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F
or the safe and reliable control of automated ground 
vehicles, various road information needs to be esti-
mated. Road information typically include road sur-
face conditions, such as dryness, wetness, and iciness, 

as well as shapes, including curvature, bank angles, and 
slope angles. Satellite-based navigation reliability should 
also be considered important road information because 
automated vehicles use various navigation sensors that 
are dependent on positioning, navigation, and timing from 
global navigation satellite systems (GNSS). In particular, 
reliable and accurate GNSS-derived positions are crucial 
for short-range driving control and long-range navigation 
and path planning, while timing is crucial for onboard sen-
sor fusion, cooperative planning and control, and informa-
tion exchanges with other vehicles and the infrastructure. 
The reliability and accuracy of received GNSS signals is 
heavily dependent on the road layout within the surround-
ing environment.

An automated vehicle usually relies on GNSS, such as 
GPS in the United States, GLONASS in Russia, Galileo in 
Europe, and Beidou in China, to obtain its absolute po-
sition on Earth. Although other sensors, including vi-
sion [1], [2], radar [3], [4], lidar [5], [6], and ultrasonic [7] 
sensors and sensor networks [8], [9], can measure rela-
tive distances to nearby objects, GNSS receivers are the 
primary sensing modality for determining a vehicle’s 
absolute position. This absolute position information is 
crucial, especially for initializing urban navigation pro-
cesses using other sensors. For example, given a GNSS po-
sition solution, one can narrow the search space in digital 
maps, which are used with 3D point clouds from a scan-
ning lidar, to estimate in real time a vehicle’s position and 
heading to lane-level accuracy to avoid collisions [10]. In 
addition, when integrated with vision simultaneous local-
ization and mapping [2], GNSS can mitigate the accumula-

tive positioning error. Furthermore, GNSS measurements 
can be used to fix the drift of inertial measurement units 
(IMUs) for determining a vehicle’s linear and angular 
motion [11], [12].

GNSS and differential correction stations alone can pro-
vide centimeter-level positioning accuracy if the signal re-
ception environment and solar activity are favorable [17]. 
Urban canyons impose harsh signal reception conditions 
[18]. Tall buildings, trees, and nearby vehicles frequently 
block GNSS signals. Non-line-of-sight (NLOS) reception of 
GNSS signals without the reception of LOS signals, i.e., the 
NLOS-only condition, which occasionally occurs on urban 
roads, can cause arbitrarily large position errors. In addi-
tion, the accuracy of pseudoranges (i.e., measured distanc-
es between a user’s receiver and GNSS satellites, without 
compensating for the receiver’s clock bias and atmospheric 
delays) is degraded in an urban environment where LOS 
and NLOS signals are simultaneously received, i.e., the 
LOS + NLOS condition. Therefore, it is important to predict 
the reliability of GNSS signals on urban roads to ensure the 
safe operation of automated ground vehicles.

Various studies have utilized 3D building models with 
and without ray tracing to overcome the unfavorable GNSS 
signal reception conditions in urban environments [13], [14], 
[19]–[21]. Power matching [22], shadow matching [20], spec-
ular matching [21], and urban trench modeling [19] were 
developed to decrease positioning error by predicting the 
NLOS conditions of GNSS satellites by using a 3D building 
map. In [13] and [14], 3D building models along with ray-
tracing techniques were utilized to predict pseudoranges at 
a given location in an urban multipath environment. The 
future state uncertainty [13] and predicted positioning error 
[14] were then calculated based on the predicted pseudor-
anges. However, while GNSS signal blockage due to build-
ings was considered, blockage due to other objects 

Abstract—Predicting the safety of urban roads for navigation via global navigation satellite systems (GNSS) 
signals is considered. To ensure the safe driving of automated vehicles, a vehicle must plan its trajectory 
to avoid navigating on unsafe roads (e.g., icy conditions, construction zones, narrow streets, and so on). 
Such information can be derived from roads’ physical properties, the vehicle’s capabilities, and weather 
conditions. From a GNSS-based navigation perspective, the reliability of GNSS signals in different lo-
cales, which is heavily dependent on the road layout within the surrounding environment, is crucial to 
ensure safe automated driving. An urban road environment surrounded by tall objects can significantly 
degrade the accuracy and availability of GNSS signals. This article proposes an approach to predict the 
reliability of GNSS-based navigation to ensure safe urban navigation. Satellite navigation reliability at a 
given location and time on a road is determined based on the probabilistic position error bound of the 
vehicle-mounted GNSS receiver. A metric for GNSS reliability for ground vehicles is suggested, and a 
method to predict the conservative probabilistic error bound of the GNSS navigation solution is proposed. 
A satellite navigation reliability map is generated for various navigation applications. As a case study, the 
reliability map is used in a proposed optimization problem formulation for automated ground vehicle 
safety-constrained path planning.
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(e.g., trees and nearby vehicles) was not considered, nor did 
the predicted positioning error consider the detection and 
exclusion of possible faulty satellite signals and the probabi-
listic error bound of the predicted position solution.

