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Abstract

Due to significant advancements in cellular technologies and dense deployment of

cellular infrastructure, fifth-generation (5G) cellular and low Earth orbit (LEO)-based com-

munication networks will be adopted by intelligent transportation systems to enable reliable

and safe autonomous operations. Several features in 5G and LEO-based networks depend

on the ability to localize the user equipment (UE) to a high degree of accuracy. Estimation

of time-of-arrival (TOA), direction-of-arrival (DOA), and/or frequency-of-arrival (FOA)

of multiple users/targets is an inseparable block of some 5G and LEO-based technologies,

such as joint sensing and communication. While the third generation (3G) cellular uses

code division multiple access (CDMA) technique, the fourth generation (4G) long-term

evolution (LTE) and 5G new radio (NR) adopt orthogonal frequency division multiplexing

(OFDM) technique. In addition, new constellations of broadband LEO space vehicles (SVs)

will transmit OFDM-type signals. In both CDMA and OFDM-based systems, a part of the

transmitted power is dedicated to periodic synchronization signals, referred to as reference

signals (RSs), which are transmitted for synchronization purposes. RSs are designed (or

selected) based on their distinctive bandwidth and correlation properties and the physical

channel type. While the RSs allocated to a single LTE channel have a predetermined

bandwidth of up to 20 MHz, the allocated bandwidth for the RSs in a single 5G channel

is dynamic, i.e., it adaptively changes based on the transmission mode, and can go up to
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100 MHz and 400 MHz for frequency ranges 1 and 2 (FR1 and FR2), respectively. On

the other hand, Starlink downlink signals occupy 250 MHz bandwidth of the Ku-band to

provide high-rate broadband connectivity, but the allocated bandwidth (and other signal

characteristics) of the RSs are unknown. Navigation receivers typically rely on known RSs

transmitted by the sources to draw TOA, DOA, and FOA measurements. Conventional

opportunistic navigation receivers (i.e., those only utilizing the downlink signals) will either

fail to operate or will be unable to exploit the entire available bandwidth in situations where

RSs are unknown and/or dynamic, which is the case in 5G NR and private networks, such

as broadband LEO.

This dissertation addresses the following challenges of navigation with signals of un-

known and dynamic nature. First, unlike public networks where the broadcast RSs are

known at the UE and are universal across network operators, in private networks, the signal

specifications of some RSs may not be available to the public or are subject to change.

Second, in cellular LTE networks, several RSs (e.g., cell-specific reference signal (CRS))

are broadcast at regular and known time intervals, regardless of the number of UEs in the

environments. Ultra-lean design refers to minimizing these always-on transmissions. 5G

NR and modern communication systems transmit some of the RSs only when necessary or

on-demand.

In this dissertation, a receiver architecture is proposed to cognitively extract navigation

observables from 3G, 4G, 5G, and LEO-based signals. Unlike conventional opportunistic

receivers which require knowledge of the signal structure, particularly the RSs, the pro-

posed receiver only relies on the periodicity of the RSs and requires knowledge of only

the carrier frequency of the signal. To exploit the full available bandwidth and improve
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ranging accuracy, the proposed receiver is designed to estimate all the RSs contained in the

transmitted signals corresponding to multiple sources. Navigation observables (pseudorange

and carrier phase) are subsequently derived from the estimated RSs. The proposed receiver

operates in two stages: (i) acquisition and (ii) tracking. The acquisition stage of the proposed

receiver is modeled as a sequential detection problem where the number of gNBs and their

corresponding RSs and Doppler frequencies are unknown. The generalized likelihood ratio

(GLR) test for sequentially detecting active sources is derived and used to estimate the

number of unknown sources and their RSs. In order for the receiver to refine and maintain

the Doppler and RS estimates provided by the acquisition stage, tracking loops are designed.

A sufficient condition on the Doppler estimation error to ensure that the proposed GLR

asymptotically achieves a constant false alarm rate (CFAR) is derived. The output of the

tracking loops, namely carrier phase and code phase, are then used to estimate the receiver’s

position.

Extensive experimental results are presented demonstrating the capabilities of the pro-

posed receiver with real 3G, 4G, 5G, and LEO SV signals on ground and aerial platforms.

iv



To my parents

v



Acknowledgments

I would like to thank my advisor Prof. Zak Kassas for giving me the opportunity to

work at ASPIN lab, providing advice throughout my research, helping with my job and

Green Card applications, and supporting me financially during my doctoral research. He

introduced me to a new field of research, gave me the opportunity to follow all my ideas,

and provided all the required equipments to evaluate them. He gave me the chance to attend

numerous conferences and present my work to the community of Navigation. I would like

to thank my Ph.D. committee members Prof. Lee Potter, Prof. Philip Schniter, and Prof.

Parinaz Naghizadeh for taking time to serve in the committee and for all their helpful advice

throughout my Candidacy exam and Ph.D. Defense. I would like to thank the Office of

Naval Research (ONR) and US Department of Transportation (USDOT) for supporting my

research. I would like to thank Institute of Electrical and Electronics Engineers (IEEE) and

Institute of Navigation (ION) for giving me the chance to present my work to the rest of

the community by publishing my conference and journal papers. I would like to thank Prof.

Todd Humphreys, Prof. Thomas Pany, and Prof. Tryphon Georgiou for their help with

my Green Card application so I can continue my research and work in the U.S. I would

like to thank my friends and colleagues: Joe, Mu, and Sharbel for being always next to

me throughout all ups and downs of my doctoral journey. I would also like to thank them

for all the helpful discussions and their help with my experiments. I would like to thank

vi



Pouria Haghi for not only being my friend but also my family. Being with them helped me

to overcome the hardship of living in a foreign country and being away from my family. I

would like to thank Maral for supporting me and being there for me though out this journey.

I would like to thank my family: Mom, Dad, and Maryam for all their supports. Even though

I was not able to see most of them for more than four years throughout my doctoral studies

due to the travel ban, they continuously encouraged me to pursue my dreams.

vii



Vita

Jun 2023 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ph.D.,
Electrical and Computer Engineering,
The Ohio State University, USA.

August 2009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M.Sc.,
Electrical Engineering,
Shiraz University, Iran.

August 2007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B.Sc.,
Electrical Engineering,
Boushehr Univeristy, Iran.

Publications

Journal Publications:

1. M. Neinavaie and Z. Kassas “Unveiling Starlink LEO Satellite OFDM-Like Signal
Structure Enabling Precise Positioning", in IEEE Transactions on Aerospace and
Electronic Systems, Accepted. 2023.

2. M. Neinavaie, J. Khalife, and Z. Kassas “Cognitive Detection of Unknown Beacons of
Terrestrial Signals of Opportunity for Localization", in IEEE Transactions of Wireless
Communications, Accepted. 2022.

3. M. Neinavaie, J. Khalife, and Z. Kassas “Cognitive Opportunistic Navigation in
Private Networks with 5G Signals and Beyond", in IEEE Journal of Selected Topics
in Signal Processing, vol. 16, no. 1, pp. 129-143, Jan. 2022.

viii



4. M. Neinavaie, J. Khalife, and Z. Kassas “Acquisition, Doppler Tracking, and Position-
ing with Starlink LEO Satellites: First Results", in IEEE Transactions on Aerospace
and Electronic Systems,vol. 58, no. 3, pp. 2606-2610, June 2022.

5. J. Khalife, M. Neinavaie, and Z. Kassas “The First Carrier Phase Tracking and
Positioning Results with Starlink LEO Satellites", in IEEE Transactions on Aerospace
and Electronic Systems,vol. 58, no. 2, pp. 1487-1491, April 2022.

Conference Papers and Workshops

1. M. Neinavaie, J. Khalife, and Z. Kassas, "Exploiting Starlink Signals for Navigation:
First Results: ION Global Navigation Satellite Systems Conference, Sep. 20-24, 2021,
St. Louis, MO, pp. 2266-2773

2. J. Khalife, M. Neinavaie, and Z. Kassas, "Universal Receiver Architecture for Blind
Navigation with Partially Known Terrestrial and Extraterrestrial Signals of Oppor-
tunity: ION Global Navigation Satellite Systems Conference, Sep. 20-24, 2021, St.
Louis, MO, pp. 2201-2211

3. M. Neinavaie, J. Khalife, and Z. Kassas, Blind Opportunistic Navigation with LEO
Satellites ION GNSS 2020

4. M. Neinavaie, J. Khalife, and Z. Kassas,“Blind Doppler Tracking from OFDM Signals
Transmitted by Broadband LEO Satellites"IEEE Vehicular Technology Conference,
Apr. 25-28, 2021, Helsinki, Finland, pp. 1-5

5. M. Neinavaie, J. Khalife, and Z. Kassas,“Blind Doppler Tracking and Beacon De-
tection for Opportunistic Navigation with LEO Satellite Signals"IEEE Aerospace
Conference, Mar. 6-13, 2021, Big Sky, MT, pp. 1-8

6. M. Neinavaie, J. Khalife, and Z. Kassas, "Blind Opportunistic Navigation: Cognitive
Deciphering of Partially Known Signals of Opportunity: ION Global Navigation
Satellite Systems Conference, Sep. 21-25, 2020, St. Louis, MO, pp. 2748-2757

7. J. Khalife, M. Neinavaie, and Z. Kassas. "Navigation With Differential Carrier Phase
Measurements From Megaconstellation LEO Satellites." In 2020 IEEE/ION Position,
Location and Navigation Symposium (PLANS), pp. 1393-1404. IEEE, 2020.

8. J. Khalife, M. Neinavaie, and Z. Kassas, "Blind Doppler Estimation from LEO
Satellite Signals: A Case Study with Real 5G Signals." ION Global Navigation
Satellite Systems Conference, Sep. 21-25, 2020, St. Louis, MO, pp. 3046-3054

US Patent

ix



1. Z. Kassas and M. Neinavaie, M. (2023). Cognitive opportunistic navigation with
Starlink LEO satellites: on-demand and always-on OFDM reference signals. U.S.
Patent Application No. 63/457,372

2. Z. Kassas and M. Neinavaie (2022). Systems and methods for positioning and naviga-
tion with low Earth orbit satellite signals. U.S. Patent Application No. 63/393,501.

3. Z. Kassas, J. Khalife, and M. Neinavaie (2021). Systems and methods for acqui-
sition and tracking of unknown LEO satellite signals. U.S. Patent Application No.
63/210,595.

4. Z. Kassas, M. Neinavaie, and J. Khalife (2020). Systems and methods for blind oppor-
tunistic navigation, cognitive deciphering of partially known signals of opportunity,
and blind Doppler estimation from LEO satellite signals. U.S. Patent Application No.
63/087,591.

5. Z. Kassas, J. Khalife, and M. Neinavaie (2020). Navigation with differential carrier
phase measurement from low Earth orbit satellites. U.S. Patent Application No.
63/047,796.

Fields of Study

Major Field: Computer Science and Engineering

Studies in:

Cognitive Sensing and Navigation with Terrestrial
and Low Earth orbit (LEO) Satellite Signals Prof. Kassas

x



Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Other Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.1 Resulting Publications . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.2 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . 14

xi



2. Cognitive Opportunistic Navigation in Private Networks With 5G Signals and
Beyond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Received Baseband Signal Model . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Brief Review of NR RSs . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 CON Receiver Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.2 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.1 CON with Real 5G Signals: Comparison with a Conventional 5G
Receiver on a Ground Vehicle . . . . . . . . . . . . . . . . . . . 35

2.4.2 CON with real 5G signals: The First Navigation Results on a UAV 43

2.4.3 CON with LTE Signals: Comparing with a Conventional Receiver
when the RSs are always-on . . . . . . . . . . . . . . . . . . . . 48

3. Cognitive Detection of Unknown Beacons of Terrestrial Signals of Opportunity
for Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 Received Baseband Signal Model . . . . . . . . . . . . . . . . . . . . . 59

3.4 Terresterial Signal Activity Detection with IC . . . . . . . . . . . . . . . 61

3.4.1 Integer Least Squares Problem . . . . . . . . . . . . . . . . . . 62

3.4.2 LCBSD Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 63

xii



3.5 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5.1 Carrier-to-Noise Ratio and TOA Measurements Error Variance . 64

3.5.2 Probability of Error Definition . . . . . . . . . . . . . . . . . . . 65

3.5.3 Apparent Carrier-to-Noise Ratio . . . . . . . . . . . . . . . . . . 67

3.5.4 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6 Terrestrial Signal Activity Detection with NIC . . . . . . . . . . . . . . 69

3.6.1 Derivation of Probability of Detection and False Alarm . . . . . 70

3.6.2 Numerical Versus Theoretical Probability of Detection . . . . . . 74

3.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.7.1 Experiment 1: Cognitive Detection and Navigation with Un-
known Beacons with IC–cdma2000 signals . . . . . . . . . . . . 77

3.7.2 Experiment 2: Cognitive Detection and Navigation with Un-
known Beacons with NIC–5G Signals . . . . . . . . . . . . . . 82

3.7.3 Signal Model Validation . . . . . . . . . . . . . . . . . . . . . . 89

4. Cognitive Sensing and Navigation with Unknown OFDM Signals with Applica-
tion to Terrestrial 5G and Starlink LEO Satellites . . . . . . . . . . . . . . . . 92

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.3 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3.1 Overview of OFDM Frame . . . . . . . . . . . . . . . . . . . . 99

4.3.2 baseband Signal Model . . . . . . . . . . . . . . . . . . . . . . 101

4.4 Receiver Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.4.1 Frame Length Estimation . . . . . . . . . . . . . . . . . . . . . 103

xiii



4.4.2 Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.4.3 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.5.1 Experiment 1: UAV Navigation with 5G NR Signals . . . . . . . 115

4.5.2 Experiment 2: Cognitive Sensing a 5G NR gNB on a Ground
Vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.5.3 Experiment 3: Stationary Positioning with Starlink LEO SV Signals127

5. Acquisition, Doppler Tracking, and Positioning With Starlink LEO Satellites:
First Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.2 Received Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.2.1 Starlink Downlink Signals . . . . . . . . . . . . . . . . . . . . . 134

5.2.2 Baseband Signal Model . . . . . . . . . . . . . . . . . . . . . . 134

5.3 Proposed Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.3.1 Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.3.2 Doppler Tracking Algorithm . . . . . . . . . . . . . . . . . . . 138

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.4.1 Blind Doppler Tracking Results . . . . . . . . . . . . . . . . . . 141

5.4.2 Position Estimation . . . . . . . . . . . . . . . . . . . . . . . . 141

5.5 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.5.1 Dual Correlation Properties . . . . . . . . . . . . . . . . . . . . 147

5.6 Receiver Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.6.1 Frame Length Estimation . . . . . . . . . . . . . . . . . . . . . 150

xiv



5.7 The Impact of Cognitive Estimation of Always-on and On-demand Signals151

5.7.1 Experimental Demonstration of Estimation of Always-on and
On-demand signals . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.7.2 Emulating Simultaneous 5G NR and Broadband OFDM Signals
in Starlink LEO SV Downlink . . . . . . . . . . . . . . . . . . . 156

5.8 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.8.1 Now You Are Beaming, Now You are Not: Detection of Always-
on and On-demand Starlink Downlink Signals . . . . . . . . . . 158

5.8.2 Effect of Antenna Gain on Tracking Loops . . . . . . . . . . . . 162

5.8.3 Differential Doppler Positioning . . . . . . . . . . . . . . . . . . 164

6. Navigation with Multi-Constellation LEO Satellites . . . . . . . . . . . . . . . 168

6.1 Unveiling Starlink LEO Satellite OFDM-Like Signal Structure Enabling
Precise Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.2 Received Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.2.1 OFDM-Like Signal Frame Length . . . . . . . . . . . . . . . . . 169

6.2.2 Baseband Signal Model . . . . . . . . . . . . . . . . . . . . . . 171

6.3 Receiver Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.3.1 Acquisition: Sequential Matched Subspace Detection . . . . . . 173

6.3.2 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.4.1 Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.4.2 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.5 Differential Positioning with Starlink LEO SV Signals . . . . . . . . . . 178

6.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 178

xv



6.5.2 Differential Doppler Positioning Framework . . . . . . . . . . . 179

6.5.3 Tracking and Positioning Results . . . . . . . . . . . . . . . . . 183

6.6 Differential Navigation with Orbcomm LEO SV Signals . . . . . . . . . 185

6.6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 185

6.6.2 Differential Doppler Navigation Framework . . . . . . . . . . . 186

6.6.3 Tracking and Navigation Results . . . . . . . . . . . . . . . . . 188

6.6.4 Iridium NEXT System Overview . . . . . . . . . . . . . . . . . 189

6.6.5 Multi Constellation Tracking . . . . . . . . . . . . . . . . . . . 191

6.6.6 Tracking LEO Satellite Signals . . . . . . . . . . . . . . . . . . 191

6.7 Estimation of Doppler Stretch with Application to Tracking Globalstar
Satellite Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

6.8 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.8.1 Globalstar Forward Link Signals . . . . . . . . . . . . . . . . . 198

6.9 Chipping Rate Offset Estimation . . . . . . . . . . . . . . . . . . . . . . 200

6.9.1 Doppler compensation . . . . . . . . . . . . . . . . . . . . . . . 200

6.9.2 Recovering the Original Doppler Frequency . . . . . . . . . . . 202

6.9.3 CRO-Aided Tracking Loops . . . . . . . . . . . . . . . . . . . . 202

6.10 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

6.11 Deciphering GPS Signals . . . . . . . . . . . . . . . . . . . . . . . . . 207

6.11.1 Received Baseband Signal Model . . . . . . . . . . . . . . . . . 207

6.12 THE BON FRAMEWORK . . . . . . . . . . . . . . . . . . . . . . . . 209

6.12.1 Blind Doppler Estimation . . . . . . . . . . . . . . . . . . . . . 211

6.12.2 Coherent Integration . . . . . . . . . . . . . . . . . . . . . . . . 211

6.12.3 Blind Beacon Decoding . . . . . . . . . . . . . . . . . . . . . . 213

xvi



6.13 EXPERIMENTAL RESULTS . . . . . . . . . . . . . . . . . . . . . . . 214

6.13.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 214

6.13.2 Deciphering GPS PRNs with the BON Framework . . . . . . . . 214

6.13.3 Navigation Solution . . . . . . . . . . . . . . . . . . . . . . . . 218

7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

7.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

.1 Derivation of likelihood function (5.10) . . . . . . . . . . . . . . . . . . 229

.2 Proof of Lemma 1 in Chapter 1 . . . . . . . . . . . . . . . . . . . . . . 230

.3 Proof of Theorem 1 in Chapter 1 . . . . . . . . . . . . . . . . . . . . . . 231

.4 GLR Detector for (3.4) . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

.5 Proof of Lemma 3.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

.6 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

.7 Derivation of likelihood function . . . . . . . . . . . . . . . . . . . . . 237

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

xvii



List of Tables

Table Page

2.1 Receiver parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 Delay and Doppler RMSE for the CON and conventional receivers. . . . . 41

2.3 Carrier phase RMSE between the CON and conventional LTE receivers and
ground-truth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Positioning Results Comparison between values of CPI . . . . . . . . . . . 130

6.1 The percentage of correctly decoded GPS PRN chips using the BON frame-
work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

xviii



List of Figures

Figure Page

2.1 Simulation results demonstrating Theorem 1. (a) A surface plot of Pfa for
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Chapter 1: Introduction

Due to significant advancements in cellular and low earth orbit (LEO) satellite tech-

nologies and dense deployment of cellular and LEO infrastructure, cellular networks will

be adopted by intelligent transportation systems to enable reliable and safe autonomous

operations [179,224,226]. Several features in cellular and LEO satellite networks depend on

the ability to localize the user equipment (UE) to a high degree of accuracy [232]. Estimation

of time-of-arrival (TOA), direction-of-arrival (DOA), and/or frequency-of-arrival (FOA) of

multiple users/targets is an inseparable block of modern cellular and LEO satellite-based

technologies, such as joint sensing and communication [169].

Cellular and LEO-based communication systems employ a synchronization beacon for

receiver timing and/or carrier recovery. The beacon signals for the currently active networks,

either public, e.g., the third generation (3G), fourth generation (4G), and fifth generation

(5G) of cellular networks, or private, e.g., SpaceX and Oneweb, networks can be categorized

into two classes:

• Beacons with integer constraint (IC): The samples of the beacon with IC are drawn

from a finite alphabet set, e.g., M phase shif keying (PSK) modulation. One example

of a beacon with IC is pseudorandom noise (PRN) sequence. This type of beacon
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is currently used in code-division multiple access (CDMA)-based networks such as

3G network and Globalstar LEO satellite signals [181]. Orbcomm and Iridium LEO

satellites also use beacons with IC [145, 199].

• Beacons with no integer constraint (NIC): The samples of beacons with NIC can be any

arbitrary number in the time domain. For instance, the primary synchronization signal

(PSS) and secondary synchronization signal (SSS) in orthogonal frequency-division

multiplexing (OFDM)-based systems such as 4G long-term evolution (LTE) and 5G

new radio (NR) [37, 54, 198]. While these signals are originally drawn from a finite

alphabet, at the transmitter, they are input to the inverse discrete Fourier transform

(IDFT). Therefore, in the time domain, the equivalent beacon’s elements are arbitrary

complex numbers. Most of the modern communication systems including 5G NR and

Starlink LEO satellite signals are currently using this type of beacons [38, 198].

In the navigation literature, navigation observables are ranges or angles which are

deduced from parameters such as TOA, DOA, or phase differences based on a comparison

between received signals and receiver-generated beacons. Generating a replica of the beacon

signal at the receiver side is not a straightforward task in the following scenarios:

1)Private Networks: For public networks, one can refer to the publicly available pro-

tocols to design a receiver capable of extracting navigation observables from the received

signals by acquiring and tracking the timing and phase of these synchronization beacons.

However, these receivers would not work when the beacon signals are unknown, such as in

communication systems with closed protocols. This applies particularly to LEO broadband

satellites [150], as private companies such as OneWeb, SpaceX, Boeing, and others are

planning to launch thousands of them, yet very little is known about their transmitted signal
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structure [97, 161]. A natural question then arises: Can one still exploit the unknown signals

transmitted by cellular emitters or LEO satellites for navigation?

2)Ultra-lean Transmission: In the previous generations of cellular networks, several

beacon signals, such as the cell-specific reference signal (CRS), are broadcast at regular

and known time intervals, regardless of the number of UEs in the environments. Ultra-

lean design refers to minimizing these always-on transmissions. Modern communication

systems such as 5G NR, transmit some of the beacon signals only when necessary or on-

demand [158]. Therefore, a navigation receiver should be able to detect and exploit the

on-demand beacons cognitively to draw the navigation observables more effectively.

In this dissertation Cognitive sensing and navigation (CSN) is defined as a system which

is capable of learning the beacon signals blindly* and exploit them for sensing and navigation

purposes. Endowed with CSN, software receivers may sense and localize unknown and/or

on-demand ambient signals and exploit them for navigation. Building blocks of a CSN

framework are introduced by the authors of the dissertation in [104, 144, 145, 149].

The signal specifications of private networks are either unknown or partially known.

Moreover, the beacon signal specifications of private networks follow some standards which

can be modified frequently. Deciphering and tracking these signals cognitively is a must to

exploit the beacon signals of these networks. The main objective of this dissertation is to

develop a CSN framework. The main tasks of the CSN framework are listed as follows:

*For some private networks, limited information about the signal structure might be publicly available.
For instance, the carrier frequency of the transmitted signals, the bandwidth, and the type and the length of the
beacon sequences might be publicly available. Hence, a cognitive navigation framework may use this partial
information to exploit the unknown parameters. However, these known parameters may change due to design
updates in private companies. Therefore, in the following dissertation, a pure blind scenario is considered.
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• Blind signal acquisition: The signal acquisition includes (i) signal activity detection

and spectrum sensing, (ii) blind beacon estimation (iii) initial Doppler and Doppler

rate estimation, and (iv) blind source enumeration.

• Blind signal tracking and refinement: The initial estimates of the Doppler fre-

quencies corresponding to each source are fed to the tracking stage along with the

estimated beacons. By employing a phase-locked loop (PLL) and a delay-locked loop

(DLL) the delay and the Doppler are tracked over time. The estimated beacon is also

refined in the blind signal tracking and refinement stage.

• Interference and multipath classification: A blindly detected source in the acqui-

sition can be either: (i) a valid source (a cellular tower or a LEO satellite downlink

signal), (ii) a false alarm due to interfering signals and/or non-line of sight or multipath

components. Valid source and false alarm signal classification is a task of the CSN

framework.

• Sensing and Navigation: The final stage of the CSN is the blind localization of the

valid sources (sensing) and/or blind navigation of the UE by feeding the obtained

navigation observables into a navigation filter.

The beacon signals in LTE and 5G signals are not considered to be taking integer values

and can assume any arbitrary complex-valued numbers. Therefore, they can be considered

as beacons with NIC. The detection problem of an unknown source in the presence of

other interfering signals falls into the paradigm of matched subspace detectors, which has

been widely studied in the classic detection theory literature [113, 180]. Matched sub-

space detectors are used frequently in radar signal processing, e.g., in source positioning
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in multiple-input multiple-output (MIMO) radars [109] and passive bistatic radar [233].

In [16], the design of subspace-matched filters in the presence of a mismatch in the steering

vector was addressed. In [31], adaptive vector subspace detection in partially homoge-

neous Gaussian disturbance was addressed. In [32], the performance of low-rank adaptive

normalized matched subspace detectors was studied. In [219], the structure of the noise

covariance matrix was exploited to enhance the matched subspace detection performance.

In [221], the idea of subspace matching was used to present a solution to the problem

of detecting the number of signals in both white and colored noise. Recently, machine

learning approaches have been proposed for unknown transmitter detection, identification,

and classification [18,176]. In the navigation literature, the detection of unknown signals has

been studied to design frameworks that are capable of navigating with unknown or partially

known signals. The problem of detecting Galileo and Compass satellites signals was studied

in [49], which revealed the spread spectrum codes for these satellites.

Fundamental challenges of detection of beacons with IC are: (i) the presence of multiple

interfering unknown sources, (ii) the effect of Doppler estimation error on the performance

of the matched subspace detector, (iii) selection of the detection threshold. The proposed

approach in this dissertation is developing a sequential detection algorithm to detect multiple

unknown sources. The proposed detector in this dissertation is a generalized version of the

matched subspace detector with successive interference cancellation. The signal subspace

was defined by the Doppler frequencies of unknown sources. Signal activity detection of

unknown sources relies on the Doppler subspace. A hypothesis testing problem was solved

sequentially in multiple stages to detect the active sources in the environment. At each stage,

a test was performed to detect the most powerful source by comparing a likelihood with a

predetermined threshold, while the Doppler subspace of the previously detected sources
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were nulled. The so-called general linear detector [90] was modified based on the signal

model and used at each stage of the sequential detection algorithm.

In the detection problem with IC, the integer constraint of the beacon symbols in the

matched subspace detectors leads to a class of integer least square problems [70, 127]. One

example of beacons with IC is the PRN sequence in CDMA-based communication systems.

A low computational complexity approach to estimate the beacon symbols is the symbol by

symbol estimation which suffers from a poor performance in low signal to noise ratio (SNR)

regimes. In [49], a symbol by symbol (SBS) estimation scheme was considered to blindly

estimate the symbols of the PRN sequences of Galileo and Compass satellites, and a 1.8

m high-gain antenna was used to accumulate enough signal power. The optimal algorithm

proposed in [70] and [127] can be used to solve the integer least squares problem with a

polynomial computational complexity.

A fundamental challenge of the detection methods with IC is the computational and

hardware complexity of the integer least squares problem. Integer least squares problems

usually contain a search over a discrete space which depends on the modulation order

and beacon length. The length of beacon sequences is usually a large number in practical

scenarios. For instance, the length of the beacon for GPS PRNs is 210� 1. Therefore,

the search space of the integer least square problem is large. The proposed approach in

this dissertation is designing a near-optimal beacon detector with linear computational

complexity to reduce the computational complexity of the detection problem of terrestrial

signals with IC. The matched subspace detector for beacons with IC is derived and simplified

to reduce the computational complexity. It is shown that the proposed detection algorithm
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has a computational complexity that is linear with problem size and achieves a near-optimal

performance.

The beacon signal detection method in the CSN framework relies on a knowledge of

the beacon period. In public networks, the beacon period is typically mentioned in the

protocol description. For instance, the period of 5G NR beacons 10 ms [198]. However, the

beacon period for private networks is unknown and subject to change. The period estimation

problem is extensively studied in the literature [33, 40, 53, 203, 207, 212]. An ML-based

method for period estimation is presented in [33]. In [207] time-domain based method is

proposed to estimate the period using the autocorrelation function.

In [40, 53] a Fourier transform-based technique is presented for periodicity analysis.

The problem of detecting multiple hidden periodicities is studied in [203]. A hierarchical

approach to finding all periodicities is presented in [93]. A fundamental challenge that

should be addressed is the effect of the Doppler rate on the period estimation. Non-stationary

transmitter and/or maneuvering UE result in significant values of the Doppler rate in the

processing time. Unlike the Doppler effect which does not change the magnitude of the

autocorrelation function, the Doppler rate has a destructive effect on the autocorrelation

function. None of the period estimation methods in the literature take the effect of the

Doppler rate into account. Therefore, the mentioned methods are not capable of estimating

the beacon period in scenarios where the Doppler rate is high, e.g., LEO satellites. The

autocorrelation of a large enough time segment of the received signal will result in a train

of an impulse-like function whose shape depends on the autocorrelation properties of the

synchronization signals. The distance between two consecutive impulses is equal to the

beacon period. In conventional tracking algorithms, in order to track the time-variations of
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the code- and carrier-phase, a traditional DLL and PLL is composed of three basic constituent

blocks: (i) a code and carrier-phase discriminator, which is in charge of providing output

measurements that, on average, are proportional to the code-phase and carrier-phase error

to be compensated; (ii) a loop filter, which is nothing but a very narrow low-pass filter that

smoothes the variability caused by thermal noise at the phase detector output; and (iii) a

numerically-controlled oscillator (NCO) for generating the local carrier replica based on the

corrections imposed by the loop filter output [122, 195, 220].

In 5G and beyond networks, the ultra-lean transmission allows the network to transmit

some of the beacons only when it is necessary and the transmitted beacons are subject to

change. Therefore, the CSN framework should be able to update the estimated beacon

dynamically in the tracking process to be able to exploit all the available beacon power.

The proposed approach in this dissertation is designing a tracking loop that is capable of

refining the beacon estimate along with refined code- and carrier-phase. The core blocks

of the proposed tracking loop are similar to the traditional carrier and code-phase tracking

architectures [122]. The major difference between the proposed tracking loops and the

conventional tracking loops is the RS-locked loop (RSLL). The task of the RSLL is to

update the beacon signal in the tracking process. The received signal is used to update the

beacon estimate. Adaptive gains are designed weigh the received signal samples based on

the signal power.

The detected sources at the acquisition stage can be either a valid source (such as a 5G

gNB or a LEO satellite signal) or a false alarm. A false alarm might be due to interfering

signals and/or multipath components. The CSN framework should be able to classify the

detected signal. Feature extraction is the main component of interference classification
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algorithms [213, 214, 216, 217]. A single-tone, multi-tone, and narrow-band interference

model is presented in [214] to perform interference cancellation. A convolutional neural

network-based feature extraction algorithm is used in [216]. The sparsity of some forms of

interference in the time or frequency domain was exploited in [213] to perform interference

classification.

The CSN framework should be able to cognitively classify the false alarm and the valid

signals in cellular and LEO satellite-based networks. Due to the limited information about

the unknown environment in that the UE is operating, the interference classification should

be performed in a blind fashion. The features which are considered in the interference

classification algorithm are either specifically designed based on the signal model, or require

a training phase that is not available in a blind scenario. A valid signal for the CSN

framework is the line-of-sight component of the transmitted signal from a cellular tower or a

LEO satellite. In the presence of line-of-sight component, the amplitude gain is characterized

by a Rician distribution [206]. The carrier phase error in the tracking loops directly depends

on the line-of-sight signal power [131]. The proposed approach distinguishes between a

valid source and a false alarm based on the carrier phase error. If the detected source in the

acquisition stage is a false alarm, the carrier phase error variance will be a large number.

The proposed CSN framework considers the variance of carrier phase error in the tracking

loops as the classification feature of false alarm and valid signals.
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1.1 Other Related Work

1.1.0.1 Opportunistic Navigation

Over the past decade, opportunistic navigation [71] has been demonstrated in the lit-

erature with different types of signals [83], also known as signals of opportunity (SOPs).

SOP examples include cellular [37,72], digital television [28,58,66,191,192,231], AM/FM

[29, 128, 164, 167, 168], Wi-Fi [43, 188–190, 230, 237, 238], cellular [4, 17, 35, 41, 47, 48,

56, 68, 69, 84, 92, 95, 194, 218], low-earth orbit (LEO) satellite signals [15, 42, 44, 55, 87, 94,

105, 110, 112, 118, 139, 155, 160, 178, 199, 200, 222], and geostationary Earth orbit (GEO)

satellites [50]. Among terrestrial SOPs, cellular signals have attracted considerable attention

recently [3,46,67,98,114,121,162,186,202,228] due to their desirable attributes [27], includ-

ing: (i) large transmission bandwidth, (ii) high carrier-to-noise ratio [7], and (iii) desirable

geometric diversity [38]. Meter-level accuracy was achieved outdoors using cellular signals

on ground and aerial vehicles [6,13,34,74,81,82,86,88,124,125,134,136,138,163,205,225],

the potential of achieving of sub-meter level accuracy on aerial vehicles with LTE sig-

nals was demonstrated [36, 96, 99, 100, 106, 183], and the viability of navigating exclu-

sively in with LTE signals in GPS-jammed environments was established [80]. Among

extraterrestrial SOPs, LEO signals have attracted considerable attention over the past few

years [26, 57, 59, 63–65, 85, 89, 111, 137, 140, 165, 166, 187, 193, 204, 210, 234] due to their

desirable attributes [79]: (i) proximity to Earth compared to GNSS, (ii) high dynamics, (iii)

spectral and geometric diversity, and (iv) projected abundance, with plans to launch tens of

thousands of satellites into LEO over the current decade.
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1.1.0.2 Positioning with 5G Signals

The characteristics of mmWave signals were evaluated for positioning in [227]. Cramér-

Rao lower bounds (CRLBs) of the direction-of-departure (DOD), DOA, and TOA for

both uplink and downlink mmWave signals were derived in [11, 12], showing sub-meter

positioning error, and sub-degree orientation error. To exploit the sparsity of mmWave

channels, tools relying on compressed sensing were proposed in [116], [229] to estimate

DOD, DOA, and TOA of the UE, showing sub-meter level position error via simulation

results. The DOD and UE’s position were estimated in a two-stage Kalman filter using the

signal strength from multiple base stations in [171], which yielded sub-meter-level three-

dimensional (3-D) position accuracy. The joint estimation of the position and orientation of

the UE, as well as the location of reflectors or scatterers in the absence of the line-of-sight

(LOS) path, were considered in [129], showing less than 15 m position root mean-squared

error (RMSE) and less than 7 degree orientation RMSE. A two-way distributed localization

protocol was proposed in [10] to remove the effect of the clock bias in TOA estimates.

In [45], a positioning method for multiple-output single-input systems was proposed, where

the DOD and TOA of the received signal were used to localize a UE. In [123], estimation

of signal parameters via rotational invariant techniques (ESPRIT) was used to estimate the

DOA and DOD of the signal. Experimental results in [185] and [9] showed meter-level

navigation using TOA estimates from 5G signals. The results presented therein rely only

on the PSS and SSS for TOA estimation. It is shown that the proposed receiver yields a

narrower RS autocorrelation function, which translates to more accurate TOA estimates.

Moreover, the proposed receiver architecture can be readily adapted to any type of signal

containing periodic RSs.
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1.1.1 Resulting Publications

In the following, the refereed publications resulting from this dissertation are presented.

Journal Publications:

1. M. Neinavaie, J. Khalife, and Z. Kassas,“Cognitive Opportunistic Navigation in

Private Networks with 5G Signals and Beyond", in IEEE Journal of Selected Topics

in Signal Processing, vol. 16, no. 1, pp. 129-143, Jan. 2022.

2. M. Neinavaie, J. Khalife, and Z. Kassas, “Acquisition, Doppler Tracking, and Position-

ing with Starlink LEO Satellites: First Results", in IEEE Transactions on Aerospace

and Electronic Systems,vol. 58, no. 3, pp. 2606-2610, June 2022.

3. M. Neinavaie, J. Khalife, and Z. Kassas,“Cognitive Detection of Unknown Beacons of

Terrestrial Signals of Opportunity for Localization", in IEEE Transactions of Wireless

Communications, Accepted. 2022.

4. M. Neinavaie and Z. Kassas,“Unveiling Starlink LEO Satellite OFDM-Like Signal

Structure Enabling Precise Positioning", in IEEE Transactions on Aerospace and

Electronic Systems, Accepted. 2023.

5. M. Neinavaie, and Z. Kassas,“Cognitive Sensing and Navigation with Unknown

OFDM Signals with Application to Terrestrial 5G and Starlink LEO Satellites", in

IEEE Journal of Selected Areas in Communications, Under Revision.

6. M. Neinavaie, J. Saroufim, S. Shahcheraghi, and Z. Kassas “Exploiting Unknown LEO

Satellite Signals for Navigation: Acquisition Tracking, and Differential Navigation",

Under Preparation.
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7. M. Neinavaie and Z. Kassas,“Now You Are Beaming, Now You Are Not: Cognitive

Opportunistic Navigation with Always-On and On-Demand Starlink OFDM Signals",

Under Preparation,

Conference Papers and Workshops

1. M. Neinavaie and Z. Kassas, “Signal mode transition detection in Starlink LEO

satellite downlink signals", IEEE/ION Position, Location, and Navigation Symposium,

Apr. 25-27, 2023, Monterey, accepted.

2. M. Neinavaie, J. Khalife, and Z. Kassas, “Detection of constrained unknown beacon

signals of terrestrial transmitters and LEO satellites with application to navigation,"

IEEE Vehicular Technology Conference, Sep. 26-29, 2022, London, England, pp.

1-5.

3. M. Neinavaie and Z. Kassas, “Joint detection and tracking of unknown beacons for

navigation with 5G signals and beyond," ION Global Navigation Satellite Systems

Conference, Sep. 19-23, 2022, Denver, CO, pp. 921-932.

4. M. Neinavaie and Z. Kassas, “Unveiling beamforming strategies of Starlink LEO

satellites," ION Global Navigation Satellite Systems Conference, Sep. 19-23, 2022,

Denver, CO, pp. 2525-2531.

5. M. Neinavaie, Z. Shadram, S. Kozhaya, and Z. Kassas, “First results of differen-

tial Doppler positioning with unknown Starlink satellite signals," IEEE Aerospace

Conference, Mar. 5-12, 2022, Big Sky, MT, pp. 1-14.
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6. M. Neinavaie, J. Khalife, and Z. Kassas, “Doppler stretch estimation with application

to tracking Globalstar satellite signals," IEEE Military Communications Conference,

Nov. 28 - Dec. 1, 2021, San Diego, CA, pp. 647-651 (special session)

7. M. Neinavaie, J. Khalife, and Z. Kassas, "Exploiting Starlink Signals for Navigation:

First Results: ION Global Navigation Satellite Systems Conference, Sep. 20-24, 2021,

St. Louis, MO, pp. 2266-2773.

8. M. Neinavaie, J. Khalife, and Z. Kassas,“Blind Doppler Tracking and Beacon De-

tection for Opportunistic Navigation with LEO Satellite Signals"IEEE Aerospace

Conference, Mar. 6-13, 2021, Big Sky, MT, pp. 1-8.

9. M. Neinavaie, J. Khalife, and Z. Kassas, “Blind Opportunistic Navigation: Cognitive

Deciphering of Partially Known Signals of Opportunity" ION Global Navigation

Satellite Systems Conference, Sep. 21-25, 2020, St. Louis, MO, pp. 2748-2757.

1.1.2 Dissertation Outline

This dissertation is organized as follow:

• Chapter 2: In this chapter a receiver architecture is proposed to cognitively extract

navigation observables from fifth generation 5G NR signals of opportunity. Unlike

conventional opportunistic receivers which require knowledge of the signal structure,

particularly the RSs, the proposed cognitive opportunistic navigation (CON) receiver

requires knowledge of only the frame duration and carrier frequency of the signal.

To exploit the full available bandwidth and improve ranging accuracy, the proposed

CON receiver is designed to estimate all the RSs contained in the transmitted signals
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corresponding to multiple 5G base stations, (i.e., gNBs). Navigation observables

(pseudorange and carrier phase) are subsequently derived from the estimated RSs.

The proposed receiver operates in two stages: (i) acquisition and (ii) tracking. The

acquisition stage of the CON receiver is modeled as a sequential detection problem

where the number of gNBs and their corresponding RSs and Doppler frequencies are

unknown. The generalized likelihood ratio (GLR) test for sequentially detecting active

gNBs is derived and used to estimate the number of gNBs and their RSs. In order

for the receiver to refine and maintain the Doppler and RS estimates provided by the

acquisition stage, tracking loops are designed. A sufficient condition on the Doppler

estimation error to ensure that the proposed GLR asymptotically achieves a constant

false alarm rate (CFAR) is derived. The output of the tracking loops, namely carrier

phase and code phase, are then used to estimate the receiver’s position. Extensive

experimental results are presented demonstrating the capabilities of the proposed

CON receiver with real 5G signals on ground and aerial platforms, with an experiment

showing the first navigation results with real 5G signals on an unmanned aerial vehicle

(UAV) navigating using the CON receiver over a 416 m trajectory with a position

RMSE of 4.35 m.

