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Abstract—A solution separation-based fault detection and
exclusion (FDE) framework is developed for GPS and 5G signal
of opportunity (SOP) aided inertial navigation system (INS). The
proposed framework fuses an inertial measurement unit (IMU)
with GPS and 5G pseudorange measurements in a tightly-coupled
fashion via an extended Kalman filter to estimate the ground
vehicles’ attitude, position, velocity, and clock errors. Solution
separation tests are exploited to detect and exclude faults from
GPS and 5G signals due to transmitter failures and local threats
in urban environments (e.g., multipath). Experimental results are
presented to evaluate the efficacy of the proposed framework
under different sensor fusion scenarios. It is shown that fusing
5G signals enhances the FDE performance of the multi-sensor
system in a suburban scenario: while INS/GPS fails to detect
faulty GPS measurements, the INS/GPS/SOP is able to detect
the fault. Moreover, over a trajectory of 1.91 km traversed in
200 s, using signals from two 5G gNBs, the INS/GPS/5G system
achieved a position root-mean squared error (RMSE) of 0.81 m
and maximum position error of 2.17 m. The undetected GPS
fault in the INS/GPS system increased the RMSE and maximum
position error to 1.83 m and 4.25 m, respectively.

Index Terms—opportunistic navigation, RAIM, fault detection,
solution separation, 5G.

I. INTRODUCTION

The world is fast approaching an era of autonomous driving,
which is powered by recent developments in artificial intelli-
gence (AI), computing, communication as well high-precision
navigation technologies. However, ensuring safety of the auto-
mated driving function is one of the most significant obstacles
facing the development, commercialization, and adoption of
fully-automated vehicles. Analysis of reported accidents that
involved automated vehicles indicate that most of the wrong
decisions from the self-driving system are triggered by failures
in the positioning, navigation, and perception system [1].

Ground vehicle navigation systems utilize global navigation
satellite system (GNSS) receivers and a suite of onboard sen-
sors, e.g., lidar, camera, radar, inertial navigation system (INS),
etc. GNSS receivers are relied upon to provide a navigation
solution in a global frame and to correct for accumulating
errors due to the bias and drift of sensor dead reckoning.
While achieving higher levels of navigation accuracy has been
a classic requirement, the trustworthiness in the navigation
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solution, commonly assessed by integrity measures, as well
as the ability of fault detection and exclusion (FDE) is
evermore vital in the safety-critical application of automated
driving. To ensure safe navigation, automated vehicles need to
instantaneously detect receiver and sensor failures and have the
capability of excluding possible faults to maintain continuous
high-integrity navigation.

Current GNSS technologies are insufficient to support the
transition of ground vehicles to full automation in terms
of accuracy, integrity, and availability [2]. While analysis
indicates that driverless vehicles will need centimeter-level
navigation accuracy on local and residential streets [3], single
point positioning (SPP) can only achieve meter-level accuracy
[4]. Integration of GNSS receivers with an INS improves
the navigation solution by taking advantage of the short-term
accuracy of the INS, coupled with the long-term stability
of the GNSS solution. However, sub-meter-level accuracy is
achievable with certain augmentation systems and real-time
kinematic (RTK) only under certain favorable conditions [5].
In terms of integrity and availability, recent work demonstrated
that in a sample downtown environment (Chicago urban corri-
dor), availability of GPS-only positioning was less than 10% at
most locations. While integration of multi-constellation GNSS,
INS, wheel speed sensors, zero velocity updates, and vehicle
kinematic constraint improved the availability significantly, it
was still challenging to maintain availability after the vehicle
traversed 4,500 m in an urban environment [6].

Recently, signals of opportunity (SOPs) [7]; e.g., cellular
signals [8]–[11], digital television [12], and FM [13]; have
been been demonstrated as an attractive alternative or sup-
plement to GNSS signals. For vehicular navigation in urban
environments [14]–[16], cellular SOPs are particularly attrac-
tive due to their inherent attributes: abundance, geometric and
spectral diversity, high received power, and large bandwidth.
With the fast deployment of fifth-generation (5G) cellular
systems, their navigation capabilities have attracted extensive
research efforts [17]–[22]. Recent literature exploited down-
link 5G signals and showed favorable positioning accuracy
[23], [24].