The probabilistic error bound of the GNSS position 
solution, which is referred to as the protection level (PL), 
as well as the concept of navigation integrity have been 
actively studied for safety-critical applications, such as 
aviation [23], [24]. In [15], a receiver autonomous integrity 
monitoring (RAIM) algorithm was developed to predict 
the horizontal position error bound [i.e., the horizontal PL 
(HPL)] as a measure of satellite navigation reliability for 
ground vehicles. However, this algorithm did not perform 
fault detection and exclusion (FDE), and it did not con-
sider multiple signal faults, which are expected in urban 
environments. Furthermore, urban NLOS-only and LOS + 
NLOS conditions were not considered, and it was assumed 
that all GPS signals were received by direct LOS.

To overcome these limitations, a multiple hypothesis 
solution separation (MHSS) RAIM method was applied 
in [16], which considered multiple signal faults to predict 
the HPL. However, FDE was still not performed, and the 
performance of the proposed method was not validated 
experimentally. Upon attempting to validate this method 
experimentally, it was discovered that the method did not 
accurately predict the HPL. This was due to the complexity 
of predicting the multipath environment sufficiently ac-
curately and due to signal blockage owing to tall objects 
other than buildings. As presented in Table 1, the method 
proposed in the current study addresses the aforemen-
tioned issues.

The contributions of this study are summarized as follows:
■■ A conservatively predicted multiconstellation GNSS HPL, 

after detecting and excluding multiple signal faults, is 
suggested as a metric for GNSS reliability for ground ve-
hicles. This metric considers more realistic urban GNSS 
signal environments than those in Table 1.

■■ A method to conservatively predict GNSS HPLs for ground 
vehicles is proposed. While performing ray-tracing sim-
ulations with 3D urban digital maps, possible driving 
lanes and surrounding vehicles are considered, and the 
most conservative value is selected at each longitudinal 
location along the test roads.

■■ It is experimentally shown that the proposed metric 
(i.e., the conservatively predicted HPL) successfully 
overbounds the HPL calculated using real pseudorange 
measurements during field tests in two cities.

■■ An optimization problem formulation for safety-con-
strained path planning is proposed. Unlike previous 
studies, the unavailability of GNSS signals and continu-
ous GNSS signal outages are considered in the problem 
formulation. A specific implementation to solve this 
problem is also presented and experimentally dem-
onstrated. The proposed method enables automated 
ground vehicles to select the path that ensures naviga-
tion safety. 

Prediction of Satellite Navigation Reliability  
on Urban Roads
A GNSS receiver estimates its 3D position and clock bias 
by using pseudorange measurements from at least four 
GNSS satellites. Because a pseudorange is directly re-
lated to the signal travel time from a satellite to a user’s 
receiver, which is measured by a receiver clock, vari-
ous errors, such as satellite clock bias and ionospheric 
and tropospheric delay errors, contaminate the pseudo-
range measurement. These errors should be corrected 
for to bring the pseudorange closer to the true range. 
The receiver clock bias is treated as an additional un-
known variable, which is obtained alongside the receiv-
er position through a solution estimation process. This 
section presents various error sources for satellite navi-
gation systems and introduces the proposed method to 
predict pseudoranges and conservative position error 

Method Metric for GNSS Reliability Considered Obstacles Verification Method

Shetty and  
Gao [13]

State uncertainty bound (3v) that encloses the 
uncertain future state distributions

Buildings in virtual urban 
environments

Simulations only

Zhang and  
Hsu [14]

GPS positioning error Real-world buildings, without 
consideration of driving lanes

Experiments (mean of the measured and predicted 
positioning errors differed by a maximum of 17.7 m)

Maaref and 
Kassas [15]

GPS HPL without consideration of  
measurement faults

Not considered (all GPS signals 
assumed to be direct LOS)

Experiments (no performance comparison between 
the predicted and measured HPLs reported)

Lee et al. [16] GPS HPL with consideration of multiple 
measurement faults (FDE not performed)

Real-world buildings, without 
consideration of driving lanes

Simulations only

Proposed Conservative multiconstellation GNSS HPL  
with consideration of multiple measurement 
faults (FDE performed)

Real-world buildings and 
surrounding vehicles, with 
consideration of driving lanes

Experiments (conservatively predicted HPL bounded 
the measured HPL 100% of the time)

Table 1. The comparison of GNSS reliability prediction methods.
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bounds as measures of satellite navigation reliability on 
urban roads.

