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Abstract—This paper summarizes current state-of-the-art nav-
igation results with multi-constellation low Earth orbit (LEO)
satellite signals of opportunity. Experimental results with four
LEO satellite constellations are presented: Starlink, OneWeb,
Orbcomm, and Iridium. Two receiver designs are presented: (R1)
a cognitive opportunistic navigation approach, which utilizes min-
imal, publicly available prior knowledge about the LEO satellite
signal structure and (R2) a blind approach, which assumes no
prior knowledge of the signals. Stationary positioning and mobile
ground vehicle navigation results are presented. For the ground
vehicle, results with two frameworks are presented: (N1) a LEO-
aided inertial navigation system (INS) simultaneous tracking and
navigation (STAN) and (N2) a LEO-aided differential STAN.
The results reveal the tremendous promise of exploiting multi-
constellation LEO satellite signals of opportunity for navigation.
For positioning: (i) with R1, starting with an initial estimate
about 179 km away, by exploiting signals from 6 Starlink, 1
Orbcomm, and 4 Iridium, a final two-dimensional (2–D) position
error of 6.5 m was achieved and (ii) with R2, starting with
an initial estimate about 3,600 km away, by exploiting signals
from 4 Starlink, 2 OneWeb, 1 Orbcomm, and 1 Iridium, a final
2–D position error of 5.1 m was achieved. For navigation, a
ground vehicle was equipped with an industrial-grade inertial
measurement unit (IMU) and an altimeter. (i) With R1 and N1,
the vehicle traversed 4.15 km in 150 seconds (GNSS signals were
only available for the first 2.33 km). By exploiting signals from 3
Starlink, 2 Orbcomm, and 1 Iridium, the 3–D position root mean
squared error (RMSE) and final 3-D error were 18.4 m and 27.1
m, respectively. The GNSS-aided INS position RMSE and final
3-D error were 118.5 m and 472.7 m, respectively. (ii) With R2
and N2, the vehicle traversed 1.03 km in 110 seconds (GNSS
signals were only available for the first 0.11 km). By exploiting
signals from 4 Starlink, 1 OneWeb, 2 Orbcomm, and 1 Iridium,
the 3–D position RMSE and final 3-D error were 9.5 m and 4.4
m, respectively. The GNSS-aided INS position RMSE and final
3-D error were 205 m and 525 m, respectively.

Index Terms—Positioning, navigation, signals of opportunity,
Doppler tracking, low Earth orbit satellite, Starlink, OneWeb.

This work was supported in part by the Office of Naval Research (ONR)
under Grants N00014-19-1-2511 and N00014-22-1-2242, in part by the Air
Force Office of Scientific Research (AFOSR) under Grant FA9550-22-1-0476,
and in part by the U.S. Department of Transportation (USDOT) under Grant
69A3552047138 for the CARMEN University Transportation Center (UTC).
Corresponding author: Z. Kassas, zkassas@ieee.org.

I. INTRODUCTION

We are witnessing a renewed space race. From technology
giants, to startups, to governments, everyone is claiming stake
in launching their own LEO constellation. These constellations
promise to transform our daily lives, offering broadband
connectivity anywhere on Earth [1], and will benefit scientific
inquiry in fields such as remote sensing [2], [3]. However,
not all such constellations are created equal. So-called meg-
constellations comprising tens of thousands of satellites are
on their way to become a reality, with SpaceX’s Starlink
being the clear frontrunner with their plan to deploy nearly
12,000 LEO satellites. These constellations will be welcomed
by current constellations inhabiting LEO, and collectively they
could usher a new era for positioning, navigation, and timing
(PNT) [4]–[8].

The promise of utilizing LEO satellites for PNT has been
the subject of extensive recent studies [9]–[18]. These studies
can be categorized into three groups. The first considers
providing a standalone navigation solution by launching PNT-
dedicated LEO constellations or transmitting PNT signals from
existing LEO constellations [19]–[26]. The second considers
augmenting global navigation satellite systems (GNSS) with
LEO constellations [27]–[33]. The third exploits LEO signals
from any constellation in an opportunistic fashion [34]–[41].

LEO satellites possess desirable attributes for PNT [42],
[43]: (i) they are around twenty times closer to the Earth
compared to GNSS satellites, which reside in medium Earth
orbit (MEO), which could yield significantly higher carrier-
to-noise ratio; (ii) they are becoming abundant as tens of
thousands of broadband Internet satellites are expected to
be deployed into LEO; and (iii) they transmit in different
frequency bands and are placed in varying orbits, making LEO
satellite signals diverse in frequency and direction.

However, exploiting LEO satellite signals for PNT purposes
in an opportunistic fashion comes with challenges [44], as
these constellations are owned by private operators that typi-



cally do not disclose crucial information about the satellites’:
(i) ephemerides, (ii) clock synchronization and stability, and
(iii) signal specifications.