Integrity monitoring of multi-sensor integrated navigation
has attracted research efforts during the last couple of decades
[25]. Receiver autonomous integrity monitoring (RAIM),
which was initially introduced in aviation, has been adapted
to account for multi-constellation GNSS measurements [26]



(e.g., Galileo [27], GLONASS [28], and Beidou [29]), aiding
sensors (e.g., INS-GPS [30], lidar-GNSS [31], vision-GPS
[32], and multi-sensor collaborative [33]), and terrestrial SOPs
[34]–[36]. As tightly-coupled GNSS/INS is widely adopted
for vehicular navigation, different integrity monitoring frame-
works have been proposed, e.g., extended RAIM [37], solution
separation [38], residual-based method [39], and innovation-
based method [40]. Initial studies to characterize the integrity
monitoring improvement for automated driving, upon fusing
GPS signals with terrestrial SOPs, was conducted in [41], [42].
However, the research on FDE for opportunistic navigation,
especially for SOP-aided inertial navigation is rarely found
in the literature. An extended Kalman filter (EKF)-based
solution separation RAIM, which fuses sequential GNSS and
SOP measurements was proposed in [43]. Nevertheless, a
simple vehicle dynamics models was adopted and no fault
exclusion results were presented. This paper extends the
previous work by incorporating an INS and developing the
FDE algorithm. To this end, a solution separation-based FDE
framework is developed for INS/GPS/5G. Solution separation
tests are exploited to detect and exclude faults from GPS
and 5G signals due to transmitter failures and local threats in
urban environments (e.g., multipath). Experimental results are
presented to evaluate the efficacy of the proposed framework
under different sensor fusion scenarios. It is shown that fusing
5G signals enhances the FDE performance of the multi-sensor
system in a suburban scenario: while INS/GPS fails to detect
faulty GPS measurements, the INS/GPS/SOP is able to detect
the fault. Moreover, over a trajectory of 1.91 km traversed
in 200 s, using signals from two 5G gNBs, the INS/GPS/5G
system achieved a position root-mean squared error (RMSE) of
0.81 m and maximum position error of 2.17 m. The undetected
GPS fault in the INS/GPS system increased the RMSE and
maximum position error to 1.83 m and 4.25 m, respectively.

The rest of the paper is organized as follows. Section II
introduces navigation models for GPS/SOP-aided INS. Section
III describes the proposed integrity monitoring framework.
Section IV presents the experiment results in a suburban
environment and compares the FDE performance of different
sensor fusion scenarios. Section V concludes the paper.

II. GPS/SOP-AIDED INERTIAL NAVIGATION

This section describes foundational models for the
INS/GPS/SOP tightly coupled navigation framework, includ-
ing the GPS and terrestrial SOP pseudorange measurement
models, the aided INS states, the dynamics of the vehicle-
mounted receiver and cellular SOP clocks, and the EKF-based
navigation framework.

A. GPS Pseudorange Measurement Model

The ground vehicle is equipped with a receiver which makes
pseudorange measurements to M GPS satellites. Let zG(k)
denote the GPS measurement vector at time-step k defined as

zG(k) = [zG1 (k), . . . , zGm(k), . . . , zGM (k)]
T
,

where zGm(k) is the m-th GPS pseudorange measurement at
time-step k, after compensating for ionospheric and tropo-
spheric delays and satellite’s clock bias, which is modeled
as

zGm(k) = ∥rr(k)− rGm(k)∥2 + c · δtr(k) + vGm(k), (1)

where rr(k) and rGm(k) are the receiver and m-th satellite’s
three-dimensional (3–D) position vectors, respectively; c is the
speed of light; δtr(k) is the GPS receiver’s clock bias; and vGm
is the measurement noise, which is modeled as a zero-mean
white Gaussian sequence with variance (σG

m)2(k).