• Chapter 3: A cognitive approach is proposed to detect unknown beacons of terrestrial

SOPs. Two scenarios are considered in the chapter: (i) detection of unknown beacons

with IC and (ii) detection of unknown beacons with NIC. Matched subspace detectors

are proposed for both scenarios, and it is shown experimentally that the proposed

matched subspace detectors are capable of detecting cellular 3G cdma2000 signals

and 5G OFDM signals. A low complexity method is derived to simplify the matched

subspace detector with IC for M-ary MPSK modulation. The effect of symbol errors
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in the estimated beacon signal on the carrier to noise ratio (CNR) is characterized

analytically. Closed-form expressions for the asymptotic probability of detection and

false alarm are derived. Experimental results are presented showing an application of

the proposed cognitive approach by enabling a UAV to detect and exploit terrestrial

cellular signals for navigation purposes. The UAV achieved submeter-level accurate

navigation over a trajectory of 1.72 km, by exploiting signals from four 3G cdma2000

transmitters.

• Chapter 4: A receiver architecture for cognitive sensing and navigation with OFDM-

based systems is proposed. Similar to conventional navigation receivers the proposed

architecture involves acquisition and tracking stages. However, both acquisition and

tracking stages are supplemented by the unorthodox capability of estimating and

updating the RS signals. The acquisition stage instructs the tracking stage by reporting

the performance metrics to the tracking stage. The tracking stage adjusts the loop gains

based on the reported information to update the RS accordingly. A chirp model is

considered at the acquisition stage to capture the high dynamics of Doppler frequency

in intensive Doppler scenarios, where the navigating vehicle is maneuvering or the

transmitting source is not static. The effect of Doppler rate estimation error on the

frame length estimation is analyzed. Using the proposed algorithm, the OFDM signal

tracking results with Starlink downlink signals are presented. Experimental results are

presented demonstrating the performance of the proposed receiver by: (i) enabling an

unmanned aerial vehicle (UAV) to detect and exploit terrestrial 5G NR cellular signals

for navigation purposes showing an RMSE which is bounded between 4.2m and 5.8 m

in a total trajectory of 416 m, and (ii) enabling a ground vehicle to cognitively sense

(detect blindly, exploit all the information, and track) an unknown gNB in a traversed
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trajectory of 1.79 km, and estimating the position of the gNB with a two-dimensional

error of 5.83 m in a blind fashion.

• Chapter 5 In this chapter, it is shown that despite the dynamic nature of Starlink RSs,

the proposed matched subspace detector senses the transition between the transmission

modes of Starlink RSs, and detects all the accessible RSs with a predetermined

probability of false alarm. To demonstrate the performance of the proposed receiver

experimentally, a base with a known position and a stationary rover with an unknown

position was equipped with the proposed receiver. Two baselines between the base

and rover receivers were considered: 1.004 km and 8.6 m. Despite the fact that

the satellites’ ephemerides were poorly known (with errors on the order of several

kilometers, as they are predicted from two-line element (TLE) files and an SGP4

propagator), the differential framework estimated the rover’s two-dimensional (2D)

position with an error of 3.9 m and 83 cm, respectively.

• Chapter 6: This chapter starts with exploiting the RSs of the Starlink downlink

signals. The frame length of the downlink OFDM-like signals is estimated. The whole

available bandwidth of multiple Starlink SVs is exploited and the corresponding

RSs are estimated and used to obtain the code and carrier phase observables. The

experimental results show a horizontal positioning error of 6.5 m with known receiver

altitude. Several experiments are provided to show the capability of the proposed

method in exploiting downlink signals of multi-constellations.

• Chapter 7: This chapter summarizes the contributions of this dissertation and high-

lights the major discoveries.
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Chapter 2: Cognitive Opportunistic Navigation in Private Networks

With 5G Signals and Beyond

2.1 Introduction

Current capabilities offered by fourth generation (4G) mobile communications will not

meet the demands of emerging applications such as internet of things (IOT) and autonomous

vehicles [14, 23]. To address such demands, fifith generation (5G) has been developed, with

a focus on features such as enhanced mobile broadband, ultra-reliable low-latency commu-

nications, and massive machine type communications [158]. Based on the performance

requirements set by the international telecommunication union (ITU), the third generation

partnership project (3GPP) began 5G standardization in 2015 and released its first specifica-

tions on a 5G system in June 2018, which included both the new air interface, known as

new radio (NR), and 5G core network (5GC) [198]. One main characteristic of 5G signals is

high data rate, which necessitates a higher transmission bandwidth and more sophisticated

multiplexing techniques. The scarcity of unlicensed spectrum in lower frequencies called

for using millimeter waves (mmWaves) for NR signal transmission [19]. The high path loss

of propagated mmWave signals can be compensated for by beamforming techniques and

massive multiple-input multiple-output (mMIMO) antenna structures [52]. Beamforming in
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5G requires the knowledge of the user’s location, which means that 5G-based positioning

is not only an auxiliary service, but is essential for resource allocation and beamforming

for high data rate transmission [45]. Different types of positioning techniques have been

evaluated by the 3GPP in Release 15 and 16 [1].

Cellular positioning techniques in the literature can be classified into network-based and

opportunistic approaches [37, 72]. Network-based approaches require two-way communica-

tion with the network and the transmission of a pre-specified positioning reference signal

(PRS) and some system parameters such as the number of transmission antennas and the

beamforming matrix. Network-based positioning capabilities in wireless communication

systems have been defined since 4G systems [35]. In a contrast to network-based approaches,

in opportunistic approaches, the user equipment (UE) estimates its position from downlink

signals, without communicating back with the network. As such, opportunistic approaches

are more attractive than network-based approaches since: they (i) do not require additional

overhead or bandwidth, (ii) preserve the UE’s privacy, (iii) do not require paying subscription

to the network, and (iv) enable the UE to exploit signals from multiple cellular providers

simultaneously, which improves the positioning accuracy.

Opportunistic navigation frameworks usually rely on the broadcast reference signals

(RSs), which are used to derive direction-of-arrival (DOA) and time-of-arrival (TOA) [184].

These signals are known at the UE and are universal across network operators. Hence, they

can be exploited for positioning without the need for the UE to be a network subscriber. In

cellular long-term evolution (LTE) networks, several RSs, such as the cell-specific reference

signal (CRS), are broadcast at regular and known time intervals, regardless of the number of

UEs in the environments. This always-on type of transmitted RSs reduces the network’s
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energy efficiency and increases operational expenses and interference. One of the main

features of 5G signals is ultra-lean transmission, which minimizes the transmission of

always-on signals. For instance, CRS which used to be an always-on RS in LTE, is not

necessarily being continuously transmitted in 5G signals. Up until now, 5G opportunistic

navigation methods relied on the always-on signals, e.g., the primary and secondary synchro-

nization signals (PSS and SSS, respectively) and the physical broadcast channel (SB/PBCH)

block, none of which use the entire signal bandwidth [9, 75, 185].

This chapter presents a cognitive opportunistic navigation framework (CON) by develop-

ing a 5G receiver architecture to simultaneously detect the active gNBs in the environment,

estimate the number of gNBs and their unknown RSs which are not necessarily always-on,

and exploit them to derive navigation observables in a cognitive fashion. There are four

main RSs in 5G signals: demodulation RSs, phase tracking RSs, sounding RSs, and channel

state information (CSI) RSs. These RSs are only transmitted on demand, which limits the

efficacy of conventional opportunistic navigation frameworks which rely on always-on RSs.

For instance, while the receiver proposed in [185] was the first 5G-based opportunistic

navigation receiver, it relies on the always-on SB/PBCH block. The downside of relying

only on the SB/PBCH block is the limited bandwidth. Higher signal bandwidth translates to

more accurate TOA estimates. In order to exploit the full ranging accuracy achievable with

5G signals, the proposed CON receiver is designed to cognitively estimate the RSs present

in the entire bandwidth and exploit them to obtain navigation observables (pseudoranges

and carrier phase). Not only the proposed receiver is capable of exploiting RSs which

are not always-on, but the cognitive nature of the proposed receiver enables opportunistic

navigation with future communication standards with unknown or partially known signal

specifications. The proposed receiver architecture relies solely on the periodicity of the
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RSs and requires very limited information about the 5G signal, namely it only assumes

knowledge of the frame duration and the carrier frequency. It should be pointed out that an

energy detector can be used to provide an estimate of the carrier frequency and using the

current literature, e.g., the period estimator in [33], the frame duration can also be estimated

in a pre-processing stage. One main challenge faced by the CON receiver is the problem of

distinguishing signals from multiple 5G base stations, i.e., gNBs, multiplexed over the same

channel. This task is relatively simple when the RSs are known, as RSs are usually designed

to have desirable autocorrelation and cross-correlation properties. Since this chapter does

not assume knowledge of the RSs, it is desirable for the CON receiver to be able to detect

multiple gNBs and distinguish their signals. To this end, a subspace-based detection scheme

leveraging the Doppler frequency subspace is proposed to estimate the number of available

gNBs and estimate their RSs.

Specifically, the contributions of this chapter are as follows:

• A CON receiver design is presented, which could estimate the unknown RSs of a gNB.

The cognitive nature of the proposed receiver enables estimating both always-on and

on demand RSs which are not necessarily always-on. Using extensive experiments, it

is shown that the estimated RSs posses higher bandwidth compared to conventional

5G opportunistic navigation receivers, which allows for producing more precise

navigation observables.

• A sequential generalized likelihood ratio (GLR) detector is derived to detect the

presence of multiple gNBs on the same channel and provide an estimate of the number

of active gNBs. The detector relies on matched subspace detection, where the signal

subspace is defined by the Doppler frequencies of the gNBs. The sequential GLR
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detector estimates the number of gNBs, and their Doppler frequencies, and it provides

an initial estimate of their unknown RSs, which are then used and refined in the

tracking loops.

• A sufficient condition on the Doppler estimation error to ensure that the proposed

GLR asymptotically achieves a constant false alarm rate (CFAR) is derived.

• Extensive experimental results are presented demonstrating the capabilities of the

proposed CON receiver with real 5G signals on ground and aerial platforms. On a

ground vehicle, it is demonstrated that the CON receiver yields a reduction of 10%

and 37.7% in the estimated delay and Doppler root mean squared error (RMSE),

respectively, over that achieved with a conventional opportunistic navigation 5G

receiver that has complete knowledge of the transmitted RSs but only relies on always-

on RSs. On an unmanned aerial vehicle (UAV), it is demonstrated that the proposed

CON receiver enables the UAV to navigate over a 416 m trajectory with two 5G NR

gNBs achieving a position RMSE of 4.35 m. To evaluate the performance of the CON

receiver in a scenario where the RSs are always-on, another experiment is conducted

in which a UAV navigates with long-term evolution (LTE) eNodeBs, achieving a

position RMSE of 2.07 m, which is identical to the performance achieved with a

conventional opportunistic navigation 4G receiver that has complete knowledge of the

transmitted RSs.

The rest of the chapter is organized as follows. Section 4.2 surveys related research on

navigation with 4G and 5G signals. Section 2.2 describes the received baseband signal

model. Section 6.3 presents the proposed CON receiver architecture. Section 2.4 presents

the experimental results.
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2.2 Received Baseband Signal Model

This section provides a brief review of the NR RSs, and presents the signal model.

2.2.1 Brief Review of NR RSs

NR adopts orthogonal frequency division multiplexing (OFDM) scheme, as was the

case in 4G. In OFDM-based transmission, the symbols are mapped onto multiple carrier

frequencies, referred to as subcarriers, with a particular spacing known as subcarrier spacing.

Unlike the 4G signal standard, which considers a fixed subcarrier spacing of 15 kHz,

subcarrier spacing values of 15⇥2µ , with µ 2 {0,1,2,3} are supported by NR. The system

selects subcarrier spacing values based on carrier frequency, and/or other requirements and

scenarios. Once the subcarrier spacing is configured, the frame structure is identified. An

NR frame has a duration of 10 ms and consists of 10 subframes with durations of 1 ms [198].

In the proposed receiver, only the frame duration and carrier frequency are assumed to

be known. In the frequency-domain, each subframe is divided into numerous resource

grids, each of which has multiple resource blocks with 12 subcarriers. The number of

resource grids in the frame is provided to the UE from higher level signallings. A resource

element is the smallest element of a resource grid that is defined by its symbol and subcarrier

number [198].

To provide frame timing to the UE, a gNB broadcasts synchronization signals (SS) on

pre-specified symbol numbers. An SS includes PSS and SSS, which provide symbol and

frame timing, respectively. The PSS and SSS are transmitted along with the PBCH signal

and its associated demodulation reference signal (DM-RS) on a block called SS/PBCH block.

The SS/PBCH block consists of four consecutive OFDM symbols and 240 consecutive
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subcarriers. The SS/PBCH block has a periodicity of 20 ms and is transmitted numerous

times on one of the half frames, also known as SS/PBCH burst.

2.2.2 Signal Model

As it was mentioned previously, the SS/PBCH block is not transmitted on the whole

signal’s bandwidth. Therefore, methods which only rely on SS/PBCH block, cannot exploit

the full ranging accuracy that can be achieved by 5G signals. Other periodic RSs are not

necessarily always-on and the cognitive receiver should be able to exploit them to be able to

achieve the available ranging accuracy. In this chapter, with a focus on exploiting navigation

observables using the RSs in the entire 5G bandwidth, the 5G NR signal is modeled as

an unknown periodic signal in the presence of interference and noise. If an RS is being

periodically transmitted, it will be detected by the receiver, estimated, and used to derive

navigation observables. The estimated RS will involve an estimation of always-on signals

such as the SSs and any other active reference signal that is being periodically transmitted.

It will be shown experimentally in section 2.4 that the exploited bandwidth by the proposed

cognitive method is larger than that of the method which only relies on always-on signals.

Denoting a continues-time signal at time t by c(t), and a discrete-time signal at time instant

n by c[n], the received baseband signal model can be expressed as

r[n] =
N

Â
i=1

(aici(tn� tsi [n])exp( jqi(tn))

+di(tn� tsi [n])exp( jqi(tn)))+w[n], (2.1)

where r[n] is the received signal at the nth time instant; ai is the complex channel gain

between the UE and the ith gNB; tn is the sample time expressed in the receiver time;

N is the number of gNBs; ci[n] , ci(tn) is the periodic RS with a period of L samples;

tsi [n] is the code-delay corresponding to the UE and the ith gNB at the nth time instant;
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qi(tn) = 2p fDi [n]Tsn is the carrier phase in radians, where fDi [n] is the Doppler frequency

at the nth time instant and Ts is the sampling time; di(tn) represents the samples of some

data transmitted from the ith gNB; and w[n] is a zero-mean independent and identically

distributed noise with E{w[m]w⇤[n]}= s2
wd [m�n], where d [n] is the the Kronecker delta

function, and X⇤ denotes the complex conjugate of random variable X .

According to (4.1), the channel between the ith gNB and the UE is considered to have a

single tap with the complex channel gain ai. The desired RS from the ith gNB is defined as

si[n], aici(tn� tsi [n])exp( jqi(tn)) , (2.2)

and the equivalent noise is

weqi [n] = di(tn� tsi [n])exp( jqi(tn))+w[n]. (2.3)

Hence, the signal model can be rewritten as

r[n] =
N

Â
i=1

�
si[n]+weqi [n]

�
. (2.4)

It should be noted that due to the periodicity of the RS, assuming a constant Doppler in the

processing time, i.e., fDi [n] = fDi , the desired RS has the following property

si[n+mL] = s[n]exp( jwimL) 0 n L�1, (2.5)

where wi = 2p fDiTs is the normalized Doppler, and�p wi  p . The acquisition stage will

estimate si[n] and the estimation of si[n] will be used at the receiver to obtain the navigation

observables.

Definition: The coherent processing interval (CPI) is defined as the time interval during

which the Doppler, delay, and channel gains are considered to be constant.
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One can form a vector of L observation samples corresponding to the kth period of the

signal as

yk , [r[(k�1)L+1],r[(k�1)L+2], . . . ,r[kL]]T. (2.6)

Considering a CPI of length K⇥L samples, the observation vector is constructed as y =

[yT1 ,yT2 , . . . ,yTK]T. Therefore,

y =
N

Â
i=1

Hisi +weqi , (2.7)

where si = [si[1],si[2], . . . ,si[L]]T, weqi is the equivalent noise vector corresponding to the

ith source, and the KL⇥L Doppler matrix corresponding to the ith source is defined as

Hi , [IL,exp( jwiL)IL, . . . ,exp( jwi(K�1)L)IL]
T, (2.8)

where IL is an L⇥L identity matrix.

2.3 CON Receiver Structure

This section presents the structure of the proposed receiver. The proposed receiver

consists of two main stages: (i) acquisition and (ii) tracking. Each of these stages are

discussed in details next.

2.3.1 Acquisition

In this chapter, the acquisition stage is modeled as a sequential matched subspace

detection problem. The acquisition stage comprises estimating the number of gNBs, an

initial estimate of normalized Doppler, and the RSs, i.e., N, wi, and si, respectively. At

each step of the acquisition, a test is performed to detect the most powerful gNB when the

subspace of the previously detected gNBs are nulled. In the following subsection, matched
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subspace detection is overviewed and the hypothesis test for detection of multiple gNBs is

formulated.

2.3.1.1 Matched Subspace Detector

As it was mentioned previously, in the first step of the proposed sequential algorithm,

the presence of a single gNB is tested and if the null hypothesis is accepted, then N̂ ⌘ 0,

which means that no gNB is detected to be present in the environment under the test. If the

test rejects the null hypothesis, the algorithm verifies the presence of at least one source

and performs the test to detect the presence of other gNBs in the presence of the previously

detected gNBs. The unknown Doppler and the RS of each gNBs are estimated at each step.

In general, if the null hypothesis at the ith level of the sequential algorithm is accepted, the

algorithm is terminated and the estimated number of gNBs will be N̂ = i�1.

In order to test the presence of si, at the ith stage of the acquisition algorithm, the

observation vector can be written as

y = Hisi +Bi�1qqq i�1 +weqi , (2.9)

Bi�1, [H1,H2, . . . ,Hi�1], qqq i�1, [sT1 ,sT2 , . . . ,sTi�1]
T. (2.10)

The following binary hypothesis test is used to detect the ith gNB:

⇢
H i

0 : y = Bi�1qqq i�1 +weqi
H i

1 : y = Hisi +Bi�1qqq i�1 +weqi .
(2.11)

For a given set of Doppler frequencies, Wi = {w1,w2, . . . ,wi}, the GLR at the ith stage is

derived as (see Appendix .1)

Li(y|Wi) =
yHPSiy

yHP?Bi�1
P?Si

P?Bi�1
y
, (2.12)
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where yH is the Hermitian transpose of y, PX , X(XHX)�1XH, denotes the projection matrix

to the column space of X, and

P?X , I�X
⇣

XHX
⌘�1

XH, (2.13)

denotes the projection matrix onto the space orthogonal to the column space of X, and

Si = P?Bi�1
Hi. Intuitively, in (5.10) the subspace of previously detected gNBs, i.e., Bi�1, is

nulled to detect the ith gNB.

Remark 1: (Vector space interpretation of (5.10)): If the subspace spanned by the

columns of Si = P?Bi�1
Hi, is viewed as the ith gNB’s signal subspace, and the orthogonal

subspace as the noise subspace, then the likelihood (5.10) can be interpreted as an estimated

signal to noise ratio (SNR). The reader is referred to [180] for further interpretations of

matched subspace detectors.

Remark 2: At the ith stage of the proposed sequential algorithm, the GLR requires an

estimate of the set Wi. The sequential nature of the algorithm enables a single variable

estimation of the Doppler frequency at each step. For instance, at the first step of the

algorithm, a single dimensional search is required to obtain the maximum likelihood (ML)

estimate of w1, denoted by ŵ1. In the second stage of the algorithm, ŵ1 is used to construct

the projection matrix to null the subspace of the first gNB. Consequently, at the ith step

of the algorithm, invoking the previously estimated Dopplers, a single dimensional search

is required to estimate wi, and construct the estimated projection matrix and the estimated

Doppler matrix for the corresponding stage, denoted by P̂Si and Ĥi, respectively.

The following lemma simplifies the likelihood function (5.10).
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Lemma 1: In the likelihood function (5.10), the following equality holds

HH

i P?Bi�1
Hi = liI, (2.14)

where the scalar li is the Schur complement of block Ci�1, i.e., the upper (i�1)⇥ (i�1)

block of the matrix Ci
††, where

Ci =

2

6664

c11 c12 . . . c1i
c21 c22 . . . c2i
... . . . . . . ...
ci1 ci2 . . . cii

3

7775
, (2.15)

and ci j , ÂK�1
k=0 exp

�
j(w j�wi)Lk

�
.

Proof: See Appendix .2.

According to Lemma 1, the likelihood (5.10) at the ith stage can be simplified as

Li(y) =
kl̂�1

i ĤH
i P̂?Bi�1

yk2

kP̂?Bi�1
yk2�kl̂�1

i ĤH
i P̂?B̂i�1

yk2

H i
1

?
H i

0

hi. (2.16)

where hi is a predetermined threshold at the ith stage. The ML estimate of ŵi, is obtained

by maximizing the likelihood function under H i
1 which yields

ŵi = argmax
wi
kHH

i P?Bi�1
yk2, (2.17)

and is used to construct P̂Bi�1 , Ĥi, and l̂i.

For a known wi, the least squares (LS) estimate of the ith source, i.e., si, is given by

ŝi =
1
li

HH

i P?Bi�1
y, (2.18)

It should be noted that the estimated RS, i.e., ŝi, contains the effect of the channel between

the gNB and the UE. Small values of |ai| degrades the estimation quality of the desired

††Consider p⇥ p matrix A, p⇥ 1 vectors b and c and scalar d. For the matrix


A b
cT d

�
, the Schur

complement of block A is defined as d� cTA�1b.
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RS and, consequently, affects the acquisition and tracking performance. It should also be

pointed out that 1
li

HH
i P?Bi�1

y = si +wacqi , where wacqi =
1
li

HH
i P?Bi�1

weqi . In other words, for

a known Doppler frequency, the LS estimator of the ith source is an unbiased estimator, i.e.,

E{ŝi} = si. However, since the true Doppler is not known to the CON receiver, the ML

estimate of the Doppler is used to compute the LS estimate of the ith RS instead. Moreover,

it can be shown that
1
l̂i

ĤH

i P̂Bi�1Hi = bacqiI, (2.19)

where bacqi is some complex scalar. As such, the LS estimate of the RS using the ML

estimate of the Doppler becomes

ŝi =
1
l̂i

ĤH

i P̂?Bi�1
y = bacqisi + ŵacqi , (2.20)

where ŵacqi , 1
l̂i

ĤH
i P̂?Bi�1

weqi . Furthermore, the asymptotically efficient property of the ML

estimator results in |bacqi |! 1 as K! • [236].

2.3.1.2 Asymptotic CFAR property

The Doppler estimation error affects the probability of detection and the probability of

false alarm. For known subspaces and the corresponding projection matrices, using Theorem

7.1 in [90], one can show that the probability of false alarm for the ith stage of the likelihood

in (5.10) asymptotically tends to

Pfai = exp(�Lhi)
L�1

Â
n=0

(Lhi)
n

n!
, (2.21)

for a large number of observation samples. In other words, the detector is not a function of

unknown parameters for known Doppler frequencies, which means that it ensures CFAR

property. Next, the effect of Doppler estimation error on the probability of false alarm is
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assessed. The following theorem gives a sufficient condition to ensure the CFAR property

for a scenario with two gNBs for a large enough CPI.

Theorem 1: Consider two gNBs with Doppler frequencies w1 and w2 and corresponding

estimates ŵ1 and ŵ2, respectively. Define the Doppler estimation error of w1 as Dw1 ,

w1� ŵ1. As K! •, sufficient conditions for the matched subspace detector in (5.10) to be

a CFAR detector in the second stage are (i) |Dw1L|⌧ 1
K and (ii) |ŵ2L� ŵ1L|> 1

K .

Proof: See Appendix .3.

Numerical simulations were conducted in order to visualize the results of Theorem 1.

To this end, 5G-like signals were simulated for two different sources at: (i) w1L = 0 and

(ii) w2L = 0.2. Then, the CPI length was varied from K = 5 to K = 30 and (ŵ1L� ŵ2L)

was varied from �0.5 to 0.5. For each (K, ŵ1L� ŵ2L) pair, 105 realizations of the noise

weqi were used to numerically calculate Pfa. The detection threshold was selected such that

Pfa = 0.001 in the absence of the second source. The results are shown in Fig. 2.1 indicating

that Pfa for |ŵiL� ŵ jL|> 1
K is almost constant at 0.001, and approaches 1 otherwise, which

demonstrates Theorem 1.

It should be pointed out that in the experiments, (4.20) is used to select the threshold

for a given probability of false alarm. According to Theorem 7.1 in [90], (4.20) holds for

a large number of observation samples and for known subspaces. Due to the asymptotic

efficiency property of the ML estimator, it is assumed that the subpsapce estimation error

tends to zero for a large number of observation samples. In the experiments, the number of

samples in a CPI is selected to be large and (4.20) holds asymptotically. The acquisition
algorithm is summarized in Algorithm 1.
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Figure 2.1: Simulation results demonstrating Theorem 1. (a) A surface plot of Pfa for
varying values of K and ŵ1L� ŵ2L. (b) A heat map of Pfa along with the CFAR convergence
boundaries in dashed white lines, as determined by Theorem 1.

2.3.2 Tracking

After obtaining coarse estimates of the Doppler frequencies and estimates of the RSs

in the acquisition step, the receiver refines and maintains these estimates. Specifically,

phase-locked loops (PLLs) are employed to track the carrier phases of the detected RSs

and carrier-aided delay-locked loops (DLLs) are used to track the RSs’ code phases. Each

detected source has its own dedicated tracking loop. Therefore, for compactness of notation,

the source index i is dropped in the subsequent analysis. The tracking loops are discussed

next.

2.3.2.1 RS Estimate Update

The acquisition step provides a coarse initial estimate of the RS, denoted by ŝacqi [n]. From

(2.20), the nth symbol of the estimated RS can be expressed as ŝacq[n] = bacqs[n]+ ŵacq[n],

where bacq is obtained according to (2.19) and x[n] is the nth element of vector x. Recall

32



Algorithm 1 Sequential Matched Subspace Detector
Input: y, Pfa
Output: N̂, ŵi, and ŝi for i = 1, . . . , N̂

1: Initialization: i = 1, P?B0
= I

2: Calculate Li(y) according to (4.19) and the threshold using (4.20).
3: if Li(y)< hi then
4: N̂ = i�1.
5: Break
6: end if
7: Estimate wi according to (6.5), and construct Ĥi, P̂?Bi�1

, and l̂i

8: ŝi =
1
l̂i

ĤH
i P̂?Bi�1

y
9: i i+1, update P̂?Bi�1

using ŵi, and go to step 2.

that bacqi depends on the Doppler estimation error in the acquisition stage. Let t̂sk and f̂Dk

be the code phase and the Doppler estimates at time-step k in the tracking loop, respectively.

In this step of the tracking loop, the RS estimate is updated by coherently integrating the

observations after delay compensation and Doppler wipe-off. As such, the RS estimate at

the kth iteration of the tracking loops is given by

ŝk[n]=
k

k+1
ŝk�1[n]+

1
k+1

yk[n+n̂dk ]exp
�
� j2p f̂Dkn

�
(2.22)

=
1

k+1

"
ŝacqi [n]+

k

Â
m=1

ym[n+n̂dm ]exp
�
� j2p f̂Dmn

�
#
,

where n̂dm ,
j

t̂sm
Ts

m
and b·e denotes rounding to the closest integer.

2.3.2.2 PLL

The PLL consists of a phase discriminator, a loop filter, and a numerically-controlled

oscillator (NCO). It was found that the receiver could easily track the carrier phase with a

second-order PLL with a loop filter transfer function

FPLL(s) =
2kwns+w2

n
s

, (2.23)
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where k ⌘ 1p
2

is the damping ratio and wn is the undamped natural frequency, which can

be related to the PLL noise-equivalent bandwidth Bn,PLL by Bn,PLL = wn
8z (4z 2 + 1) [131].

The loop filter transfer function in (6.35) is discretized at a sampling period Tsub , LTs,

which is the time interval at which the loop filters are updated and is typically known as the

subaccumulation interval. The discretized transfer function is realized in state-space. The

output of the loop filter at time-step k, denoted by vPLL,k, is the rate of change of the carrier

phase error, expressed in rad/s. The Doppler frequency estimate at time-step k is deduced by

dividing vPLL,k by 2p . The loop filter transfer function in (6.35) is discretized and realized

in state-space. The noise-equivalent bandwidth is chosen to range between 4 and 8 Hz. The

carrier phase estimate at time-step k is updated according to

q̂k = q̂k�1 + vPLL ·Tsub, (2.24)

where q̂0 ⌘ 0. A measure of the change in distance between the transmitter and receiver can

be formed from the carrier phase as z(k) =� c
2p fc q̂k, where c is the speed-of-light and fc is

the carrier frequency. The term z is typically referred to as the carrier phase expressed in

meters. The model relating z to the receiver’s position is discussed in Subsection 2.4.2.

2.3.2.3 DLL

The carrier-aided DLL employs an early-minus-late discriminator. The early and late

correlations at time-step k used in the discriminator are denoted by Zek and Zlk , respectively,

which are calculated by correlating the received signal with an early and a delayed version

of the estimated RS, respectively. The time shift between Zek and Zlk is defined as the

early-minus-late time, denoted by x . The DLL loop filter is a simple gain KDLL, with a

noise-equivalent bandwidth Bn,DLL = KDLL
4 ⌘ 0.5 Hz. The output of the DLL loop filter
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vDLL is the rate of change of the code phase, expressed in s/s. Assuming low-side mixing at

the radio frequency front-end, the code phase estimate is updated according to

t̂sk+1 = t̂sk�
✓

vDLL,k +
vPLL,k

2p fc

◆
·Tsub. (2.25)

The code phase estimate can be used to readily deduce the pseudorange observables.

2.4 Experimental Results

This section validates the proposed CON receiver experimentally. To this end, three

experiments are conducted: (i) an experiment on a ground vehicle with real 5G NR signals,

(ii) an experiment on UAV with real 5G NR signals, and (iii) an experiment on UAV with real

4G LTE signals. The objective of these experiments are to: (i) validate the signal model, (ii)

evaluate the acquisition and tracking performance of the CON receiver, (iii) demonstrate the

capability of detecting multiple sources, i.e., gNBs in 5G and eNodeBs in LTE, transmitting

on the same carrier frequency, (iv) showcase the navigation solution obtained via the CON

receiver, (iv) and evaluate the navigation performance of the CON receiver in a scenario

where the RSs are always-on and compare it to the navigation solution obtained with a

conventional opportunistic navigation receiver which has complete knowledge of the RSs.

The parameters considered in the experiments are listed in Table 2.1.

2.4.1 CON with Real 5G Signals: Comparison with a Conventional 5G
Receiver on a Ground Vehicle

The first experiment aims to compare the acquisition and tracking performance of the

CON receiver with the conventional 5G receiver [185] which only relies on the always-on
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Table 2.1: Receiver parameters

Parameter LTE 5G

Carrier frequency 1955, 2145, 2125, and
739 MHz [184] 632.55, and 872 MHz [9]

Sampling rate 10 MHz 10 MHz

h 1.012 for Pf a = 10�4 (21) 1.007 for Pf a = 10�4 (21)

Bn,PLL 4-8 Hz (empirically) 4-8 Hz (empirically)

Bn,DLL 0.5 Hz (empirically) 0.5 Hz (empirically)

Tsub 10 ms [184] 20 ms [9]

K 40 (empirically) 40 (empirically)

RSs. The experimental setup and results for the experiment with real 5G NR signals are

discussed next.

2.4.1.1 Experimental Setup and Environmental Layout

In this experiment, a ground vehicle was equipped with a quad-channel National In-

strument (NI) universal software radio peripheral (USRP)-2955 and four consumer grade

800/1900 MHz cellular antennas to sample 5G signals near Fairview Road in Costa Mesa,

California, USA. Only one channel from the USRP was used and was tuned to a 872 MHz

carrier frequency, which is a 5G NR frequency allocated to the U.S. cellular provider AT&T.

The sampling rate was set to 10 Mega-samples per second (MSps) and the sampled 5G

signals were stored on a laptop for post-processing. In order to obtain ground-truth, the

vehicle was equipped with a Septentrio AsteRx-i V GNSS-aided inertial navigation system

(INS), which is a dual antenna, multi-frequency GNSS receiver with real-time kinematics

(RTK) capabilities. The GNSS receiver is coupled with a Vectornav VN-100 micro elec-

tromechanical systems (MEMS) inertial measurement unit (IMU) to estimate the position
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and orientation of the ground vehicle at a rated horizontal accuracy of 0.6 cm in clear sky

conditions (RTK performance). The vehicle traversed a trajectory of 4.1 km in 315 seconds.

Fig. 2.2 shows the environment layout and the vehicle trajectory. The acquisition results are

presented next.

Harbor Blvd

Victoria St

W Wilson St

gNB

Fairview Rd

Costa Mesa, California, USA

End

Start

Figure 2.2: Experimental setup and vehicle trajectory for the 5G NR experiment with ground
vehicle.

2.4.1.2 Signal Model Validation

The signal model (4.1) considers a channel with a single tap, which corresponds to the

LOS path with an arbitrary complex channel gain ai. In other words, the channel is modeled

as hi[n] = aid [n�btsi [n]e], where ai is the complex channel gain between the ith gNB and

the UE, tsi [n] is the code-delay corresponding to the UE and the ith gNB, and b·e is the

rounding operation to the closest integer. Note that this channel models flat fading, where

multiple received “close” signal paths are combined into a single ai. To justify the signal
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model in the tested scenario, two test points are considered for the ground vehicle (see Fig.

2.3(a)). In this figure, the term clear LOS refers to a scenario where the signal is not blocked

by an obstacle, e.g., a building. The two test points, i.e., receiver location 1 and receiver

location 2, are considered based on the existence of the clear LOS with respect to the 5G

gNB. Receiver location 1 has a clear LOS and is also closer to the gNB. On the other hand,

receiver location 2 is blocked by a building and does not have a clear LOS. The magnitude of

the channel impulse response for both locations are plotted in Fig. 2.3(b). The magnitudes

of the channel impulse responses are estimated by reconstructing the frame as described

in [9]. As it can be seen in this figure, the channel impulse response for receiver location 2 is

weaker than that of receiver location 1 which is due to blockage of the signal by an obstacle.

The complex channel gain in (4.1) captures this effect by attenuating the LOS signal. If

the acquisition of a gNB is performed when the receiver does not have a clear LOS, e.g.,

receiver location 2, the detection performance will be degraded, which in turn affects the

tracking performance. Fig. 2.4 demonstrates the likelihood at the first stage of acquisition for

receiver location 1 and 2. As can be seen in Fig. 2.4, the likelihood is degraded at receiver

location 2 due to signal blockage. Note that in both receiver locations, |h(t)| does not exhibit

multiple taps (i.e., hi[n] = ÂM
j=1 ai, jd [n�btsi, j [n]e], where M is the number of paths), which

corresponds to the impulse response of a frequency selective channel. While the considered

signal model is simple, yet valid for the conducted experiments, more sophisticated channel

models, e.g., frequency selective channels, can be considered in future work [206].

2.4.1.3 Acquisition Results

The recorded 5G signals were processed in two ways for comparison: (i) using the

proposed CON receiver and (ii) using the conventional 5G receiver proposed in [185]. The
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Costa Mesa, California, USA

No clear LOSClear LOS

Location 1

(a)

Receiver

Location 2
Receiver

(b)

Figure 2.3: (a) Receiver locations for two cases: with and without clear LOS. (b) Channel
impulse response at the two receiver locations.

conventional 5G receiver detected 1 gNB with an initial Doppler frequency of -7.2 Hz. Note

that the limited number of gNBs was expected as 5G gNBs are sparsely deployed at the

present time. The location of the gNB was mapped prior to the experiment. Next, the signal

acquisition stage was applied to detect the ambient 5G gNB. The detection threshold was set

such that Pfa = 10�4, which yielded h = 1.008, K was set to 40, and Tsub was set to 20 ms.

Doppler estimation was performed by searching for the maximizer of the likelihood function

according to (6.5) with a step size of 1 Hz. The acquisition stages in the CON receiver is

shown in Fig. 2.5. As it can be seen in this figure, in the first stage of the acquisition, one
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Figure 2.4: The likelihood (5.10) calculated at receiver location 1 and 2 for i = 1 demon-
strates that no clear line of sight dramatically degrades the likelihood function.

gNB is detected at frequency �7 Hz. In the second stage, the Doppler subspace of this gNB

is nulled and the resulting likelihood is less than the threshold for all Doppler frequencies.

This implies that, no other gNBs are detected in the second stage of the acquisition or

equivalently N̂ = 1.
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Figure 2.5: Acquisition stages in the CON receiver for 5G NR signals on a ground vehicle
showing the likelihood function at each stage and the detected and nulled sources. The DC
component, i.e., at zero Doppler frequency, was nulled as it was saturating the detector.
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2.4.1.4 Tracking Results

After acquiring the Doppler and RSs, the tracking loops are initialized and the signal

is tracked. Fig. 2.6 show the resulting Doppler frequency and delay, expressed in meters,

obtained using the CON and conventional receivers. As it can be seen in Fig. 2.6(b) the

estimated delays for the CON and the conventional receivers are slightly drifting away from

the ground-truth which is due to the clock drifts. The effect of clock drift is considered

in the carrier phase model (see equation (2.26)). Note that the initial value of the delays

were subtracted out to facilitate comparison. The Doppler and delay RMSE values were

calculated from ground-truth for both receivers and are summarized in Table 2.2, which

shows that the CON receiver outperforms the conventional one.

A main reason behind the CON receiver performing better than a conventional 5G

receiver is that the former exploits the RSs in the entire bandwidth, making the bandwidth

of estimated RS higher than the RSs used in the conventional receiver (mainly, PSS and

SSS). Fig. 2.7 shows this: the normalized autocorrelation function of the RS estimated with

the CON receiver is narrower than that of a 5G PSS.

Table 2.2: Delay and Doppler RMSE for the CON and conventional receivers.
Delay RMSE (m) Doppler RMSE (Hz)

Conventional 24.33 3.66
CON 21.88 2.28
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Figure 2.6: (a) Doppler tracking and (b) delay tracking results for the 5G NR ground vehicle
experiment. The ground-truth is calculated according to the true position of the vehicle and
the gNBs.
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Figure 2.7: Normalized autocorrelation function of the RS estimated with the CON receiver
compared to that of a 5G PSS.

Remark 3: The conventional and the proposed cognitive methods use tracking loops

which involve the same computational complexity. The main difference between the compu-

tational complexity of the proposed cognitive receiver and a conventional receiver stems
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from the acquisition stage. The number of complex operations is considered as a metric

for computational complexity. In the likelihood function (5.10), the size of the projection

matrices increases with the detection stage, i.e., i. However, in [91] (Appendix 8B), a

recursive formula is provided to calculate the projection matrix at the ith stage based on the

already calculated projection matrix at (i�1)th stage. Using the recursive formula presented

in this appendix, the complexity of the projection matrix is O(K2) where O(·) denotes the

rate of growth of a function, i.e., its order. Consequently, the number of complex operations

to calculate the matched subspace detector is O((5(KL)2 +KL)N).

2.4.2 CON with real 5G signals: The First Navigation Results on a
UAV

The second experiment aims to find a navigation solution on a UAV using the CON

receiver. To the best of author’s knowledge this is the first navigation results with real 5G

signals on a UAV.

2.4.2.1 Experimental Setup and Environment Layout

In this experiment, the navigator was an Autel Robotics X-Star Premium UAV equipped

with a single-channel Ettus 312 USRP connected to a consumer-grade 800/1900 MHz cellu-

lar antenna and a small consumer-grade GPS antenna to discipline the on-board oscillator.

The cellular receivers were tuned to the cellular carrier frequency 632.55 MHz, which is a

5G NR frequency allocated to the U.S. cellular provider T-Mobile. Samples of the received

signals were stored for off-line post-processing. The ground-truth reference trajectory was

taken from the on-board Ettus 312 USRP GPS solution. The UAV traversed a trajectory of
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416 m. Fig. 3.9 shows the environment layout and the vehicle trajectory. The acquisition

results are presented next.

gNB 2

gNB 1

Santa Ana, California, USA

80
m

Figure 2.8: Environment layout and UAV trajectory for the 5G NR UAV experiment.

2.4.2.2 Acquisition Results

Next, the signal acquisition stage was applied to detect the ambient 5G gNBs. The CON

5G receiver detected 2 gNBs with initial Doppler frequencies of 3.5 Hz and 11.5 Hz. The

location of the gNBs was mapped prior to the experiment. The acquisition stages in the

CON receiver are shown in Fig. 2.9.
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Figure 2.9: Acquisition stages in the CON receiver for 5G NR signals on a UAV showing the
likelihood function at each stage and the detected and nulled sources. The DC component,
i.e., at zero Doppler frequency, was nulled as it was saturating the detector.

