than GNSS

**Cellular CDMA Navigation Software-Defined Receiver**

We implemented a cellular CDMA software-defined radio in LabVIEW to optimally extract relevant timing and positioning information. Although these signals were intended for communications, we were able to model them in terms of navigation observables. The receiver has three stages:

(a) **Acquisition:** Signals from different BTSs are identified and a coarse estimate of their corresponding code delay and Doppler frequency is obtained.

(b) **Tracking:** These estimates are maintained and refined via tracking loops.

(c) **Decoding:** The message transmitted by the BTS is decoded and relevant information is extracted.

**Navigation Framework**

The pseudorange measurement $\rho$ is given by

$$\rho = ||r_r - r_{BTS}|| + a + c \cdot (\delta t_r - \delta t_{BTS}) + v,$$

where:

- $r_r$: receiver position
- $r_{BTS}$: BTS position
- $\delta t_r$: receiver clock bias
- $\delta t_{BTS}$: BTS clock bias
- $v$: measurement noise
- $c$: speed-of-light

**Experimental Demo**

Mean Error: 5.51 m  Standard Deviation: 4.01 m

**References**


REFERENCES