B. Terrestrial SOP Pseudorange Measurement Model
The ground vehicle-mounted receiver also makes pseu-

dorange measurements from N terrestrial SOPs, which are
assumed to be stationary with known positions. Let zS(k)
denote the SOP measurement vector at time-step k, defined
as

zS(k) = [zS1 (k), . . . , z
S
n(k), . . . , z

S
N (k)]

T
,

where zSn(k) is the n-th SOP measurement at time-step k,
which can be modeled as

zSn(k) = ∥rr(k)− rSn∥2 + c · [δtSr (k)− δtSn(k)] + vSn(k), (2)

where rSn and δtSn(k) are the 3–D position and clock bias of the
n-th SOP transmitter, respectively; δtSr (k) is the the receiver’s
clock bias (assumed to be different than the GPS receiver’s
clock bias δtr(k)); and vSn(k) is the measurement noise, which
is modeled as a zero-mean white Gaussian sequence with
variance (σS

n)
2(k).

C. Aided INS
The vehicle-mounted IMU produces 3–D angular veloc-

ity measurements ωimu(k) and specific force measurements
aimu. An EKF is used to fuse IMU, GPS, and 5G SOP
measurements [44]. The EKF state vector is defined as

x ≜ [beq
T
, rTr , ṙ

T
r , b

T
gyr, b

T
acc,x

T
clk,r,x

S
clk

T
]
T

, (3)

where b
eq is the 4–D unit quaternion, representing the ve-

hicle’s orientation, i.e., rotation from Earth-centered, Earth-
fixed (ECEF) frame {e} to vehicle body frame {b}, ṙr is
the vehicle’s speed, bgyr is the gyroscope’s 3–D bias, bacc is
the accelerometer’s 3–D bias, xclk,r = [δtr, δ̇tr]

T
is the GPS

receiver clock error state vector, with δ̇tr denoting the receiver
clock drift; and xS

clk captures the difference between the SOP
receiver and each of the SOPs’ transmitters clock errors.

The discrete-time dynamics of xclk,r and xS
clk is assumed to

follow the standard double integrator model, driven by process
noise [44].

The time-update of b
eq, rr, and ṙr are performed using

ECEF strapdown mechanization equations with the gyroscope
and accelerometer measurements [45]. The EKF measurement-
update corrects the time-updated states x̂(k + 1|k) using
available GPS and SOP pseudorange measurements. The EKF
measurement-updated states x̂(k + 1|k + 1) and associated
estimation error covariance P(k+1|k+1) are computed using
standard EKF update equations [44].



III. SOLUTION SEPARATION-BASED RAIM WITH FDE

This section describes the solution separation-based RAIM
for aided INS, which fuses measurements from IMU, GPS,
and SOPs, to detect and exclude faults from GPS and SOP
measurements. Note that the proposed frameworks assume no
fault condition in IMU measurements.

A. Framework Overview

As shown in Fig. 1, the proposed aided INS RAIM frame-
work extends the framework developed in [43] by incor-
porating INS and fault detection functionality. The integrity
monitoring system utilizes a bank of filters, upon which
solution separation tests are conducted to detect potential faults
from the ranging measurement, while assuming the INS is
faultless. When faults are detected, exclusions are tried to
resume normal operation.

B. Solution Separation Test

The test statistics are chosen to be the difference between
the position estimates from the main filter, r̂(0)(k|k), and the
position estimates from the subfilters, r̂(i)(k|k) [43]. The test
statistics vector can be expressed as

x(i)
ss (k) = r̂(0)(k|k)− r̂(i)(k|k), i = 1, . . . , Nss, (4)

where Nss is the number of subfilters, i.e., the number of
faulted hypotheses to be monitored.

As shown in [46], the covariance of the i-th solution
separation vector can be computed as

Σ(i)
ss (k) = P(i)(k|k)−P(0)(k|k). (5)

This enables the framework to calculate Σ
(i)
ss without having

the cross-correlation between the main filter and subfilters.
The test threshold for the i-th hypothesis in the q-th direc-

tion is set to meet a predefined probability of false alert Pfa

under nominal conditions according to

Ti,q = Q−1(αi,qPfa)σ
(i)
ss,q, (6)

where Q−1(·) is the inverse Q-function, αi,q is the allocation
coefficients of the false alert budget to q direction of the i-th
fault mode, and σ

(i)
ss,q is the q-th diagonal element of Σ(i)

ss .