2.4.2.3 Tracking Results

After acquiring the Doppler and the RSs, the tracking loops are initialized and the signal

is tracked. Fig. 2.10 shows the resulting Doppler frequencies and delays, expressed in

meters, obtained using the CON receiver.

2.4.2.4 Navigation Solution

In the following, it is assumed that (i) the UAV’s altitude is known at all time and (ii) the

UAV has an estimate of its position at time-step k0, prior to navigating with 5G signals. The

carrier phase to the i-th gNB zi(k) at time-step k expressed in meters can be modeled as

zi(k) = krrrr(k)� rrrsik+ cd tr(k)� cd tsi + vi(k), (2.26)
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Figure 2.10: (a) Doppler tracking and (b) delay tracking results for the UAV 5G experiment.
The ground-truth is calculated according to the true position of the vehicle and the gNBs.

where rrrr and rrrsi are the three-dimensional (3–D) position vectors of the UAV-mounted

receiver and the i-th gNB, respectively; c is the speed of light; d tr is the UAV-mounted

receiver’s clock bias; d tsi models the i-th gNB’s clock bias and carrier phase ambiguity; and

vi(k) is the measurement noise, which is modeled as a zero-mean Gaussian random variable

with variance s2
i [183]. Note that since the UAV’s altitude is known, e.g., using an altimeter,

only its two-dimensional (2–D) position is estimated. The time reference for the transmitter

and receiver clocks is chosen such that d tr(k0) = 0. Using the position estimate at k0 and

the fact that d tr(k0) = 0, the gNBs clock biases can be estimated from zi(k0) resulting in

the estimate d̂ tsi . Next, define the corrected carrier phase measurement z̄i(k), zi(k)+ d̂ tsi
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which can be approximated as

z̄i(k)⇡ krrrr(k)� rrrsik+ cd tr(k)+ vi(k), 8k > k0. (2.27)

Subsequently, the corrected carrier phase measurements were fed to an extended Kalman

filter (EKF) to solve the state vector xxx(k),
h
rrrTr (k), ṙrrTr (k),cd tr(k),cḋ tr(k)

iT
, where ṙrrr(k)

is the UAV’s 2–D velocity vector and ḋ tr(k) is the receiver’s clock drift. A nearly constant

velocity model was used for the UAV’s position and velocity dynamics, and a standard double

integrator driven by process noise was used to model the clock bias and drift dynamics [77].

As such, the discrete-time dynamics model of xxx are given by

xxx(k+1) = Fxxx(k)+www(k), (2.28)

where F is the state transition matrix obtained according to [77] and www(k) is the process

noise vector, which is modeled as a zero-mean Gaussian random vector with covariance

matrix Q obtained according to [77]. The UAV’s x,y acceleration process noise spectra in

the nearly constant velocity model were set to qx = qy = 10 m2/s5, and the receiver’s clock

process noise was chosen to be that of a typical temperature-compensated crystal oscillator

(TCXO) [76, 159]. Note that rrrr(k) is expressed in an East-North-Up (ENU) frame centered

at the UAV’s true initial position. The EKF state estimate was initialized at x̂xx = RRR6⇥1 with an

initial covariance of 4 · I6⇥6. The measurement noise covariance was set to R = 2 · I2⇥2. The

position RMSE of the UAV was calculated to be 4.35 m with the aforementioned parameters.

The true and estimated UAV trajectories are shown in Fig. 2.11.

2.4.2.5 Effect of False Alarm

The effect of a false alarm on the performance of the tracking loops is assessed next.

It will be demonstrated that if at the acquisition stage a false alarm happens and a gNB
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Ground-truth

Trajectories

CON Receiver

Position RMSE: 4.35 m
Total traversed trajectory: 416 m

Figure 2.11: Ground-truth and estimated trajectories using CON receiver for 5G NR signals
on a UAV. The CON receiver yielded a UAV position RMSE of 4.35 m. Map data: Google
Earth.

is mistakenly detected, the carrier phase error will not converge in the tracking loops. In

this case, the proposed method should neglect the detected source. To demonstrate this

experimentally, Fig. 2.12 plots the likelihood function. In this experiment, the acquisition

stage is forced to detect a false alarm, i.e., the acquisition stage is confirming the existence

of a source which does not exist. Fig. 2.13 demonstrates the carrier phase error for the valid

gNB and the false alarm gNB. As it can be seen in Fig. 2.13, the carrier phase error for the

valid gNB converges whereas the carrier phase error for the false alarm is not. It should also

be noted that Pfa can be selected based on the operating environments.

2.4.3 CON with LTE Signals: Comparing with a Conventional Re-
ceiver when the RSs are always-on

This experiment was conducted with real LTE signals on a UAV to (i) compare the

navigation performance with a receiver which exploits all the available RSs in a scenario

where the RSs are always-on, and (ii) to evaluate the performance of the CON receiver in
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Figure 2.12: Likelihood function for the UAV 5G experiment: In stage 1, a non-existent
source at a corresponding Doppler of �10 Hz was fictitiously induced to pass the threshold
(i.e., forced false alarm). In stage 2, this fictitious source is nulled and a valid source of 0
Hz is detected.
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Figure 2.13: Carrier phase error for a valid gNB (at 0 Hz) and a forced false alarm gNB (at
�10 Hz) shown in Fig 2.12.
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an environment with multiple LTE eNodeBs operating in the same carrier frequency. The

experimental setup and results are discussed next.

2.4.3.1 Experimental Setup

In this experiment, a DJI Matrice 600 UAV was equipped with the NI USRP-2955 and

four consumer grade 800/1900 MHz cellular antennas to sample LTE signals near Aliso

Viejo, California, USA. The channels of the USRP were tuned to 1955, 2145, 2125, and 739

MHz carrier frequencies, respectively, which are 4G LTE frequencies allocated to the U.S.

cellular providers AT&T, T-Mobile, and Verizon. The sampling rate for each channel was

set to 10 MSps and the sampled LTE signals were stored on a laptop for post-processing.

The UAV was equipped with the same Septentrio GNSS-aided INS described in Subsection

2.4.1 for ground-truth.

2.4.3.2 Acquisition Results

The recorded LTE signals were processed in two ways for comparison: (i) using the

proposed CON receiver and (ii) using the conventional LTE receiver developed in [182].

The conventional LTE receiver detected 11 eNodeBs over the 4 channels. The locations of

the eNodeBs were mapped prior to the experiment and are shown in Fig. 2.14.

Next, the signal acquisition stage was applied to detect the ambient LTE eNodeBs. The

detection threshold was set such that Pfai = 10�4, which yielded hi = 1.012, K was set to

40, and Tsub was set to 10 ms for all i. Doppler estimation was performed in a similar as the

previous experiment. The acquisition stages for the 1955 MHz carrier frequency are shown

in Fig. 2.15. In particular, Fig. 2.15 shows how the likelihood function changes as sources
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Figure 2.14: Layout of eNodeBs and UAV trajectory for the 4G LTE experiment.

are detected and nulled by the CON receiver. The conventional LTE receiver detected

two eNodeBs at the 1955 MHz carrier frequency, denoted by eNodeB 1 and eNodeB 2

in Fig. 2.14, with eNodeB 1 having a Doppler frequency of �18.5 Hz and eNodeB 2

having a Doppler frequency of �17.5 Hz. The CON receiver detected 3 eNodeBs at the

1955 MHz carrier frequency with Doppler frequencies �22 Hz, �18, and 18 Hz. The

eNodeBs detected by the CON receiver were manually associated with the ones detected

by the conventional receiver by matching the Doppler and delay profiles. Sophisticated

data association techniques could be employed to perform this step; however, it is out of

the scope of the current chapter. After performing data association, it was found that only

one of the Doppler frequencies detected by the CON receiver pertains to the ones detected

by the conventional LTE receiver. Specifically, the CON receiver detected eNodeB 1 at a

�18 Hz Doppler frequency, which is 0.5 Hz off from the one estimated by the conventional

receiver. This error is due to the 1 Hz step size used in the Doppler search. For K = 40, the
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condition from Theorem 1 for the CON receiver to be able to distinguish between eNodeB

1 and eNodeB 2 at the specified Pfai = 10�4 is that the difference between their Doppler

frequencies must be greater than 1.25 Hz. However, the Doppler frequency difference

between eNodeB 1 and 2 measured by the conventional receiver is 1 Hz which violates

the aforementioned condition. This direct consequence of Theorem 1 explains why the

CON receiver could not detect eNodeB 2. Similar acquisition results are obtained with the

remaining carrier frequencies. A total of 11 eNodeBs were acquired by the CON receiver.

After manual data association, it is found that only 6 of them pertain to the ones detected by

the conventional receiver (eNodeBs 1, 4, 5, 7, 8, and 10) and the rest pertain to unknown

eNodeBs that were not detected by the conventional receiver.
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Figure 2.15: Acquisition stages for the 1955 MHz carrier frequency showing the likelihood
function at each stage and the detected and nulled sources.
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2.4.3.3 Tracking Results

After acquiring the Doppler frequencies and the RSs, the tracking loops are initialized

and the signals are tracked. Fig. 2.16 shows the resulting carrier phases, expressed in meters,

obtained using the CON and conventional receivers for the eNodeBs acquired on the 1955

MHz carrier frequency. The carrier phase expressed in meters is a smoother estimate of the

true range than the RS delays. The subsequent analyses focus on carrier phase measurements

since they will be used to compute the navigation solution. The carrier phase RMSE values

are summarized in Table 2.3. Note that eNodeBs 2, 3, 6, 9, and 11 are not included in Table

2.3 since they were not detected by the CON receiver; however, as mentioned previously,

the CON receiver acquired and tracked 5 unknown eNodeBs that were not detected by the

conventional LTE receiver. One example is shown in Fig. 2.16. For fair comparison, only

the common eNodeBs will be used to compute a navigation solution.
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Figure 2.16: Tracking results showing the carrier phase, expressed in meters, obtained
from the CON and conventional receivers for the 1955 MHz carrier frequency. Solid lines
represent the carrier phases tracked by the conventional receiver while the dashed lines
represent the ones tracked by the CON receiver.
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Table 2.3: Carrier phase RMSE between the CON and conventional LTE receivers and
ground-truth.

eNodeB 1 4 5 7 8 10
CON RMSE

(m) 3.34 3.00 2.80 2.37 2.85 5.13

Conventional
RMSE (m) 3.39 2.52 2.70 2.92 2.84 3.40

2.4.3.4 Navigation Solution

The navigation framework discussed in Subsection 2.4.1 is employed to compute the

UAV’s 2–D position from the navigation observables produced by the CON and conventional

receivers. Two position estimates were calculated using six carrier phase measurements from

the eNodeBs in Table 2.3: (i) for the conventional receiver and (ii) for the CON receiver.

The position RMSE of the conventional and CON receivers were both calculated to be 2.07

m. The true and estimated UAV trajectories are shown in Fig. 2.17.

Position RMSE: 2.07 m (CON and conventional)
Total traversed trajectory: 609 m

Ground-truth

CON receiver

Trajectories

Conventional receiver

Figure 2.17: Ground-truth and estimated trajectories using CON and a conventional LTE
receivers. Both approaches yielded a UAV position RMSE of 2.07 m. Map data: Google
Earth.
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Chapter 3: Cognitive Detection of Unknown Beacons of Terrestrial

Signals of Opportunity for Localization

3.1 Introduction

Global navigation satellite system (GNSS) signals suffer from constraining limitations

in deep urban environments and are prone to jamming and spoofing. In spite of these

limitations, we live in a world rich with man-made signals of opportunity (SOPs), which

have been demonstrated as feasible complements or alternatives to GNSS in challenging

environments [80]. SOP navigation receivers typically rely on known synchronization

sequences or beacons transmitted by SOP sources to draw time-of-arrival (TOA), direction-

of-arrival (DOA), and frequency-of-arrival (FOA) measurements [47, 156, 184, 228].

Cognitive opportunistic navigation [149] has been recently introduced to addresses the

following challenges of navigation with SOPs:

Unknown reference signals in private networks: Opportunistic navigation frameworks

usually rely on the broadcast reference signals (RSs), which are used to derive DOA and

TOA [184]. For public networks, these signals are known at the user equipment (UE)

and are universal across network operators. Hence, they can be exploited for positioning
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without the need for the UE to be a network subscriber. However, in private networks, the

signal specifications of some SOP sources may not be available to the public, which makes

acquiring and tracking these signals impossible for conventional opportunistic navigation

receivers [149]. Private networks and broadband providers do not usually disclose the

transmitted signal structure to protect their intellectual property. For instance, very limited

information is available about Starlink satellite signals.

Dynamic nature and ultra-lean transmission of the fifth-generation (5G) new radio

(NR) and beyond networks: In cellular long-term evolution (LTE) networks, several RSs,

such as the cell-specific reference signal (CRS), are broadcast at regular and known time

intervals, regardless of the number of UEs in the environments. This always-on type of

transmitted RSs reduces the network’s energy efficiency and increases operational expenses

and interference. One of the main features of 5G NR, is ultra-lean transmission, which

minimizes the transmission of always-on signals. For instance, CRS which used to be an

always-on RS in LTE, is not necessarily being continuously transmitted in 5G signals. On

the other hand, the RSs in 5G networks and beyond can be dynamic and may continuously

change [158]. As such, designing cognitive receivers that can cognitively acquire partially

known, unknown, or dynamic beacon signals is an emerging need for the future of cognitive

navigation [104, 144, 145, 149] †.

This dissertation considers a cognitive opportunistic approach to detect the unknown

beacon of terrestrial SOPs to enable exploitation of these signals for positioning and

navigation purposes. Two scenarios are considered: (i) unknown beacon signals with integer

†In this dissertation, only the length of the beacon signals is assumed to be known at the receiver. It should
be pointed out that period estimation techniques, e.g., [33], can be used to estimate the length of the beacon
sequence in a preprocessing stage.
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constraints (IC) on the symbols of the beacon, and (ii) unknown beacon signals with no

integer constraints (NIC). An example of beacons with IC is pseudo-noise (PN) sequences

in cellular code division multiple access (CDMA), while an example of beacons with NIC

are the RSs in orthogonal frequency-division multiplexing (OFDM)-based systems. Since

the symbols of PN sequences in CDMA signals are drawn from a set with a finite alphabet

size, e.g., phase shift keying (PSK) set, they can be categorized as beacons with IC. On

the other hand, the RSs in OFDM-based systems, e.g., secondary synchronization signal

(SSS) in cellular LTE and 5G NR, are arbitrary complex numbers in the time domain and,

therefore, can be categorized as beacon signals with NIC.

The main contributions of this dissertation are as follows:

• A cognitive opportunistic navigation method is proposed, whereby unknown beacons

of terrestrial SOPs are detected, enabling exploitation of these signals for navigation

purposes. To this end, matched subspace detectors are implemented practically for

two different scenarios: (i) beacons with IC, e.g., the symbols of the beacon are

drawn from M-ary PSK (MPSK) modulation set, and (ii) beacon with NIC, i.e., the

beacon signal are not constrained to take integer values and can assume any arbitrary

complex-valued number.

• A near-optimal algorithm which has a lower computational complexity compared

to the traditional detectors with IC is proposed. The effect of the symbol errors

in the detected beacon signal on the carrier-to-noise ratio (CNR) is characterized

analytically. The proposed matched subspace detectors are shown to be capable

of detecting multiple unknown real 5G NR and 3G signals with a relatively low

computational complexity.
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• For the NIC scenario, closed-form expressions for the probability of detection and

false alarm are derived. The effective signal to noise ratio (SNR) is calculated and the

effect of Doppler estimation error on the performance of the detector is analyzed. It is

shown that the coherence processing interval (CPI) can be selected optimally in the

sense that it maximizes the probability of detection. The estimated CPI is shown to

provide better estimation of the beacon signal in a practical scenario. To the best of

the authors’ knowledge, the estimation of CPI has not been previously studied in the

literature.

• Experimental results are presented showing an application of the proposed cognitive

approach by enabling an unmanned aerial vehicle (UAV) to detect and exploit terres-

trial cellular signals for navigation purposes. In one experiment, the UAV achieved

submeter-level accurate navigation over a trajectory of 1.72 km, by exploiting signals

from four 3G cdma2000 transmitters. In another experiment, the UAV achieves a

position root mean-squared error (RMSE) of 4.63 m over a trajectory of 416 m, by

exploiting signals from two 5G transmitters. It should be pointed out that the number

of currently active 5G transmitters are relatively lower than that of the previous gener-

ations. The 5G NR navigation results will be improved dramatically with more active

5G transmitters.

• The OFDM frame of 5G signals are reconstructed in a blind fashion. On-demand and

always-on beacons are demonstrated in the OFDM signal structure of real 5G signals.

To the best of the authors’ knowledge, the blind reconstruction of the OFDM frame of

5G signals has not been done in any other work in the current literature.
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The rest of this dissertation is organized as follows. Section 4.2 surveys relevant related

work. Section 5.5 presents the received baseband signal model. Section 3.4 derives the

generalized likelihood ratio (GLR) detector for beacons of terrestrial SOPs, when the

elements of the beacons are drawn from MPSK modulation, while Section 3.5 analyzes the

performance of the derived detector. Section 3.6 derives the GLR detector for beacons of

terrestrial SOPs when the elements of the beacons are arbitrary complex numbers. Section

3.7 presents experimental results for cognitive detection of both beacons with IC and without

NIC as well as an application of the proposed approach in the context of UAV navigation.

3.2 Related Work

3.3 Received Baseband Signal Model

Let c(t) denote the beacon signal consisting of L consecutive symbols with symbol

duration Ts. The beacon signal is continuously transmitted at a period of LTs. After channel

propagation and baseband sampling, the received signal can be modeled as

y[n] = a exp( j2pD f n)
•

Â
i=�•

c[n� iL�nd]+w[n], (3.1)

where y[n] is the complex baseband sample at the nth time slot, D f , fDTs is the normalized

Doppler frequency, fD is the true Doppler frequency in Hz, w[n] models noise and interfer-

ence, nd is the unknown delay of the received beacon signal, and a is an unknown complex

amplitude. The periodic discrete-time beacon signal is defined as s[n] =Â•
i=�• c[n� iL�nd].

For convenience of notation, define the kth truncated vector of received samples of

length L as

yk , [y[kL],y[kL+1], . . . ,y[(k+1)L�1]]T.

59



The analysis herein applies for a CPI of K consecutive beacon periods, in which D f and

a are assumed to be constant. Therefore, without loss of generality, k is limited to the set

{0,1, . . . ,K�1}.

Considering a CPI of length KL samples, the observation vector can be constructed as

y , [y1,y2, . . . ,yK]T. Consequently, the system model can be written as

y = aHs+weq, (3.2)

where, s = [s[1], . . . ,s[L]]T, weq is the equivalent noise vector, and the KL⇥ L Doppler

matrix is defined as

H , [D,exp( j2pD f L)D, . . . ,exp( j2pD f (K�1)L)D)]T, (3.3)

where D , diag{1,exp( j2pD f ) , . . . ,exp( j2p(L�1)D f )} and diag{a,b, . . . ,c} is a diago-

nal matrix with a,b, . . . ,c on its diagonal elements.

Remark 1: In the signal model (6.38), the channel between the transmitter and the

receiver is modeled as h[n] = ad [n� nd], where a is the complex channel gain between

the transmitter and the receiver and nd is the corresponding code-delay. In other words, it

is assumed that the channel has a single tap. This model assumes a scenario that a strong

enough LOS component exists between the transmitter and the receiver. It will be shown in

Section 3.7 that the considered signal model is valid for the conducted experiments in this

dissertation. A frequency selective channel scenario (i.e., h[n] = ÂM
j=1 a jd [n�nd j ], where

M is the number of paths) can be considered in future work.
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3.4 Terresterial Signal Activity Detection with IC

In this section, GLR detector is derived to detect the beacon signals of terrestrial SOPs

when the elements of the beacon s are drawn from MPSK modulation. One example of this

type of beacons is the PN sequences in CDMA-based systems. Globalstar LEO satellites

employ a 4PSK CDMA system. The spreading sequence structure is comprised of an

inner PN sequence pair and an outer PN sequence which are drawn from 4PSK modulation

scheme. Another example of this type of beacons is transmitted by Orbcomm satellites.

The Orbcomm communication system utilizes the classic symmetric differential phase shift

keying (SDPSK) as the modulation scheme for the downlink signals. The following Remark

explains how (6.3) is descriptive of a CDMA-based system scenario.

Remark 2: In CDMA systems, several logical channels are multiplexed on the same

physical channel. For example, there is a total of 128 logical channels multiplexed onto

the cdma2000 physical forward channel: (i) one pilot channel, (ii) one sync channel, (iii)

up to seven paging channels, and (iv) traffic on the remaining channels. Each of these

logical channels is spread orthogonally by a 128-Walsh code, multiplexed with the rest

of the channels, and the resulting signal is multiplied by a complex PN sequence which

consists of a pair of maximal-length sequences. In such a system, and CDMA systems in

general, the signal on the pilot channel simplifies to the complex PN sequence, which is the

beacon of interest. Therefore, one can look at the CDMA signal as the sum of (i) the signal

on the pilot channel, or the beacon signal and (ii) the sum of the remaining channels. Due to

the properties of Walsh codes and assuming the symbols on the sync, paging, and traffic

channels are uncorrelated, one can model the aforementioned second term as noise. In fact,

for a large number of logical channels such as in cdma2000 and Globalstar, the central limit
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theorem practically applies and the resulting noise can be modeled as a zero-mean Gaussian

random sequence with a determined variance [206]. Consequently, the CDMA signal can

be modeled according to (6.38), where s[n] is the beacon on the pilot channel, and w[n]

captures channel noise and the effect of the rest of the logical channels.

The following binary hypothesis test is considered

⇢
H0 : y = weq
H1 : y = aHs+weq,

(3.4)

where weq is an independent and identically distributed (i.i.d.) Gaussian noise vector whose

elements are zero-mean with variance s2. Also, consider the set S consisting all ML vector

combinations whose elements are the integers between 0 to M�1. For MPSK, a beacon

sequence is s = exp
⇣

j2p
M q
⌘

where q 2S . The GLR detector for (3.4) is derived as (see

Appendix .4)

LIC =
maxq2S ,D f |exp

⇣
� j2p

M qH

⌘
HHy|2

K2kyk2

H1
?
H0

hIC, (3.5)

where the superscript H denotes Hermitian transpose, and hIC is selected such that the

probability of false alarm equals desired value.

3.4.1 Integer Least Squares Problem

To derive the constrained GLR detector in (3.5), the following integer least squares

problem should be solved

argmax
q2S ,D f

����z
H exp

✓
j2p
M

q
◆���� , (3.6)

where, z , 1
K HHy. A solution to the optimization problem (6.45) consists of a linear search

over Doppler candidates and an exponential exhaustive search over all possible values of q.

Denoting the number of Doppler search candidates by D, the order of the overall search is
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DML. The detection algorithm presented in [70] can be used to solve (6.45), optimally, with

a complexity of order O(DL logL). However, due to the large size of the beacon signals in

practice, the resulting computational complexity of existing methods is still significant. The

following Lemma establishes a reduced number of search candidates.

Lemma 1: The optimal solution of the optimization problem (6.45) can be obtained by

searching over DL candidates.

Proof: See Appendix .5.

In what follows, a low-complexity beacon signal detection (LCBSD) algorithm of

complexity O(DL) to solve (6.45) is presented. Next, using numerical analysis it is shown

that the proposed LCBSD algorithm performs almost similarly as the maximum likelihood

(ML) estimator.

3.4.2 LCBSD Algorithm

Under H1, the ML estimate of a for known beacon q is given by

âML =
1
L


exp
✓

j2p
M

q
◆�T

z. (3.7)

Let ql and zl denote the vectors containing the first l elements of q and of z, respectively,

and let q̂l denote the corresponding estimate. From (3.7), the estimate of a obtained from

q̂l is

âl =
1
l


exp
✓

j2p
M

q̂l

◆�T
zl. (3.8)

Note that ql and q̂l correspond to symbols 0 to l�1 and their estimates, respectively. To

estimate the lth symbol, âl is used to wipe-off the effect of a in the lth observation, then an
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SBS estimator is used according to

q̂l , argmax
ql2{0,1,...,M�1}

¬
⇢

alzHl exp
✓

j2p
M

ql

◆�
, (3.9)

where ¬{·} denotes the real part, zl is the lth observation, and ql is the lth element of q and

q̂l its corresponding estimate. Solving (3.9) yields

q̂l = round

(\zl�\âl)M

2p

�
mod M. (3.10)

Next, l is set to l +1 and the recursion continues. Let q̂ be the final estimate of the beacon.

For the case l = 0, an initial estimate of q0 is needed. It is important to note from Appendix

.5 that the ML estimate of q will have an ambiguity of M. This ambiguity results in a

constant phase rotation in the estimated beacon, which does not affect the absolute value

of the correlation function and the TOA estimation performance. To this end, q̂0 is chosen

arbitrarily from {0,1, . . . ,M�1}.

3.5 Performance Analysis

This section defines the performance metrics of interest in a cognitive opportunistic

navigation scenario and presents theoretical and numerical analyses of these metrics.

3.5.1 Carrier-to-Noise Ratio and TOA Measurements Error Variance

The navigation performance in TOA-based navigation depends on two main factors:

(i) the DOP and (ii) the TOA estimation error variance. The DOP is strictly a function of

the geometry between the transmitters and receiver. However, the TOA estimation error

variance is a function of the CNR. From (6.38), it can be seen that the carrier power is
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given by C = |a|2. SOP receivers correlate the received signal with known, local replicas

of the beacons to draw TOA measurements. The correlation function peaks at the TOA.

Consequently, the TOA estimation performance is determined by the peak-to-noise ratio,

which, in the case of fully known beacon, is the CNR. In cognitive opportunistic navigation,

this peak-to-noise ratio, or apparent CNR, is less than the actual CNR since the magnitude

of the correlation function peak is reduced due to errors in the detected beacon symbols. It

was mentioned in the previous section that the LCBSD algorithm yields an ambiguity of M

in the SOP receiver’s local beacon symbols. This ambiguity translates to an initial phase

rotation in the correlation function; therefore, it does not affect its amplitude. As a result,

the magnitude of the correlation peak will be preserved, which in turn preserves the CNR.

3.5.2 Probability of Error Definition

As mentioned above, the ambiguity in the detected beacons does not affect the TOA

estimation performance. Hence, unlike the classic definition of the probability of error in

symbol demodulation, the number of errors in the detected symbols of the beacon is not a

suitable definition for the probability of error. Consequently, the probability of error Pe is

defined as

Pe , min
m2{0,1,...,M�1}

1
L

L�1

Â
l=0

Pr [((q̂l�m) mod M) 6= ql] . (3.11)

Let m? denote the minimizer. The above expression cannot be computed straightforwardly

since Pr [((q̂l�m?) mod M) 6= ql] varies with l. To see this, the symbol error probability

curves were computed numerically from 106 Monte Carlo noise weq realizations for L = 211,

M = 4, and SNR of 4 and 10 dBs, and are shown Fig. 3.1.
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Figure 3.1: Error probability Pr [((q̂l�m?) mod M) 6= ql] for (i) SBS detector (ii) the ML
estimator, (iii) the proposed LCBSD algorithm, and (iv) the LCBSD-aided SBS detector
versus l, for L = 210, M = 4: for (a) SNR = 4 dB, and (b) SNR = 10 dB.

Fig. 3.1 shows that the LCBSD performance converges to that of the ML as l increases.

Comparing 3.1(a) and 3.1(b) shows that the rate of convergence is faster for larger values of

SNR. It can be also seen that the ML and the proposed LCBSD algorithm outperform the

SBS estimation dramatically. While SBS is adopted in [49,130] for beacon symbol recovery,

it yields a poor probability of error. LCBSD-aided SBS performs SBS estimation for all the

beacon symbols after convergence of âl . This step eliminates the transient of the LCBSD

symbol error probability. It should be pointed out that in Fig. 3.1, the LCBSD-aided SBS,

the ML method, and the method with known a are achieving almost equal probability of

error in the considered SNR values. Moreover, Fig. 3.1 shows that both the ML in [70] and

the LCBSD error probabilities converge to the case that a is known. To this end, in the

CNR analysis in Section 3.5.3, the probability of error is assumed constant over l and is

equal to that of SBS estimation when a is known.
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3.5.3 Apparent Carrier-to-Noise Ratio

The apparent CNR is calculated from the correlation function of s with its estimate ŝ.

Let sl and ŝl denote the l-th symbol and its estimate, respectively. Note that ŝl is a random

variable whose support is the MPSK constellation, and the probability of each symbol

is computed from the observation probability density function (pdf). Subsequently, the

apparent carrier power C̄ can be derived according to

C̄ = |a|2
�����E
"

1
L

L�1

Â
l=0

s⇤l ŝl

#�����

2

= |a|2
�����
1
L

L�1

Â
l=0

s⇤l E [ŝl]

�����

2

. (3.12)

Due to the symmetry of MPSK systems, it can be readily shown that E [ŝl] = b sl , where it

can be further shown that b = 1�2Q(
p

2SNR) for BPSK systems and b = 1�2Q(
p

SNR)

for QPSK systems. Subsequently, the apparent carrier-to-noise ratio is computed according

to

C̄/N0 = |a|2b 2/N0 = b 2C/N0, (3.13)

and it simplifies to C̄/N0 = [1�2Q(
p

2SNR)]2C/N0 for BPSK and C̄/N0 = [1�2Q(
p

SNR)]2C/N0

for QPSK.

3.5.4 Numerical Analysis

A numerical analysis is conducted to assess the effect of the proposed LCBSD algorithm

in comparison to the ML algorithm on the apparent CNR. To this end, 106 Monte Carlo

noise weq realizations were generated for a beacon signal of length L = 211 with M = {2,4}.

The apparent CNR of the simplified GLR (SGLR) method in [197] is also compared with

that of the proposed algorithm and the ML algorithm. The ratio b 2 is calculated and plotted

as a function of the SNR, which is given by SNR = 1
s2 . Fig. 3.2 shows that the proposed
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LCBSD algorithm is near optimal and obtains equal apparent CNR with the SGLR algorithm

in [197] for BPSK and QPSK modulation schemes.

Remark 3: The method in [70] requires L divisions and the sorting operation, which can

be accomplished by L logL complex operations. A total number of L logL+4L�3 complex

operations per Doppler bin is required for [70]. The total number of complex operations for

the proposed method is 4L�3 per Doppler bin. It should be pointed out that the proposed

method is as complex as the SBS algorithm after the convergence of âl . In many practical

scenarios, the coherence time of the channel might be of the order of tens to thousands of

symbols [206]. During the channel coherence time, the algorithm does not need to keep

updating âl after it converges. According to Fig. 3.1, the convergence rate of âl depends on

the operating SNR and is relatively high.
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Figure 3.2: Monte Carlo results for b 2 of (1) the ML estimator, (2) the proposed LCBSD
algorithm, (3) the SGLR algorithm, and (4) the theoretical value (3.13) versus the SNR for
L = 211 and M = {2,4}.
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3.6 Terrestrial Signal Activity Detection with NIC

In this subsection, a GLR detector is proposed to detect the beacon signals when the

elements of the beacon s are arbitrary complex numbers. In OFDM-based systems such

as LTE and 5G NR, the beacon sequences such as primary synchronization signal (PSS)

and secondary synchronization signal (SSS) still have integer constraints. However, at the

transmitter, the symbols are input to the inverse discrete Fourier transform (IDFT). Therefore,

in the time domain, the equivalent beacon’s elements are arbitrary complex numbers. The

following Remark explains how (6.3) can be descriptive of an OFDM-based system.

Remark 4: NR adopts an OFDM scheme, as was the case in 4G LTE. In OFDM-based

transmission, the symbols are mapped onto multiple carrier frequencies, referred to as

subcarriers, with a particular spacing known as subcarrier spacing. Once the subcarrier

spacing is configured, using a higher level signaling, the frame structure is identified. In

LTE and 5G, a frame has a duration of 10 ms and consists of 10 subframes with durations of

1 ms [198]. To provide frame timing to the user, an OFDM-based system such as 5G NR,

broadcasts synchronization signals (SS) on pre-specified symbol numbers. An SS includes a

PSS and SSS, which provide symbol and frame timing, respectively. The SS and the data

symbols are input to the IDFT. In [153], it is shown that the complex envelope of the OFDM

signals can be considered to be asymptotically white and Gaussian. Therefore, in (6.3), s

contains the complex elements of the IDFT of the SS and weq captures the effect of receiver

noise and data symbols which can be considered to be white Gaussian with variance s2.

Since there is no integer constraint on s, the effect of a and matrix D can be lumped into

s. It should be pointed out that |a|2D D = |a|2I. Therefore, the correlation properties of
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as and aDs are identical. Hence, the system model (6.3) can be rewritten as

y = Hs+weq, (3.14)

where weq is the equivalent noise vector, and the KL⇥L Doppler matrix is defined as

H , [IL,exp( j2pD f L)IL, . . . ,exp( j2pD f (K�1)L)IL)]
T, (3.15)

where IL is an L⇥L identity matrix. The following binary hypothesis test is considered
⇢

H0 : y = weq
H1 : y = Hs+weq.

(3.16)

The GLR detector for the testing hypothesis (3.4) is known as matched subspace detector,

and is derived as [180]

LNIC = max
D f

yHPHy
yHP?Hy

, (3.17)

where PH , H(HHH)�1HH denotes the projection matrix to the column space of H, P?H ,

IL�PH denotes the projection matrix onto the space orthogonal to the column space of H.

Since HHH = KIL,
yHPHy
yHP?Hy

=
1

kyk2
1

K2 kHHyk2 �1
, (3.18)

which is a monotonically increasing function of kH
Hyk2

kyk2 . Hence, the GLR detector (5.10) is

equivalent to

max
D f

kHHyk2

kyk2

H1
?
H0

hNIC, (3.19)

where hNIC is determined according to the desired probability of false alarm.

3.6.1 Derivation of Probability of Detection and False Alarm

In this subsection, closed-form expressions for the asymptotic probability of detection

and false alarm are derived in the presence of Doppler estimation error and for a large CPI
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K. To this end, the pdfs of the numerator and the denominator of the likelihood function

(5.10) are derived. Next, it is shown that the numerator and the denominator are statistically

independent. Finally, for large values of K, the pdf of the ratio of the numerator and

denominator is derived. The likelihood function (5.10) can be rewritten as

N(y)
D(y)

=
K(L�1)

L

1
s2 yHP̂Hy
1

s2 yHP̂?Hy
, (3.20)

where P̂H and P̂?H are the estimated projection matrices when the estimate of Doppler is

replaced in PH and P?H, respectively. The numerator of the likelihood can be written as

N(y) = K(L�1)
s2 ŝHC�1ŝ, where C , 1

s2 ĤHĤ and

ŝ = (ĤHĤ)�1ĤHy =
1
K

ĤHs+ 1
K

ĤHweq. (3.21)

The following lemma gives the distribution of N(y).

Lemma 2: Assuming that the r⇥ 1 vector v is a complex Gaussian random vector

distributed as v⇠C N (µµµ,C), where µµµ is the r⇥1 mean vector and C is the r⇥r covariance

matrix, the scalar vHC�1v is distributed as

vHC�1v⇠
⇢

c2
2r, µµµ = 0

c 022r(l ), µµµ 6= 0,
(3.22)

where c2
2r denotes a chi-squared random variable with 2r degrees of freedom, c 022r(l )

denotes a noncentral chi-squared random variable with 2r degrees of freedom and non-

centrality parameter l , and l = µµµHC�1µµµ [90].

According to Lemma 2, for the numerator of the likelihood function, one obtains

1
s2 yHP̂Hy⇠

⇢
c2

2L H0

c 022L(l ) H1,
(3.23)

where l =
sH(ĤHH)s

s2 . According to the definition of the Doppler matrix, one has

ĤHH = rI, (3.24)
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where

r =

����
sin(KpD feL)
sin(pD feL)

���� , (3.25)

and D fe = D f �cD f is the Doppler estimation error. Hence, the non-centrality parameter of

the numerator under H0 can be written as l = rksk2

s2 . It should be pointed out that 0 r K.

The maximum value of r is obtained when D fe! 0. It will be shown that the probability

of detection is characterized by l . In other words, l is the equivalent SNR for the GLR

detector (5.10). Thus, when the Doppler estimation error D fe tends to zero, the equivalent

SNR, i.e., l , is maximized. It should be noted; however, that r , and in turn l , may decay as

the CPI increases in the case where D fe is not small enough. One can show that a sufficient

condition for r to approach K as the latter increases is that

D fe⌧
1

2KL
. (3.26)

For the denominator of the likelihood function, one has

1
s2 yHP̂?Hy =

✓
Hs
s

+
w
s

◆H

P̂?H
✓

Hs
s

+
w
s

◆
(3.27)

The following Lemma is used to derive the pdf of (21).

Lemma 3: If the r⇥ 1 vector v is distributed as v ⇠ C N (µµµ,I), and A is an r⇥ r

Hermitian matrxi, vHAv has non-central complex chi-squared distribution with rank(A)

degrees of freedom and non-centrality parameter µµµHAµµµ , if and only if A is an idempotent

matrix [90].

According to Lemma 3, and since P?H is an idempotent matrix of rank K(L�1), one has

1
s2 yHP?Hy⇠

(
c2

2K(L�1), H0

c 022K(L�1)(l 0), H1,
(3.28)
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where l 0 = 1
s2

�
K� r

K
�
ksk2, and r is defined in (4.18).

The pdf of numerator and denominator can be obtained using (3.23) and (3.28). Now,

the independence of the numerator and the denominator of the likelihood function (5.10) is

assessed using the following lemma.

Lemma 4: Let the vector v be an r⇥ 1 complex Gaussian vector with mean µµµ and

covariance matrix C, and let A and B be r⇥ r Hermitian matrices. If ACB = 0 then vHAv

and vHBv are statistically independent [90].

Since P̂?H and P̂H are orthogonal matrices, according to Lemma 4, yHP̂Hy and yHP̂?Hy

are statistically independent.

If (3.26) is satisfied, then

lim
K!•

sin(K2pD feL)
sin(2pD feL)

= K,

hence, according to (4.18), lim
K!•

l 0 = 0. A non-central chi-squared random variable with a

non-centrality parameter of zero equals a central chi-square with the same parameters, under

H1. Therefore, for a large number of K, one has 1
s2 yHP?Hy ⇠ c 022K(L�1)(0) ⌘ c2

2K(L�1),

Finally, using the following lemma, the pdf of the likelihood function can be obtained under

both hypotheses.

Lemma 5: If x1 ⇠ c 02r1
(l 0) and x2 ⇠ c2

r2
are independent, then x1/r1

x2/r2
⇠ F 0r1,r2

(l ), where

F 0r1,r2
(l ) denotes a non-central F-distribution with pdf

f (x) = exp
✓
�l

2

◆ •

Â
k=1

(l/2)k

k!
(r1/r2)

1
2 r1+k

B
⇣

r1+2k
2 , r2

2

⌘

x
r1
2 +k�1

✓
1+

r1

r2
x
◆� 1

2 (r1+r2)�k
, (3.29)

73



with r1 and r2 degrees of freedom, where l is the noncentrality parameter, and B
⇣

r1+2k
2 , r2

2

⌘

is the beta function defined as B(x,y), R 1
0 tx�1(1� t)y�1dt [90].

According to Lemma 4 and Lemma 5, under H1, if D fe⌧ 1
2KL , it follows that K(L�1)

L

1
s2 yHP̂Hy
1

s2 yHP̂?Hy ⇠

F 02KL,2K(L�1)(l ), and under H0, K(L�1)
L

1
s2 yHP̂Hy
1

s2 yHP̂?Hy ⇠ F2KL,2K(L�1). Hence, the probability of

detection and false alarm are

PD = QF 02KL,2K(L�1)(l )
(hNIC) , (3.30)

and

PFa = QF2KL,2K(L�1) (hNIC) , (3.31)

receptively, where QF 02KL,2K(L�1)(l )
(x) is the right tail probability of noncentral F-distribution

defined as QF 02KL,2K(L�1)(l )
(x), R •

x f (x)dx, and f (x) is defined in (3.29).

Remark 5: It can be observed from (3.30) that the probability of detection is characterized

by l . On one hand, if (3.26) is satisfied, then l will tend to • as K increases, in which

case PD tends to one. On the other hand, l may approach zero as K increases if (3.26) is

not satisfied, in which case PD tends to zero. It should be pointed out that the prabability of

false alarm is not a function of unknown parameters. Therefore, if (3.26) is satisfied then

the detector is a constant false alarm rate (CFAR) detector.

3.6.2 Numerical Versus Theoretical Probability of Detection

Numerical simulations were conducted in order to compare the derived probability

of detection with simulations. To this end, 5G signals were simulated and the CPI

length was varied from K = 10 to K = 50 for a set of Doppler estimation errors of
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D fe 2
�

0,1.6⇥10�5,2⇥10�5,2.4⇥10�5Hz
 

. It should be pointed out that these val-

ues are close to the typical Doppler estimation error values which are observed in the

experiments. The SNR was considered to be 20 dB. A total of 106 Monte Carlo noise weq

realizations were used to numerically calculate PD. The results are shown in Fig. 3.3. It

can be seen from the figure that as the Doppler estimation error increases, the probability

of detection decreases. It can be also seen that if the condition in (3.26) is violated, the

probability of detection decays with the CPI. This is a direct consequence of Remark

5 which shows that the obtained theoretical analysis is corroborated with the numerical

simulations.
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Figure 3.3: Monte Carlo simulation results comparing theoretical (3.30) and simulated
probability of detection. It can be seen that increasing the CPI improves the probability of
detection if the Doppler estimation error satisfies (21).