To address the first challenge, several approaches have been
proposed, including differential navigation utilizing known
base receiver(s) [45]–[47], simultaneous tracking and navi-
gation (STAN) [48], and analytical/machine-learning satellite
orbit tracking [49]–[52]. Approaches to address the second
challenge have been offered in [53]–[55]. To address the third
challenge, the paradigm of cognitive opportunistic navigation
[56], which estimates the minimally known LEO satellite
signals in a blind fashion has been showing tremendous
promise [57].

This paper summarizes recent progress with exploiting
multi-constellation LEO satellites for PNT. The focus of the
paper is to present the navigation solution achieved with
real LEO signals of opportunity on stationary and mobile
platforms in a standalone and a differential fashion. To the
authors’ knowledge, these results represent the most accurate
positioning and navigation results reported in the literature
with multi-constellation LEO signals of opportunity.

Experimental results with four LEO constellations are pre-
sented: Starlink, OneWeb, Orbcomm, and Iridium. Two re-
ceiver design approaches are presented:

• R1: a cognitive opportunistic navigation approach, which
utilizes minimal, publicly available prior knowledge
about the LEO satellite signal structure

• R2: a blind approach, which assumes no prior knowledge
of the signals

Stationary positioning and mobile ground vehicle navigation
results are presented. For the ground vehicle, results with two
frameworks are presented:

• N1: a LEO-aided inertial navigation system (INS) simul-
taneous tracking and navigation (STAN)

• N2: a LEO-aided differential STAN (DSTAN).
For positioning: (i) with R1, starting with an initial estimate

about 179 km away, by exploiting signals from 6 Starlink,
1 Orbcomm, and 4 Iridium, a final two-dimensional (2–D)
position error of 6.5 m was achieved and (ii) with R2, starting
with an initial estimate about 3,600 km away, by exploiting
signals from 4 Starlink, 2 OneWeb, 1 Orbcomm, and 1
Iridium, a final 2–D position error of 5.1 m was achieved. For
navigation, a ground vehicle was equipped with an industrial-
grade inertial measurement unit (IMU) and an altimeter. (i)
With R1 and N1, the vehicle traversed 4.15 km in 150 seconds
(GNSS signals were only available for the first 2.33 km).
By exploiting signals from 3 Starlink, 2 Orbcomm, and 1
Iridium, the 3–D position root mean squared error (RMSE)
and final 3-D error were 18.4 m and 27.1 m, respectively. The
GNSS-aided INS position RMSE and final 3-D error were
118.5 m and 472.7 m, respectively. (ii) With R2 and N2, the
vehicle traversed 1.03 km in 110 seconds (GNSS signals were
only available for the first 0.11 km). By exploiting signals
from 4 Starlink, 1 OneWeb, 2 Orbcomm, and 1 Iridium, the
3–D position RMSE and final 3-D error were 9.5 m and

4.4 m, respectively. The GNSS-aided INS position RMSE
and final 3-D error were 205 m and 525 m, respectively.
The results presented in this paper reveal the tremendous
promise of exploiting multi-constellation LEO satellite signals
of opportunity for navigation

The paper is organized as follows. Section II overviews
the LEO constellations considered in this paper. Section III
presents experimental results with the cognitive opportunis-
tic navigation receiver with Starlink, Orbcomm, and Iridium
NEXT on a stationary receiver and a mobile ground vehicle
navigating via the LEO-aided STAN framework. Section IV
presents experimental results with the opportunistic naviga-
tion receiver with Starlink, OneWeb, Orbcomm, and Iridium
NEXT on a stationary receiver and a mobile ground vehicle
navigating via the LEO-aided DSTAN framework. Section V
gives concluding remarks.

II. OVERVIEW OF LEO CONSTELLATIONS

Table I compares the four LEO constellations considered
in this paper. The number of satellites specified in the table
represent the current number, as of the writing of this paper.

TABLE I
COMPARISON OF LEO CONSTELLATIONS

Parameter Starlink OneWeb Orbcomm Iridium

Bandwidth 240 MHz 230 MHz 4.8 kHz 31.5 kHz
Beacon length 4/3 ms 10 ms 1 s 90 ms
Number of satellites 3,660 542 36 66
Modulation OFDM OFDM SD-QPSK DE-

QPSK
Frequency band Ku, Ka Ku VHF L
Downlink
frequency

10.7–
12.7
GHz

10.7–
12.7
GHz

137 MHz 1.616–
1.626
GHz

Number of channels 8 8 2 240
Number of beams ≈ 48 16 N/A 48
Altitude 550 km 1,200 km 750 km 780 km

III. NAVIGATION WITH STARLINK, ORBCOMM, AND
IRIDIUM NEXT LEO SATELLITES: A COGNITIVE

OPPORTUNISTIC NAVIGATION APPROACH

This section presents multi-constellation navigation results
exploiting Starlink, Orbcomm, and Iridium NEXT LEO satel-
lites with R1 and N1.