C. FDE and Filter Management

After each time-step, when the system receives new pseu-
dorange measurements, the test statistics of all subsets on
all three directions are compared with their corresponding
test thresholds. The system will be determined as in normal
operation if all the tests pass, i.e.,

x(i)
ss,q < Ti,q, i = 1, . . . , Nss, q = 1, 2, 3. (7)

Otherwise, if any of the above tests fails, the system is deemed
as in faulty conditions and the fault exclusion algorithm tries to
recover the system by excluding the measurements associated
with the failed tests.

The fault exclusion algorithm consists of reconstructing the
filters and recalculating the estimation solutions. For example,

if any of the three tests for the i-th subset fails at time-step kd,
the subsets will be reconstructed based on the measurements
excluding the ones associated with the i-th subset. The new
subsets will be reinitialized based on the estimation solution
from the main filter at time-step kd − kcon, where kcon
is a design parameter to allow the reconstructed subsets to
converge. The reconstructed subsets will be propagated from
time kd − kcon to the current time kd. The purpos of the
recalculation is twofold: (i) to rule out the possibility that
the faulty measurements have contaminated the navigation
solution before time-step k, and (ii) to recover the convergence
of the reconstructed subfilter, so that the system can resume
normal operation immediately, rather than waiting for future
measurements until the filters converge. If the new subsets pass
all the solution separation tests at time-step kd, the system
resume to normal operation with the remaining measurements
after the exclusion. Otherwise, an alarm will be raised, as no
possible exclusion is available. Algorithm 1 summarizes the
FDE and filter management calcululations.

Algorithm 1 FDE and filter management

Input: Nss, k, kcon, {x̂(0)(j|j)}kj=1, {P(0)(j|j)}kj=1,
{x̂(i)(k|k)}Nss

i=0 , {P(i)(k|k)}Nss
i=0 , {z(j)}kj=1, {ωimu(j)}kj=1,

{aimu(j)}kj=1

Output: {x̂(i)(k|k)}Nss
i=0 , {P(i)(k|k)}Nss

i=0

1: f ← 0
2: for i ∈ {1, . . . , Nss} do
3: if any test (6) fails for x̂(i)(k|k) then
4: f ← i
5: break
6: end if
7: end for
8: if f ̸= 0 then
9: {ze(j)}kj=1 ← {z(j)}kj=1 excluding {zf (j)}kj=1

10: ke ← k − kcon
11: Reconstruct subsets at ke
12: Initialize {x̂(i)

e (ke|ke)}Nss−1
i=0 , {P(i)

e (ke|ke)}Nss−1
i=0

with corresponding element from x̂(0)(ke|ke),
P(0)(ke|ke)

13: Propagate filters to calculate {x̂(i)
e (k|k)}Nss−1

i=0 ,
{P(i)

e (k|k)}Nss−1
i=0

14: for i ∈ {1, . . . , Nss − 1} do
15: if any test (6) fails for x̂(i)

e (k|k) then
16: Return Fault with no exclusion
17: end if
18: end for
19: {x̂(i)(k|k)}Nss

i=0 ← {x̂
(i)
e (k|k)}Nss−1

i=0

20: {P(i)(k|k)}Nss
i=0 ← {P

(i)
e (k|k)}Nss−1

i=0

21: Nss ← Nss − 1
22: return Fault with exclusion
23: else
24: return No fault
25: end if
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Fig. 1. Solution separation RAIM for INS/GPS/SOP tightly-coupled navigation.

IV. EXPERIMENTAL RESULTS

To demonstrate the proposed FDE framework and evaluate
its performance under different sensor fusion scenarios, i.e.,
INS/GPS and INS/GPS/SOP, an experiment was conducted
with a ground vehicle navigating in a suburban environment
while collecting measurements from the on-board IMU, GPS,
and two 5G gNBs.

A. Experimental Setup and RAIM Parameters

The experiment was conducted in Costa Mesa, California,
USA. Two consumer-grade cellular omnidirectional Laird an-
tennas were connected to a quadchannel National Instrument
(NI) universal software radio peripheral (USRP)-2955 which
was mounted on a ground vehicle. Two channels of the USRP
was set up to sample 5G signals, which were processed
by a software-defined radio (SDR) receiver to produce SOP
pseudorange measurements. The vehicle was also equipped
with a Septentrio AsteRx-i V integrated GNSS-IMU system
to produce an RTK-corrected navigation solution, which are
used as ground truth in this experiment. The raw IMU mea-
surements and GPS pseudoranges from the Septentrio GNSS-
IMU system are fed into the proposed framework to produce
an INS/GPS/5G navigation solution and support FDE.