Remark 6: The detection performance curves in Fig. 3.3 demonstrate an optimal regime

of CPIs for a given Doppler estimation error. Assuming that the Doppler is estimated
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perfectly, increasing the CPI results in a higher probability of detection, which leads to a

more reliable estimation of the beacon. Due to the Doppler estimation error in practice,

an optimal regime of CPIs exists in which the probability of detection is maximized. If

one thinks of the subspace spanned by the columns of H as the “signal subspace" and the

orthogonal subspace as the “noise subspace," then the test statistic (5.10) is an estimated

SNR for the proposed method. The ML estimation of the CPI can be obtained by maximizing

(5.10) over different values of the CPI. It will be shown in Section 3.7 that the ML estimation

of the CPI can be obtained using the likelihood (5.10). It will be also shown that the

estimated beacon using the ML estimate of the CPI is cleaner than the estimated beacon

using an arbitrarily chosen CPI.

After obtaining coarse estimates of the Doppler frequencies and estimates of the beacons,

the receiver refines and maintains these estimates. Specifically, conventional phase-locked

loops (PLLs) are employed to track the carrier phases of the detected RSs and carrier-aided

delay-locked loops (DLLs) are used to track the RSs’ code phases [107].

3.7 Experimental Results

This section presents experimental results demonstrating the proposed cognitive ap-

proach to detect unknown beacons of terrestrial SOPs with IC and NIC to enable cognitive

opportunistic navigation of a UAV with real cdma2000 and 5G NR signals. In the detection

algorithms, the thresholds are selected according to (4.20) for PFA = .001.
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3.7.1 Experiment 1: Cognitive Detection and Navigation with Un-
known Beacons with IC–cdma2000 signals

The first experiment aims to show the performance of the proposed cognitive framework

with unknown beacons with IC, corresponding to terrestrial cellular 3G cdma2000 signals.

3.7.1.1 Experimental Setup

A UAV was equipped with an Ettus E312 universal software radio peripheral (USRP)

to sample cdma2000 signals, a consumer-grade 800/1900 MHz cellular antenna, and a

small consumer-grade GPS antenna to discipline the on-board oscillator. The receiver was

tuned to a 882.75 MHz carrier frequency, which is a cdma2000 channel allocated for the

U.S. cellular provider Verizon Wireless. All the 3G base transceiver stations (BTSs) in

this experiment transmit at 882.75 MHz. Samples of the received signals were stored for

off-line post-processing. The ground-truth reference for the UAV trajectory was taken from

its on-board navigation system, which uses a GNSS receiver, an inertial measurement unit

(IMU), and other sensors. The UAV’s total traversed trajectory was 1.72 km, which was

completed in 3 minutes. Over the course of the experiment, the receiver on-board the UAV

was listening to four BTSs, whose positions were mapped prior to the experiment [132].

The experimental setup and environment is shown in Fig. 3.4.

3.7.1.2 Detection Results

The cdma2000 PN sequence was estimated from the forward link signal, using the

LCBSD algorithm. Fig. 3.5 shows the likelihood function (3.5) in terms of Doppler

frequency. As it can be seen, four BTSs are detected in this experiment. Fig. 3.6(a) shows a
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Figure 3.4: Environment layout and UAV trajectory for the cdma2000 experiment.

scatter plot of z in (6.45) which resembles the scatter plot of a rotated noisy 4PSK modulated

signal. Fig. 3.6(b) shows the correlation function between the estimated and true cdma2000

forward channel PN sequence using the LCBSD algorithm, whose clean peak indicates that

the estimated sequence can be reliably used to despread the cdma2000 signal. The value of

b was found to be 0.486, which from Fig. 3.2, indicates that the receiver was operating in

less than unity SNR regime.
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Figure 3.5: The likelihood (3.5) in terms of Doppler frequency (solid blue) and the threshold
(dotted red). Four BTSs are detected in this experiment.
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Figure 3.6: (a) Scatter plot of z from real cdma2000 forward channel signals. (b) Correlation
function between the detected and true cdma2000 PN sequence.

3.7.1.3 Navigation Results

The detected PN sequence was used to acquire and track the received cdma2000 signals

and produce TOA-like measurements using the receiver implementation discussed in [107].

It is worth noting that a carrier-aided delay-locked loop (DLL) was used to estimate the

TOA, which yields smoother and more precise estimates than a standalone DLL. Next, the

estimation of the position of the UAV-mounted receiver, denoted rrrr, from TOA measurements

from the four BTSs is discussed. The UAV’s altitude was assume to be known, e.g., using an

altimeter, and only its two-dimensional (2–D) position was estimated. The TOA, expressed

in meters, from the n-th BTS, where n 2 {1,2,3,4}, can be modeled as

zn(k)=krrrr(k)�rrrsnk+c · [d tr(k)�d tsn(k)]+vn(k), (3.32)

where rrrsn is the 2–D position of the n-th BTS, c is the speed of light, d tr and d tsn are

the receiver and n-th BTS’s clock biases, respectively, and vn is the measurement noise,

which is modeled as a zero-mean white Gaussian sequence with variance s2
n . The terms
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c · [d tr(k)�d tsn(k)] are combined into one term as they do not need to be estimated sepa-

rately, yielding cd tn(k), c · [d tr(k)�d tsn(k)] , [78, 133]. The cellular BTSs possess tighter

carrier frequency synchronization than time (code phase) synchronization (the code phase

synchronization requirement as per the cellular protocol is reported to be within 10 µs

in [2], and was experimentally observed to be within 3 µs in [96]). Therefore, the resulting

clock biases in the TOA estimates will be very similar, up to an initial bias, as shown in Fig.

3.7. Consequently, one may leverage this relative frequency stability to eliminate parameters

that need to be estimated.

0 2 4 6 8 10 12 14 16 18 20 22 24
-150

-100

-50
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50

Figure 3.7: Experimental data showing cd tn(k)� cd tn(0) obtained from carrier phase
measurements over 24 hours for three neighboring BTSs. It can be seen that the clock biases
cd tn(k) in the carrier phase measurement are very similar, up to an initial bias cd tn(0) which
has been removed.

Motivated by Fig. 3.7, the following re-parametrization is proposed

cd̄ tn(k), cd tn(k)� cd tn(0)⌘ cd t(k)+ en(k), 8n (3.33)

where cd t is a time-varying common bias term independent of the nth BTS, and en is the

deviation of cd̄ tn from this common bias and is treated as measurement noise. Using (4.26),

the TOA measurement (5.20) can be re-parameterized as zn(k) = krrrr(k)� rrrsnk+ cd t(k)+
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cd t0n +hn(k), where cd t0n , cd tn(0) and hn(k), en(k)+vn(k) is the overall measurement

noise. Note that cd t0n can be obtained by knowing the initial receiver’s position and from the

initial measurement zn(0), according to cd t0n ⇡ zn(0)�krrrr(0)� rrrsnk. This approximation

ignores the contribution of the initial measurement noise.

The TOA measurements were fed to an extended Kalman filter (EKF) to estimate the

state vector xxx ,
h
rrrTr , ṙrrTr ,cd t,cḋ t

iT
, where ṙrrr is the UAV’s 2–D velocity vector and ḋ t is

the clock drift. A white noise acceleration model was used for the UAV’s dynamics, and a

standard double integrator driven by process noise was used to model the clock bias and

drift dynamics [72]. As such, the discrete-time dynamics model of xxx is given by

xxx(k+1) = Fxxx(k)+www(k), (3.34)

where F = diag
⇥
Fpv,Fclk

⇤
with Fpv =


I2 T I2

02⇥2 I2

�
, Fclk =


1 T
0 1

�
, and T is the time

interval between two measurements; www(k) is the process noise, which is modeled as a

zero-mean white random sequence with covariance matrix Q = diag
⇥
Qpv,Qclk

⇤
where

Qpv =

2

6664
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Sw̃ḋ t

T 2

2 Sw̃ḋ t
T

#
, (3.35)

where the x,y acceleration process noise spectra of the white noise acceleration model were

set to q̃x = q̃y = 5 m2/s3, the time interval between two measurements was T = 0.0267 s,

and the receiver’s clock process noise spectra were chosen to be Sw̃d t = 1.3⇥10�22 and

Sw̃ḋ t
= 7.9⇥10�25 which are that of a typical temperature-compensated crystal oscillator

(TCXO) [72]. Note that rrrr is expressed in an ENU frame centered at the UAV’s true initial

position. The EKF state estimate was initialized at x̂xx(0) = 0006⇥1 with an initial covariance
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of P(0) = diag[3·I2⇥2,I2⇥2,10�2,10�4]. The measurement noise covariance was set to

R = I2⇥2.

The UAV’s position was estimated using the aforementioned EKF and the total position

RMSE was found to be 77.1 cm over the entire trajectory. The true and estimated trajectories

are shown in Fig. 3.8.

UAV's navigation system

Cognitive opportunistic navigation

Position RMSE: 77.1 cm

Total traversed trajectory: 1.72 km

Figure 3.8: True UAV trajectory and the estimated trajectory using the proposed cognitive
opportunistic navigation framework.

3.7.2 Experiment 2: Cognitive Detection and Navigation with Un-
known Beacons with NIC–5G Signals

In the second experiment, the GLR detector with no integer constraint (3.19) is used

to detect 5G NR downlink signals. The location of the gNBs was mapped prior to the

experiment.
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3.7.2.1 Experimental Setup

In this experiment, the navigator was an Autel Robotics X-Star Premium UAV equipped

with a single-channel Ettus 312 USRP connected to a consumer-grade 800/1900 MHz cellu-

lar antenna and a small consumer-grade GPS antenna to discipline the on-board oscillator.

The cellular receivers were tuned to the cellular carrier frequency 632.55 MHz, which is a

5G NR frequency allocated to the U.S. cellular provider T-Mobile. All the 5G gNBs in this

experiment use 632.55 MHz carrier frequency. Samples of the received signals were stored

for off-line post-processing. The UAV traversed a trajectory of 416 m. Fig. 3.9 shows the

environment layout and the vehicle trajectory. The acquisition results are presented next.

gNB 2

gNB 1

Santa Ana, California, USA

80
m

Figure 3.9: Environment layout and UAV trajectory for the 5G NR UAV experiment.
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3.7.2.2 Detection of 5G gNBs and the Corresponding RSs

Fig. 3.10 demonstrates the likelihood function (3.19) in terms of Doppler frequency. It

can be seen that three different sources are detected at Doppler frequencies of 4 Hz, 12 Hz,

and 15 Hz using the GLR test. In 5G NR, the always-on synchronization signal includes

PSS and SSS, which provide symbol and frame timing, respectively. The PSS and SSS are

transmitted along with the physical broadcast channel (PBCH) signal and its associated

demodulation reference signal (DM-RS) on a block called SS/PBCH block. The SS/PBCH

block consists of four consecutive OFDM symbols and 240 consecutive subcarriers [185].

Fig. 5.9, demonstrates the reconstructed OFDM frame of the estimated RS at 4 Hz. The

always-on synchronization signals, i.e., SS/PBCH block, can be seen in the estimated OFDM

frame (the block of symbols and subcarriers with the highest power in the red box). It can

be seen that other than the always-on beacons, on-demand beacons are also estimated which

are spread periodically in different OFDM symbols and subcarries.

In 5G NR, the PSS is transmitted in one form of three possible sequences, each of

which maps to an integer representing the sector ID of the gNB [185]. In order to assess

the performance of the detector, the estimated RS of the source at 4 Hz is correlated with

the three possible 5G NR PSSs, as shown in Fig. 3.12. A strong correlation between the

estimated RS and the third PSS is observed, while the correlations with the first two are

negligible. This implies that the gNB at 4 Hz was actually transmitting the third PSS in the

sector within which the UAV was flying.

False alarm: A detected source can be either a valid transmitter or a false alarm. A

false alarm may occur due to multipath or an unwanted interfering source. The estimated
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Figure 3.10: The likelihood (3.19) in terms of Doppler frequency (solid blue) and the
threshold (dotted red). Three gNBs are detected in this experiment.

Always-on (PBCH Block) On-demand

Figure 3.11: The OFDM frame structure of the estimated RS. The always-on synchronization
signals, i.e., SS/PBCH block, can be seen in the estimated OFDM frame (the block of
symbols and subcarriers with the highest power located in the red box).

RSs are fed to tracking loops to get carrier phase and code phase observables. If a source is

mistakenly detected, the tracking loops will fail to track the signal. Fig. 3.13 demonstrates

the carrier phase error for the three detected sources at 4 Hz, 12 Hz, and 15 Hz. It can be
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Figure 3.12: Correlation of the detected RS with three different PSSs of 5G NR.

seen that the carrier phase error of the two sources at 4 Hz and 12 Hz are converging, while

the carrier phase error of the source at 15 Hz is not converging. Hence, the method identifies

this source as a false alarm.
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Figure 3.13: Carrier phase error for the three detected RS at 4 Hz, 12 Hz, and 15 Hz. The
carrier phase error of the detected source at 15 Hz is not converging.

ML estimation of the CPI: Fig. 3.14 demonstrates the likelihood function for different

values of CPI. As discussed in Remark 6, the ML estimation of the CPI can be obtained by

maximizing the likelihood function (5.10). A CPI of K = 60 maximizes the likelihood for

the first gNB and a CPI of K = 36 maximizes the likelihood corresponding to the second
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gNB. It should be pointed out that the optimal choice of the CPI depends on the channel

statistics and the dynamics of the UAV. In a scenario where the Doppler is changing rapidly,

the ML estimate of the CPI becomes smaller. On the other hand, in a static scenario, the

receiver will have more time to coherently accumulate the received samples and obtain a

better estimate of the RS. Fig. 3.15 demonstrates the estimated PRNs for the first gNB for

two different values of CPI: (i) an arbitrary CPI of K = 20, and (ii) the ML estimate of a

CPI of K = 60. It can be seen that the estimated RS for K = 60 is cleaner than that of the

arbitrarily chosen CPI.
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Figure 3.14: The likelihood (3.19) in terms of different values of CPI.

3.7.2.3 Navigation Results

The estimated beacon is used to produce TOA measurements using the receiver imple-

mentation discussed in [149]. Note that since the UAV’s altitude is known using an altimeter,

only its two-dimensional position is estimated. Similar measurement models as in Section
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Figure 3.15: The estimated RS at 4Hz for K = 20 and K = 60. The estimated RS for the
optimal CPI (K = 60) is less noisy than the estimated RS for the arbitrarily chosen CPI
(K = 20).

6.13.3 are considered. The TOA measurements were fed to an extended Kalman filter (EKF)

to estimate the state vector xxx ,
h
rrrTr , ṙrrTr ,cd t,cḋ t

iT
, where ṙrrr is the UAV’s 2–D velocity

vector and ḋ t is the clock drift as discussed in Section 6.13.3. The x,y acceleration process

noise spectra in the nearly constant velocity model were set to q̃x = q̃y = 5 m2/s3, the time in-

terval between two measurements was T = 1 s, and the receiver’s clock process noise spectra

were chosen to be Sw̃d t = 1.3⇥10�22 and Sw̃ḋ t
= 7.9⇥10�25. The EKF state estimate was

initialized at x̂xx(0) = 0006⇥1 with an initial covariance of P(0) = diag[3·I2⇥2,I2⇥2,10�2,10�4].

The measurement noise covariance was set to R = I2⇥2. The position RMSE of the UAV

was calculated to be 4.63 m with the aforementioned parameters. The true and estimated

UAV trajectories with the proposed method versus the receiver in [5] which uses the known

beacon are shown in Fig. 3.16. It can be seen that the proposed cognitive opportunistic

framework achieves lower position RMSE compared to the method presented in [5]. This is

due to the fact that the method in [5] only relies on always-on signals, whereas the cognitive

opportunistic navigation framework exploits all the available bandwidth of the received

signal, which in turn results in a more accurate TOA estimation and, consequently, less

positioning RMSE [149].
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Ground-truth
Trajectories
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Cognitive opportunistic navigation: 4.63 m
Known beacon: 4.64 m

Figure 3.16: UAV’s ground-truth and estimated trajectories using the proposed cognitive
opportunistic navigation framework versus the method in [5], which uses the known always-
on beacons for 5G NR signals. Map data: Google Earth.

3.7.3 Signal Model Validation

In the signal model (6.38), a single tap channel which corresponds to the LOS path with

arbitrary channel gain a is considered. More precisely, the channel impulse response is

modeled as h[n] = ad [n�nd], where a is the complex channel gain between the transmitter

and the receiver, and nd is the code-delay corresponding to the transmitter and the receiver.

This channel model considers a flat fading scenario, where the effect of multiple “close"

paths is considered in a single path gain a . Based on the underlying distribution of a , the

considered h[n] can model a Rayleigh or Rician flat fading channel [206]. To justify the

single tap flat fading channel model for the UAV scenario, the channel impulse response

between the UAV and one of the gNBs is assessed. The physical environment between

the gNB and the UAV is demonstrated in Fig. 3.17. In this figure, the term clear LOS

refers to a scenario where the signal is not blocked by an obstacle, e.g., a building. It

can be seen that there is a clear LOS between the gNB and the UAV. The magnitude of

the channel impulse response is plotted in Fig. 3.18(a). The magnitudes of the channel

89



impulse responses are estimated by reconstructing the frame as described in [9]. Fig. 3.18(b)

demonstrates the true and estimated code delay between the gNB and the UAV. It can be

observed from Fig. 3.18 that the channel impulse response |h(t)| does not exhibit multiple

taps (i.e., h[n] = ÂM
i=1 aid [n�ndi ], where M is the number of paths). Hence, considering

a single tap flat fading model is valid for the conducted experiments. Frequency selective

channels can be considered in future work.

gNB 2

gNB 1

Santa Ana, California, USA

80
m

Figure 3.17: The environment layout and the physical channel between the gNB and the
UAV.
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Figure 3.18: (a) The channel impulse response magnitude between the gNB and the UAV
at t = 0. (b) The code-delay corresponding to the corresponding between the gNB and the
UAV during the course of the experiment.
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Chapter 4: Cognitive Sensing and Navigation with Unknown OFDM

Signals with Application to Terrestrial 5G and Starlink LEO Satellites

4.1 Introduction

Due to significant advancements in cellular technologies and dense deployment of

cellular infrastructure, fifth-generation (5G) and beyond cellular networks will be adopted

by intelligent transportation systems to enable reliable and safe autonomous operations [226].

Several features in 5G and beyond cellular networks depend on the ability to localize the user

equipment (UE) to a high degree of accuracy [232]. Estimation of time-of-arrival (TOA),

direction-of-arrival (DOA), and/or frequency-of-arrival (FOA) of multiple users/targets

is an inseparable block of some 5G and beyond technologies, such as joint sensing and

communication [169].

Similar to 4G long-term evolution (LTE), 5G new radio (NR) adopts orthogonal fre-

quency division multiplexing (OFDM) [37]. In addition, new constellations of broadband

low Earth orbit (LEO) space vehicles (SVs) will transmit OFDM-type signals [143]. In

OFDM-based systems, a part of the transmitted power is dedicated to periodic synchroniza-

tion signals, referred to as reference signals (RSs), which are transmitted for synchronization
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purposes. RSs are designed (or selected) based on their distinctive bandwidth and correla-

tion properties and the physical channel type [22]. While the RSs allocated to a single LTE

channel have a predetermined bandwidth of up to 20 MHz, the allocated bandwidth for the

RSs in a single 5G channel is dynamic, i.e., it adaptively changes based on the transmission

mode, and can go up to 100 MHz and 400 MHz for frequency ranges 1 and 2 (FR1 and

FR2), respectively [198]. On the other hand, Starlink downlink signals occupy 250 MHz

bandwidth of the Ku-band to provide high-rate broadband connectivity, but the allocated

bandwidth (and other signal characteristics) of the RSs are unknown [38].

Navigation receivers typically rely on known RSs transmitted by the sources to draw

TOA, DOA, and FOA measurements [184]. Conventional opportunistic navigation receivers

(i.e., those only utilizing the downlink signals) will either fail to operate or will be unable to

exploit the entire available bandwidth in situations where RSs are unknown and/or dynamic,

which is the case in 5G NR and private networks, such as broadband LEO. Cognitive oppor-

tunistic navigation [149] has been recently introduced to address the following challenges

of navigation with signals of unknown and dynamic nature. First, unlike public networks

where the broadcast RSs are known at the UE and are universal across network operators, in

private networks, the signal specifications of some RSs may not be available to the public

or are subject to change. Second, in cellular LTE networks, several RSs (e.g., cell-specific

reference signal (CRS)) are broadcast at regular and known time intervals, regardless of the

number of UEs in the environments. Ultra-lean design refers to minimizing these always-on

transmissions. 5G NR transmit some of the RSs only when necessary or on-demand [158].

As such, designing cognitive receivers that can cognitively acquire partially known, un-

known, or dynamic beacon signals (periodic synchronization signals) is an emerging need

for the future of navigation receivers [104, 145].
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The problem of cognitively exploiting on-demand and always-on 5G NR signals has

been previously studied in [8, 148, 149]. These methods rely on the difference between the

Doppler frequencies of the SOPs to acquire and track the unknown sources. However, the

acquisition and tracking of unknown sources may fail in the following extreme scenarios:

(i) an almost static scenario that may lead to a Doppler subspace overlap and (ii) a high

dynamic scenario where the receiver or the transmitter are moving with high dynamics

which results in an intensive Doppler rate. These two extreme scenarios introduce the

following challenges in the acquisition and tracking of the unknown sources:

The almost static scenario: In a scenario where the receiver and the transmitter are

almost static, the Doppler frequencies of the transmitting sources will be very close to each

other. This event is referred to as the Doppler subspace overlap. Distinguishing between

the sources with Doppler subspace overlap becomes very challenging for the cognitive

navigation framework.

Intensive Doppler rate scenario: In cognitive navigation frameworks, the unknown

and dynamic parameters of the RSs are estimated via a coherent accumulation of the

received samples over time. High values of Doppler rate limits the coherence time, i.e., the

time interval that the channel between the transmitter and the receiver is static. A limited

coherence time affects the unknown source acquisition and tracking performance. Therefore,

considering the effect of the Doppler rate in the signal model and selecting a proper coherent

processing interval (CPI) play a key role in intensive Doppler rate scenarios.

This chapter addresses the two challenges by: (i) presenting a maximum likelihood

(ML)-based detection method to estimate the CPI jointly with the Doppler and the Doppler

rate, (ii) presenting a sequential matched subspace detector based on a chirp Doppler model
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to distinguish between the sources with Doppler subspace overlap, and (iii) designing

tracking loops with adaptive loop gains which enable RS tracking in challenging scenarios.

The contributions of this work are:

• A full receiver architecture is presented which could jointly estimate the unknown

RSs of multiple SOPs in almost static and intensive Doppler rate scenarios. The

cognitive nature of the proposed receiver enables estimating both always-on and

on-demand RSs, the latter of which are not necessarily always-on. Both components

were shown to be detected and refined in post-acquisition and tracking stages. The

roles of providing a fine estimate of the RS, and tracking the code and carrier phases

are played by the tracking loops via properly designed adaptive gains. The adaptive

gains are provided by the acquisition stage and are designed based on the source

detection performance. Feeding this information to the tracking loops, establishes

a link between the acquisition and tracking loops which is necessary in challenging

scenarios and distinguishes the proposed architecture from conventional navigation

algorithms. To the best of the author’s knowledge, this link between the acquisition

and tracking stages is not considered in both classic GNSS receivers, e.g., [25, 209],

and the state-of-the-art joint detection and tracking techniques, e.g., [149]. One of

the contributions of this chapter is demonstration of the importance of reporting the

detection performance to the tracking loops by experimentally showing that the state-

of-the-art receiver architectures will fail to track the signals in challenging scenarios

without the proposed link between the acquisition and tracking loops.

• The effect of Doppler rate estimation error on the autocorrelation function is presented

analytically. A closed-form solution for the autocorrelation attenuation is presented
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which matches the experimental results. The analysis of the effect of Doppler rate

estimation error on the autocorrelation function is crucial in navigation with LEO

satellites. This analysis, enables a novel blind Doppler rate estimation technique for

LEO satellite signals.

• Experimental results are presented showing an application of the proposed receiver

architecture by (i) enabling an unmanned aerial vehicle (UAV) to detect and exploit

terrestrial 5G NR cellular signals for navigation purposes, achieving a position root

mean-squared error (RMSE) of 4.2 m over a total trajectory of 416 m; (ii) enabling

a ground vehicle to cognitively sense (detect and track) an unknown 5G gNB in the

environment, estimating the position of the gNB with a two-dimensional (2D) error

of 5.83 m in a blind fashion; and (iii) exploiting Starlink downlink OFDM signals to

localize a stationary receiver, showing that starting from an initial estimate of 200 km

away, the final 2D error converges to 6.5 m.

4.2 Related Work

This section overviews related work in positioning with 5G NR, unknown signals, and

LEO SV signals.

4.2.0.1 Positioning with 5G NR

Positioning with 5G signals has been studied in the literature [46, 108, 115, 154, 223].

High data rate in 5G signals necessitates a higher transmission bandwidth and more advanced

spatial and time-domain-based multiplexing techniques. However, since the unlicensed

spectrum in lower frequencies is scarce, millimeter waves (mmWaves) have been adopted
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for 5G FR2 [19]. To mitigate the high pathloss of propagated mmWave signals different

beamforming techniques and massive multiple-input, multiple-output (mMIMO) antenna

structures are proposed for the 5G protocol [52]. Since beamforming in 5G requires the

knowledge of the user’s location, 5G-based positioning is essential for resource allocation

[45]. The signal characteristics of mmWave for positioning were studied in [227]. [232]

focuses on the integrated positioning methodology of GNSS and device-to-device (D2D)

measurements in 5G communication networks. In [223], a tensor-based method for channel

estimation in mmWave systems was presented, which enables positioning and mapping

using diffuse multipath in 5G mmWave communication systems. Experimental results in [5]

showed meter-level navigation using TOA estimates from 5G signals. All the aforementioned

methods relied on the knowledge of the beacon signals. The proposed cognitive framework

in this chapter is capable of detecting and tracking unknown on-demand and always-on

beacons. This feature of the proposed receiver architecture enables navigation with systems

with ultra-lean design, where dynamic and on-demand beacons are adopted.

4.2.0.2 Positioning with Unknown Signals

The detection problem of an unknown source in the presence of other interfering signals

falls into the paradigm of matched subspace detectors, which has been widely studied in the

classic detection theory literature [61, 113, 180, 233]. In the navigation literature, detection

of unknown signals has been studied to design frameworks, which are capable of navigating

with unknown or partially known signals [49, 130]. Preliminary results for navigation

with partially known signals from low and medium Earth orbit satellites were conducted

in [104, 144, 145]. In particular, a chirp parameter estimator was used in [144] to blindly

estimate the GPS pseudorandom noise (PRN) codes. In [148,149], a cognitive opportunistic
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navigation framework was developed to navigate with LTE and 5G NR signals. None of the

aforementioned methods have considered the optimal selection of CPI, which dramatically

affects the performance. Such selection is addressed in the proposed receiver in this chapter,

which is capable of jointly detecting and tracking both always-on and on-demand RSs in

a challenging acquisition scenarios. Moreover, unlike conventional signal acquisition and

tracking methods, the proposed receiver utilizes information about acquisition performance

into the tracking loops, which enables tracking weak signals in challenging environments.

Such a connection between the acquisition and tracking stages is crucial for navigation with

unknown signals (whether terrestrial 5G NR or Starlink LEO SV) in challenging scenarios,

such as intensive Doppler.

4.2.0.3 Navigation with Starlink LEO SV Signals

The first positioning results with Starlink SV signals were presented in [105, 147, 151].

These chapters exploited a train of pure tones in the downlink of Starlink SV signals to

obtain carrier-phase and Doppler measurements. Starlink downlink signals occupy 250

MHz bandwidth of the Ku-band to provide a high-rate broadband connectivity [38]. In this

chapter, the Starlink OFDM-based RSs are detected cognitively. It is shown that the RSs

of Starlink downlink signals have an ultra-lean-like behavior, in which some of the RSs

are not always-on. The RSs of multiple Starlink SVs are estimated and the whole available

signal bandwidth is exploited and employed in tracking loops to provide code-phase and

carrier-phase observables.
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4.3 Signal Model

4.3.1 Overview of OFDM Frame

In OFDM-based transmission, the symbols are mapped onto multiple carrier frequencies,

referred to as subcarriers, with a particular spacing known as subcarrier spacing. The

subcarrier spacing is either fixed, e.g., LTE standard, or selected based on the carrier

frequency, and/or other requirements and scenarios, e.g., 5G NR. Once the subcarrier

spacing is configured, using a higher-level signalling, the frame structure is identified. One

of the challenges that should be addressed in the proposed receiver design is the estimation

of the frame length of the OFDM signals. 5G NR frame has a duration of 10 ms and consists

of 10 subframes with durations of 1 ms [198]. Due to the high Doppler dynamics in LEO

satellites, a smaller frame length should be selected to avoid Doppler spread [206]. It should

be pointed out that the frame length is equal to the period of the synchronization signals.

The autocorrelation of a large enough time segment of the received signal will result in a

train of an impulse-like function whose shape depends on the autocorrelation properties of

the synchronization signals. The distance between two consecutive impulses is equal to the

OFDM frame length. Fig. 4.1(a) demonstrates the autocorrelation of a 100 ms time segment

of the Starlink downlink signal after Doppler rate wipe-off. The details of the Doppler

rate wipe-off process will be discussed later. It can be seen that the distance between the

impulses of the resulting train is estimated to be 1.33331 ms. Also, as a reference, Fig.

4.1(b) shows the same processing on a 40 ms time segment of a 5G NR signal which results

in a frame length estimation of 10 ms which corroborates the standard frame length of 5G

NR downlink signals. More details about frame length estimation and the effect of Doppler

rate on the autocorrelation function will be discussed in Section 5.6.1. In the frequency
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Starlink

5G NR

Figure 4.1: Autocorrelation of the recorded signal after Doppler wipe-off: (a) Autocorrela-
tion of the 100 ms of Starlink Downlink signal shows a frame length of 1.33331 ms. (b)
Autocorrelation of 40 ms of 5G NR downlink signal which shows the frame length of 10 ms
(5G NR standard frame length).

domain, each subframe is divided into numerous resource grids, each of which has multiple

resource blocks with 12 subcarriers. The number of resource grids in the frame is provided

to the UE from higher-level signallings. A resource element is the smallest element of

a resource grid that is defined by its symbol and subcarrier number [198]. To provide

frame timing to the UE, a gNB broadcasts synchronization signals (SS) on pre-specified

symbol numbers. An SS includes a primary synchronization signal (PSS) and a secondary

synchronization signal (SSS), which provide symbol and frame timing, respectively. The

PSS and SSS are transmitted along with the PBCH signal and its associated demodulation

reference signal (DM-RS) on a block called SS/PBCH block. The SS/PBCH block consists

of four consecutive OFDM symbols and 240 consecutive subcarriers. The SS/PBCH block
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is transmitted numerous times on one of the half frames, which is also known as SS/PBCH

burst. Fig. 4.2 demonstrates the SS/PBCH subcarriers and non-active subcarriers which are

color-coded by dark-blue. A non-active subcarrier can be a subcarrier that is allocated to

data or on-demand RSs.

4.3.2 baseband Signal Model

The common feature of always-on and on-demand RSs is periodicity. If a subcarrier is

being periodically transmitted, it will be detected by the receiver, estimated, and used to

derive navigation observables. The channel between the ith source and the UE is considered
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Figure 4.2: OFDM frame structure (always-on subcarriers): SS/PBCH block and the
corresponding OFDM symbols and subcarriers are indicated in the red box.

to have a single tap with the complex channel gain ai. The received baseband signal samples

can be modeled as

r[n] =
N

Â
i=1

ai (ci (tr[n])+di (tr[n]))exp( jqi[n])+w[n], (4.1)

where r[n] is the received signal at the nth time instant; ai[n] is the complex channel gain

between the UE and the ith source at the nth time instant; and tr[n] , tn� tsi [n], where

tsi [n] is the code-delay corresponding to the UE and the ith source at the nth time instant,
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and tn is the sample time expressed in the receiver time. Moreover, N is the number of

unknown sources; ci[n] represents the samples of the continuous-time waveform ci(t) of the

periodic RS corresponding to the ith source with a period of L samples; qi[n] = 2p fDi [n]Tsn

is the carrier-phase in radians, where fDi [n] is the Doppler frequency at the nth time instant

and Ts is the sampling time; di[n] represents the samples of some data transmitted from

the ith source; and w[n] is a zero-mean independent and identically distributed noise with

E{w[m]w⇤[n]}= s2
wd [m�n], where d [n] is the Kronecker delta function, and w⇤[n] denotes

the complex conjugate of random variable w[n]. The received signals can be expressed

in terms of equivalent RS from the ith source, denoted by si[n], and the equivalent noise,

denoted by weqi , which are defined as

si[n], aici[tn� tsi [n]]exp( jqi[tn]) , (4.2)

weqi [n] = di[tn� tsi [n]]exp( jqi[tn])+w[n]. (4.3)

Hence, the baseband samples can be rewritten as

r[n] =
N

Â
i=1

�
si[n]+weqi [n]

�
. (4.4)

Remark 1: In this chapter, the Doppler frequency is modeled as a linear chirp, i.e.,

fDi [n] = fDi0
[n]+bi[n]Tsn, where fDi0

[n] is the initial Doppler frequency, and bi[n] is the

Doppler rate.

Definition 1: The CPI is defined as the number of periods of an RS in a time interval

during which the Doppler fDi0
[n], Doppler rate bi[n], delay tsi [n], and channel gains ai are

considered to be constant.
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4.4 Receiver Architecture

This section describes the proposed receiver.

4.4.1 Frame Length Estimation

Detection and tracking of unknown sources rely on two fundamental features of the

RS: (i) periodicity and (ii) correlation properties in the time- and frequency-domains. In

broadband communication systems, the RS waveform is designed based on the correlation

properties of the so-called synchronization sequences. Different sequences have distinct

correlation behaviors and can be adopted in a particular system based on the physical

considerations. For instance, Zadoff-Chu sequences are known for their low autocorrelation

sidelobes at zero Doppler shift, and Bjorck sequences can more effectively decouple the

effect of time and frequency shifts [22].

The correlation properties of a sequence are usually characterized using the so-called

ambiguity function.

Definition 2: Let p[n] be a sequence of numbers of length L, where n = 0, . . . ,L� 1.

Define the periodic sequence c[n] as the periodic extension of p[n], i.e., c[m] = p[k], for

m 2 Z, where 0  k  L� 1 and k ⌘ (m mod L). The discrete ambiguity function of

periodic code c[m] is defined as [22]

Ac(m,n) =
1
L

L�1

Â
k=0

c[m+ k]c?[k]exp
✓
� j2pkn

L

◆
. (4.5)

In order for the acquisition stage to be able to detect always-on and on-demand RSs, having

an estimate (or the exact value) of the RS period is necessary. While the frame length is
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known for public networks (e.g., 5G NR), in private networks, the frame length might be

unknown or dynamically change based on the transmission mode [198]. The first stage

of the proposed receiver involves frame length estimation. The autocorrelation of a large

enough time segment of the received signal results in a periodic train of ambiguity functions

in the time-domain. If the transmitted sequences have good correlation properties, the

ambiguity functions will have an impulse-like shape. Good autocorrelation means that the

RS waveform of the RS is nearly uncorrelated with its own time-shifted versions, while

good crosscorrelation indicates that the RSs of different satellites’ waveforms are nearly

uncorrelated.

The following Lemma provides a closed-form solution for the autocorrelation function

in the presence of the Doppler rate.

Lemma 1: Denoting the autocorrelation function of a large enough and arbitrary time

segment of length L0 of the received signal by Rrr[m], 1
L0 Â

L0
k=0 r[m+ k]r?[k], where L0 � L,

the following equality holds

Rrr[m] = āi ¯Aci(m,0)
sin
�
2pbT 2

s mL0
�

sin(2pbT 2
s m)

+Rww[m], (4.6)

where |āi|= 1, ¯Aci(m,0) = E{Aci(m,0)} is the expected value of the periodic ambiguity

function of the RS corresponding to the ith satellite and Rww[m] is the autocorrelation

function of noise.

Proof: See Appendix .6.

Note that the term sin(2pbT 2
s mL0)

sin(2pbT 2
s m)

in (4.6) has a sinc function-like behavior in terms of m

for a nonzero Doppler rate. Assuming that the RS has good correlation properties, the term

Aci(m,0) contains a periodic train of impulse-like functions with a period of L samples (the
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RS period). For a non-zero Doppler rate, due to sinc-like behavior of the term sin(2pbT 2
s mL0)

sin(2pbT 2
s m)

,

the autocorrelation function Rrr[m] is not periodic as the periodic impulse-like functions are

attenuated by the effect of the the sinc.

To validate Lemma 1 practically, real Starlink LEO SV signals are analyzed to demon-

strate the effect of the Doppler rate on the autocorrelation function. The details of the

hardware setup which is used to record Starlink LEO SV signals is presented in Section

4.5.3. Fig. 4.3 demonstrates the autocorrelation function of 150 ms of real Starlink downlink

signal for different values of the Doppler rate: (a) b = 1323, (b) b = 523, (c) b = 323, and

(d) b = 0 Hz/s. To achieve these Doppler rate values in Fig. 4.3, the actual Doppler rates of

the Starlink LEO SV was estimated using the receiver that will be described in Section 5.6.

The estimated Doppler rate is partially wiped-off to obtain the different b values in Fig. 4.3.

The large impulse in the center of the autocorrelation function contains the summation of

the autocorrelation function, the RS ambiguity function, and noise autocorrelation at m = 0,

i.e.,

Rrr[0] = āiL0 ¯Aci(0,0)+Rww[0]. (4.7)

Assuming white Gaussian noise, i.e., Rww[m] = 0 for m 6= 0, (4.7) can be used to estimate the

carrier-to-noise ratio (CNR) of the received signal. For the white Gaussian noise case, the

amplitude of the impulses for m 6= 0 correspond to the term
���� ¯Aci(m,0) sin(2pbT 2

s mL0)
sin(2pbT 2

s m)

���� in (4.6).

The train of the impulse-like functions, i.e., | ¯Aci(m,0)|, is associated with the ambiguity

function of the always-on and on-demand RSs which have good correlation properties. The

period of | ¯Aci(m,0)| is approximately 1.33 ms. It can be seen in Fig. 4.3 that the amplitude

of the impulse train follow the sinc function-like behavior of
����

sin(2pbT 2
s mL0)

sin(2pbT 2
s m)

���� which matches

the results of Lemma 1.
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Figure 4.3: Theoretical and experimental autocorrelation function of a time segment of 150
ms for different values of b .

It should be pointed out that for large Doppler rate values, the term
����

sin(2pbT 2
s mL0)

sin(2pbT 2
s m)

����

approaches a Kronecker delta. Therefore, large values of Doppler rate will attenuate the

impulses. On the other hand,

lim
b!0

�����
sin
�
2pbT 2

s mL0
�

sin(2pbT 2
s m)

�����= L0 8m, (4.8)

which is the case in Fig. 4.3(d).

Remark 2: Lemma 1 shows that when the Doppler rate is perfectly wiped-off, the

autocorrelation function is almost constant as the impulses will have equal amplitudes.

Therefore, Lemma 1 can be used to obtain a rough estimate of the Doppler rate by searching

over different values of the Doppler rate to find the one that results in a constant autocorrela-

tion function. Assume that the estimated Doppler rate is denoted by b̂ = b + eb , where b is

the actual Doppler rate of the satellite and eb is the estimation error for the Doppler rate. b ⇤
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denotes an arbitrarily guessed Doppler rate value. The received signal at the nth time instant

when the Doppler rate is wiped off by b ⇤ is denoted by r0[n]

r0[n], exp(� j2pb ?T 2
s n2)r[n]. (4.9)

The r0[n] contains a residual Doppler rate denoted by b̃ = b �b ?. Note that if b ⇤ = b , the

Doppler rate is wiped off perfectly and, since lim
b!0

sin(2pbT 2
s mL0)

sin(2pbT 2
s m)

= L0, it is expected from

Lemma 2 that

Rr0r0 [m] = āi ¯Aci(m,0)L0+Rww[m], (4.10)

for b ⇤ = b .