A. Stationary Positioning

Signals from a total of 11 LEO satellites (6 Starlink, 1
Orbcomm, and 4 Iridium NEXT) were recorded on top of
a parking structure at the University of California, Irvine,
CA, USA. The receiver presented in [58] was used to process
Orbcomm and Iridium NEXT signals, from which it produced
Doppler navigation observables. The receiver presented in [59]
was used to process Starlink signals, from which it produced
carrier phase observables. It is worth mentioning that not all
satellites were visible simultaneously, and the signals were
recorded as satellites passed overhead. The hardware setup is
described in [58], [59]. Fig. 1 illustrates the skyplot of the
LEO satellites.
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Fig. 1. (a) Skyplot of 6 Starlink, 1 Orbcomm, and 4 Iridium NEXT LEO
satellites which were tracked during the experiment.

The navigation observables were processed through an
extended Kalman filter, which estimated the receiver’s 2–D
position (the receiver’s height was known). The EKF was
initialized 179 km away from the true receiver position. The
EKF’s final position estimate converged to within 6.5 m. Fig.
2 illustrates the LEO satellite trajectories, initial estimate and
ground truth receiver position, and final estimate along with
the 99th percentile estimation error ellipse.

B. Mobile Navigation via LEO-Aided STAN

A ground vehicle was equipped with a Septentrio AsteRx-I
V integrated GNSS-INS system with an industrial-grade IMU
and an altimeter, from which the ground truth was derived.
The hardware setup is described in [48]. The vehicle was
driven on the CA-55 freeway next to Irvine, California, USA,
for 4.15 km in 150 seconds. During the experiment, signals
from 6 LEO satellites (3 Starlink, 2 Orbcomm, and 1 Iridium
NEXT) were recorded. The skyplot of satellites’ trajectory
during the experiment are shown in Fig. 3. The receiver
presented in [60] was used to process Orbcomm signals,
from which it produced carrier phase navigation observables.
The receiver presented in [58] was used to process Iridium
NEXT signals, from which it produced Doppler navigation
observables. The receiver presented in [61] was used to process
Starlink signals, from which it produced Doppler navigation
observables. The vehicle navigated via the LEO-aided STAN
framework described in [48].

GNSS signals were available for the first 80 seconds of the
experiment but were fictitiously cut off for the last 70 seconds,
during which the vehicle traveled 1.82 km. The GNSS-INS
navigation solution drifted to a final 3-D position error of
472.7 m and a 3-D position RMSE of 118.5 m over the
true trajectory. The STAN LEO-aided INS yielded a final 3-D
position error of 27.1 m and a 3-D position RMSE of 18.4 m.
Fig. 4 summarizes the experimental results. For details about
the data processing, EKF formulation, and additional results
and analyses, the reader is referred to [48].

Ground truth

Final estimate

Final error: 6.5 m

99th percentile

179
km

Ground truth

Initial estimate

(b)

(c)Irvine, CA

(a)

Fig. 2. (a) Trajectories of 11 LEO satellites (6 Starlink, 1 Orbcomm, and 4
Iridium NEXT) used to localize the stationary receiver. (b) Initial and final
estimated positions. (c) Final errors relative to the receiver’s true position.
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Fig. 3. Skyplot of 3 Starlink, 2 Orbcomm, and 1 Iridium NEXT LEO satellites
which were tracked during the experiment.
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Total distance: 4.15 km

Distance after GNSS cutoff: 1.82 km

Total time: 150 s

Time after GNSS cutoff: 70 s

Position RMSE: 118.47 m

Position RMSE: 18.43 m

Fig. 4. Experimental results showing the ground vehicle’s trajectory and estimated trajectory with GNSS-aided INS and STAN with LEO-aided INS using
signals from 3 Starlink, 2 Orbcomm, and 1 Iridium NEXT satellites. Map data: Google Earth.

IV. NAVIGATION WITH STARLINK, ONEWEB, ORBCOMM,
AND IRIDIUM NEXT LEO SATELLITES: A BLIND

NAVIGATION APPROACH

This section presents multi-constellation navigation results
exploiting Starlink, OneWeb, Orbcomm, and Iridium NEXT
LEO satellites with R2 and N2.

