Title
Mapping and Exploitation of Signals of Opportunity

Permalink
https://escholarship.org/uc/item/9nt0p7cp

Authors
Morales, J.
Khalife, J.
Kassas, Z.

Publication Date
2016-04-22
Mapping and Exploitation of Signals of Opportunity
JOSHUA MORALES, JOE KHALIFE, AND ZAHER M. KASSAS

Motivation
Global navigation satellite system (GNSS) is at the heart of autonomous vehicle navigation systems. However, GNSS signals are unreliable due to:
- Severe attenuation in deep urban canyons
- Intentional and/or unintentional jamming
- Spooﬁng

Approach: COPNAV
Collaborative opportunistic navigation aims to exploit signals of opportunity (SOPs) in the environment.

Challenges
- Unavailability of most SOP emitters’ states (position and clock)
- Less stable clocks than GNSS satellite vehicles
- Unavailability of receiver architectures for navigation observables extraction

Advantages
- Available from varying geometric conﬁgurations
- Abundant and free to use
- Higher received power compared to GNSS signals

Optimal Receiver Placement
Consider a planar environment comprising M unknown SOPs and N arbitrarily placed receivers with knowledge about their own states. The receivers draw pseudorange observations given by

$$m z_n = \|r_{r,n} - r_{s,n}\| + c \cdot (\delta r_{r,n} - \delta s_{r,n}) + m \delta n,$$

(a) minimize

$$\min \ r_{r,n+1} \ \sqrt{\text{tr} \left[H^T (r_{r,n+1}) H (r_{r,n+1}) \right]^{-1}}$$

(b) maximize

$$\max \ r_{r,n+1} \ \det \left[H^T (r_{r,n+1}) H (r_{r,n+1}) \right]$$

(c) maximize

$$\max \sum_{m=1}^{M} \log \left[m A \left(m \phi_{n+1} \right) \right]$$

Exploiting SOPs
1. Accuracy Improvement: GPS+SOPs

2. UAV Simulation Results

Optimal Emitter Mapping

Experimental Demo
1. Collaborative Mapping of SOP

2. Receiver localization improvement

References
REFERENCES