4.4.2 Acquisition

The received signal at the nth time instant when the Doppler rate is wiped-off according

to r0[n] , exp(� j2pbiT 2
s n2)r[n]. Due to the periodicity of c(tn), si[n] has the following

property

si[n+mL] = si[n]exp( jwimL) 0 n L�1, (4.11)

where wi = 2p fDi0
Ts is the normalized Doppler corresponding to the ith transmitting source,

and �p  wi  p . A vector of L observation samples corresponding to the mth period of

the signal is formed as zm , [r0[mL],r0[mL+ 1], . . . ,r0[(m+ 1)L� 1]]T. The CPI vector is

constructed by concatenating K aggregates of zm vectors to form the KL⇥1 vector

y =
N

Â
i=1

Hisi +w, (4.12)

where si = [si[1], . . . ,si[L]]T; the KL⇥L Doppler matrix is defined as

Hi , [IL,exp( jwiL)IL, . . . ,exp( jwi(M�1)L)IL]
T,
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where IL denotes an L⇥L identity matrix; and w is the noise vector. Similar to [149], the

concept of sequential matched subspace detection is used to provide an initial estimate for

the unknown parameters which are: (i) number of unknown sources, (ii) corresponding RSs,

(iii) chirp parameters, and (iv) CPI. A hypothesis testing problem is solved sequentially

in multiple stages to detect the active sources in the environment. Unlike [149], where a

constant Doppler subspace was used to distinguish between different sources. In this, chapter

the matched subspace is defined based on the chirp parameters of each source. At each

stage, a test is performed to detect the most powerful source, while the chirp subspace of the

previously detected sources are nulled. The so-called general linear detector [90] is used at

each stage of the sequential detection algorithm. In the first stage of the sequential algorithm,

the presence of a single source is tested, and if the null hypothesis is accepted, then N̂ ⌘ 0,

which means that no source is detected to be present in the environment. If the test rejects

the null hypothesis, the algorithm asserts the presence of at least one source and performs

the test to detect the presence of other sources in the presence of the previously detected

source. The unknown chirp parameters, the RSs of each sources, and the corresponding

CPIs are estimated at each stage. In general, if the null hypothesis at the ith level of the

sequential algorithm is accepted, the algorithm is terminated and the estimated number of

sources will be N̂ ⌘ i�1.

The detection problem of ith RS is defined as a binary hypothesis test

⇢
H i

0 : ith source is absent
H i

1 : ith source is present. (4.13)

Under H i
1 , the signal model can be modeled as

y = Hisi +Bi�1qqq i�1 +weqi , (4.14)
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where Bi�1 , [H1,H2, . . . ,Hi�1] and qqq i�1 , [sT1 ,sT2 , . . . ,sTi�1]
T stores the chirp parameters

and estimated RS in the previous steps. The decision criteria for the source detection is

developed based on the generalize likelihood ratio (GLR). A matched subspace detector

for a generic form of (4.13) is derived in [180]. Based on the specific characteristics of the

Doppler subspace matrix in (6.3), an alternative derivation of the matched subspace detector

is presented in Appendix .1. The likelihood of the GLR detector is

Li(y|wi,bi,Ki) =
yHPSiy

yHP?Bi�1
P?Si

P?Bi�1
y
, (4.15)

for a given normalized Doppler frequency wi, Doppler rate bi, and CPI Ki. Vector yH is the

Hermitian transpose of y, PX , X(XHX)�1XH denotes the projection matrix to the column

space of X, and P?X , I�PX denotes the projection matrix onto the space orthogonal to

the column space of X. Also, Si , P?Bi�1
Hi. It should be pointed out that HH

i P?Bi�1
Hi = liI,

where the scalar li is the Schur complement of block Ci�1, i.e., the upper (i�1)⇥ (i�1)

block of the matrix Ci, whose i jth element is (see Appendix .1)

ci j ,
K�1

Â
k=0

exp
�

j(w j�wi)Lk
�
. (4.16)

It can be seen from (4.16) that the elements of the matrix Ci, and consequently the scalar

li, are scalar functions of the Doppler frequency difference between ith source and the

previously detected sources.

Remark 3: Similar calculation to Theorem 9.1 in [90] to derive the probability of

detection results in

Pdi = exp(�ri +Lhi)
•

Â
k=0

rk
i

k!

L+k�1

Â
n=0

(Lhi)n

n!
, (4.17)

where Pdi is the probability of detection of the ith source and

ri = bacqli
ksik2

s2
w

, (4.18)
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is the effective SNR of ith source. The probability of detection is a monotonically increasing

function of the scalar li. In other words, li provides a measure for the reliability of detection

of the ith source. When the Doppler frequencies of the ith source and other sources are very

close, li the becomes small which result in a poor detection performance, i.e., lim
li!0

Pdi = 0.

The simplified likelihood can be written as (Appendix .1)

L ⇤
i (y) = arg max

wi,bi,Ki

kl�1
i ĤH

i P̂?Bi�1
yk2

kP̂?Bi�1
yk2�kl�1

i ĤH
i P̂?B̂i�1

yk2
. (4.19)

The likelihood should be compared with predetermined threshold hi which is designed

based on a particular probability of false alarm. For known subspaces and the corresponding

projection matrices, the probability of false alarm for the ith stage of the likelihood in (5.10)

asymptotically tends to (cf. Theorem 7.1 in [90])

Pfai = exp(�Lhi)
L�1

Â
n=0

(Lhi)
n

n!
, (4.20)

for a large number of observation samples. In the experimental results presented in Section

5.8, (4.20) is used to determine the threshold.

The ML estimates of the CPI, denoted by K̂i, and the chirp parameters, ( f̂Di , b̂i) can

be obtained by maximizing Li(y). Accordingly, the least squares (LS) estimate of the ith

source, i.e., si, is given by

ŝacqi = l�1
i HH

i P?Bi�1
y. (4.21)

The conventional and the proposed cognitive methods use tracking loops which in-

volve the same computational complexity. The main difference between the computational

complexity of the proposed cognitive receiver and a conventional receiver stems from the

acquisition stage. The number of complex operations is considered as a metric for compu-

tational complexity. In the likelihood function (5.10), the size of the projection matrices
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increases with the detection stage, i.e., i. However, in [91] (Appendix 8B), a recursive

formula is provided to calculate the projection matrix at the ith stage based on the already

calculated projection matrix at (i�1)th stage. Using the recursive formula presented in this

appendix, the complexity of the projection matrix is O(K2) where O(·) denotes the rate of

growth of a function, i.e., its order. Consequently, the number of complex operations to

calculate the matched subspace detector is O((5(KL)2 +KL)N).

4.4.3 Tracking

The initial estimate of the chirp parameters f̂Di and b̂i , the estimated CPI K̂i, and the

associated likelihood functions L ⇤
i s are fed to the tracking stage along with the estimated

RS. By employing the a phase-locked loop (PLL) and a delay-locked loop (DLL) the delay

and the Doppler are tracked over time. The major difference between the proposed tracking

loops and the conventional tracking loops is the RS-locked loop (RSLL). The tracked

Doppler and the delay are used to lock the estimated RS signal along with the code and

carrier-phase. The details of the tracking loops are discussed next.

4.4.3.1 RS-locked loop (RSLL)

The RS in the tracking loop for the ith source is initialized with the RS estimated in the

acquisition stage ŝacqi . Therefore, ŝ0i = ŝacqi . Assuming that the ith source is being tracked,

in this subsection the subscript i is dropped for convenience of notation. Let t̂sk and f̂Dk be the

code-phase and the Doppler estimates at time-step k in the tracking loop, respectively. In the

kth time-step of the tracking loop, the estimated RS is updated by coherently accumulating
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the measurement at the kth step of the tracking loop when the delay and Doppler are wiped-

off. If the subspace spanned by the columns of Si = P?Bi�1
Hi is viewed as the ith source’s

signal subspace, and the orthogonal subspace as the noise subspace, then the likelihood L ⇤
i

in (4.19) can be interpreted as an estimated SNR corresponding to the ith gNB. The reader is

referred to [180] for further interpretations of matched subspace detectors. The gain loop of

the RSLL is designed based on the performance of the acquisition. If the estimated SNR of

the ith source, i.e. , L ⇤
i , is large, the tracking loop relies more on the acquisition by diluting

the contribution of the new measurements in the estimation of the RS. Hence, the metric

L ⇤
i informs the performance of the detection of the ith source to the tracking loops. It will

be shown that this link between the acquisition and the tracking results in a dramatic effect

on the navigation performance.

The nth sample of the updated RS at kth time-step of tracking loop is calculated as

ŝk[n] =
k

k+1
· ŝk�1

||ŝk�1||
[n]

+
Gi

k+1
·

yk[n+n̂dk ]exp
�
� j2p f̂Dkn

�

||yk[n+n̂dk ]||
, (4.22)

where n̂dk ,
j

t̂sk
Ts

m
and b·e denotes rounding to the closest integer, and Gi =

1
K̂i
· 1

L ⇤
i
, denotes

the loop-gain for the RSLL.

4.4.3.2 PLL and DLL

To track the phase of the received signals, a PLL, consisting of a phase discriminator,

a loop filter, and a numerically-controlled oscillator (NCO) with a second-order PLL with

a loop filter transfer function is employed. The estimate of the Doppler frequency at each

time-step k is deduced by dividing the rate of change of the carrier-phase error vPLL,k in
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rad/s by 2p . Assuming a zero initial carrier-phase, the estimate of the carrier-phase estimate

at time-step k is updated according to q̂k = q̂k�1 + vPLL ·Tsub, where Tsub is the time length

of coherent accumulation in the tracking loop.

Subsequently, a carrier-aided DLL, consisting of an early-minus-late discriminator and a

simple gain loop filter is used to follow the delay of each Tsub of the measured signals. The

rate of change of the code-phase vDLL is used to update code-phase of the received signals,

assuming low-side mixing at the radio frequency front-end, according to

t̂sk+1 = t̂sk�
✓

vDLL,k +
vPLL,k

2p fc

◆
·Tsub. (4.23)

Fig. 4.4 illustrates the proposed tracking loops. The difference between the proposed

tracking loop and conventional tracking loops is highlighted in red color. The core blocks

of the proposed tracking loop are similar to the traditional carrier and code-phase tracking

architectures [122]. In order to track the time-variations of the carrier-phase, a traditional

PLL is composed of three basic constituent blocks: (i) a code and carrier-phase discriminator,

which is in charge of providing output measurements that, on average, are proportional to

the code-phase and carrier-phase error to be compensated; (ii) a loop filter, which is nothing

but a very narrow low-pass filter that smoothes the variability caused by thermal noise at the

phase detector output; and (iii) a numerically-controlled oscillator (NCO) for generating the

local carrier replica based on the corrections imposed by the loop filter output. The main

difference between the proposed tracking loop and conventional tracking loops is the local

RS generator with adaptive gains as described in Section 4.4.3.1.
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conventional tracking loops [122] is the local RS generator with adaptive gains which is
highlighted in red color as described in Section 4.4.3.1.
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Figure 4.5: Experimental environment for the 5G NR scenario showing UAV trajectory and
the two gNBs.
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4.5 Experimental Results

The performance of the proposed receiver is assessed in three different scenarios: (i)

to navigate a UAV with terrestrial 5G NR signals, (ii) to localize an unknown 5G gNB

in the environment from measurements made by a mobile ground vehicle, and (iii) to

localize a stationary receiver with Starlink LEO SV downlink signals. The objectives of

the experiments are to: (i) demonstrate the performance of the acquisition of unknown

signals in the almost static and intensive Doppler rate scenarios, (ii) assess the effect of CPI

estimation on the navigation performance, (iii) examine the effect of the proposed RSLL

tracking loop on the quality of RS estimation, and (iv) analyze the transmission of Starlink

unknown signals to detect the always-on and on-demand modes of Starlink LEO SVs. In

the following experiments, (4.20) is used to calculate the threshold hi for a probability of

false alarm of 10�4 for all the stages.

4.5.1 Experiment 1: UAV Navigation with 5G NR Signals

An Autel Robotics X-Star Premium UAV equipped with a single-channel Ettus 312

universal software radio peripheral (USRP) connected to a consumer-grade 800/1900 MHz

cellular antenna. The cellular receivers were tuned to the cellular carrier frequency 632.55

MHz, which is a 5G NR frequency allocated to the U.S. cellular provider T-Mobile. Samples

of the received signals were stored for off-line post-processing. The experimetnal layout is

presented in Fig. 4.5. During the course of the experiment, the receiver was listening to two

gNBs referred to as gNB1 and gNB2 in Fig. 4.5. The ground-truth reference trajectory was

taken from the on-board Ettus 312 USRP GPS solution.
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The main limitations of the algorithm are: (i) the proposed receiver, requires periodic RSs

in the downlink signal, and (ii) in the signal model, a single tap channel which corresponds

to the LOS path with arbitrary channel gain a is considered. More precisely, the channel

impulse response is modeled as h[n] = ad [n�nd], where a is the complex channel gain

between the transmitter and the receiver, and nd is the code-delay corresponding to the

transmitter and the receiver. This channel model considers a flat fading scenario, where

the effect of multiple “close" paths is considered in a single path gain a . Based on the

underlying distribution of a , the considered h[n] can model a Rayleigh or Rician flat fading

channel.

Recall from (4.16) and (4.17) that when the apparent Doppler frequencies of the unknown

sources are close to each other, the effective SNR, i.e., ri defined in (4.18), will have a small

value which in turn results in a poor detection/acquisition performance. Therefore, in order

for the unknown sources to have enough separation in the Doppler subspace, it is practically

preferred to perform the acquisition stage when the UAV is moving. However, to challenge

the proposed receiver, the acquisition is performed in the starting phase of the flight when

the UAV is almost stationary. The Doppler frequency depends on the LOS velocity between

the UAV and the gNBs. When the UAV is almost stationary, the Doppler subspaces of the

two gNBs will overlap which results in a small ri. It will be seen that in the starting phase

of the flight, there is only going to be a very slight separation in the Doppler subspace (on

the order of 1 Hz) which is due to very small movements of the UAV.
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4.5.1.1 Detection and Tracking

The ML estimate of the CPI was obtained to be 100 for both gNBs. The likelihoods

in the two different stages of the acquisition are plotted in Fig. 4.6(a). The blue curve

demonstrates the likelihood in the first stage. It can be seen that the only one peak at

-1 Hz is observed in the blue curve which corresponds to the first detected gNB. Due to

the mentioned Doppler subspace overlap, the two sources are masking each other in the

Doppler subspace. In the second stage the first gNB is nulled (red curve in 4.6(a)). After

nulling the first gNB, a second peak appears in the likelihood function which is located at 0

Hz and corresponds to the second gNB. Fig. 4.6(b) demonstrates the carrier-phase errors

corresponding to the two gNBs, showing that the two gNBs are being tracked.

4.5.1.2 Post-Acquisition and Post-Tracking Reconstructed Frame

After the detection of each gNB, (4.21) is used to estimate the corresponding RS. In

this subsection, the reconstructed RS frame structure is presented for the post-acquisition

stage where the estimate of the RS is given in (4.21), and after the estimated RS is refined in

the tracking loops using (4.22). Fig. 4.7 demonstrates the frame structure of the estimated

RS for gNB1. Fig. 4.7(a) shows the resulting RS frame structure after acquisition, and

Fig. 4.7(b) shows the refined estimated RS after tracking. Comparing the reconstructed

frame in 4.7 with Fig. 4.2 shows that other than the broad cast signals (SS/PBCH blcok),

several on-demand active subcarriers are also detected. As discussed in Section 5.5, the

subcarriers indicated with dark blue color code in the OFDM frame are the subcarrier that

do not correspond to the RSs. Ideally, in the estimated RS, the energy of these subcarriers

should be zero (darker blue). However, due to the effect of noise, these subcarriers may not
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Figure 4.6: Acquisition and tracking 5G gNBs: (a) The two gNBs are detected although
their Doppler frequencies are almost right on the top of each other. The likelihood in the
first stage (blue curve) exceeds the threshold which means that the first gNB is detected. In
the likelihood of the second stage (the red curve) the first gNB is nulled, and the second
gNB is detected. (b) The carrier-phase error in the tracking loops for the two gNBs. The
carrier-phase errors of both detected sources are converging which means that the tracking
loops are locked for both detected sources.

appear in dark blue color. It can also be observed that the post-tracking estimated RS is less

noisy (darker) than the RS obtained by (4.21) in the acquisition.

4.5.1.3 Navigation Framework

Next, the pseudorange observables from the two gNBs will be used to estimate the 2D

position of the UAV-mounted receiver, denoted by rrrr. The code-phase in (4.23) can be used
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Figure 4.7: The reconstructed frame structure: (a) post-acquisition stage, and (b) post-
tracking stage. The blue subcarriers correspond to non-active subcarriers or the subcarriers
which do not correspond to the RS. Ideally these subcarriers should have zero energy in the
detected RS. The non-active subcarriers in (b) have less energy in the detected RS which
means that the post-tracking version of the estimated RS is less noisy.

to readily deduce the pseudorange observables. The pseudorange, expressed in meters, from

the n-th gNB can be modeled as

zn(k)=krrrr(k)�rrrsnk+c · [d tr(k)�d tsn(k)]+vn(k), (4.24)

where rrrsn is the 2D position of the n-th gNB, c is the speed of light, d tr and d tsn are the

receiver ’sand n-th gNB’s clock biases, respectively, and vn is the measurement noise, which

is modeled as a zero-mean white Gaussian sequence with variance s2
n . The location of

the gNBs were mapped prior to the experiment, therefore, rrrsn is known. The terms c ·

[d tr(k)�d tsn(k)] are combined into one term as they do not need to be estimated separately,
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yielding

cd tn(k), c · [d tr(k)�d tsn(k)] . (4.25)

Cellular gNBs possess tighter carrier frequency synchronization than time (code-phase)

synchronization– the code-phase synchronization requirement as per the cellular protocol

is typically within 1.1 µs [177]. It is assumed that the resulting clock biases in the TOA

estimates will be very similar, up to an initial bias. Consequently, one may leverage this

relative frequency stability to eliminate parameters that need to be estimated. The following

re-parametrization is proposed

cd̄ tn(k), cd tn(k)� cd tn(0)⌘ cd t(k)+ en(k), 8n (4.26)

where cd t is a time-varying common bias term independent of the nth gNB, and en is the

deviation of cd̄ tn from this common bias and is treated as measurement noise. Using (4.26),

the TOA measurement (5.20) can be re-parameterized as

zn(k) = krrrr(k)� rrrsnk+ cd t(k)+ cd t0n +hn(k), (4.27)

where cd t0n , cd tn(0) and hn(k) , en(k)+ vn(k) is the overall measurement noise. Note

that cd t0n can be obtained by knowing the initial receiver’s position and from the initial

measurement zn(0), according to cd t0n ⇡ zn(0)�krrrr(0)� rrrsnk.

The TOA measurements were fed to an extended Kalman filter (EKF) to estimate the

state vector xxx ,
h
rrrTr , ṙrrTr ,cd t,cḋ t

iT
, where ṙrrr is the UAV’s 2–D velocity vector and ḋ t is

the clock drift. A white noise acceleration model was used for the UAV’s dynamics, and a

standard double integrator driven by process noise was used to model the clock bias and

drift dynamics [20]. As such, the discrete-time dynamics model of xxx is given by

xxx(k+1) = Fxxx(k)+www(k), (4.28)
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where F = diag
⇥
Fpv,Fclk

⇤
,

Fpv =


I2 T I2

02⇥2 I2

�
, Fclk =


1 T
0 1

�
, (4.29)

and T is the time interval between two measurements; and www(k) is the process noise,

which is modeled as a zero-mean white random sequence with covariance matrix Q =

diag
⇥
Qpv,Qclk

⇤
where

Qpv =

"
T 3

3 Q̃xy
T 2

2 Q̃xy
T 2

2 Q̃xy T Q̃xy

#
, (4.30)

Qclk = c2

"
Sw̃d t T +Sw̃ḋ t

T 3

3 Sw̃ḋ t
T 2

2
Sw̃ḋ t

T 2

2 Sw̃ḋ t
T

#
, (4.31)

Q̃xy , diag [q̃x, q̃y], and the x,y acceleration process noise spectra of the white noise ac-

celeration model were set to q̃x = q̃y = 5 m2/s3, the time interval between two measure-

ments was T = 0.0267 s, and the receiver’s clock process noise spectra were chosen to

be Sw̃d t = 1.3⇥ 10�22 and Sw̃ḋ t
= 7.9⇥ 10�25 which are that of a typical temperature-

compensated crystal oscillator (TCXO) [239]. Note that rrrr is expressed in an east-north-up

(ENU) frame centered at the UAV’s true initial position. The EKF state estimate was ini-

tialized at x̂xx(0) = 06⇥1 with an initial covariance of P(0) = diag[3·I2⇥2,I2⇥2,10�2,10�4].

The measurement noise covariance was set to R = I2⇥2.

Effect of RSLL loop gain on the navigation results: Next, the effect of the RSLL loop

gain on the navigation results is assessed. The RSLL loop gain is set to be Gi =
1
K̂i
· 1

L ⇤
i

,

where L ⇤
i is the likelihood of the ith Rs, and the K̂i is the estimated CPI corresponding to

the ith RS. Fig. 4.8 demonstrates the position RMSE in terms of the RSLL loop gain.

According to the obtained values of K̂i, and L ⇤
i in this experiment, the designed RSLL

loop gains are G1 = 1
K̂1

· 1
L ⇤

1
= 0.002 and G2 = 1

K̂2
· 1

L ⇤
2
= 0.005. To assess the effect of
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L ⇤

2
.

the loop gain on the navigation RMSE, the loop gain for the second RS is set to 0.002,

and the loop gain for the first RS is swept between different orders of magnitude as 5⇥

[10�6,10�5, . . . ,10�1] (blue curve). Similarly, the loop gain for the first RS is set to be

0.005, and sweeping the loop gain for the second RS different orders of magnitude as

2⇥ [10�6,10�5, . . . ,10�1]. It can be seen that the least navigation RMSE is obtained by

selecting G1 =
1

K̂1
· 1

L ⇤
1

, and G2 =
1

K̂2
· 1

L ⇤
2

as the loop gains corresponding to the first and

the second sources, respectively.

Effect of CPI on the navigation solution: Next, the effect of CPI selection on the

navigation results is assessed. Fig. 4.9(a) compares the RMSE for different values of CPI.

It can be seen that if one selects a CPI which is less than a particular value, the navigation

solution does not converge. It can also be observed that for a range of CPIs the error would

be bounded between 4.2 to 5.8 m in the 416 m of flight trajectory. Fig. 4.9(b) shows the

estimated trajectories via the proposed receiver and the receiver in [185] which only uses

the SS/PBCH block, and the ground truth trajectory.
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Figure 4.9: (a) The navigation solution for different values of CPIs demonstrates a region
where the solution does not converge. (b) The estimated trajectories via the proposed
receiver and the receiver in [185] which only uses the SS/PBCH block, and the ground truth
trajectory.

4.5.2 Experiment 2: Cognitive Sensing a 5G NR gNB on a Ground
Vehicle

A ground vehicle was equipped with a quad-channel National Instrument (NI) USRP-

2955 and two consumer-grade 800/1900 MHz cellular antennas to sample 5G signals near

Ohio Stadium in Columbus, Ohio, USA. One channel from the USRP was tuned to a 632.55
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Blindly Detected gNB

Septentrio AsteRx SBi3 Pro+

Cellular antenna

Vehicle Trajectory

Columbus, Ohio, USA

Figure 4.10: The environment layout, vehicle trajectory, and experiment setup. The true
location and a photo of the site of the blindly detected gNB are shown.

MHz carrier frequency, which is a 5G NR frequency allocated to the U.S. cellular provider

T-Mobile. The sampling rate was set to 20 Mega-samples per second (MSps) and the

sampled 5G signals were stored on a laptop for post-processing. In order to obtain the

vehicle’s trajectory, the vehicle was equipped with a Septentrio AsteRx SBi3 Pro+ with

a dual antenna multi-frequency GNSS receiver with real-time kinematic (RTK) and an

industrial-grade inertial measurement unit (IMU). The vehicle’s traversed a trajectory of

1.79 km. Fig. 5.7 shows the environment layout, the vehicle trajectory, and the experiment

setup.

The location of the gNB and the transmitted RS from the gNB were unknown to the

receiver. The goal of this experiment was to cognitively sense the location of the gNB via

the proposed receiver. Only the carrier frequency of the transmitted signal was known to

the receiver. Fig. 5.8 demonstrates the acquisition results. It can be seen that five sources

were detected by the receiver. The detected sources could correspond to either gNBs or false
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Figure 4.11: The acquisition results: Five sources are detected in the acquisition stage. The
red dashed horizontal line is the threshold and the green vertical line corresponds to the
detected source at each stage. The gray vertical lines are the previously detected sources at
each stage.

125



alarm due to multipath. The first detected source in Stage 1 of the acquisition algorithm has

the largest likelihood, therefore, it corresponds to the strongest path.

The transmitter and receiver clock terms, i.e., d tr(k) and d tsn(k) in (5.20), are both

unknown to the receiver. Assuming a first-order clock model for both the gNB and the

receiver, the combined clock term in (5.20) can be written as cd tn(k)= c · [d tr(k)�d tsn(k)],

x +yk where x is the clock bias and y is the clock drift [21]. Note that rrrr(k) is known and

the receiver uses pseudorange observables to estimate the gNB’s position rrrs. Next, define the

parameter vector xxx , [rrrTs ,x ,y]T. Let zzz denote the vector of all the pseudorange observables

stacked together. Then, one can write the measurement equation given by zzz = ggg(xxx)+ vvvz,

where g(xxx) is a vector-valued function that maps the parameter vector xxx to the pseudorange

observables according to (5.20), and vvvz denotes the vector of all measurement noises stacked

together. Next, a nonlinear least-squares (NLS) estimator was used to estimate xxx denoted by

x̂xx. The estimated position was validated by on-site verification. The 2D position error of the

estimated gNB found to be 5.83 m. The true location of the gNB and the estimated location

of the gNB are shown in Fig. 5.11.

Fig. 4.12 demonstrates the delay tracking results for each source versus the true delay

which was obtained according to the true location of the gNB and the ground truth trajectory

of the receiver. The estimated Doppler is plotted in Fig. 5.10. It can be seen that the

tracked Doppler using the method in [185] which only relies on always-on signals has a

larger estimation variance compared to the proposed method.
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Figure 4.12: Delay tracking results of the detected sources versus the true delay correspond-
ing to the gNB. The delay of one of the sources matches the true delay. In this chapter, the
cognitive sensing of the gNB is considered. The cognitive sensing of multipath and other
interfering components can be considered in future work.

4.5.3 Experiment 3: Stationary Positioning with Starlink LEO SV
Signals

A stationary National Instrument (NI) universal software radio peripheral (USRP) 2945R

was equipped with a consumergrade Ku antenna and low-noise block (LNB) downconverter

to receive Starlink signals in the Ku-band. The sampling rate was set to 2.5 MHz and the

carrier frequency was set to 11.325 GHz to record Ku signals over a period of 800 s. Six

SVs were detected this period. To avoid redundancy, the acquisition and tracking results of

one of the Starlink SVs are presented next.

4.5.3.1 Acquisition

The acquisition stages in the proposed receiver is shown in Fig. 4.15. As it can be seen

in this figure, in the first stage of the acquisition, one source is detected at the normalized

Dopplre frequency of 199 Hz. Finally, In the second stage, the Doppler subspace of the first

source is nulled and the resulting likelihood is less than the threshold or equivalently N̂ = 1.
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Figure 4.13: The cognitive sensing results: The True position of the gNB and the blindly
estimated position are plotted. The 2D error was found to be 5.83 m.
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Figure 4.14: The estimated Doppler using the proposed method which exploits the always-on
and on-demand components versus the method in [185].

4.5.3.2 The effect of CPI on Tracking Performance

Fig. 5.15 demonstrates the carrier-phase error for the different values of K1= 40 and the

K1=300 which was the ML estimate of the CPI obtained by maximizing (5.10) over different
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Figure 4.15: Acquisition stages in the proposed receiver for Starlink downlink signals
showing the likelihood function (33) at each stage and the detected and nulled source. In the
first stage, a source is detected at 200 Hz (dashed green line). In the second stage the first
detected source is nulled.
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Figure 4.16: Carrier-phase error for arbitrary selected CPI of 40, and the ML estimated CPI
of 300.
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Table 4.1: Positioning Results Comparison between values of CPI
CPI (K1) = 300 CPI (K1) = 40 CPI (K1) = 30

2D Error 6.5 m 22.1 m Not-converging

values of CPI. As it can be seen in Fig. 5.15, the standard deviation of the carrier-phase error

for For K1=300 is smaller than that of the case where CPI is arbitrary selected to be K1=40.

4.5.3.3 Navigation results

The navigation results can be seen in Fig. 6.6. The experimental setup and the navigation

framework is similar to the setup in [147]. Six starlink satellite was tracked using the

proposed receiver. The receiver position was initialized as the centroid of all SV positions,

projected onto the surface of the earth, yielding an initial position error of 200 km. The final

two dimensional error was 6.5 m using the six Starlink LEO SVs. Table I compares the 2D

positioning results for different values of CPI. It can be seen that if one select CPI = 30, the

2D navigation solution does not converge. The skyplot of the satellites and the navigation

results are shown in Fig. 6.6.
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Figure 4.17: Environment layout, Skyplot, and positioning results.
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Chapter 5: Acquisition, Doppler Tracking, and Positioning With

Starlink LEO Satellites: First Results

5.1 Introduction

Theoretical and experimental studies have demonstrated the potential of low Earth orbit

(LEO) broadband communication satellites as promising reliable sources for navigation

[73, 119, 141, 174]. Companies like Amazon, Telesat, and SpaceX are deploying so-called

megaconstellations to provide global broadband internet [173]. In particular, launching

thousands of space vehicles (SVs) into LEO by SpaceX can be considered as a turning-point

in the future of LEO-based navigation technologies. Although they suffer from higher

Doppler effect, signals received from LEO SVs can be about 30 dB stronger than signals

received from medium Earth orbit (MEO) SVs, where global navigation satellite systems

(GNSS) SVs reside [141].

Research has shown that one could exploit LEO SV broadband communication signals

opportunistically for navigation purposes [73]. Three of the main challenges of navigation

with Starlink SV signals are (i) limited information about the signal structure, (ii) very-high

dynamics of Starlink LEO SVs, and (iii) poorly known ephemerides. Assuming that Starlink

LEO SV downlink signals contains a periodic reference signal (RS), this dissertation tackles
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the first challenge by formulating a matched subspace detection problem to (i) detect the

unknown RS of Starlink SVs and (ii) estimate the unknown period and Doppler frequency.

The second challenge is addressed by adopting a second-order model to capture the dynamics

of the Doppler frequency, and designing a Kalman filter (KF)-based algorithm which is

capable of tracking the unknown parameters of the Doppler model. A blind approach was

presented in [144, 145] to exploit partially known signals for navigation purposes. However,

these approaches were designed for M-ary phase-shift keying (MPSK) signaling and are

incapable of deciphering sophisticated signals, such as Starlink’s orthogonal frequency-

division multiple access (OFDMA) signals.

This letter makes the following contributions. First, a model for the Starlink LEO

SV’s downlink signals is presented. Second, an algorithm is proposed to (i) acquire the

Starlink LEO SV signals and (ii) track the Doppler frequency of each detected SV. Third,

next to [105], the first experimental positioning results with Starlink downlink signals are

presented in this dissertation. In [105], an adaptive Kalman filter is used to track the carrier

phase of Starlink LEO SVs. However, the method presented in [105] relies on tracking

the phase of a single carrier. When a more complicated signal structure is used in the

downlink signal, e.g., OFDMA, a more sophisticated method should be developed to exploit

the entire signal bandwidth for navigation purposes. Indeed, the method in [105] is not

capable of exploiting the entire signal bandwidth, and it only relies on tracking a single

frequency component. In this dissertation, by considering a general model for the Starlink

downlink signals, the unknown parameters of the signal are estimated for the first time for

Starlink LEO SVs, and are subsequently used to detect the Starlink LEO SVs and track

their corresponding Doppler frequencies. The proposed method enables one to estimate the

synchronization signals of the Starlink LEO SVs.
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5.2 Received Signal Model

5.2.1 Starlink Downlink Signals

Except for the carrier frequencies and the bandwidths, more detailed signal specifications

of Starlink downlink signals are unavailable to the public. SpaceX uses the Ku-band

spectrum for the satellite-to-user links (both uplink and downlink) and the satellite-to-

ground contacts are carried out in Ka-band [38]. Software-defined radios (SDRs) allow

one to sample bands of the radio frequency spectrum. However, Ku/Ka-bands are beyond

the carrier frequency of most commercial SDRs. Hence, in the experiments carried out in

this letter, a 10 GHz mixer is employed between the antenna and the SDR to downconvert

Starlink LEO SV signals from the Ku-band, namely 11.325 GHz to 1.325 GHz.

In order to formulate a detection problem to detect the activity of Starlink downlink

signals, a signal model is proposed which solely relies on the periodicity of the transmitted

signals. The logic behind the proposed signal model is that in most commercial commu-

nication systems, a periodic RS is transmitted for synchronization purposes, e.g., primary

synchronization signals (PSS) in long-term evolution (LTE) and the fifth generation (5G)

signals. The following subsection presents a model for the Starlink LEO SV’s downlink

signals.

5.2.2 Baseband Signal Model

As mentioned previously, in most commercial communication systems, a periodic RS

is transmitted, e.g., PSS in OFDMA-based and spreading codes in code division multiple

access (CDMA)-based signals. In this dissertation, the Starlink LEO SV downlink signal is
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modeled as an unknown periodic signal in the presence of interference and noise. If an RS,

such as PSS in OFDMA-based signals, is being periodically transmitted, it will be detected

and estimated by the proposed method. By denoting the continues-time signal at time instant

t by c(t), and the discrete time signal at time instant n by c[n], the received baseband signal

is modeled as

r[n] = a(c(tn� ts[n])exp( jq(tn))

+d(tn� ts[n])exp( jq(tn)))+w[n], (5.1)

where r[n] is the received signal at the nth time instant; a is the complex channel gain

between the receiver and the Starlink LEO SV; tn is the sample time expressed in the

receiver time; c(tn) represents the samples of the complex periodic RS with a period of

L samples; ts[n] is the code-delay between the receiver and the Starlink LEO SV at the

nth time instant; q(tn) = 2p fD[n]Tsn is the carrier phase in radians, where fD[n] is the

instantaneous Doppler frequency at the nth time instant and Ts is the sampling time; di(tn)

represents the complex samples of some data transmitted from the Starlink LEO SV; and

w[n] is measurement noise, which is modeled as a complex, zero-mean, independent, and

identically distributed random sequence with variance s2
w.

Starlink LEO SV’s signals suffer from very high Doppler shifts. Higher lengths of

processing intervals require higher order Doppler models. In order for a Doppler estimation

algorithm to provide an accurate estimate of the Doppler frequency, the processing interval

should be large enough to accumulate enough power. According to the considered processing

interval length in the experiments, it was observed that during the kth processing interval, the

instantaneous Doppler frequency is nearly a linear function of time, i.e., fD[n] = fDk +bkn,

where fDk is referred to as constant Doppler, and bk is the Doppler rate at the kth processing
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interval. The coherent processing interval (CPI) is defined as the time interval in which the

constant Doppler, fDk , and the Doppler rate, bk, are constant.

The received signal at the nth time instant when the Doppler rate is wiped-off is denoted

by r0[n], exp(� j2pbkn2)r[n]. One can define the desired RS which is going to be detected

in the acquisition stage as

s[n], ac(tn� ts[n])exp( j2p fDkTsn) , (5.2)

and the equivalent noise as

weq[n] = d(tn� ts[n])exp( j2p fDkTsn)

+ exp
�
� j2pbn2�w[n]. (5.3)

Hence, r0[n] = s[n]+weq[n]. Due to the periodicity of the RS, s[n] has the following property

s[n+mL] = s[n]exp( jwkmL) 0 n L�1, (5.4)

where wk , 2p fDkTs is the normalized Doppler at the kth CPI, and �1
2  wk  1

2 . A vector

of L observation samples corresponding to the mth period of the signal is formed as

zm , [r0[mL],r0[mL+1], . . . ,r0[(m+1)L�1]]T. (5.5)

The kth CPI vector is constructed by concatenating M vectors of length L to form the ML⇥1

vector

yk = [zTkM,zTkM+1, . . . ,zT(k+1)M�1]
T. (5.6)

Therefore,

yk = Hks+weqk , (5.7)

where s = [s[1],s[2], . . . ,s[L]]T, and the ML⇥L Doppler matrix is defined as

Hk , [IL,exp( jwkL)IL, . . . ,exp( jwk(M�1)L)IL]
T, (5.8)
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where IL is an L⇥L identity matrix and weqk is the equivalent noise vector.

5.3 Proposed Framework

This section, presents the structure of the proposed framework. The proposed receiver

consists of two main stages: (i) acquisition and (ii) tracking. In the acquisition stage, an

estimate of the period of the RS in the Downlink signal of Starlink SV, and an initial estimate

for the Doppler parameters are provided at k = 0, which is discussed in the following

subsection. In order for the receiver to refine and maintain the Doppler estimate, a tracking

stage is also presented.

5.3.1 Acquisition

In this section, a detection scheme is proposed to detect the existence of Starlink LEO

SVs in the carrier frequency of 11.325 GHz within a bandwidth of 2.5 MHz, at k = 0. The

following binary hypothesis test is used to detect the Starlink LEO SV signal

⇢
H0 : y0 = weq0
H1 : y0 = H0s+weq0 .

(5.9)

For a given set of unknown variables W0 = {L,w0,b0}, the generalized likelihood ratio

(GLR) detector for the testing hypothesis (19) is known as matched subspace detector

[51, 180], and is derived as (see Theorem 9.1 in [90])

L (y0|W0) =
yH0 PH0y0

yH0 P?H0
y0

H1
?
H0

h , (5.10)

where yH0 is the Hermitian transpose of y0, PH0 , H0(HH

0 H0)�1HH

0 denotes the projection

matrix to the column space of H0, P?H0
, I�PH0 denotes the projection matrix onto the space
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orthogonal to the column space of H0, and h is the threshold which is predetermined accord-

ing to the probability of false alarm. Since, HH

k Hk = MIL for all k, the likelihood L (y0|W0)

can be rewritten as L (y0|W0) =
1

ky0k2
1

M2 kH
H
0 y0k2

�1
, which is a monotonically increasing function

of kH
H

0 y0k2

ky0k2 . Hence, the GLR detector (5.10) is equivalent to

kHH

0 y0k2

ky0k2

H1
?
H0

h 0, (5.11)

where h 0 is determined according to a desired probability of false alarm. The maximum

likelihood estimate of W0 is

Ŵ0 = argmaxL,w0,b0
kHH

0 y0k2. (5.12)

It should be pointed out that the estimated Doppler using (5.12) results in a constant

ambiguity denoted by wa = 2p fa. This constant ambiguity is accounted for in the navigation

filter.

Fig. 5.1 demonstrates the likelihood in terms of Doppler frequency and the period for

real Starlink downlink signals. The CPI was set to be 200 times the period. As it can be

seen in Fig. 5.1, a Starlink LEO SV downlink signal is detected with a period of 32 µs and

at a Doppler frequency of �2745 Hz.

5.3.2 Doppler Tracking Algorithm

It is important to note that the receiver does not have knowledge of the Doppler ambiguity

fa. The Doppler frequency that will be tracked by the receiver contains this constant

ambiguity. In order to track the Doppler, a KF-based tracking loop is developed. The KF

formulation allows for arbitrary Doppler model order selection, which is crucial due to the

LEO SVs’ high-dynamics. The KF-based Doppler tracking algorithm is described below.
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Figure 5.1: Acquisition: The likelihood function versus Doppler frequency and the period at
Starlink downlink carrier frequency of 11.325 GHz.

5.3.2.1 Doppler Dynamics Model

The time-varying component of the continuous-time true Doppler, denoted by f (t), is a

function of (i) the true range rate between the LEO SV and the receiver, denoted by ḋ(t),

and (ii) the time-varying difference between the receiver’s and LEO SV’s clock bias rate,

denoted by ḃ(t), expressed in meters per second. Hence, w(t) = 2p
h
� ḋ(t)

l + ḃ(t)
l + fa

i
,

where, w(t) = 2p f (t), and l is the carrier wavelength. The clock bias is assumed to have a

constant drift, i.e., b(t) = a ·(t�t0)+b0, where a is the clock drift, b is the constant bias, and

t0 is the initial time. Moreover, simulations with Starlink LEO SVs show that the kinematic

model
...
d (t) = w̃(t), where w̃ is a zero-mean white noise process with power spectral density

qw̃ holds for short periods of time. Let k denote the time index corresponding to tk = kT + t0,

where T = MLTs is the sampling interval also known as subaccumulation period, and ML

is the number of subaccumulated samples. The vector wwwk , [wk, ẇk]
T is considered as
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the Doppler state vector for the proposed tracking algorithm. The initial state is given by

www0 =
⇥
2p fa +

2p
l (a� ḋ(t0)),�2p

l d̈(t0)
⇤T.

5.3.2.2 KF-Based Doppler Tracking

Let ŵwwk|l and Pk|l denote the KF estimate of wwwk and corresponding estimation error

covariance, respectively, given all measurements up to time-step l  k. The initial estimate

ŵww0|0 with a corresponding P0|0 are provided from the acquisition stage. The KF-based

tracking algorithm follows a regular KF for the time-update. The measurement update

is discussed next. The KF measurement update equations are carried out based on the

maximum likelihood estimate of the Doppler. The Doppler wipe-off is performed as r̃k[i] =

r[i+kML]exp
⇥
� jq̂k+i|k

⇤
, where q̂k+i|k is obtained according to q̂k+i|k = ŵk|kiTs+ ˆ̇wk|k

i2
2 T 2

s ,

for i = 0, . . . ,ML� 1. The vector ỹk+1 is constructed as ỹk+1 = [r̃k[0], . . . , r̃k[ML� 1]]T.