A. Stationary Positioning

Signals from a total of 8 LEO satellites (4 Starlink, 2
OneWeb, 1 Orbcomm, and 1 Iridium NEXT) were recorded
on top of the ElectroScience Laboratory (ESL) at The Ohio
State University, Columbus, OH, USA. The receiver presented
in [57] was used to process all LEO signals, from which it
produced Doppler navigation observables. It is worth men-
tioning that not all satellites were visible simultaneously, and
the signals were recorded as satellites passed overhead. The
hardware setup is described in [57]. Fig. 1 illustrates the
skyplot of the LEO satellites.
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Fig. 5. Skyplot of 4 Starlink, 2 OneWeb, 1 Orbcomm, and 1 Iridium NEXT
LEO satellites which were tracked during the experiment.

The Doppler navigation observables were processed through
a nonlinear least-squares (NLS) estimator, which estimated the
receiver’s 3–D position. The NLS was initialized in Irvine,
CA, USA, about 3,600 km away from the true receiver
position. The NLS’s final position estimate converged to within
a 2–D error of 5.1 m. Fig. 6 illustrates the LEO satellite
trajectories, initial estimate, ground truth receiver position, and
final estimate. For additional details about the data processing,

NLS formulation, and additional results and analyses, the
reader is referred to [57].

(c)

Columbus, OH

Irvine, CA

5.1 m

5.8 m

Ground truth

Final estimate

Ground truth

Initial estimate

2.8 m

ESL, The Ohio State University, Columbus, OH

3,600 km

(b)

(a)Iridium NEXTOneWeb OrbcommStarlink

Fig. 6. Positioning results with 4 Starlink, 2 OneWeb, 1 Iridium NEXT, and
1 Orbcomm LEO satellites: (a) LEO satellite trajectories. (b) Initial and final
estimated positions. (c) Final errors relative to the receiver’s true position.

B. Mobile Navigation via LEO-Aided DSTAN

A ground vehicle was equipped with a Septentrio AsteRx
SBi3 Pro+integrated GNSS-INS system with an industrial-
grade IMU and an altimeter, from which the ground truth
was derived. A differential base station with a known position
was set up on top of ESL at The Ohio State University
campus, about 2.2 km away from the rover (ground vehicle).
The ground vehicle traversed a trajectory of 1.03 km in 110
seconds. During the experiment, signals from 8 LEO satellites
(4 Starlink, 1 OneWeb, 2 Orbcomm, and 1 Iridium NEXT)



were recorded. The receiver presented in [57] was used to
process signals collected by the base station and the rover,
from which it produced Doppler navigation observables. The
vehicle navigated via the DSTAN framework described in [47].

GNSS signals were available for the first 7 seconds of
the experiment but were fictitiously cut off for the last 103
seconds, during which the vehicle traveled 0.92 km. The
GNSS-INS navigation solution drifted to a final 3-D position
error of 525 m and a 3-D position RMSE of 205 m over the
true trajectory. The DSTAN LEO-aided INS yielded a final
3-D position error of 4.4 m and a 3-D position RMSE of 9.5
m. Fig. 7 summarizes the experimental results.

Ground truth

GNSS-aided INS

LEO-aided INS

Orbcomm (2)

Starlink (4)

Iridium (1)

OneWeb (1)

Total No GNSS

Distance [km]

Time [s]

1.03 0.92

110 103

GNSS-INS LEO-INS

Position RMSE [m]

Final Error [m]

205 9.5

525 4.4

X

GNSS cutoff

Fig. 7. Navigation results with 1 OneWeb, 4 Starlink, 1 Iridium NEXT, and
2 Orbcomm LEO satellites: ground truth trajectory (blue), GNSS-aided INS
(red), and DSTAN LEO-aided INS (green).

V. CONCLUSION

This paper summarized the current state-of-the-art with
exploiting multi-constellation LEO satellite signals of oppor-
tunity for positioning and navigation. Exploiting 6 Starlink,
1 Orbcomm, and 4 Iridium via a cognitive opportunistic
navigation receiver is shown to yield a stationary 2–D position
error of 6.5 m, starting with an initial estimate about 179 km
away. With signals from 3 Starlink, 2 Orbcomm, and 1 Iridium
NEXT, a ground vehicle equipped with an industrial-grade
IMU traveling for 4.15 km in 150 s (the last 1.82 km in 70 s
of which without GNSS) could achieve a 3–D position RMSE
of 18.4 m via the LEO-aided STAN framework. Exploiting 4
Starlink, 2 OneWeb, 1 Orbcomm, and 1 Iridium via a blind
navigation receiver is shown to yield a stationary 2–D position
error of 5.1 m, starting with an initial estimate about 3,600 km
away. With signals from 4 Starlink, 1 OneWeb, 2 Orbcomm,
and 1 Iridium, a ground vehicle equipped with an industrial-
grade IMU traveling for 1.03 km in 110 s (the last 0.92 km in
103 s of which without GNSS) could achieve a 3–D position
RMSE of 9.5 m via the LEO-aided DSTAN framework
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