During the experiment, the ground vehicle was able to track
9 GPS satellites and receive 5G signals from 2 ambient gNB
towers. The experiment environment and 5G tower locations
are shown in Fig. 2.

The integrity risk budget. i.e., probability of hazardous
misleading information (PHMI), are set to be 10−4/h. The
probability of false alert is targeted at 10−3/h. The probability
of fault for both GPS and 5G towers is set to be 10−2/h and the
time of influence for each fault is set to be 120 s . Considering
the measurement rate in this experiment is 5 Hz yields RAIM
parameters in the notation of per point as shown in Table I.

TABLE I
RAIM PARAMETERS

Parameter Definition Value

{σGPS
URA,m}Mm=1 User Range Error for GPS 5 m

{σS
URA,n}

N
n=1 User Range Error for SOP 5.48 m

PHMIHOR
Integrity budget for the
horizontal component 1.1× 10−9

PHMIVERT
Integrity budget for the

vertical component 1.1−11

Pfa,HOR
Continuity budget allocated to

the vertical component 5.6× 10−8

Pfa,VERT
Continuity budget allocated to

the vertical component 5.6× 10−10

{PGPSm}Mm=1
Probability of a single

GPS satellite fault 5.6× 10−7

{PSOPn}Nn=1
Probability of a single

SOP fault 5.6× 10−7

B. Experimental Results

Since the experiment was conducted in a suburban en-
vironment, which was not as challenging for GPS and 5G
signals, and the GPS and 5G pseudorange measurements were
produced by advanced receivers, no faults appeared in the
pseudoranges. To mimic GPS faults, it was hypothesized that
the ionospheric and troposhperic errors for the GPS satellite
with PRN 7 were not properly corrected, which caused ranging
errors with an average magnitude of 4.57 m.

The ground vehicle traversed a trajectory of 1.91 km in
200 seconds. The proposed framework was first implemented
by fusing INS and GPS measurements. As shown in Fig.
3, the test statistic of INS/GPS did not surpass the test
threshold, which indicates that the system failed to detect the
hypothesized fault in the GPS satellite. However, in the case
where two 5G towers were fused, the test statistic increased
and test threshold decreased to a level that the system could
detect the GPS fault.



Fig. 2. Experiment layout, ground-truth trajectory (green), and navigation solutions with hypothesized fault GPS measurements: INS/GPS (blue) and
INS/GPS/5G (red).

After the fault got excluded by the FDE algorithm described
in Section III-C, the INS/GPS/5G achieved a position RMSE
of 0.81 m and maximum position error of 2.17 m. The unde-
tected GPS fault increased the RMSE and maximum position
error to 1.83 m and 4.25 m, respectively, as summarized in
Table II.

Fig. 3. Test statistics (solid) and test thresholds (dashed) for INS/GPS (blue)
and INS/GPS/5G (red)

TABLE II
PERFORMANCE COMPARISON BETWEEN INS/GPS AND INS/GPS/5G

INS/GPS INS/GPS/SOP
RMSE (m) 1.8309 0.8116
Maximum error (m) 4.2505 2.1686

V. CONCLUSION

This paper developed a solution separation-based RAIM
framework for INS/GPS/SOP tightly-coupled navigation sys-
tems. This framework conducts solution separation tests to
instantaneously detect and exclude ranging measurement faults
from GPS and SOP. The FDE performance of the proposed
framework was validated experimentally, where 5G signals
were exploited to improve FDE over fusing INS only with
GPS signals. It was shown that fusing 5G enables the system
to detect a fault from GPS satellites, which fusing only INS
and GPS fails to detect. With the faulty measurements detected
and excluded, INS/GPS/5G achieved a position RMSE of 0.81
m, while INS/GPS yielded a RMSE of 1.83 m. The FDE also
reduced the maximum error from 4.25 m to 2.17 m.
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