One can show that (cf. (6.3))

ỹk+1 = H̃k+1s+ w̃eqk+1 , (5.13)

where the residual Doppler matrix is

H̃k+1 (5.14)

, [IL,exp( jDwkL)IL, . . . ,exp( jDwk+1(M�1)L)IL]
T,

and Dwk+1 = wk+1� ŵk+1|k. The proposed KF innovation is given by

nk+1 = argmaxDwk+1

1
M
kH̃H

k+1ỹk+1k2, (5.15)

which is a direct measure of the Doppler error. The measurement noise is chosen proportional

to the Doppler search step size. The initial estimates of the Doppler ŵ0|0 and the Doppler

rate ˆ̇w0|0 are obtained from the acquisition stage.

140



5.4 Experimental Results

This section provides the first results for blind Doppler tracking and positioning with

Starlink signals of opportunity. A stationary National Instrument (NI) universal software

radio peripheral (USRP) 2945R was equipped with a consumer-grade Ku antenna and low-

noise block (LNB) downconverter to receive Starlink signals in the Ku-band. The sampling

rate was set to 2.5 MHz and the carrier frequency was set to 11.325 GHz, which is one of

the Starlink downlink frequencies. The samples of the Ku signal were stored for off-line

processing. The tracking results are presented next.

5.4.1 Blind Doppler Tracking Results

The USRP was set to record Ku signals over a period of 800 seconds. During this period,

a total of six Starlink SVs transmitting at 11.325 GHz passed over the receiver, one at a

time. The framework discussed in Section 5.3 was used to acquire the downlink signals and

track the Doppler frequencies and rates from these LEO SVs, which are shown in Fig. 5.2

along with the ones predicted from two-line element (TLE) files [73]. It can be seen that the

proposed algorithm is tracking the Doppler and the Doppler rate of six Starlink LEO SVs. It

can also be seen that the estimated Doppler frequencies have a constant bias compared to

the predicted ones from the TLEs.

5.4.2 Position Estimation

Next, pseudorange rate observables are formed from the tracked Doppler frequencies

by (i) downsampling by a factor D to avoid large time-correlations in the pseudorange

observables and (ii) multiplying by the wavelength to express the Doppler frequencies in
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meters per second. Let i 2 {1,2,3,4,5,6} denote the SV index. The pseudorange rate

observable to the ith SV at time-step k = k ·D, expressed in meters, is modeled as

zi(k) =
ṙrrTSVi

(k) [rrrr� rrrSVi(k)]
krrrr� rrrSVi(k)k

+ai + vzi(k), (5.16)

where rrrr and rrrSVi(k) are the receiver’s and ith Starlink SV three-dimensional (3–D) position

vectors, ṙrrSVi(k) is the ith Starlink SV 2–D velocity vector, ai is the constant bias due to the

unknown Doppler frequency ambiguity fa, and vzi(k) is the measurement noise, which is

modeled as a zero-mean, white Gaussian random variable with variance s2
i (k). The value of

s2
i (k) is the first diagonal element of Pk|k , expressed in m2/s2. Next, define the parameter

vector xxx ,
⇥
rrrr

T,a1, . . . ,a6
⇤T. Let zzz denote the vector of all the pseudorange observables

stacked together, and let vvvz denote the vector of all measurement noises stacked together,

which is a zero-mean Gaussian random vector with a diagonal covariance R whose diagonal

elements are given by s2
i (k). Then, one can readily write the measurement equation given

by zzz = ggg(xxx)+ vvvz, where ggg(xxx) is a vector-valued function that maps the parameter xxx to the

pseudorange rate observables according to (5.16). Next, a weighted nonlinear least-squares

(WNLS) estimator with weight matrix R�1 is solved to obtain an estimate of xxx given by

x̂xx =
h
r̂rrTr , â1, . . . , â6

iT
. The SV positions were obtained from TLE files and SGP4 software.

It is important to note that the TLE epoch time was adjusted for each SV to account for

ephemeris errors. This was achieved by minimizing the pseudorange rate residuals for each

SV.

Subsequently, the receiver position was estimated using the aforementioned WNLS. The

3–D position error was found to be 22.9 m, while the 2–D position error was 10 m. A

skyplot of the Starlink SVs and the environment layout summarizing the positioning results

are shown in Fig. 5.3.
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Figure 5.2: Experimental results showing measured and predicted (a) Doppler frequencies
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Figure 5.3: (a) Skyplot showing the Starlink SVs’ trajectories during the experiment. (b)
Environment layout and positioning results.

In this chapter, a matched subspace detector is generalized to sequentially detect real

OFDM RSs of multiple Starlink LEO SVs. The always-on and on-demand RSs are detected

cognitively, with a predetermined probability of false alarm, and exploited for navigation.
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The method is shown to be capable of sensing the transition between the RSs in the received

signals. The detected RSs are used in the tracking loops which exploit the time and frequency

correlation properties of the detected RSs to provide carrier and code phase observables.

The main contributions of this chapter are:

• For a class of sequences that are widely used in modern RSs in OFDM-based signals,

it is theoretically shown that the Fourier transform of the sequence preserves the

correlation properties. Based on this property of autocorrelation function: (i) the

Starlink downlink OFDM-based signal model is formulated, and (ii) the RS type of

Starlink downlink signals are classified.

• A closed-form solution for the autocorrelation function in the presence of the Doppler

rate is derived. To demonstrate the validity of the closed-form solution, it is compared

with the experimentally obtained autocorrelation function of Starlink signals for

different values of Doppler rate.

• To demonstrate the performance of the proposed receiver, a base with a known position

and a stationary rover with an unknown position were equipped with the proposed

receiver. Two baselines between the base and rover receivers were considered: 1.004

km and 8.6 m. Despite the fact that the satellites’ ephemerides were poorly known

(with errors on the order of several kilometers, as they are predicted from two-line

element (TLE) files and an SGP4 propagator), the proposed differential framework

estimated the rover’s two-dimensional (2D) position with an error of 3.9 m and 83 cm,

respectively.
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• To further demonstrate the capability of the proposed receiver in detecting new types

of RSs, it is fictitiously assumed that the Starlink satellites multiplex the 5G NR RSs

as a new component in their downlink signals. It is shown that the proposed method is

capable of detecting and tracking the new signals simultaneously with the real Starlink

RSs.

The rest of this chapter is organized as follows. Section 5.5 presents the received baseband

signal model. Section 5.6 presents different stages of the proposed receiver. Section 5.8

presents experimental results.

5.5 Signal Model

Fig. 5.4 demonstrates the spectrum of Starlink downlink signal recorded at 200 MHz

sampling rate. The downlink signal of Starlink contains two components: (i) nine pure tones

located at the center of the frequency spectrum, and (ii) OFDM subcarriers. The frame

structure in OFDM-based transmission is either fixed or identified based on the physical

requirements [198]. Each OFDM frame contains always-on and on-demand RSs which are

transmitted for synchronization and channel estimation purposes. The period of the RSs is

usually equal to the frame length of the OFDM signals. Acquisition and tracking OFDM RSs

require knowledge of the frame length. While the frame length is known in public networks,

such as 5G NR, it can be unknown (and subject to change) in private networks, e.g., Starlink

LEO SV broadband system. For private networks, the frame length should be estimated and

updated cognitively. This chapter, provides a thorough analysis of frame length estimation

of OFDM signals taking into account the high dynamics of the Starlink LEO SVs. In order

to have an intuition about the frame length estimation process, one can consider a simple
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Figure 5.4: Starlink downlink signals recorded at 200 MHz sampling rate. OFDM subcarriers
and a group of pure tones are observed in the spectrum of Starlink downlink signals.

autocorrelation-based technique. Assuming that the RSs have good correlation properties,

the autocorrelation of a large enough time segment of the received signal will result in a

train of an impulse-like function whose shape depends on the correlation properties of the

synchronization signals. The distance between two consecutive impulses is equal to the

OFDM frame length. Fig. 5.5(a) demonstrates the autocorrelation of a 100 ms time segment

of the Starlink downlink signal. It can be seen that the distance between the impulses of the

resulting train is estimated to be approximately 1.33 ms. Also, for comparative purpose, Fig.

5.5(b) shows the same processing on a 40 ms time segment of a 5G NR signal which results

in a frame length estimation of 10 ms, which corroborates the standard frame length of 5G

NR downlink signals [198].

Two factors may affect the frame length estimation process: (i) high dynamics of

Starlink LEO SVs which result in a high Doppler rate that attenuates the impulses in the

autocorrelation function and (ii) correlation properties of the RS. The effect of the Doppler

rate on the autocorrelation is analyzed in Subsection 5.6.1. The following subsections,

146



provide some background about the correlation properties of the RSs. Then the received

baseband signal model is also described.
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Figure 5.5: Autocorrelation of recorded signal after Doppler wipe-off: (a) Autocorrelation
of a 100 ms of Starlink Downlink signal shows a frame length of approximately 1.33 ms.
(b) Autocorrelation of a 40 ms of 5G NR downlink signal which shows the frame length of
10 ms (5G NR standard frame length).

5.5.1 Dual Correlation Properties

Detection and tracking of unknown sources rely on two fundamental features of the

RS: (i) periodicity and (ii) correlation properties in the time- and frequency-domains. In

broadband communication systems, the RS waveform is designed based on the correlation
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properties of the so-called synchronization sequences. Different sequences have distinct

correlation behaviors and can be adopted in a particular system based on physical con-

siderations. For instance, Zadoff-Chu sequences are known for their low autocorrelation

sidelobes at zero Doppler shift. In this subsection, the concept of dual correlation property

is explained, which motivates the proposed OFDM-based signal model.

The correlation properties of a sequence are usually characterized using the ambiguity

function.

Definition 1: Let p[n] be a sequence of numbers of length L, where n = 0, . . . ,L� 1.

Define the periodic sequence c[n] as the periodic extension of p[n], i.e., c[m] = p[k], for

m 2 Z, where 0  k  L� 1 and k ⌘ (m mod L). The discrete ambiguity function of

periodic code c[m] is defined as [22]

Ac(m,n) =
1
L

L�1

Â
k=0

c[m+ k]c?[k]exp
✓
� j2pkn

L

◆
, (5.17)

where c?[k] denotes the complex conjugate of complex number c[k]. In order to explain the

correlation duality and make the proofs tractable in this subsection, the class of constant

amplitude zero autocorrelation (CAZAC) sequences are considered. CAZAC sequences

have been widely used in different communication systems due to their optimal transmission

efficiency and tight time localization properties. Two examples of CAZAC sequences are

the Zadoff-Chu and the Wiener sequences [22].

Definition 2: The sequence p[n] for n = 0, . . . ,L�1 is a CAZAC sequence if |p[n]|= 1

for all n, and the ambiguity function of the periodic extension of p[n], i.e, c[n] in Definition

1, has the following property

Ac(m,0) = 0, (5.18)
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for 1 m L�1.

The property of CAZAC sequences presented in (5.18) simply means that the ambiguity

function of a CAZAC sequence is a periodic train of impulses with period L when the

Doppler frequency is zero.

Lemma 1: Assume that the sequence c[n] is CAZAC. Denoting the discrete Fourier

transform (DFT) of c[n] by cF[k], where

cF[k] =
1
L

L�1

Â
n=0

c[n]exp
✓

j2pnk
L

◆
, (5.19)

for 0 k  L�1, the sequence cF[k]exp
⇣

j2p fDk
L

⌘
is also CAZAC [22].

Lemma 1 plays an important role in formulating the signal model of OFDM-based

systems, which will be discussed later in this section. In OFDM-based transmission,

the symbols are mapped onto multiple carrier frequencies via the inverse fast Fourier

transform (IFFT) [206]. Therefore, the samples of the received signal in the time-domain

contain the IFFT of the samples of the transmitted sequence. The acquisition and tracking

stages of the proposed receiver adopt a phase-rotated time-domain version of the RS as the

beacon. Lemma 1 guarantees that for the class of CAZAC sequences such as Zadoff-Chu

sequence, the considered beacon has good correlation properties. Fig. 5.6 demonstrates

the autocorrelation of a Zadoff-Chu sequence in the time and frequency-domain, which

demonstrates that the Fourier operation preserves the correlation properties.
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Figure 5.6: Autocorrelation of Zadoff-Chu sequence in (a) time- and (b) frequency-domains
(25th root with a length of 139): It can be seen that the Fourier transform preserves the
autocorrelation properties of the sequence.

5.6 Receiver Architecture

This section describes the architecture of the proposed received in details.

5.6.1 Frame Length Estimation

In order for the acquisition stage to be able to detect always-on and on-demand RSs,

having a knowledge of the RS period is necessary. While the frame length is known for

public networks such as 5G NR, in private companies, the frame length might be unknown or

dynamically change based on the transmission mode [198]. The first stage of the proposed

receiver involves frame length estimation. The autocorrelation of a large enough time

segment of the received signal results in a periodic train of ambiguity functions in the

time-domain. If the transmitted sequences have good correlation properties, the ambiguity

functions will have an impulse-like shape. As discussed in Section 5.5, good autocorrelation

means that the waveform of the RS is nearly uncorrelated with its own time-shifted versions,
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while good crosscorrelation indicates that the RSs of different satellites’ waveforms are

nearly uncorrelated.

The following Lemma provides a closed-form solution for the autocorrelation function

in the presence of the Doppler rate.

Acquisition and tracking stages are similar to the previous chapter.

5.7 The Impact of Cognitive Estimation of Always-on and On-demand
Signals

In this section, the impact of cognitive estimation of always-on and on-demand signals

is evaluated experimentally. Communication systems transmit always-on RSs at regular

intervals even when there is no data to transmit to any user. Ultra-lean design refers to

minimizing the always-on transmissions by transmitting on-demand RSs when necessary.

The proposed receiver, cognitively detects both always-on and on-demand components. An

experiment is conducted to test the receiver with real 5G signals. The receiver estimates

the always-on and on-demand components of the transmitted signal. To see the impact

of exploiting the whole bandwidth of the received signal, i.e., estimating all the available

periodic components which are always-on and/or on-demand, the receiver in [5] that only

relies on always-signals is used for comparison. Moreover, and emulation of Starlink LEO

SVs transmitting 5G signals is provided to evaluate the performance of the receiver in a

scenario that Starlink LEO SVs are fictitiously transmitting 5G-like signals.
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5.7.1 Experimental Demonstration of Estimation of Always-on and
On-demand signals

A ground vehicle was equipped with a quad-channel National Instrument (NI) USRP-

2955 and two consumer-grade 800/1900 MHz cellular antennas to sample 5G signals near

Ohio Stadium in Columbus, Ohio, USA. One channel from the USRP was tuned to a 632.55

MHz carrier frequency, which is a 5G NR frequency allocated to the U.S. cellular provider

T-Mobile. The sampling rate was set to 20 Mega-samples per second (MSps) and the

sampled 5G signals were stored on a laptop for post-processing. In order to obtain the

vehicle’s trajectory, the vehicle was equipped with a Septentrio AsteRx SBi3 Pro+ with

a dual antenna multi-frequency GNSS receiver with real-time kinematic (RTK) and an

industrial-grade inertial measurement unit (IMU). The vehicle’s traversed a trajectory of

1.79 km. Fig. 5.7 shows the environment layout, the vehicle trajectory, and the experiment

setup.

Blindly Detected gNB

Septentrio AsteRx SBi3 Pro+

Cellular antenna

Vehicle Trajectory

Columbus, Ohio, USA

Figure 5.7: The environment layout, vehicle trajectory, and experiment setup. The true
location and a photo of the site of the blindly detected gNB are shown.
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The location of the gNB and the transmitted RS from the gNB were unknown to the

receiver. The goal of this experiment was to cognitively sense the location of the gNB

via the proposed receiver and a receiver in [5] which only uses always-on signals. Fig.

5.8 demonstrates the acquisition results. It can be seen that five sources were detected

by the receiver. The first detected source in Stage 1 of the acquisition algorithm has the

largest likelihood, therefore, it corresponds to the strongest path. Fig. 5.9 demonstrates the
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Figure 5.8: The acquisition results: Five sources are detected in the acquisition stage. The
red dashed horizontal line is the threshold and the green vertical line corresponds to the
detected source at each stage. The gray vertical lines are the previously detected sources at
each stage.
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reconstructed OFDM frame structure of the estimated RS from the 5G gNB. It can be seen

that the detected subcarriers are spread across the whole recorded bandwidth which is 20

MHz in this experiment. The estimated Doppler is plotted in Fig. 5.10. It can be seen that

the tracked Doppler using the method in [185] which only relies on always-on signals has a

larger estimation variance compared to the proposed method.

Always-on (PBCH Block) On-demand

Figure 5.9: Reconstructed frame structure of the estimated RS: While the always-on subcar-
riers (subcarriers in the green box) only cover a small portion of the available bandwidth,
the on-demand components (subcarriers in the orange box) are spread across the whole
recorded bandwidth which is 10 MHz in this experiment.

Next, the pseudorange observables from the gNB will be used to estimate the 2D position

of the UAV-mounted receiver, denoted by rrrs. The code-phase in (4.23) can be used to readily

deduce the pseudorange observables. The pseudorange, expressed in meters, from the gNB

can be modeled as

z(k)=krrrr(k)�rrrsk+c · [d tr(k)�d ts(k)]+v(k), (5.20)
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Figure 5.10: The estimated Doppler using the proposed method which exploits the always-on
and on-demand components versus the method in [185].

where rrrs is the 2D position of the gNB, c is the speed of light, d tr and d ts are the receiver’s

and gNB’s clock biases, respectively, and v(k) is the measurement noise, which is modeled

as a zero-mean white Gaussian sequence with variance s2. The transmitter and receiver

clock terms, i.e., d tr(k) and d tsn(k) in (5.20), are both unknown to the receiver. Assuming a

first-order clock model for both the gNB and the receiver, the combined clock term in (5.20)

can be written as cd tn(k) = c · [d tr(k)�d tsn(k)], x +yk where x is the clock bias and y is

the clock drift [21]. Note that rrrr(k) is known and the receiver uses pseudorange observables

to estimate the gNB’s position rrrs. Next, define the parameter vector xxx , [rrrTs ,x ,y]T. Let zzz

denote the vector of all the pseudorange observables stacked together. Then, one can write

the measurement equation given by zzz = ggg(xxx)+ vvvz, where g(xxx) is a vector-valued function

that maps the parameter vector xxx to the pseudorange observables according to (5.20), and

vvvz denotes the vector of all measurement noises stacked together. Next, a nonlinear least-

squares (NLS) estimator was used to estimate xxx denoted by x̂xx. The estimated position was

validated by on-site verification. The 2D position error of the estimated gNB found to be
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5.83 m whereas the estimated position using only always-on signals did not converge. The

true location of the gNB and the estimated location of the gNB are shown in Fig. 5.11.

Columbus, Ohio, USA

True Position of gNB

Estimated Position of gNB

2D Error = 5.83 m

Top View

Figure 5.11: The cognitive sensing results: The True position of the gNB and the blindly
estimated position are plotted. The 2D error was found to be 5.83 m.

5.7.2 Emulating Simultaneous 5G NR and Broadband OFDM Signals
in Starlink LEO SV Downlink

To further examine the performance of the proposed receiver, it is fictitiously assumed

that the Starlink satellites multiplex the 5G NR RSs as a new component in their downlink

signals. In particular, real 5G NR RSs are modulated into real Starlink satellite signals [102].

The 5G NR RSs were reconstructed based on [149]. The Delay and the Doppler of the

Starlink satellite were added to the 5G Rs to emulate the transmission from the Starlink LEO

SV. The resulting RS were added in time domain with real Starlink downlink signals. It
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should be pointed out that, in order to add the delay and Doppler to the 5G RS, the delay and

the Doppler of the Starlink satellite were obtained from the TLE files propagated through

SGP4 to modulate the 5G RS. The period of the 5G NR component is denoted by L1, and

the period of the Starlink satellite signals is denoted by L2. As was mentioned previously,

the period of Starlink broadband OFDM signals is approximately 1.33 ms while the period

of terrestrial 5G NR RSs is 10 ms [198]. In this emulation, the frame length of 5G NR

component of Starlink LEO SV signals is assumed to be 1 ms. This small OFDM frame

length choice is considered to: (i) avoid the Doppler spread effect [206] and (ii) choosing a

period which is not necessarily equal to the Starlink broadband OFDM component. Due

to the high Doppler rate of Starlink satellites, a long frame length, e.g., a frame length

similar to terrestrial 5G NR, leads to a dramatic Doppler change during one period of the RS.

The 5G NR signal is modulated with the Doppler frequency of Starlink-45694. Fig. 5.12

demonstrates the acquisition and tracking results. Since two separate periods are considered,

two different likelihood functions should be constructed for each L to detect the satellites

corresponding to each period. Fig. 5.12(a) demonstrates the likelihood function considering

the period is L1 = 1 ms which is the period of emulated 5G NR. The peak of the likelihood

at �232. Fig. 5.12(b) demonstrates the likelihood function of the received signal assuming

that the period is L2 ⇡ 0.33. It can be seen that both components of Starlink RSs are detected.

Fig. 5.12(c) shows the Doppler tracking results, and Fig. (d) demonstrates the amplitude of

the estimated 5G NR RS. The PSS and SSS of 5G NR signals are detected along with other

periodic components.
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Figure 5.12: Emulated 5G NR signals modulated on real Starlink signals.

5.8 Experimental Results

This section validates the performance of the proposed receiver experimentally. The

objectives of the experiments in this section are to: (i) analyze Starlink LEO SV transmission

modes and RS correlation properties, (ii) show the potential of the proposed receive in

achieving meter-level accuracy in a differential Doppler positioning scenario.

5.8.1 Now You Are Beaming, Now You are Not: Detection of Always-on
and On-demand Starlink Downlink Signals

As it was mentioned previously, Starlink LEO SVs transmit nine pure tones located in a,

roughly, 1 MHz gap at the center of the transmission bandwidth at the Ku band. The pure

tones were exploited for Doppler positioning in [105, 147, 151]. In this subsection, more

details about the RSs of Starlink LEO SVs and their corresponding properties are assessed.
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In particular, it will be shown that two types of RSs with two different correlation properties

are being transmitted.

In the first experiment, a stationary National Instrument (NI) universal software radio

peripheral (USRP) 2945R equipped with a consumergrade Ku antenna and low-noise block

(LNB) downconverter to receive Starlink signals in the Ku-band. The sampling rate was set

to 2.5 MHz and the carrier frequency was set to 11.325.

5.8.1.1 Always-on and On-demand RSs

Fig. 5.13 concentrates on the time epochs in which a transmission mode change has

occurred. The autocorrelation and the likelihood functions at time epochs of t = 606 s and

t = 607 s are plotted in Fig. 5.13. It will be shown that the RS structure and the correlation

properties will change in the transition between these two time epochs for Starlink-45694, at

the time of the experiment. Fig. 5.13(a) and (b) demonstrate the autocorrelation function at

t = 606 s and t = 607 s. In the autocorrelation function at t = 606 s, the previously discussed

ambiguity function impulses in (4.6) are observed. The amplitude of the impulses follows

the sinc-function behavior, which is due to the Doppler rate effect as explained in Lemma

2. Recall that these impulses are approximately 1.33 ms apart. However, at t = 607 s the

ambiguity function impulses disappeared. While the autocorrelation function is suggesting

that the periodic RSs are not being transmitted at t = 607 s, the likelihood function shows a

surprising behavior. At t = 606 s the likelihood includes two different components which

are shown in a black and a red box in Fig. 5.13(c). The probability of false alarm is set to be

10�4 to obtain the threshold (the horizontal dotted line). Recall that when the likelihood

passes the threshold, the existence of an RS with period a of approximately 1.33 ms is
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guaranteed by the detector with a certain probability of detection. The likelihood at t = 607

s shows that the component in the black box is not being transmitted anymore while the

component in the red box is still on. The signal in the red box is periodic with period 1.33

ms which is associated with the OFDM RSs. However, as it can be seen in Fig. 5.13(b), the

signal in the red box does is not have good time correlation properties. The signal in the red

box is continuously transmitted when the boradband OFDM signal is active and is referred

to as always-on RS in this chapter. As discussed in 5.7, always-on signals are broadcast

and on-demand signals are transmitted when the transmitter is beaming at the receiver. The

behavior of the signal in the black box is similar to 5G NR on-demand RSs which are not

always active and, therefore, are referred to as on-demand RSs in this chapter. The same

behavior in the autocorrelation and likelihood functions are observed in the recorded signals

from Starlink satellites in all the experiments conducted in this chapter.

Next, the tracking results in the mentioned time interval are presented. The tracking

results give a better understanding of correlation properties of the two detected RSs in the

tracking feedback loops. The bandwidith of the PLL is set to be 65 Hz and the bandwidth

of the DLL is set to be 20 Hz. Fig. 5.14(a) demonstrates delay tracking and Fig. 5.14(b)

demonstrates carrier phase tracking results for Starlink-45694. As it was expected, at a time

epoch between t = 606 s and t = 607 s the code phase tracking is lost. This is due to the fact

that the on-demand signal which has suitable time autocorrelation properties is not active

anymore at this time epoch. However, Fig. 5.14(b) shows that the carrier phase tracking

loop is still locked. This is due to the fact that the always-on signal (the signal in the red box

in Fig. 5.13(c)) is showing good frequency correlation properties. The frequency-domain

correlation property of the always-on signal guarantees carrier phase tracking even if the

on-demand signal is not active.
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Figure 5.13: Autocorrelation and Likelihood at t = 606 s and t = 607 s: (a) and (b)
demonstrate autocorrelation at t = 606 s and t = 607 s, respectively. It can be seen that at
t = 606 s the RS is showing a time autocorrelation and at t = 607 s the time autocorrelation is
lost. (c) and (d) demonstrate the likelihood function at t = 606 s and t = 607 s, respectively.
Two components can be seen in the likelihood functions (the red box and the black box) at
t = 606 s. The component in the black box is not being transmitted at t = 607 s.

Remark 4: Starlink RSs may dynamically change during one satellite pass [142]. A

method that only relies on a static design based on an RS with good time correlation

properties may not provide continuous navigation observables. The proposed method

cognitively detects all the available RSs which results in better carrier-phase and delay

tracking results.
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Figure 5.14: Now you are beaming, Now you are not: (a) Code phase tracking, and (b)
carrier phase tracking of Starlink-45694. As it was expected, at a time epoch between
t = 606 s and t = 607 s the code phase tracking is lost. This is due to the fact that the
on-demand signal which has suitable time autocorrelation properties is not active anymore
at this time epoch. However, Fig. 5.14(b) shows that the carrier phase tracking loop is still
locked.

5.8.2 Effect of Antenna Gain on Tracking Loops

In this subsection, the effect of the antenna gain on the tracking results is assessed. Fig.

5.15 demonstrates the carrier phase error for the two values of CPI= 40 and CPI = 300 in

the previous experiment. As it can be seen in Fig. 5.15, the standard deviation of the carrier

phase error for CPI = 300 is smaller than when CPI = 40. A larger coherent accumulation

time results in a better RS detection performance. Since the satellite is moving away from

the receiver, the SNR is getting weaker and the carrier phase error increases over time. To

assess the effect of antenna gain on the standard deviation of carrier phase tracking, an

experiment was conducted on the roof of electroscience laboratory (ESL) in Columbus,
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Figure 5.15: Carrier phase error for CPI = 40 and CPI = 300. Increasing the CPI results
in a better carrier phase tracking performance. Since the satellite is moving away from the
receiver, the carrier phase error eventually increases.

Ohio, USA. A similar hardware setup was used except for the LNB which was equipped

with a 60 cm dish to increase the antenna gain.

Fig. 5.16(a) demonstrates the location were the experiment was conducted, and Fig

5.16(b) demonstrates the likelihood function. Comparing the likelihood function in Fig.

5.16(b) and Fig. 5.13(c) shows that the always-on signal is detected. 5.16(c) demonstrates

the carrier phase tracking results. It can be seen that the standard deviation of carrier-phase

error is reduced to 10.2 degrees. The estimated Doppler and the Doppler from the TLE files

are plotted in 5.16(d). While the on-demand signals are absent and the delay is not tracked,

the receiver successfully exploits always-on signal and provides carrier phase tracking.

A receiver that only relies on SSS and PSS of starlink downlink will fail to provide any

navigation observable in such a scenario.
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Figure 5.16: (a) Experiment Layout. (b) Likelihood function. (c) Carrier-phase tracking. (d)
The estimated Doppler versus the Doppler from the TLE files.

5.8.3 Differential Doppler Positioning

To demonstrate the performance of the proposed receiver, a base with a known position

and a stationary rover with an unknown position were equipped with the proposed receiver.

The base was equipped with an Ettus E312 USRP with a consumer-grade Ku antenna and

LNB downconverter to receive Starlink signals in the Ku band, and the rover was equipped

with USRP 2974 with the same downconverter. The sampling rate was set to 2.5 MHz, and

the carrier frequency was set to 11.325 GHz. The samples of the received signals were

stored for off-line post-processing.
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5.8.3.1 Positioning Results

To evaluate the performance of the proposed differential Doppler positioning framework,

two baselines between the base and rover are considered, namely 1.004 km and 8.65 m. The

ground truth with which the position estimate was compared was taken from the navigation

solution produced by the USRP’s on-board GPS receiver.

In the first experiment a Base-Rover Baseline of 1.004 km is considered. Over the course

of the experiment, the receivers on-board the base and the rover were listening to three

Starlink LEO SVs, namely Starlink 44740, 48295, and 47728. The satellites were visible

for 320 seconds.

The rover’s initial position estimate was set to be approximately 200 km away from the

base. The rover’s position was estimated via the differential Doppler positioning framework

described in Section 6.5.2. The 2D position error is 3.9 m. Fig. 5.17 presents the experiment

environment, skyplot of the satellites, and the positioning results.

Next, a shorter baseline of 8.65 m was considered. Similar to the previous case, over the

course of this experiment, the receivers on-board the base and the rover were listening to

three Starlink LEO SVs, namely Starlink 48466, 48295, and 45582.

The rover’s initial position estimate was set to be approximately 200 km away from

the base. The rover’s position was estimated through the differential Doppler positioning

framework described in Subsection 6.5.2. The 2D position error was found to be 83 cm. Fig.

5.18 presents the experiment layout, sky plot of the satellites, and the navigation results.

165



Starlink-44740

Starlink-47728

Starlink-48295

Rover

Estimated

2D-Error = 3.9 m

Sky Plot

1 km

Base

Rover

200 km

Initial Estimate

Receiver

Figure 5.17: Environment layout and positioning results for 1.004 km baseline.
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Figure 5.18: Environment layout and positioning results for 8.6 m baseline.
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Chapter 6: Navigation with Multi-Constellation LEO Satellites

6.1 Unveiling Starlink LEO Satellite OFDM-Like Signal Structure
Enabling Precise Positioning

Research has shown that one could exploit low Earth orbit (LEO) space vehicles (SVs)

broadband communication signals for navigation purposes [73]. Navigation with mega-

constellations can be considered in a standalone fashion or in fusion with other existing

technologies [174]. Although LEO SV signals suffer from higher Doppler effect, signals

received from LEO SVs can be about 30 dB stronger than signals received from medium

Earth orbit (MEO) SVs, where global navigation satellite systems (GNSS) SVs reside [141].

The first positioning results with Starlink SV signals were presented in [105, 147].

These dissertations, exploit a train of pure tones in the downlink of Starlink SV signals

to obtain carrier phase and Doppler measurements. Starlink downlink signals occupy

250 MHz bandwidth of the Ku band to provide a highrate broadband connectivity [38].

However, to the best of authors knowledge, nothing beyond the pure tones transmitted in the

downlink of the Starlink SVs have been ever detected and tracked in the current literature.

In this letter, assuming that the Starlink signals follow an orthogonal frequency devision

multiplexing (OFDM)-like model, the reference signals (RSs) of the downlink signals
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are detected, and the corresponding OFDM frame length is estimated. Via a sequential

detection algorithm, the RSs of multiple Starlink SVs are estimated and the whole available

signal bandwidth is exploited and deployed in tracking loops to provide code-phase and

carrier-phase observables.

This letter makes the following contributions. First, the OFDM-like frame length

of Starlink signals is estimated. Second, by considering an OFDM-based signal model

for the Starlink downlink signals, a sequential detection method is presented to detect

multiple Starlink SVs and exploit the whole available bandwidth. Third, the estimated RSs

corresponding to the Starlink SVs are used in tracking loops to obtain carrier and code phase

observables.

6.2 Received Signal Model

6.2.1 OFDM-Like Signal Frame Length

SpaceX uses a 250 MHz signal bandwidth at the Ku-band for the satellite-to-user

downlink [38]. Starlink SVs broadcast nine pure tones which are approximately 43.9 KHz

apart. In this letter, these tones are referred to as central tones since they are located

at the center of the 250 MHz bandwidth. At the first glance, a white signal containing

the central tones are visible in the spectrum [105]. It should be pointed out that, due to

the high dynamics of the Starlink SVs, the downlink signals suffer from Doppler rates

which can be of the order of thousands of Hertz per second. The Doppler rate distorts the

frequency components and imposes a whitening effect on the transmitted signals. Fig. 6.1,

Demonstrates the spectrum of Starlink downlink signals after the Doppler rate wipe-off.

169



The details of the Doppler rate wipe-off process are provided later. It can be seen that along

with the central tones, OFDM-like subcarriers are also visible in the spectrum of Starlink

downlink signals. OFDM signals contain frames in which some periodic RSs reside, and are
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Figure 6.1: The spectrum of Starlink downlink signals after Doppler rate wipe-off: The
central tones are appeared along with OFDM-like subcarriers.

sent for synchronization purposes. The frame length, i.e., the period of the synchronization

signals can be obtained according to the autocorrelation function of a time segment of the

received signal. The autocorrelation of a large enough time segment of the received signal

will result in an impulse train, and the distances between two consecutive impulses are equal

the OFDM frame length. Fig. 6.2(a), demonstrates the autocorrelation of a 100 ms time

segment of the Starlink downlink signal after Doppler rate wipe-off. It can be seen that the

distance between the impulses of the resulting train is approximately 1.32 ms. Also, as a

reference, Fig. 6.2(b) shows the same processing on a 40 ms time segment of a 5G (new

radio) NR signal which results in a frame length estimation of 10 ms which corroborates the

standard frame length of 5G NR downlink signals.
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Figure 6.2: Autocorrelation of the recorded signal after Doppler wipe-off: (a) Autocorrela-
tion of the 100 ms of Starlink Downlink signal shows a frame length of approximately 1.32
ms. (b) Autocorrelation of 40 ms of 5G NR downlink signal which shows the frame length
of 10 ms (5G NR standard frame length).

6.2.2 Baseband Signal Model

Based on the signal analysis in the previous subsection, the downlink signals from

multiple Starlink SVs are modeled as unknown RSs of OFDM-like signals in the presence

of noise [149]. Therefore, the baseband received signal samples can be written as

r[n] =
N

Â
i=1

ai(tn)ci(tn� tsi [n])exp( jqi(tn))+w[n], (6.1)

where r[n] is the received signal at the nth time instant; N is the total number of Starlink

SVs; ai(tn) is the complex channel gain between the receiver and the ith Starlink SV; tn is

the sample time expressed in the receiver time; ci[n], ci(tn) represents the samples of the

complex periodic RS with a period of L samples; tsi [n] is the instantaneous code-delay corre-

sponding to the receiver and the ith Starlink SV at the nth time instant; qi(tn) = 2p fDi [n]Tsn

is the carrier phase in radians, where fDi [n] is the instantaneous Doppler frequency at the nth

time instant and Ts is the sampling time, and w[n] captures the effect of noise and transmitted
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data, and it is modeled as a complex zero-mean independent and identically distributed

noise with variance s2
w.

It is observed that during the processing interval, the instantaneous Doppler frequency

and the instantaneous code-delay are almost linear functions of time, i.e., fDi [n] = fDi +bin,

and tsi [n] = tsi + gin, where fDi is referred to Doppler, tsi is the code-delay, bi is the Doppler

rate, and gi is referred to as the Doppler stretch corresponding to the ith Starlink satellite.

The coherent processing interval (CPI) is defined as the time interval in which the channel

gain ai(tn), Doppler fDi , code-delay tsi , the Doppler rate bi, and the Doppler stretch gi are

all constant. The received signal at the nth time instant when the Doppler rate is wiped-

off is denoted by r0[n] , exp(� j2pbin2)r[n]. Assuming a constant Doppler rate, one can

define c0i(tn), ci((1� gi)tn� tsi). Due to the priodicity of the RS, c0(tn) is also periodic

with period L0 , L
1�gi

. Moreover, one can define si[n], aic0(tn)exp( j2p fDiTsn) , to obtain

r0[n] = ÂN
i=1 si[n]+w[n]. Due to the periodicity of c0(tn), si[n] has the following property

si[n+mL0] = si[n]exp
�

jwimL0
�

0 n L0 �1, (6.2)

where wi = 2p fDiTs is the normalized Doppler, corresponding to the ith Starlink SV, and

�p  wi  p . A vector of L0 observation samples corresponding to the mth period of

the signal is formed as zm , [r0[mL0],r0[mL0+1], . . . ,r0[(m+1)L0 �1]]T. The CPI vector is

constructed by concatenating K number of zm vectors to form the KL0 ⇥1 vector

y =
N

Â
i=1

Hisi +w, (6.3)

where si = [si[1],si[2], . . . ,si[L0]]T, and the KL0 ⇥ L0 Doppler matrix is defined as Hi ,

[IL0 ,exp( jwiL0)IL0 , . . . ,exp( jwi(M�1)L0)IL0 ]
T, where IL0 is an L0 ⇥L0 identity matrix, and

w is the noise vector.
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6.3 Receiver Structure

This section presents the structure of the proposed receiver. The proposed receiver

consists of two main stages: (i) acquisition and (ii) tracking. Each of these stages are

discussed next.

6.3.1 Acquisition: Sequential Matched Subspace Detection

In this dissertation, the acquisition stage is modeled as a sequential matched subspace

detection problem. The reader is referred to [149,180] for further interpretations of matched

subspace detectors. In the first step of the proposed sequential algorithm, the presence

of a single Starlink SV is tested and if the null hypothesis is accepted then N̂ = 0, which

means that no Starlink SV is detected to be present in the environment under the test. If the

test rejects the null hypothesis, the algorithm verifies the presence of at least one source

and performs the test to detect the presence of other SVs in the presence of the previously

detected SVs, sequentially. The unknown Doppler and the RS of each satellite are estimated

at each step.

6.3.1.1 Sequential Matched Subspace Detector

In order to test the presence of si, at the ith stage of the acquisition algorithm, the observa-

tion vector (6.3) can be written as y=Hisi+Bi�1qqq i�1+w, where, Bi�1,[H1,H2, . . . ,Hi�1], qqq i�1,

[sT1 ,sT2 , . . . ,sTi�1]
T. The generalized likelihood ratio (GLR) test for detecting si at each stage

can be written as [149]

L (y) =
kHH

i P?Bi�1
yk2

kP?Bi�1
yk2

H i
1

?
H i

0

hi, (6.4)
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where H i
1 is the hypothesis that si is present at the ith stage of the acquisition, H i

0 is

the hypothesis that si is absent, yH is the hermitian transpose of y, PX , X(XHX)�1XH,

denotes projection matrix to the column space of X, and P?X , I�PX. The threshold hi is a

predetermined threshold at the ith stage. The ML estimate of wi is obtained by maximizing

the likelihood function under H i
1 which yields

ŵi = argmax
wi
kHH

i P?Bi�1
yk2, (6.5)

and is used to construct PBi�1 and Hi. The least squares (LS) estimate of the ith Starlink

RS, i.e., si, is given by ŝi =
1
li

HH
i P?Bi�1

y, where liI = HH
i P?Bi�1

Hi. If the null hypothesis at

the ith level of the sequential algorithm is accepted, the algorithm is terminated and the

estimated number of Starlink SVs will be N̂ = i�1.

6.3.2 Tracking

After obtaining coarse estimates of the Doppler frequencies and estimates of the RSs

in the acquisition step, the receiver refines and maintains these estimates. Specifically,

phase-locked loops (PLLs) are employed to track the carrier phases of the detected RSs and

carrier-aided delay-locked loops (DLLs) are used to track the RSs’ code phases as in [149].

Each detected source has its own dedicated tracking loop.

6.4 Experimental Results

A stationary National Instrument (NI) universal software radio peripheral (USRP) 2945R

was equipped with a consumergrade Ku antenna and low-noise block (LNB) downconverter

to receive Starlink signals in the Ku-band. The sampling rate was set to 2.5 MHz and the

carrier frequency was set to 11.325 GHz to record Ku signals over a period of 800 s. Six SVs
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were broadcasting nine pure tones during this period, and the algorithm detected OFDM-like

signals in the downlink of three of these Starlink SVs. To avoid redundancy, the acquisition

and tracking results of one of the OFDM transmitting SVs are presented next.

6.4.1 Acquisition

The detection threshold was set hi = 1.02, and K was set to 220. Doppler estimation

was performed by searching for the maximizer of the likelihood function (6.5) according to

with a step size of 1 Hz. The acquisition stages in the proposed receiver is shown in Fig. 6.3.

As it can be seen in this figure, in the first stage of the acquisition, one source is detected at

frequency �249.288 Hz. In the second stage of the acquisition the next source is detected at

207.212 Hz. Finally, In the third stage, the Doppler subspace of the first two sources are

nulled and the resulting likelihood is less than the threshold or equivalently N̂ = 2. It should

be pointed out that the detected sources can be either a satellite or a false alarm (multipath

or other unwanted sources). It will be demonstrated that if at the acquisition stage a false

alarm happens and a source is mistakenly detected, the carrier phase error will not converge

in the tracking loops. In this case, the proposed receiver should neglect the detected source.

Fig. 6.4 demonstrates the correlation properties of the estimated RSs. The slope of the

autocorrelation function shows that all the available bandwidth (2.5 MHz in this experiment)

is exploited.

6.4.2 Tracking

Fig. 6.5 demonstrates the carrier phase error for the two detected sources. As it can

be seen in Fig. 6.5, the carrier phase error for the source located at 207.212 Hz is not
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Figure 6.3: Acquisition stages in the proposed receiver for Starlink downlink signals showing
the likelihood function (6.4) at each stage and the detected and nulled sources.
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Figure 6.4: Autocorrelation function of the estimated RS of Starlink 45694 (RS 1), Starlink
45693 (RS 2), and their crosscorrelation function.

converging. Hence, the proposed receiver does not accept this source. The navigation results

can be seen in Fig. 6.6. The experimental setup and the navigation framework is similar to

the setup in [147]. Six starlink satellite was tracked using the proposed receiver. While all

the six satellites broadcast the pure tones, three of them also transmit OFDM-like signals
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(SVs indicated by green squares). The receiver position was initialized as the centroid of

all SV positions, projected onto the surface of the earth, yielding an initial position error

of 179 km. The receiver is equipped with an altimeter to know its attitude. The final 2-D

position with the pure tones was shown to be 10 m in [147]. When the OFDM-based Doppler

measurements are added the error was reduced to 6.5 m.
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Figure 6.5: Carrier phase error for the source at �249.288 Hz (Starlink 45694) and the
source at 207.212 Hz (False alarm).
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Figure 6.6: Environment layout, skyplot of satellites, and positioning results.

6.5 Differential Positioning with Starlink LEO SV Signals

This section presents experimental results of differential Doppler positioning with signals

from unknown Starlink LEO SVs via the proposed framework. The baseline is considered to

be 1.004 km. In what follows, the experimental setup is first discussed. Next, the navigation

framework and the results from the acquisition and tracking stages of the Starlink receivers

are demonstrated. Finally, receiver differential Doppler positioning results are presented.

6.5.1 Experimental Setup

To demonstrate the performance of the proposed method, a stationary scenario is consid-

ered in which the base was equipped with an Ettus E312 universal software radio peripheral

(USRP) with a consumer-grade Ku antenna and low-noise block (LNB) downconverter to

receive Starlink signals in the Ku band, and the rover was equipped with USRP 2974 with

the same downconverter. An Octoclock was used to synchronize between the clocks of the
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USRPs and the downconverters at the base and the rover. The sampling rate was set to 2.5

MHz, and the carrier frequency was set to 11.325 GHz, which is one of the Starlink downlink

frequencies. The samples of the received signals were stored for off-line post-processing.

The experimental setup is shown in Fig. 6.7.

NI USRP 2974

Downconverter

NI Octoclock Ettus E312

Downconverter

NI Octoclock

Base Rover

Figure 6.7: Base/rover experimental setup of the differential Doppler Starlink positioning
framework.

6.5.2 Differential Doppler Positioning Framework

Pseudorange rate observables can be formed from the tracked Doppler frequencies.

For the ith LEO SV, the pseudorange rate observable at time-step k , which represents the

discrete time at tk = t0 +kT for an initial time t0 and sampling time T , expressed in meters

per second, is modeled as

zir(k) = �c
fDir (k)

Fc

=
ṙrrTSVi

(k 0) [rrrr� rrrSVi(k 0)]
krrrr� rrrSVi(k 0)k

+air

+ c ·
⇥
d ṫr(k)�d ṫSVi(k

0)
⇤

+ cd ṫionoir (k)+ cd ṫtropoir (k)+ vzir (k), (6.6)
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where c is the speed of light; Fc is the carrier frequency; k 0 represents discrete-time at

tk = t0 +kT � d tTOFi , with d tTOFi being the true time-of-flight of the signal from the ith

LEO SV to the receiver; rrrr and rrrSVi(k) are the receiver’s and ith LEO SV 3-D position

vectors; ṙrrSVi(k) is the ith LEO SV 3-D velocity vector; air is the Doppler ambiguity at the

rover; d ṫr and d ṫSVi are the clock drifts of receiver and ith LEO SV, respectively; d ṫionoir

and d ṫtropoir are the ionospheric and tropospheric delay rates, respectively; and vzir (k) is the

measurement noise, which is modeled as a zero-mean, white Gaussian random sequence

with variance s2
ir(k). The value of s2

ir(k) is the first diagonal element of P̃k|k , expressed

in m2/s2. It is worth noting the introduction of the constant bias air , due to the unknown

Doppler frequency ambiguity fa, which was introduced since the exact carrier frequency is

unknown. In what follows, the effect of time-of-flight in the LEO SV position is neglected,

i.e., rrrSVi(k 0) ⇡ rrrSVi(k). This approximation introduces an error in the LEO SV position

which is approximately common between the base and the rover. It should also pointed out

that the error introduced by this approximation is of the order of a few meters, which is

negligible compared to the position error in the TLE files which can be as high as a few

kilometers. LEO SVs’ positions can be estimated through TLE files and orbit determination

algorithms (e.g., SGP4 [208]). Assuming a first-order clock model for both the receiver and

LEO SV [185], the clock drifts can be considered as constant.

In differential Doppler positioning, in addition to the receiver whose position is to

be estimated (denoted as the rover), one has access to Doppler measurements from the

same LEO SV at another reference receiver (denoted as the base) whose position is known

[62,101,235]. Essentially, this framework consists of a rover receiver (r) and a base receiver

(b) in an environment comprising M visible LEO SVs. The objective is to estimate the

position of the rover receiver, given knowledge about the base’s position and Doppler
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observables produced by the base on the same LEO SVs. Similar to (6.6), for the ith LEO

SV, the pseudorange rate observable for the base at time-step k , can be modeled as

zib(k) =
ṙrrTSVi

(k) [rrrb� rrrSVi(k)]
krrrb� rrrSVi(k)k

+aib + c · (d ṫb�d ṫSVi)

+ cd ṫionoib
(k)+ cd ṫtropoib

(k)+ vzib
(k). (6.7)

By subtracting the tracked Doppler frequencies measured at the base from what is measured

at the rover, the common terms, which are the SV clock drifts will vanish, which leads

to less number of unknown terms that need to be estimated. For the differential Doppler

positioning framework, the measurement to the ith LEO SV can be defined by subtracting

the pseudorange rate observables at the base and the rover and adding a “known term”

according to

z̃ir,b(k) = zir(k)� zib(k)+
ṙrrTSVi

(k) [rrrb� rrrSVi(k)]
krrrb� rrrSVi(k)k

=
ṙrrTSVi

(k) [rrrr� rrrSVi(k)]
krrrr� rrrSVi(k)k

+(air �aib)

+ c · (d ṫr�d ṫb)+ c ·
h
d ṫionor(k)�d ṫionoib

(k)
i

+ c ·
h
d ṫtropor(k)�d ṫtropoib

(k)
i
+ vz̃ir,b

(k). (6.8)

The LEO SV position and velocity vectors in (6.8) are obtained from TLE+SGP4 [135]. It

can be assumed that the difference between ionospheric and tropospheric delay rates at the

base and rover are negligible, which is reasonable when the base and the rover are relatively

close to each other (e.g., a few kilometers apart). The ambiguity at both the base aib and

rover air can be resolved by analyzing the Doppler profile for each SV. The variance of the

measurement noise term vz̃ir,b
(k), vzir (k)� vzib

(k) is s2
ir,b(k) = s2

ir(k)+s2
ib(k).
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Therefore, the final differential Doppler poisoning measurement model for the ith LEO

SV is obtained as

z̃ir,b(k) =�c

h
fDir (k)� fDib

(k)
i

Fc
(6.9)

+
�ṙrrTSVi

(k) [rrrb� rrrSVi(k)]
krrrb� rrrSVi(k)k

z̃ir,b(k) =
ṙrrTSVi

(k) [rrrr� rrrSVi(k)]
krrrr� rrrSVi(k)k

+ c · (d ṫr�d ṫb)+ vz̃ir,b
(k). (6.10)

In this framework, by increasing the number of LEO SVs, the number of unknowns remains

constant, i.e., only the rover position vector and the difference between the base and rover

clock drift, defined as Dṫr,b , c · (d ṫr�d ṫb), should be estimated. It should be noted that the

success of the differential Doppler positioning method is dependent on the capability of a

receiver in resolving the Doppler difference between the base and rover.

Using a weighted nonlinear least squares (WNLS) estimator, one could estimate the

vector xxx ,
⇥
rrrr

T,Dṫr,b
⇤T. Let z̃zz denote the vector of all pseudorange rate observables, and let

vvvz̃ denote the vector of all measurement noise, which is modeled as a zero-mean Gaussian

random vector with a diagonal covariance R(k) whose diagonal elements are given by

s2
ir,b(k). Subsequently, one can readily write the measurement equation zzz = ggg(xxx) + vvvz,

where ggg(xxx) is a vector-valued function that maps the vector xxx to the pseudorange rate

observables according to (6.9). An iterative WNLS estimator with weight matrix R�1(k)

yields an estimate of xxx, denoted by x̂xx.
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6.5.3 Tracking and Positioning Results

The ground truth with which the position estimate was compared was taken from the

navigation solution produced by the USRP’s on-board GPS receiver. Over the course of the

experiment, the receivers on-board the base and the rover were listening to three Starlink

LEO SVs, namely Starlink 44740, 48295, and 47728. The SVs were visible for 320 seconds

and their trajectories can be seen in Fig. 6.8.

Fig. 6.9 shows the measured differential Doppler for the three LEO SVs. The spike in

the estimated differential Doppler is due to channel outage and burst error, which is common

in satellite communications.

STARLINK-48295

STARLINK-47728

STARLINK-44740

Figure 6.8: Starlink LEO SVs’ trajectories.

The rover’s initial position estimate was set to be approximately 200 km away from the

base. The rover’s position was estimated via the differential Doppler positioning framework
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Figure 6.9: Measured Doppler difference between the base and the rover versus the predicted
Doppler difference between the base and the rover based on TLE+SGP4 calculations.

described in Section [147]. The 3–D position error was found to be 33.4 m. The 2–D

position error reduced to 5.6 m. Fig. 6.10 summarizes the positioning results.
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Figure 6.10: (a) Rover’s initial position estimate, (b) Base’s and rover’s position, and (c)
Rover’s true and estimated position.

6.6 Differential Navigation with Orbcomm LEO SV Signals

This section presents experimental results of a UAV navigating with signals from

Orbcomm LEO SVs. First, the experimental setup is discussed. Then, the navigation

framework and achieved results are presented.

6.6.1 Experimental Setup

To demonstrate the differential LEO framework with Orbcomm SVs, the rover was a

DJI Matrice 600 UAV equipped with an Ettus E312 USRP, a high-end VHF antenna, and a
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small consumer-grade GPS antenna to discipline the on-board oscillator. The base was a

stationary receiver equipped with an Ettus E312 USRP, a custom-made VHF antenna, and a

small consumer-grade GPS antenna to discipline the on-board oscillator. The receivers were

tuned to a 137 MHz carrier frequency with 2.4 MHz sampling bandwidth, which covers

the 137–138 MHz band allocated to Orbcomm SVs. Samples of the received signals were

stored for off-line post-processing. The LEO Doppler measurements were produced at a

rate of 4.8 kHz and were downsampled to 10 Hz. The the base’s position was surveyed

on Google Earth, and the UAV trajectory was taken from its on-board navigation system,

which uses GNSS SVs (GPS and GLONASS), an inertial measurement unit (IMU), and

other sensors. The hovering horizontal precision of the UAV is reported by DJI to be 1.5 m.

The experimental setup is shown in Fig. 6.11. The UAV traversed a total trajectory of 782

m.

DJI Matrice 600

VHF quadrifilar
helix antenna

Ettus E312
USRP

Custom-built
VHF quadrifilar
helix antenna

Ettus E312
USRP

Rover Base

Laptop

Figure 6.11: Base/rover experimental setup of the CD-LEO framework.

6.6.2 Differential Doppler Navigation Framework

Over the course of the experiment, the receivers on-board the base and the UAV were

listening to 2 Orbcomm SVs, namely FM 108 and FM 116.
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The Doppler measurements, described in [151], were fed to an EKF to estimate the

state vector xxx ,
⇥
rrrTr , ṙrrTr ,Dṫr,b

⇤T, where rrrr and ṙrrr are the UAV’s 3–D position and velocity

vectors, respectively, and Dṫr,b = c · (d ṫr� d ṫb) is the clock drift difference between the

base and rover. A white noise acceleration model was used for the UAV’s dynamics, and a

standard double integrator driven by process noise was used to model the clock bias and

drift dynamics [72]. As such, the discrete-time dynamics model of xxx is given by

xxx(k+1) = Fxxx(k)+www(k), (6.11)

where F = diag
⇥
Fpv,Fclk

⇤
with

Fpv =


I3 T I3

03⇥3 I3

�
, Fclk = 1, (6.12)

and T is the time interval between two measurements and www is the process noise, which is

modeled as a zero-mean white random sequence with covariance matrix Q= diag
⇥
Qpv,Qclk

⇤
,

where Qclk = c2Sw̃ḋ t
T , Qpv = T⌦ Q̃pv, with

T =

"
T 3

3
T 2

2
T 2

2 T

#
, Q̃pv = diag [q̃x, q̃y, q̃z] ,

where ⌦ denotes the Kronecker product, the x,y,z acceleration process noise spectra of

the white noise acceleration model were set to q̃x = q̃y = 1 m2/s3, q̃z = 0.01 m2/s3, the

time interval between two measurements was T = 0.01 s, and the receiver’s clock process

noise spectra were chosen to be Sw̃ḋ t
= 7.9 ·10�25 which is that of a typical temperature-

compensated crystal oscillator (TCXO) [72]. Note that rrrr is expressed in an ENU frame

centered at the UAV’s true initial position. A prior for the UAV position and velocity was

obtained from the UAV’s on-board navigation system. The prior was used to initialize the

EKF. The initial covariance matrix was set to P(0) = diag[4·I3⇥3,0.01 · I3⇥3,0.1]. The

measurement noise covariance was set to R = (0.25) · I2⇥2.
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6.6.3 Tracking and Navigation Results

Unlike OFDMA and CDMA-based signals where the signal power per degree of freedom

is small, in classic modulation schemes, e.g., Mary phase shift keying (PSK), a relatively

larger power is dedicated to each degree of freedom. In other words, the allocated signal

power per each time/frequency unit is relatively higher than spread spectrum techniques

[206]. The Orbcomm constellation utilizes the classic symmetric differential phase shift

keying (SDPSK) as the modulation scheme for the downlink signals [172]. SDPSK is

defined by a “zero" data state causing �p
2 phase shift and the “one" data state causing +p

2

phase shift. In order to increase the effective power of the periodic beacon in the Orbcomm

constellation, the observation samples are raised to a power-of-two, which turns the SDPSK

modulated signal into a fixed sequence of binary samples, which is considered as the RS for

the proposed receiver.

Fig. 6.12 and Fig. 6.13 show the estimated differential Doppler tracking results and the

differential Doppler from the TLE files for the two detected Orbcomm SVs.
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Figure 6.12: Measured Doppler difference between the base and the rover versus the
predicted Doppler difference between between the base and the rover based on TLE+SGP4
calculations for FM 108.

188



280 290 300 310 320 330 340 350 360 370 380

Time (s)

-6

-4

-2

0

2

4

6

D
iff

e
re

n
tia

l D
o
p
p
le

r 
(H

z)

Estimated Doppler Difference TLE Doppler Difference

Figure 6.13: Measured Doppler difference between the base and the rover versus the
predicted Doppler difference between between the base and the rover based on TLE+SGP4
calculations for FM 116.

Fig. 6.14 shows the true UAV trajectory and the estimated trajectory achieved with

the proposed differential navigation framework. The 3–D position RMSE along the 782

m trajectory was calculated to be 18.87 m. It should be pointed out that the EKF used

TLE+SGP4 were used to estimate the Orbcomm LEO SV states. Despite the LEO SV

position estimates suffering from errors on the order of kilometers, the UAV’s navigation

solution was rather accurate, considering that only 2 SVs where used without other sensors.

6.6.4 Iridium NEXT System Overview

The Iridium NEXT constellation is the next-generation Iridium constellation which

provides voice and data information coverage to satellite phones, pagers, and integrated

transceivers over the entire Earth surface on the L-band [60].

6.6.4.1 Iridium NEXT LEO Satellite Constellation

The Iridium Next constellation consists of 75 active satellites that orbit the Earth in 6

different orbital planes spaced 30� apart [60]. The planes are near-polar orbits with 86.4�
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UAV trajectories:
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Figure 6.14: (a) Trajectories of the 2 Orbcomm LEO SVs. (b) Experimental results showing a
UAV navigating for 782 m with 2 Orbcomm LEO SV signals using the proposed framework.

inclination angle and 780 km orbital altitude. Originally, the Iridium constellation was

designed to incorporate 66 satellites (gathered in 6 groups of 11) in order to provide coverage

for the entire Earth surface. Later, Iridium decided to enlarge the initial constellation

(referred to as the NEXT campaign) by launching 12 extra satellites in order to provide

24/7 real-time coverage, which would add two extra satellites on each of the original orbital

planes. Unfortunately, 3 of them are not active since they experienced technical difficulties

once they were launched and thus the current constellation remains at 75 satellites.

6.6.4.2 Iridium NEXT Downlink Signals

Iridium NEXT signals are transmitted over the 1616–1626.5 MHz band, which is part of

the L-band. There are 252 carriers in both the uplink and downlink channels, with carrier
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spacings of 41.6667 kHz with a required bandwidth of 35 kHz [60]. These carrier frequencies

are grouped into sub-bands of 8 carriers, with the 32nd group containing 4 carriers. A small

portion of the Iridium NEXT spectrum, namely 1626–1626.5 MHz is assigned for paging

and acquisition [60]. On this part of the spectrum are 5 simplex downlink channel with the

same frequency spacing as the standard channels and with 35 kHz of bandwidth. Doppler

measurements are extracted from the simplex downlink channels.

Iridium NEXT uses a TDMA scheme for downlink channel multiplexing. The signal

structure over the uplink and downlink channels consists of signal bursts that are sent

periodically over the TDMA frame. Each burst is composed of an unmodulated tone,

succeeded by a unique word and the information data. On the simplex channel, Iridium

NEXT satellites transmit the ring alert as well as paging/acquisition messages, which have

the same burst structure as the standard carriers. As such, the pure tone transmitted at the

beginning of each burst can be used to extract Doppler measurements. However, the burst

duration is 2.56 ms and the burst period is about 1700 times longer at 4.32 seconds.

6.6.5 Multi Constellation Tracking

6.6.6 Tracking LEO Satellite Signals

After obtaining coarse estimates of the Doppler frequencies and estimates of the RSs

in the acquisition step, the receiver refines and maintains these estimates. In what follows,

closed loop tracking architectures are presented that are used to refine the and track the

Doppler and carrier phase estimates: (i) phase-locked loops (PLLs) which are employed to

track the carrier phases of the detected RSs and carrier-aided delay-locked loops (DLLs)

are used to track the RSs’ code phases, and (ii) Kalman Filter-Based Doppler Tracking.
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Remark 2: Carrier-phase changes more rapidly compared to the Doppler frequency. It

is straightforward to show that the Cramér-Rao lower bound of a random variable which

changes slowly is smaller than a random variable that changes rapidly in time [91]. Carrier-

phase, and carrier-aided code phase tracking convergence typically requires a higher signal

power compared to Kalman Filter-Based Doppler tracking. Therefore, in weak signal

scenarios, in a case that the PLL and DLL loops does not converge, the Kalman Filter-based

Doppler tracking might be able to keep track of the Doppler.

6.6.6.1 Carrier Phase Tracking

Specifically, phase-locked loops (PLLs) are employed to track the carrier phases of the

detected RSs and carrier-aided delay-locked loops (DLLs) are used to track the RSs’ code

phases.

The PLL consists of a phase discriminator, a loop filter, and a numerically-controlled

oscillator (NCO). Since the receiver is tracking a periodic RS, an discriminator,

which remains linear over the full input error range of ±p , could be used without the risk of

introducing phase ambiguities. It was found that the receiver could easily track the carrier

phase with a second-order PLL with a loop filter transfer function

FPLL(s) =
2kwns+w2

n
s

, (6.13)

where k ⌘ 1p
2

is the damping ratio and wn is the undamped natural frequency, which can

be related to the PLL noise-equivalent bandwidth Bn,PLL by Bn,PLL = wn
8z (4z 2 + 1) [131].

The loop filter transfer function in (6.35) is discretized at a sampling period Tsub , LTs,

which is the time interval at which the loop filters are updated (commonly referred to as the

subaccumulation interval). The discretized transfer function is realized in state-space. The
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output of the loop filter at time-step k, denoted by vPLL,k, is the rate of change of the carrier

phase error, expressed in rad/s. The Doppler frequency estimate at time-step k is deduced by

dividing vPLL,k by 2p . The carrier phase estimate at time-step k is updated according to

f̂k = f̂k�1 + vPLL,k ·Tsub, (6.14)

where f̂0 ⌘ 0. A measure of the change in distance rate between the transmitter and receiver

can be formed from the carrier phase as z(k) = c
2pFc

vPLL,k, where c is the speed-of-light and

Fc is the carrier frequency.

6.6.6.2 Kalman Filter-Based Doppler Tracking

The time-varying component of the continuous-time true Doppler is a function of (i)

the true range rate between the LEO SV and the receiver, denoted by ḋ(t) and (ii) the

time-varying difference between the receiver’s and LEO SV’s clock bias rate, denoted by

ḃ(t) and expressed in meters per second. Hence,

w(t) = 2p

� ḋ(t)

l
+

ḃ(t)
l

+ fa

�
, (6.15)

where l is the carrier wavelength. The clock bias is assumed to have a constant drift,

i.e., b(t) = a(t� t0)+ b0. Moreover, simulations with LEO SVs show that the following

kinematic model for d(t) holds for short period of times

...
d (t) = w̃(t), (6.16)

where w̃ is a zero-mean white noise process with power spectral density qw̃. Let k denote

the time index corresponding to tk = kT + t0, where T = M ·L ·Ts is the sampling interval,

also known as subaccumulation period, and M ·L is the number of subaccumulated samples.
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The discrete-time kinematic model of the Doppler state vector wwwk , [wk, ẇk]
T is given by

wwwk+1 = Fwwwk +wk, (6.17)

F ,


1 T
0 1

�
, Q , qw̃

"
T 3

3
T 2

2
T 2

2 T

#
, (6.18)

where F is the discrete-time state transition matrix, wk is the discrete-time process noise with

zero mean and covariance matrix Q. The initial state is given by www0 =
⇥
2p fa +

2p
l (a� ḋ(t0)),�2p

l d̈(t0)
⇤T.

Let ŵwwk|l denote the KF estimate of wwwk given all the measurements up to time-step l  k,

and P̃k|l denote the corresponding estimation error covariance. The initial estimate ŵww0|0

with a corresponding P̃0|0 are provided from the acquisition stage. The KF-based tracking

algorithm time update and the measurement update are discussed next.

6.6.6.3 Kalman Filter Time Update

The KF time update equations are straightforwardly given by

ŵwwk+1|k = Fŵwwk|k, (6.19)

P̃k+1|k = FP̃k|kFT+Q. (6.20)

6.6.6.4 Kalman Filter Measurement Update

The KF measurement update equations is carried out based on the ML estimate of the

Doppler. The Doppler wipe-off is performed as r̃k[i] = r[i+ kML]exp
⇥
� jq̂k+i|k

⇤
, where

q̂k+i|k is obtained according to q̂k+i|k = ŵk|kiTs+ ˆ̇wk|k
i2
2 T 2

s , for i = 0, . . . ,ML�1. The vector

ỹk+1 is constructed as ỹk+1 = [r̃k[0], r̃k[2], . . . , r̃k[ML�1]]T. Similar to (6.3), one can show

that

ỹk+1 = H̃k+1s+ w̃eqk+1 , (6.21)
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where the residual Doppler matrix is

H̃k+1

, [IL,exp( jDwkL)IL, . . . ,exp( jDwk+1(M�1)L)IL]
T, (6.22)

and Dwk+1 = wk+1� ŵk+1|k. The proposed KF innovation is given by

nk+1 = argmaxDwk+1

1
M
kH̃H

k+1ỹk+1k2, (6.23)

which is a direct measure of the Doppler error.

6.6.6.5 Kalman Filter Initialization

The initial estimates of the Doppler ŵ0|0 and the Doppler rate ˆ̇w0|0 are obtained from the

acquisition stage. Let D fD and D ḟD denote the sizes of the Doppler and Doppler rate search

bins. It is assumed that the initial Doppler and Doppler rate errors are uniformly distributed

within one bin, and their initial probability density functions (pdfs) are bounded by Gaussian

pdfs with zero-mean and standard deviations D fD
3 and D ḟD

3 , respectively. Therefore, the KF

is initialized with

ŵww0|0 =
h
2p f̂D(0),2p ˆ̇fD(0)

iT
,

P̃0|0 = diag


4p2

9
D f 2

D,
4p2

9
D ḟ 2

D

�
. (6.24)

The tracking results can be seen in Fig. 6.15. The results are compared wit Doppler

frequency obtained from TLE+SGP4 propagator.
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Figure 6.15: Doppler tracking results of three constellations: (i) Starlink, (ii) Iridium Next,
and (iii) Orbcomm.

6.7 Estimation of Doppler Stretch with Application to Tracking Glob-
alstar Satellite Signals

This section considers Globalstar satellite signals. To the best of the author’s knowledge,

this section shows the first tracking results of Globalstar signals. One of the challenges of

opportunistic navigation with Globlastar satellites is Doppler compensation. In Globalstar

LEO satellite system, the Doppler is compensated to a nominal value at the satellite or at

the ground station [181]. Doppler compensation takes place based on the center of each

satellite transmitter beams. When the Doppler is compensated, the measured Doppler by

a ground receiver is different from the real Doppler, which renders the measured Doppler

unusable for opportunistic navigation. This section utilizes spectrum distortion to recover

the Doppler frequency and track Globalstar satellite signals. The idea behind the presented

method is that even though the Doppler is compensated, it can be be estimated coarsely at

the receiver, based on the time compression or expansion of the received signal due to the

original Doppler. This compression/expansion effect changes the apparent chipping rate at

the receiver and distorts the spectrum of the transmitted signal.
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6.8 Signal Model

Consider a LEO satellite that moves with a constant radial velocity v relative to the

receiver. The velocity is positive if the LEO satellite moves away from the receiver. Thus,

the distance between the LEO satellite and the receiver is r(t) = r(0)+ vt. Denote the

transmitted signal by p(t)exp( jwct), where p(t) is a waveform, wc = 2p fc, and fc is the

carrier frequency. The received signal can be modeled as

y(t) = a p(t� t(t))exp [ jwc(t� t(t))]+w(t), (6.25)

where a is the channel gain, w(t) is an additive noise, and

t(t) = r(t)
c

= t0 + gt, (6.26)

where t0 , r(0)
c , g , v

c is the Doppler stretch, and c is the speed of light. Hence, the received

signal can be written as

y(t) = a 0p [(1� g)t� t0]exp(� j2p fDt)exp( jwct)+w(t), (6.27)

where fD = fcg is the Doppler frequency, and a 0 = a exp(� jwct0) is the equivalent channel

gain. It can be inferred from (6.27) that the Doppler effect results in the time expansion

or time compression of the transmitted signal. In other words, the relative velocity of the

transmitter and the receiver results in two changes in the characteristics of the transmitted

signal: (i) the phase which appears as the Doppler frequency shift and (ii) the time scale

which appears as time expansion or time compression. However, in some applications, the

expansion or compression is negligible. More precisely, denoting the bandwidth and the

duration of the transmitted signal by B and T , respectively, if

BT ⌧ c
2|v| , (6.28)

197



the stretching effect can be neglected [236], i.e., (6.27) can be approximated as

y(t)⇡ a 0p(t� t0)exp(� j2p fDt)exp( jwct)+w(t), (6.29)

which is referred to as the narrow-band model for the transmitted signal. Intuitively, a

periodic signal can be considered as a linear combination of constant frequency complex

exponential components, i.e., exp( j2p f t), where f is within the bandwidth of the transmitted

signal. For each complex exponential component, the Doppler changes the carrier frequency

by |g| f , which results in the variation of phase rotation over the signal duration of T
1�g by

2p|g| f T/(1� g). Hence, 2|v|BT/c⌧ 1 should hold in order for the variations of the phase

rotations for all the complex exponential components to be equal.

6.8.1 Globalstar Forward Link Signals

Globalstar LEO satellites employ CDMA. For a given Forward CDMA Channel, the

spreading and modulation process is applied as shown in Fig. 6.16. The spreading sequence

structure is comprised of an inner PN sequence pair and an outer PN sequence. The inner

sequence has a chip rate of Rcin = 1.2288 Mcps and a length of Lcin = 210 chips. The outer

PN sequence has 1200 outer chips per second and a length of 288 outer PN chips. One inner

PN sequence period exactly fits into a single outer PN chip. The outer PN modulates the

inner PN sequence to produce the actual spreading sequence resulting in a period of 240

ms. It should be noted that the inner PN sequence pair identifies the satellite orbital plane;

there are eight different pairs. The outer PN sequence identifies the satellite. Each satellite

beam is identified by a time offset of the outer PN sequence for the corresponding orbit.

The gateways perform precorrection of time and frequency in their transmitted waveform to

compensate for time delay and Doppler variations due to satellite motion for the feeder link.

198



Considering inner and outer PN sequences, the overall length of PN sequence for Globalstar

signals is Lc = 288⇥210 chips an the period of the PN sequence is Tc = 0.24 s. However,

accroding to (6.27), and due to the high speed of the LEO satellites relative to the receiver,

the apparent period of the transmitted signal at the receiver might be different from Tc. This

is due to the time expansion or time compression effect.

Modulated data

Outer PN
sequence
generator

Baseband
filter

Baseband
filter

sin(!ct)

cos(!ct)

D

1-Outer PN chip delay

I-Channel inner PN sequence

Q-Channel inner PN sequence

Σ

Figure 6.16: Block diagram of forward link spreading in Globalstar CDMA based downlink
signals. In this diagram the + sign is used to show the spreading operation [181].

Remark 1: According to (6.27), the apparent period is Tcapp =
Tc

1�g and, consequently, the

apparent chipping rate is Rcapp = Rc� e , where e = gRc hereafter is referred to as chipping

rate offset (CRO).

It should be pointed out that the relation ship between the CRO and the Doppler is

e = Rc
fc fD. For instance, for a transmitted signal at carrier frequency 2481.77 MHz with a

chipping rate of Rc = 1.2288 MHz and a Doppler frequency of 20 kHz will result in e ⇡ 10

Hz.
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Assuming that the sampling frequency is Fs, the number of samples of one period of the

PN sequence is Nc =
Lc
Rc

Fs. Therefore, the apparent number of samples of the PN sequence

is

Ncapp =
NcRc

Rc� e
=

LcFs

Rc� e
. (6.30)

Factorizing Rc, expanding the Taylor series results around e = 0, and retaining the first

terms results in

Ncapp t
LcFs

Rc

✓
1� e

Rc

◆
. (6.31)

Therefore, the apparent number of samples of the PN sequence will change by

k =
�

NcFse
R2

c

⇡
(6.32)

samples, where b·e denotes rounding to the closest integer.

6.9 Chipping Rate Offset Estimation

As mentioned previously, due to the high Doppler frequencies of LEO satellites, the

apparent chipping rate can be different from its original value and the difference between

these two values is referred to as the CRO.

6.9.1 Doppler compensation

In a wideband communication system, when the bandwidth and signal duration do not

satisfy (6.28), the narrowband signal model (6.29) will not hold and conventional Doppler

and delay estimation/tracking schemes will not work properly [236]. Hence, a Doppler track-

ing algorithm should be aided by a CRO estimator. In this section, another motivation for

CRO estimation is presented. In some LEO satellites, the Doppler is corrected/compensated
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at the gateway [181]. Doppler compensation is performed to reduce the apparent Doppler

frequency at the user terminals. Using phased array antennas, spot beams can be used to

enhance coverage and reduce interference [30]. Doppler compensation can be performed at

the gateway according to the center of a spot beam (see Fig. 6.17). Therefore, the user will

experience a Doppler which is different from fD in (6.27). Hence, the estimated Doppler

will not match with that of the TLE files.

Downlink

LEO satellite

Uplink

Gateway

Spot-Beam Center

Spot-Beam

Figure 6.17: Gateway to user terminal link and the spot beam.
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6.9.2 Recovering the Original Doppler Frequency

Denoting the estimated Doppler of the center of spot beam at the gateway by f̂DG, the

received signal model can be expressed as

y(t) = a 0p [(1� g)t� t0]exp
⇥
� j2p

�
fD� f̂DG

�
t
⇤

· exp( jwct)+w(t). (6.33)

After carrier wipe-off and sampling, the discrete-time model can be expressed as

y[n] = a 0p[(1�n)n�n0]exp
✓

j2p fD� f̂DG

Fs
n
◆
+w[n]. (6.34)

Consequently, a Doppler estimator yields an estimate of the compensated Doppler, i.e.,

fD� f̂DG, rather than the true Doppler. It should be pointed out that g still contains the

effect of the Doppler frequency. Therefore, estimating g provides an estimate of the Doppler

frequency according to fD = g fc. The maximum likelihood estimator is used to estimate

e and consequently the PN sequence. The detected PN sequence was used to acquire and

track the Globlstar satellite signal using the receiver implementation discussed in [107]. It

should be pointed out that the detected PN sequence has a time-varying length. In other

words, the length of the PN sequence depends of the Doppler frequency which changes with

time. Therefore, the main difference between the proposed receiver and the CDMA receiver

presented in [107] is that the delay estimation is performed using the PN sequence with the

apparent length.

6.9.3 CRO-Aided Tracking Loops

After obtaining an estimate of g , phase-locked loops (PLLs) are employed to track the

carrier phases of the detected satellite and carrier-aided delay-locked loops (DLLs) are used
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to track the code phase of the PN sequence. Fig. 6.18 shows the block diagram of the

CRO-aided tracking loops [146].

Carrier
wipe-off Correlator

Carrier phase
discriminator

discriminator
Code phase

Loop filter

Loop filter

NCO
PN Sequence

Likelihood
update

update

Figure 6.18: Block diagram of CRO-aided tracking loops.

Using a maximum-likelihood (ML) estimator of g , the apparent chipping rate of the

locally generated PN sequence is adjusted according to Rcrmapp = Rc� e .

The PLL consists of a phase discriminator, a loop filter, and a numerically-controlled

oscillator (NCO). It was found that the receiver could track the carrier phase with a second-

order PLL with a loop filter transfer function

FPLL(s) =
2kwns+w2

n
s

, (6.35)

where k ⌘ 1p
2

is the damping ratio and wn is the undamped natural frequency, which can

be related to the PLL noise-equivalent bandwidth Bn,PLL by Bn,PLL = wn
8z (4z 2 + 1) [131].

The loop filter transfer function in (6.35) is discretized at a sampling period Tsub , Lc
Fs

,

which is the time interval at which the loop filters are updated and is typically known as the

subaccumulation interval. The discretized transfer function is realized in state-space. The

output of the loop filter at time-step k, denoted by vPLL,k, is the rate of change of the carrier
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phase error, expressed in rad/s. The Doppler frequency estimate at time-step k is deduced by

dividing vPLL,k by 2p . The carrier phase estimate at time-step k is updated according to

q̂k = q̂k�1 + vPLL,k ·Tsub, (6.36)

where q̂0 ⌘ 0.

The carrier-aided DLL employs an early-minus-late discriminator. The early and late

correlations at time-step k used in the discriminator are denoted by Zek and Zlk , respectively,

which are calculated by correlating the received signal with an early and a delayed version

of the estimated PN sequence, respectively. The time shift between Zek and Zlk is defined as

the early-minus-late time, denoted by x . The DLL loop filter is a simple gain KDLL, with

a noise-equivalent bandwidth Bn,DLL = KDLL
4 ⌘ 0.5 Hz. The output of the DLL loop filter

vDLL is the rate of change of the code phase, expressed in s/s. Assuming low-side mixing at

the radio frequency front-end, the code phase estimate is updated according to

t̂sk+1 = t̂sk�
✓

vDLL,k +
vPLL,k

2p fc

◆
·Tsub. (6.37)

The code phase estimate can be used to deduce the pseudorange observables.

6.10 Experimental Results

This section validates the proposed receiver experimentally. The objective of these

experiments are to: (i) compare the measured Doppler with the Doppler from the TLE

files to visualize the Doppler compensation effect and (ii) compare the variation in the

pseudorange estimated by the receiver to the variation in range between the stationary

receiver and the Globalstar satellites obtained by the TLE files. For this purpose, the

stationary receiver was equipped with a costumer-grade GAT-17MP Globalstar antenna and
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a small consumer-grade GPS. The satellite signals were down-mixed and sampled via a

single-channel universal software radio peripheral (USRP) 2974 driven by a GPS-disciplined

oscillator (GPSDO). Samples of the received signals were stored for off-line post-processing.

Fig. 6.19 demonstrates the estimated Doppler by the receiver and the Doppler obtained

from the TLE files. It can be seen that the measured Doppler is dramatically different

from the Doppler profile obtained from the TLE files. As mentioned previously, Doppler

compensation is performed to reduce the apparent Doppler frequency at the user terminals.

Doppler compensation is performed at the gateway according to the center of the spot beam.

Due to the distance between the center of the spot beam and the user terminal, the user

terminal experiences a Doppler frequency which is relatively smaller than what is expected

from the Doppler from the TLE files.
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Figure 6.19: The estimated Doppler frequency and the Doppler obtained from TLE files.
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The CRO e is estimated and used to estimate the transmitted PN sequence. The likelihood

function of the ML estimator for different values of e is demonstrated in Fig. 6.20. The

estimated PN sequence was used to acquire and track the Globlstar satellite using the receiver

implementation discussed in [107]. The tracking tracking results versus those obtained from

TLE are plotted in Fig. 6.21.

As can be seen from this figure, the proposed method is tracking the pseudorange of one

of Globalstar satellites which was available in a window of 190 s at the time of experiment.

The average error between the measured pseudornage and the pseudorange predicted is

approximately 111.12 m over a window of 190 s.
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Figure 6.20: The likelihood function for the ML estimator of Globalstar forward link signals
for different values of epsilon.

206



GS 37743

(a)

(b)

Receiver

Figure 6.21: (a) Trajectory of Globalstar satellite GS 37743. (b) Comparing the delay
tracking results obtained by the proposed receiver with the delays obtained from the TLE.

6.11 Deciphering GPS Signals

6.11.1 Received Baseband Signal Model

Let s(t) denote the beacon signal consisting of L consecutive symbols with symbol

duration Tsymb. Each symbol is drawn from an arbitrary MPSK constellation. The beacon

signal is continuously transmitted at a period of L ·Tsymb. After channel propagation and

baseband sampling at an interval Ts, the received signal can be modeled as

y[n] =
•

Â
i=�•

adi exp [ j (2pD f [n]n+q0)]s[n� iL�nd[n]]+w[n], (6.38)
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where y[n] is the complex baseband sample at the nth time slot; N = LTsymb
Ts

is the length of

the beacon in samples; D f [n], fD[n]Ts is the normalized Doppler frequency and fD is the

true Doppler frequency in Hz; q0 is the initial beat carrier phase; w[n] models noise and

interference; a is an unknown complex amplitude; di is a low rate data symbol drawn from

the same constellation of the beacon signal, e.g., navigation bits in GPS signals; and nd is

the unknown delay of the received beacon signal which can be modeled as

nd[n] =
�

td[n]
Ts

⇡
, td[n], td0�

D fD[n]
fc

n, (6.39)

where td0 is the initial delay in seconds of the received beacon signal and fc is the carrier

frequency.

It is worth noting that the signal model in (6.38) is descriptive of the majority of BON

scenarios. In some cases, (6.38) directly applies, i.e., the received signal consists purely

of one signal of interest and observation noise. In other scenarios, such as CDMA-based

communication systems, the presence of interference should also be taken into account.

For example, there is a total of 128 logical channels multiplexed onto one cdma2000

forward-link channel: (i) one pilot channel, (ii) one sync channel, (iii) up to seven paging

channels, and (iv) traffic on the remaining channels. Each of these logical channels is

spread orthogonally by a 128-Walsh code, multiplexed with the rest of the channels, and

the resulting signal is multiplied by a complex PRN sequence which consists of a pair of

maximal-length sequences. The CDMA signal is then filtered to limit its bandwidth before

transmission. In such a system, and CDMA systems in general, the signal on the pilot

channel simplifies to the complex PRN sequence, which is the beacon of interest. Therefore,

one can look at the CDMA signal as the sum of two terms: (i) the signal on the pilot channel,

or the beacon signal, and (ii) the sum of the signals on the remaining channels. Due to
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the properties of Walsh codes and assuming the symbols on the sync, paging, and traffic

channels are uncorrelated, one can model the sum of the signals on the remaining channels

as noise. In fact, for a large number of logical channels such as in cdma2000, the central

limit theorem practically applies and the resulting noise can be modeled as a zero-mean

Gaussian random variable. Consequently, the CDMA signal can be modeled according to

(6.38), where s[n] is the beacon on the pilot channel, and w[n] captures channel noise and

interference from the rest of the logical channels.

6.12 THE BON FRAMEWORK

The core of the BON framework comprises: (i) detection of multiple SOPs, (ii) blind

Doppler tracking, (iii) coherent accumulation, and (iv) beacon signal decoding (see Fig.

6.22).

Carrier
wipe-off Correlator

Carrier phase
discriminator

discriminator
Code phase

Loop filter

Loop filter

NCO
PN Sequence

Likelihood
update

update

Figure 6.22: BON framework.

This paper mainly focuses on the blind Doppler estimation and the beacon signal

decoding steps. However, properly designed algorithms for signal activity detection of
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multiple SOPs in the bandwidth of interest and the coherent integration of the observations

are essential steps to cognitively decipher the SOPs. It should be pointed out that signal

activity detection of multiple SOPs may also include an additional modulation classification

step to identify the modulation type of the beacon signals of the corresponding SOPs.

Spectrum sensing techniques in cognitive radio systems, e.g, the energy detector [117],

and blind modulation classification methods, e.g., [39] and the references therein, can be

employed to detect the presence of SOPs and classify the modulation type of their beacon

signal. In the BON framework developed in this paper, a heuristic algorithm for joint signal

activity detection and modulation classification is presented. The algorithm performs a

nonlinear operation to wipe-off the data symbols and turn the received signal into a pure

tone. Then, the fast Fourier transform (FFT) of the resulting signal is taken to detect the

tone and estimate its location in the frequency spectrum. For instance, for MPSK modulated

data, raising the received signal to the power of M wipes off the data symbols. For an

MPSK signal where M is unknown, the signal is raised to varying powers until a pure tone is

observed in the FFT. The value of M for which the tone appears determines the order of the

PSK modulation of the unknown signal. Next, the Doppler frequency of the resulting tone

is tracked and the beacon symbols are subsequently decoded using the methods discussed

in the following subsections. It is important to note that this operation can be performed

simultaneously on multiple SOPs with different Doppler frequencies. In the sequel, M is

assumed to be known via the aforementioned procedure.
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6.12.1 Blind Doppler Estimation

6.12.1.1 Coherent Processing Interval for Doppler Estimation

As mentioned previously, blind Doppler estimation is one of the main challenges that has

to be addressed in the BON framework. To this end, a blind Doppler estimation algorithm is

discussed next. Define a coherent processing interval (CPI) of length I samples in which

the Doppler frequency is assumed to be constant. Therefore, for a CPI index k, the Doppler

within the kth CPI can be expressed as fD[n] = fDk for kI  n  (k+ 1)I� 1. The blind

Doppler estimator in the BON framework processes one CPI at a time to estimate the time

history of the Doppler frequency. Define the vector of wiped-off observations in the kth CPI

as

ȳyyM
k ,

⇥
(y[kI])M,(yM[kI +1])M, . . . ,(yM[(k+1)I�1])M⇤T , (6.40)

which can now be approximated by samples of a pure tone with normalized Doppler

frequency MD f . The Doppler tracking algorithm relies on estimating the frequency of this

tone in each CPI, and is stated in Algorithm 2. Define the vector of estimated Doppler

frequencies as

f̂ff
K
D ,

⇥
f̂D0 , f̂D1 , . . . , f̂DK�1

⇤T
.

Algorithm 2 summarizes the steps to obtain f̂ff
K
D from

�
ȳyyM

k
 K�1

k=0 .

6.12.2 Coherent Integration

In this subsection, it is assumed that I = N. The following results can be extended to

I > N. Given an estimate of the Doppler frequency, an estimate of the change in the beacon

211



Algorithm 2 Blind Doppler estimator

Input:
�

ȳyyM
k
 K�1

k=0

Output: f̂ff
K
D

For k 2 {0, . . . ,K�1}
· Find b̂k = argmax

���FFT
�
ȳyyM

k
��� .

· Calculate D f̂k =

(
b̂k

M·I b̂k  I
2

I�b̂k
M·I b̂k >

I
2

· Calculate f̂Dk =
D f̂k
Ts

.
End

signal delay t̂dk at the kth CPI can be formed according to

t̂dk =
k�1

Â
l=0

f̂Dl

fc
NTs.

Subsequently, the Doppler frequency can be wiped-off from the original observation, result-

ing in

ŷk[m], y[m+ kI]exp
⇥
� j
�
2pD f̂km+ q̂k

�⇤
⌦d [m+ kI� n̂dk ], 0 m N�1,

(6.41)

where n̂dk =
j t̂dk

Ts

m
, q̂k , 2p fct̂dk is the estimated carrier phase, and ⌦ denotes the circular

convolution. Subsequently, F frames of the resulting signal are accumulated according to

ỹ[m] =
1
F

 
ŷ0[m]+

F�1

Â
k=0

d̂kŷk[m]

!
⇡ a 0s[m�n0]+w0[m], (6.42)

where n0 , b
td0
Ts
c is the initial beacon signal delay; w0 models the resulting noise; a 0 is a

constant complex amplitude capturing the channel effect, initial beat carrier phase, and the

residual Doppler; and d̂k = Pk
k=0d̃r is the estimate of the low rate data, where

d̃r = sgn

(
Re

(
N�1

Â
m=0

ŷr[m]ŷr�1[m]⇤
))

; (6.43)

where Re{·} denotes the real part. Note that the signal part of the right-hand side of (6.42)

is a shifted version of the beacon signal with a complex scaling. Let the vector zzz of length L
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denote the resampled vector z̃zz , [ỹ[0], . . . ỹ[N�1]]T down to the symbol rate. The vector zzz

is then fed to the beacon decoding algorithm to decipher the beacon signal.

6.12.3 Blind Beacon Decoding

After wiping-off the Doppler, performing coherent integration, and resampling, the

symbols of the beacon signal are decoded. The decoding problem can be modeled as

zzz = āsss+ w̄ww, (6.44)

where ā is the unknown complex amplitude and w̄ww the resulting noise vector after resampling.

Consider the set L consisting of all ML combinations of L-dimensional vectors qqq whose

elements are the integers between 0 to M� 1. For MPSK signals, a beacon sequence is

given by sss = exp
⇣

j2p
M qqq
⌘

, where qqq 2L . The maximum likelihood (ML) decoder of qqq is

q̂qq = argmax
qqq2L

����zzz
H exp

✓
j2p
M

qqq
◆���� , (6.45)

where (·)⇤ and (·)H are the complex conjugate and Hermitian operators, respectively.

A naïve solution to the optimization problem (6.45) consists of a brute-force search over

all possible values of qqq, which has exponential complexity. The order of the brute-force

search is ML. In an effort to solve (6.45) in less than quadratic complexity, the methods

described in [126] and later again in [196] are used to decode the beacon signal. It can be

shown that the complexity of the algorithms proposed in [126] and [196] are on the order

L log2 L.
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6.13 EXPERIMENTAL RESULTS

In order to demonstrate the capability of the BON framework in cognitively deciphering

a signal of interest, an experiment was conducted with real GPS signals. The GPS L1 C/A

signals contain PRN codes at 1.023 Mega chips per second (Mcps), modulated by binary

PSK (BPSK) (M = 2) navigation bits at 50 bits per second (bps). Multiple GPS satellites

transmit simultaneously in the same channel using CDMA. In what follows, the experimental

setup is first described. Next, GPS PRNs are decoded using the BON framework. The

decoded PRNs are then used in an SDR to produce pseudorange measurements on GPS

satellites and in turn solve for a stationary receiver’s position.

6.13.1 Experimental Setup

The setup consists of a GPS antenna, which was mounted on the roof of the Winston

Chung Hall at the University of California, Riverside, USA. The GPS signals were down-

mixed and sampled via a National Instruments universal software radio peripheral (USRP),

driven by a GPS-disciplined oscillator (GPSDO). The samples of the received signals were

stored for off-line post-processing.

6.13.2 Deciphering GPS PRNs with the BON Framework

6.13.2.1 Multiple Signal Detection

A heuristic method to detect and localize multiple SOPs in the frequency-domain was

proposed in Section 6.12. In order to detect and classify multiple SOPs, the observations are

raised to the power of M to wipe off the PRNs and the low rate data symbols and detect the
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resulting pure tone. Since GPS satellites transmit BPSK signals, when the received signal is

raised to the power M = 2, the data is wiped off and results in complex exponentials with

twice the Doppler frequencies. This allows the BON framework to detect several satellites

that transmit in the same channel, and multiple peaks will be seen in the Fourier transform

of the dataless signal, as shown in Fig. 6.23.

6.13.2.2 Blind Doppler Estimation

Next, the peaks shown in Fig. 6.23 are tracked over time by performing Algorithm 2

on sequential CPIs of the stored samples, producing Doppler frequency estimates to each

satellite, as shown in Fig. 6.24(b). The CPI is considered to be I = 120N. The estimated

Doppler was compared with the Doppler calculated from the known receiver position and

the satellite positions obtained from the two-line element (TLE) files and orbit determination

software (e.g., SGP4 [211]). TLE files contain the Keplerian elements parameterizing the

orbits of LEO satellites and are made publicly available and updated daily by the North

American Aerospace Defense Command (NORAD) [152]. As it can be seen in Fig. 6.24(b)

and 6.24(c), the blind chirp parameter estimator successfully tracks the Doppler frequency of

multiple SOPs producing negligible residuals when subtracted from the Doppler frequencies

obtained from TLE and SGP4.

6.13.2.3 Beacon Signal Decoding

Once the Doppler frequencies are estimated, the residual carrier is wiped off from the

received signal, compensated for delays due to Doppler, and coherently accumulated. The

navigation bits are wiped off by two successive frames to determine whether a transition
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Figure 6.23: (a) Joint signal activity detection and modulation classification of the beacon
signals: Recall that the frequency component of power of two will be double that of the
original signal. (b) Multiple satellite detection: FFT peaks corresponding to different GPS
satellites. (c) FFT peaks of PRN 21 at t = 0 s and t = 120 s.

0 60 120 180
Time (s)

(b)

-4000

-3000

-2000

-1000

0

1000

2000

D
o

p
p

le
r 

fr
e

q
u

e
n

cy
 (

H
z)

PRN 20 (TLE)

PRN 21 (TLE)

PRN 25 (TLE)

PRN 29 (TLE)

PRN 20 (BON)

PRN 21 (BON)

PRN 25 (BON)

PRN 29 (BON)

PRN 20

PRN 21

PRN 25

PRN 29

0 60 120 180
Time (s)

(c)

-20

-10

0

10

20

D
o

p
p

le
r 

fr
e

q
u

e
n

cy
 e

rr
o

r 
(H

z) PRN 20 PRN 21 PRN 25 PRN 29

N

 S

(a)

EW

Figure 6.24: (a) Skyplot of 4 of the visible GPS satellites. (b) Time history of (i) the Doppler
frequency of 4 of the GPS satellites obtained from the TLE and SGP4 orbit determination
software and (ii) the estimated Doppler frequencies of the corresponding satellites using the
BON framework. (c) Errors between the Doppler frequencies obtained from the TLE and
the ones obtained using the BON framework.

occurred or not. The resulting accumulations are decimated to the chipping rate of GPS

PRNs and processed by the beacon decoding algorithm of the BON framework. A scatter

plot of the accumulated signal before beacon signal decoding is shown in Fig. 6.25(a) for

the 4 satellites. While the scatter plots of PRNs 20, 21, and 25 look significantly noisy, their

effective SNR is high enough for the blind beacon decoding algorithm to decode the PRNs

with less than 10% chip error, as shown in Table I. The correlation function between the

decoded and true PRNs of the 4 GPS satellites are shown in Fig. 6.25(b). In addition to
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Table I, the correlation plots in Fig. 6.25(b) also demonstrate that the PRN of each of the 4

satellites was adequately decoded.

Table 6.1: The percentage of correctly decoded GPS PRN chips using the BON framework
PRN number PRN 20 PRN 21 PRN 25 PRN 29

Percentage of correctly decoded Chips 96% 94% 91% 99.9%
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Figure 6.25: (a) Scatter plots of the coherent accumulation for the 4 satellites before beacon
detection. (b) Correlations between the decoded PRN of each satellite and the true PRNs.

6.13.2.4 Producing Navigation Observables from Decoded PRNs

The decoded beacons are then used to produce pseudorange observables from the

received GPS signals. The initial Doppler is known from the previous steps. The code

phases are also known to be zero, since the decoded beacon has the phase of the PRN at the
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time of initial reception. Therefore, signal acquisition is already performed; however, it is

shown in Fig. 6.26(a) for illustration purposes. The initial Doppler and code phase estimates

are used to initialize an SDR’s tracking loops: a third-order phase-locked loop (PLL) with

a carrier-aided delay-locked loop (DLL) with the dot product discriminator. The in-phase

and quadrature components of the tracked prompt correlation for PRN 21 are shown in

Fig. 6.26(b) for a period of 5 seconds. Since GPS signals are exploited opportunistically

in this paper, it is not assumed that the receiver can decode the navigation message. As a

result, the code phase estimate expressed in meters will be considered as the pseudorange

estimate. The delta range of PRN 21 measured using the BON framework is shown in Fig.

6.26(c) along with the delta range estimated via TLE and SGP4 software. The delta range is

a pseudorange from which the initial value is subtracted.

Figure 6.26: (a) Signal acquisition for PRN 21 using the decoded beacon. (b) Signal tracking
of PRN 21 over a period of 5 seconds. (c) Delta range computed from the TLE and the code
phase measured by the BON receiver expressed in meters.

6.13.3 Navigation Solution

This section presents the navigation solution from the BON framework. The altitude rr,z

of the stationary antenna which collected the GPS signals is assumed to be known; hence,
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only the two-dimensional (2-D) states rr,x and rr,y are estimated. The pseudorange from the

ith satellite at time-step k can be modeled as

ri(k) = krrrr� rrrsi(k)k+bi + ei(k), k = 1,2, . . . , (6.46)

where rrrr , [rr,x,rr,y,rr,z]
T is the three-dimensional (3-D) position of the receiver, rrrsi is the 3-

D position vector of the ith satellite obtained from the TLEs, bi is a bias term that captures the

unknown bias between the receiver’s and ith satellite’s clocks, and ei is the measurement error

capturing ionospheric and tropospheric delays and measurement noise. The pseudorange

measurements for all satellites at all time-steps are stacked in one measurement vector

rrr and a batch nonlinear least-squares (NLS) estimator is implemented to solve for xxx ,
⇥
rrrTr ,b1, . . . ,bS

⇤T, where S is the total number of visible satellites. The receiver’s position in

the NLS was initialized around 150 km from the true receiver’s position, and all the biases

{bi}S
i=1 were initialized with zeros. The resulting position error with 4 satellites over a

110-second period was found to 54.4 meters. The experimental setup and results are shown

in Fig. 6.27.

(a) (b) (c)

True receiver
position

University of California, Riverside

Estimated
receiver position

2-D error: 54.5 m

USRP RIO

Laptop+storage

GPS antenna

Figure 6.27: (a) Experimental environment. (b) True and estimated receiver positions. (c)
Experimental hardware setup.
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Chapter 7: Conclusion

In this chapter, we summarize the status of the work presented in this dissertation, and

outline future plans.

7.1 Summary

This dissertation addressed the following challenges of navigation with signals of un-

known and dynamic nature. First, unlike public networks where the broadcast RSs are

known at the UE and are universal across network operators, in private networks, the signal

specifications of some RSs may not be available to the public or are subject to change.

Second, in cellular LTE networks, several RSs (e.g., cell-specific reference signal (CRS))

are broadcast at regular and known time intervals, regardless of the number of UEs in the

environments. Ultra-lean design refers to minimizing these always-on transmissions. 5G

NR and modern communication systems transmit some of the RSs only when necessary or

on-demand which results in a dynamic the RS signals.

A receiver architecture was proposed to cognitively extract navigation observables from

3G, 4G, 5G, and LEO-based signals. Unlike conventional opportunistic receivers which

require knowledge of the signal structure, particularly the RSs, the proposed receiver only
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relied on the periodicity of the RSs and requires knowledge of only the carrier frequency

of the signal. To exploit the full available bandwidth and improve ranging accuracy, the

proposed receiver was designed to estimate all the RSs contained in the transmitted signals

corresponding to multiple sources. Navigation observables (pseudorange and carrier phase)

were subsequently derived from the estimated RSs. The proposed receiver operated in two

stages: (i) acquisition and (ii) tracking. The acquisition stage of the proposed receiver

was modeled as a sequential detection problem where the number of gNBs and their

corresponding RSs and Doppler frequencies were unknown. The generalized likelihood

ratio (GLR) test for sequentially detecting active sources was derived and used to estimate

the number of unknown sources and their RSs. In order for the receiver to refine and

maintain the Doppler and RS estimates provided by the acquisition stage, tracking loops

were designed. A sufficient condition on the Doppler estimation error to ensure that the

proposed GLR asymptotically achieves a constant false alarm rate (CFAR) was derived.

The output of the tracking loops, namely carrier phase and code phase, were then used to

estimate the receiver’s position.

Extensive experimental results are presented demonstrating the capabilities of the pro-

posed receiver with real 3G, 4G, 5G, and LEO SV signals on ground and aerial platforms.

7.2 Contributions

In this section, a summary of contributions is presented. The contributions of the

proposal are either presented in peer-reviewed journal papers and under review journal

papers.
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Contributions of peer-reviewed journal paper [149]:

• A cognitive opportunistic navigation (CON) receiver design was presented, which

could estimate the unknown beacons of a gNB. The cognitive nature of the proposed

receiver enabled estimating both 5G NR always-on and on-demand beacons which

are not necessarily always-on. Using extensive experiments, it was shown that the

estimated beacons possess higher bandwidth compared to conventional 5G oppor-

tunistic navigation receivers, which allowed for producing more precise navigation

observables.

• A sequential GLR-based detector was derived to detect the presence of multiple gNBs

on the same channel and provide an estimate of the number of active gNBs. The

detector relied on matched subspace detection, where the signal subspace was defined

by the Doppler frequencies of the gNBs. The sequential GLR detector estimated the

number of gNBs, and their Doppler frequencies, and it provided an initial estimate of

their unknown beacons, which are then used and refined in the tracking loops.

• A sufficient condition on the Doppler estimation error to ensure that the proposed

GLR asymptotically achieves a CFAR was derived.

• Extensive experimental results were presented demonstrating the capabilities of the

proposed CON receiver with real 5G signals on ground and aerial platforms. On

a ground vehicle, it was demonstrated that the CON receiver yields a reduction of

10% and 37.7% in the estimated delay and Doppler root mean squared error (RMSE),

respectively, over that achieved with a conventional opportunistic navigation 5G

receiver that had complete knowledge of the transmitted beacons but only relied on
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always-on beacons. On a UAV, it was demonstrated that the proposed CON receiver

enables the UAV to navigate over a 416 m trajectory with two 5G NR gNBs achieving

a position RMSE of 4.35 m. To evaluate the performance of the CON receiver in

a scenario where the beacons are always-on, another experiment was conducted in

which a UAV navigated with LTE eNodeBs, achieving a position RMSE of 2.07 m,

which is identical to the performance achieved with a conventional opportunistic

navigation 4G receiver that had complete knowledge of the transmitted beacons.

Contributions of peer-reviewed journal paper [148]:

• Matched subspace detectors were proposed for two different scenarios: (i) beacons

with IC, e.g., the symbols of the beacon are drawn from M-ary PSK (MPSK) modula-

tion set, and (ii) beacon with NIC, i.e., the beacon signal are not constrained to take

integer values and can assume any arbitrary complex-valued number.

• A near-optimal, low complexity algorithm was proposed to reduce the complexity of

the detector with IC. The effect of the symbol errors in the detected beacon signal

on the carrier-to-noise ratio (CNR) was characterized analytically. The proposed

matched subspace detectors were capable of detecting multiple unknown signals in

the environment with relatively low computational complexity.

• For the NIC scenario, closed-form expressions for the probability of detection and

false alarm were derived. The effective SNR was calculated and the effect of Doppler

estimation error on the performance of the detector was analyzed.

• Experimental results were presented showing an application of the proposed cognitive

approach by enabling an UAV to detect and exploit terrestrial cellular signals for
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navigation purposes. In one experiment, the UAV achieved submeter-level accurate

navigation over a trajectory of 1.72 km, by exploiting signals from four 3G cdma2000

transmitters.

• The OFDM frame of 5G signals was reconstructed in a blind fashion. On-demand and

always-on beacons are demonstrated in the OFDM signal structure of real 5G signals.

Contributions of peer-reviewed [147]

• A model for the Starlink LEO SV’s downlink signals was presented.

• An algorithm was proposed to (i) acquire the Starlink LEO SV signals and (ii) track

the Doppler frequency of each detected SV.

• Next to [105], the first experimental positioning results with Starlink downlink signals

were presented.

• In [105], an adaptive Kalman filter was used to track the carrier phase of Starlink

LEO SVs. However, the method presented in [105] relied on tracking the phase of a

single carrier. When a more complicated signal structure was used in the downlink

signal, e.g., OFDMA, a more sophisticated method should be developed to exploit

the entire signal bandwidth for navigation purposes. Indeed, the method in [105] was

not capable of exploiting the entire signal bandwidth, and it only relied on tracking a

single frequency component. In this paper, by considering a general model for the

Starlink downlink signals, the unknown parameters of the signal were estimated for

the first time for Starlink LEO SVs, and were subsequently used to detect the Starlink

LEO SVs and track their corresponding Doppler frequencies. The proposed method

enabled one to estimate the synchronization signals of the Starlink LEO SVs.
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Contributions from Under Review Journal Papers are:

• The methods presented in [8, 148, 149] relied on the difference between the Doppler

frequencies of the transmitters to acquire and track the unknown sources. However,

the acquisition and tracking of unknown sources may fail in the following extreme

scenarios: (i) an almost static scenario that may lead to a Doppler subspace overlap

and (ii) a high dynamic scenario where the receiver or the transmitter are moving

with high dynamics which results in an intensive Doppler rate. These two extreme

scenarios introduce the following challenges in the acquisition and tracking of the

unknown sources:

The almost static scenario: In a scenario where the receiver and the transmitter are

almost static, the Doppler frequencies of the transmitting sources will be very close to

each other. This event is referred to as the Doppler subspace overlap. Distinguishing

between the sources with Doppler subspace overlap becomes very challenging for the

cognitive navigation framework.

Intensive Doppler rate scenario: In cognitive navigation frameworks, the unknown

and dynamic parameters of the beacons are estimated via a coherent accumulation

of the received samples over time. High values of Doppler rate limit the coherence

time, i.e., the time interval that the channel between the transmitter and the receiver is

static. A limited coherence time affects the unknown source acquisition and tracking

performance. Therefore, considering the effect of the Doppler rate in the signal model

and selecting a proper coherent processing interval (CPI) play a key role in intensive

Doppler rate scenarios.
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One of the proposed solutions to overcome the mentioned challenges is designing

a receiver architecture which can jointly estimate the unknown beacons of multiple

sources in almost static and intensive Doppler rate scenarios. Similar to [149], the

roles of providing a fine estimate of the RS, and tracking the code and carrier phases

are played by the tracking loops. The major difference would be properly designed

adaptive gains which are selected based on the detector performance analysis. The

adaptive gains are provided by the acquisition stage and are designed based on

the source detection performance. Feeding this information to the tracking loops

establishes a link between the acquisition and tracking loops which is necessary for

the mentioned challenging scenarios, and distinguishes the proposed architecture from

conventional navigation algorithms.

• Analyzing the effect of Doppler rate estimation error on the autocorrelation function

and providing a closed-form solution for the autocorrelation attenuation in the presence

of Doppler rate error and comparing the analytic solution with the experimental results.

• Providing experimental results for cognitive sensing of 5G gNBs by enabling a ground

vehicle to cognitively sense (detect and track) an unknown 5G gNB in the environment,

estimating the position of the gNB in a blind fashion

• Justification of the generic signal model in by: (i) analyzing the behavior of autocorre-

lation function in the time and Frequency domain to prove that the Fourier transform

preserves the correlation properties, and (ii) performing extensive cellular and LEO

satellite-based experiments to estimate the channel impulse response.

• One of the challenges of navigation with LEO satellites is poorly known satellite

ephemeris. The satellites’ ephemerides can be predicted from two-line element (TLE)
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files and an SGP4 propagator. However, the satellite’ ephemerides obtained with the

TLE files may end up with errors on the order of several kilometers. Differential

positioning methods assess measurement errors for each satellite using a stationary

surveyed reference antenna and broadcasts error corrections to many users [157].

Satellite errors removed by differential methods include clock calibration, ephemeris

errors, ionospheric delays, and tropospheric delays [175]. Theoretical and practical

considerations of differential navigation methods have been studied in the navigation

literature. In particular, studies focusing on LEO-based differential frameworks

include: (i) joint GPS-LEO navigation [170], (ii) integrity monitoring of precise

point positioning—realtime kinematic (PPP–RTK) positioning [215], (iii) LEO SVs

flying in formation [201], (iv) ionospheric sensing [120], and (v) differential carrier

phase [103].

Demonstrating the performance of the proposed receiver by a base with a known

position and a stationary rover with an unknown position equipped with the proposed

receiver is one of the objectives of this proposal. A short and long baseline will be

considered to evaluate the positioning performance. It will be shown that despite the

fact that the satellites’ ephemerides were poorly known, the proposed framework is

capable of estimating the rover’s two-dimensional (2D) position with a meter level in

the short and the long baseline scenarios.

• Presenting experimental results with other LEO SV satellite signals such as Orbcomm

LEO satellites.

• Demonstrating the capability of the proposed framework in detecting new types of

beacons. It will be fictitiously assumed that the Starlink satellites multiplex the 5G
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NR beacons as a new component in their downlink signals to evaluate the framework

performance.

228



.1 Derivation of likelihood function (5.10)

For a known Wi, the singular value decomposition (SVD) of the matrix Bi�1 can be

written as

Bi�1 = [Wi�1 Ui�1]


SSSi�1 0
0 0

�"
W0Hi�1
U0Hi�1

#
(1)

where Wi�1 and Ui�1 are KL⇥ (i�1)L and KL⇥ (KL� (i�1)L) orthogonal matrices that

span the column space of Bi�1 and orthogonal column space of Bi�1, respectively. In other

words, UH

i�1Bi�1 = 0. Therefore,

UH

i�1y = UH

i�1Hisi +UH

i�1weqi . (2)

As it was mentioned previously, the complex envelope of the OFDM signals can be consid-

ered to be asymptotically white and Gaussian [153]. Here, the GLR test is derived assuming

that weqi ⇠N (0,s2
wI). It should be noted that since UH

i�1Ui�1 = I, the statistical charac-

teristics of noise is preserved, i.e., UH

i�1weqi ⇠N (0,s2
wI). By multiplying the observation

vector by UH

i�1, (19) can be written as

⇢
H i

0 : UH

i�1y = UH

i�1weqi ,
H i

1 : UH

i�1y = UH

i�1Hisi +UH

i�1weqi .
(3)

For the linear detection problem (3), the GLR can is derived as [90, Section 9.4.3]

Li(y|Wi) =
yHPSiy

yHP?Bi�1
P?Si

P?Bi�1
y
, (4)

where PSi , P?Bi�1
Hi and

P?Bi�1
, Ui�1UH

i�1 = I�Bi�1

⇣
BH

i�1Bi�1

⌘�1
BH

i�1. (5)
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.2 Proof of Lemma 1 in Chapter 1

The matrices Hi and P?Bi�1
can be written as

Hi = hi⌦ IL, P?Bi�1
= P̄?i�1⌦ IL, (6)

where, hi , [1,exp( jwiL) , . . . ,exp( jwi(K�1)L)]T, P̄?i�1 ,
�
I�bi�1

�
bH

i�1bi�1
�

bH

i�1
�
, bi�1 ,

[h1, . . . ,hi�1], and ⌦ denotes the Kronecker product. Hence, one can write

HH

i P?Bi�1
Hi =

⇣
hH

i P̄?i�1hi

⌘
⌦ IL. (7)

The scalar hH
i P̄?i�1hi can be written as

hH

i P̄?i�1hi = cii�
⇥
ci1, . . . ,ci(i�1)

⇤

·

2

6664

c11 c12 . . . c1(i�1)
c21 c22 . . . c2i
... . . . . . . ...
ci1 ci2 . . . c(i�1)(i�1)

3

7775

�12

6664

c1i
c2i
...
c(i�1)i

3

7775
, (8)

which is the Schur complement of Ci�1 of matrix Ci in (31), with ci j ,ÂK�1
k=0 exp

�
j(w j�wi)Lk

�
.
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.3 Proof of Theorem 1 in Chapter 1

Proof: To prove that the likelihood ensures the CFAR property, the asymptotic distri-

butions of the numerator and the denominator of the likelihood in (5.10) are determined

under the null hypothesis. It is then shown that as K! •, the asymptotic distribution of

the likelihood is not a function of unknown parameters if the Doppler frequencies and their

estimates satisfy the conditions described in Theorem 1.

According to (4.14), under the null hypothesis of the second stage, i.e., H 2
0 , the received

signal vector can be written as y = B1qqq 1 +weq2, where in a scenario with two sources

with Doppler frequencies w1 and w2 one has B1 = H1 and qqq 1 = s1. Hence, replacing

y = B1qqq 1 +weq2 in the numerator of the likelihood (5.10) results in

N(y) = sH1 HH

1 P̂S2H1s1 +wH

eq2
P̂S2weq2

+2¬
n

sH1 HH

1 P̂S2weq2

o
, (9)

where P̂S2 , P̂?H1
Ĥ2

⇣
ĤH

2 P̂?H1
Ĥ2

⌘�1
ĤH

2 P̂?H1
, and ¬{·} denotes the real part. Since, for all

values of i 6= j, one has HH
i Hi =KIL, and HH

i H j = exp
�

j(w j�wi)(K�1)L/2
� sin

✓
(w j�wi)KL

2

◆

sin
✓

(w j�wi)L
2

◆ IL,

it can be shown that

sH1 HH

1 P̂S2H1s1 =

����S (w1, ŵ2)�
S (w1, ŵ1)S (ŵ1, ŵ2)

K

����
2

⇥ K
K2� |S (ŵ1, ŵ2)|2

sH1 s1, (10)

where S (w1,w2),
sin
⇣
(w1�w2)KL

2

⌘

sin
⇣
(w1�w2)L

2

⌘ . If the Doppler estimation error of w1, defined as Dw1 ,

w1� ŵ1, satisfies |Dw1L|⌧ 1
K , and the difference between the estimate of the Doppler

frequencies of the 2nd gNB and the 1st gNB satisfies |ŵ2L� ŵ1L|> 1
K ; then, the following

231



limit holds

lim
K!•

����S (w1, ŵ2)�
S (w1, ŵ1)S (ŵ1, ŵ2)

K

����
2

⇥ K
K2� |S (ŵ1, ŵ2)|2

sH1 s1 = 0. (11)

The last term on the right hand side of (9) is a random variable with mean E
�

sH1 HH

1 P̂S2weq2

 
=

0 and variance s2sH1 HH

1 P̂S2H1s1, which according to (11), asymptotically tends to zero as

K! •. Therefore,

lim
K!•

N(y) = wH

eq2
P̂S2weq2 , (12)
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.4 GLR Detector for (3.4)

It should be pointed out that the derivation of the GLR detector for (3.4) is similar to

that of the matched subspace detector in [180] and the general linear model in [90]. The

main difference here is the structure of the subspace matrix H which simplifies the detector.

The integer constraint should also be considered for the derivation of the detector. For the

completeness of the dissertation, this appendix presents the derivation of the GLR detector

for (3.4). To this end, the ML estimates of the unknown parameters, i.e., a , s2, D f , and s, are

substituted in the pdfs of the observation vector z under each hypothesis. Under H1, the pdf

of the observation vector z is f (y|H1) =
1

(ps2)KL exp
⇣
� 1

s2ky�aHsk2
⌘
. Under H0, the

pdf of the observation vector z is f (z|H0) =
1

(ps2)KL exp
⇣
� 1

s2kyk2
⌘
. By maximizing the

above pdfs over a and s2, the ML estimates of these variable are obtained as â = 1
KLsHHHy,

bs2
H1

= 1
KLky� âHsk2, and bs2

H0
= 1

KLkyk
2. The estimation of the noise variance under H1

can be expanded as

bs2
H1

=
1

KL
kyk2� 2

(KL)2 |s
HHHy|2

+
1

(KL)3 |s
HHHy|2sHHHHs. (13)

The elements of the vector s are drawn from MPSK modulation. Therefore, sHs = L

and since HHH = K, one can obtain bs2
H1

= 1
KLkyk

2� 1
(KL)2 |sHHHy|2. Consequently, the

likelihood ratio is
f (y|H1)

f (y|H0)
=

1
KLkyk

2

1
KLkyk2� 1

(KL)2 |sHHHy|2
.

It can be seen that the likelihood ratio is a monotonically increasing function of |sHHHy|2
K2kyk2 .

Therefore, by maximizing the likelihood over the integer vector q and the unknown Doppler

D f ,the GLR test for the constrained problem (3.4) is obtained by (3.5).
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.5 Proof of Lemma 3.4.1

In order to calculate the number of search candidates, first the coherent detector of q

for a given phase complex amplitude a is considered. Note that the coherent detector does

not depend on the magnitude of a , but only depends on its phase f . More precisely, for a

given value of f , one has
�

q̂f , D̂ f
 
= argmax

q,D f
¬
n

exp(� jf)zHexp
⇣

j2p
M q
⌘o

[126]. Due to

the nature of i.i.d noise and the independence of the elements of q, the coherent detector

simplifies to a SBS MPSK detector for a given D f and f . Hence, the lth element of q̂f ,

denoted by q̂fl , is obtained by mapping the phase of exp( jf)zl , where zl is the lth element

of z, to the closest multiple of 2p
M , i.e.

q̂fl = round

(fl +f) M

2p

�
mod M, (14)

where mod is the modulus operator and fl , \zl . Thus, for a given D f , one can find the

optimal q by searching over all possible values for f . However, it can be readily shown

from (14), that q̂f and q̂f+ 2p
M

result in the same likelihood function in (6.45). Consequently,

the search space for f is limited to the interval [0, 2p
M ).

Since f is limited to the interval [0, 2p
M ), the lth detected MPSK symbol q̂fl can take

on two values, based on which symbol in the MPSK constellation is closest to it. Define

c1 , q̂f=0 and c2 , q̂f= 2p
M

, where it can be shown through (14) that c2l = (c1l +1) mod M,

where c1l and c2l are the lth elements of c1 and c2, respectively. It can also be shown using

(14) that the boundary angle between two symbols in the MPSK constellation is given by

gl , 2p
M c1l +

p
M �fl [196]. Subsequently, each candidate MPSK symbol will be given by

q̂fl =

⇢
c1l f  gl,
c2l f > gl.

(15)
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For convenience of notation, define
n⇣

c01l
,g 0l
⌘oL�1

l=0
as the set of the sorted values of

�
c1l ,gl

�

in an ascending order of gl such that g 0l+1 � g 0l . Consequently, each candidate q̂f is of the

form
⇥
c011

+1�u(g 01�f), . . . ,c01L
+1�u(g 0L�f)

⇤T
, (16)

where u(·) is the unit step function. Equation (16) implies that for different values of f , L

different candidates A = {a1, . . . ,aL} are available. Each candidate should be plugged in

(6.45) to get the optimal q̂. Finally, by searching over Doppler, one can get the total number

of DL search candidates.
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.6 Proof of Lemma 1

The autocorrelation of a time segment of length L0 of the observation samples r[n] is

equal to

Rrr[m] =
|ai|2 exp

⇣
j2p( fDi0

mTs +
bi
2 2m2T 2

s )
⌘

L0

⇥
L0�1

Â
k=0

ci[m+ k� tsi [n]]c
?
i [k� tsi [n]]

⇥ exp
�

j2pbimkT 2
s
�
+

1
L0

L0�1

Â
k=0

weqi [m+ k]w?
eqi
[k]. (17)

By modeling the OFDM-based RSs as a wide sense cyclostationary (WSCS) random process

and assuming a large enough L0, the following equality holds [24]

Rrr[m] = ā2
i

1
L0

⇥ ¯Aci(m,0)
L0�1

Â
k=0

exp
�

j2pbimkT 2
s
�
+Rww[m]. (18)

where āi , |ai|2 exp
⇣

j2p( fDi0
mTs +

bi
2 2m2T 2

s )
⌘

, ¯Aci(m,0),E{ci[m+ k]c?i [k]}, and E{X}

denotes the expected value of the random variable X . Solving the geometric sequence on

the right hand of (18) proves Lemma 1.
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.7 Derivation of likelihood function

The binary hypothesis test in (4.13) can be written as

⇢
H i

0 : Aqqq i = 000
H i

1 : Aqqq i 6= 000. (19)

Where, A = [IL,0, . . . ,0] is an L⇥ iL matrix. Given Wi, for the general linear detection

model (19), the GLR is derived as [90, Section 9.4.3]

L (y) =

⇣
Aq̂qq
⌘H⇣

A
�
BH

i Bi
��1 AH

⌘�1⇣
Aq̂qq
⌘

y
⇣

IL�Bi
�
BH

i Bi
��1 BH

i

⌘ , (20)

Since, y = Hisi +Bi�1qqq i�1 +weqi , the least squares estimation of si is denoted by

ŝi = J�1
i HH

i P?Bi�1
y. (21)

where Ji =
⇣

HH
i P?Bi�1

Hi

⌘
. Also, PX , X(XHX)�1XH, denotes the projection matrix to the

column space of X, and

P?X , IL�X
⇣

XHX
⌘

XH, (22)

denotes the projection matrix onto the space orthogonal to the column space of X.

Using the matrix inversion lemma, one can show that

⇣
BH

i Bi

⌘�1
=


Q1 Q2
Q3 Q4

�
, (23)

Q1 = J�1
i ,

Q2 =
⇣

H†
i P?Bi�1

�J�1
i HT

i

⌘
(B†

i�1)
H,

Q3 = QH

2 ,

Q4 = B†
i�1

⇣
IL +HiJ�1

i HH

i

⌘⇣
B†

i�1

⌘H
,
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where H† ,
�
HHH

��1 HH.

It should be pointed out that the observation vector can be written as y = Biqqq i +weqi .

Hence, the least squares estimation is obtained as

q̂qq = (BiBi)
�1 BH

i y. (24)

In the numerator of (20), one has

Aiq̂qq i = Ai


Q1 Q2
Q3 Q4

�
BH

i y

=
⇣

Q1HH

i +Q2Bi�1

⌘
y

= J�1
i�1HH

i
�
IL�PBi�1

�
y.

Therefore, using (21), one has

Aiq̂qq i = ŝi. (25)

Moreover, using (23), one has

Bi

⇣
BH

i Bi

⌘�1
BH

i = IL�P?Bi�1
+P?Bi�1

HiJ�1
i HH

i P?Bi�1
. (26)

Replacing (25) and (26) in (20) yields

Li(y|Wi) =
yHPSiy

yHP?Bi�1
P?Si

P?Bi�1
y
. (27)

The matrices Hi and P?Bi�1
can be written as

Hi = hi⌦ IL, P?Bi�1
= P̄?i�1⌦ IL, (28)

where, hi , [1,exp( jwiL) , . . . ,exp( jwi(K�1)L)]T, P̄?i�1 ,
�
IL�Bi�1

�
BH

i�1Bi�1
�

BH

i�1
�
,

Bi�1 , [h1, . . . ,hi�1], and ⌦ denotes the Kronecker product. Hence, one can write

HH

i P?Bi�1
Hi =

⇣
hH

i P̄?i�1hi

⌘
⌦ IL. (29)
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The scalar hH
i P̄?i�1hi can be written as

hH

i P̄?i�1hi = cii�
⇥
ci1, . . . ,ci(i�1)

⇤

·

2

6664

c11 c12 . . . c1(i�1)
c21 c22 . . . c2i
... . . . . . . ...
ci1 ci2 . . . c(i�1)(i�1)

3

7775

�12

6664

c1i
c2i
...
c(i�1)i

3

7775
, (30)

which is the Schur complement of Ci�1 of matrix Ci where

Ci =

2

6664

c11 c12 . . . c1i
c21 c22 . . . c2i
... . . . . . . ...
ci1 ci2 . . . cii

3

7775
, (31)

with ci j , ÂK�1
k=0 exp

�
j(w j�wi)Lk

�
. Hence, the following equality holds

HH

i P?Bi�1
Hi = liIL, (32)

where the scalar li is the Schur complement of block Ci�1. Consequently, the likelihood

(5.10) at the ith stage can be simplified as

kl�1
i ĤH

i P?Bi�1
yk2

kP?Bi�1
yk2�kl�1

i ĤH
i P?B̂i�1

yk2

H i
1

?
H i

0

hi. (33)

where hi is a predetermined threshold at the ith stage.
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