Error Sources for Satellite Navigation
The performance of GNSS-based navigation can be de-
graded by anomalous ionospheric behavior [25]–[27], ra-
dio frequency interference [28], [29], signal reflection and 
blockage [30], [31], and poor geometric diversity of satel-
lites in view [32], [33]. In particular, signal reflection and 
blockage due to buildings and other tall objects is a signifi-
cant error source for ground vehicle navigation in urban 
canyons. When N GNSS satellites are in view, the nth pseu-
dorange measurement in an urban environment at time 
step t, after satellite clock bias corrections, can be modeled 
as follows:
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where the descriptions of the symbols are given in Table 2.
Considerable common-mode errors can exist between 

a user and a nearby reference station, such as atmospheric 
delays and satellite ephemeris errors. These errors can 
be largely mitigated using differential GNSS (DGNSS). A 
DGNSS reference station broadcasts correction messages 
to nearby users, enabling the users to eliminate common-

mode errors. However, site-specific errors caused by NLOS-
only and LOS + NLOS signal reception cannot be mitigated 
using DGNSS.

Four GNSS signal reception conditions can occur in 
urban canyons: 1) the LOS-only condition, in which only 
the LOS signal is received; 2) the NLOS-only condition, in 
which only NLOS signals are received; 3) the LOS + NLOS 
condition, in which both LOS and NLOS signals are 
received; and 4) the no-signal condition, in which a signal 
is completely blocked by an object. Figure 1 illustrates the 
difference between the NLOS-only and LOS + NLOS con-
ditions. In the field of satellite navigation, the NLOS-only 
and LOS + NLOS conditions are treated differently, as they 
cause different types of pseudorange errors. Moreover, 
simulation methods to predict these errors are different, as 
discussed in the following.

Under the NLOS-only condition, the NLOS-only bias 
term, which is NLOS

nt  in Figure 1(a), reflects the extra travel 
distance (i.e., R– NLOS

n n
1t  where n

1t  is the travel distance 
along the reflected path) due to signal reflection, which 

Symbol Description

nt The n th pseudorange measurement in an urban environment 
after satellite clock bias corrections

RLOS
n Length of the LOS path between a user’s receiver and the 

n th satellite, including delays due to receiver’s clock bias, 
ionosphere, and troposphere

bias
nt Either 1) the bias due to an NLOS-only condition (i.e., LOSN

nt ) 
which represents the extra travel distance of the NLOS signal 
compared with RLOS

n  [see Figure 1(a)], or 2) the bias due to an 
LOS + NLOS condition (i.e., NL

nt + ) where both LOS and NLOS 
signals are received [see Figure 1(b)]

NLOS
nt Bias due to an NLOS-only condition

L N
nt + Bias due to an LOS + NLOS condition

ru Position vector of a user’s receiver

r n Position vector of the n th satellite

c Speed of light

tud User’s receiver clock bias

In
Ionospheric delay in the n th pseudorange measurement

Tn
Tropospheric delay in the n th pseudorange measurement

nf Remaining errors (e.g., noise, unmodeled effects, and so on) in 
the n th pseudorange measurement

Table 2. The mathematical notations related to pseudorange 
measurement modeling in urban environments.

ρ1
n

RLOS
n

ρNLOS = ρ1 – RLOS
n n n

(a)

ρ2, A2, φ2
n n n

RLOS, ALOS, φLOS
n n n

(b)

ρL+N = f (ρ2 – RLOS, A2 – ALOS, φ2 – φLOS)n n n n n n n

FIG 1 The GNSS (a) NLOS-only and (b) LOS + NLOS conditions in an 
urban environment and corresponding pseudorange biases.
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can be arbitrarily large. If this bias remains in the pseu-
dorange measurement, it can cause a large unbounded po-
sitioning error. A typical way to predict NLOS

nt  at a given 
location is to calculate the difference between the lengths 
of the direct and reflected paths (i.e., the LOS and NLOS 
paths) from a satellite to a receiver, which represents the 
extra travel distance. Ray-tracing simulation using 3D ur-
ban digital maps can be performed to estimate the length 
of the reflected path. The positions of the satellites at a giv-
en time for ray-tracing simulation are calculated based on 
the satellite broadcast almanac information. The complete 
blockage of a signal (i.e., the no-signal condition) can also 
be predicted by ray-tracing simulation.

In an urban environment, the LOS + NLOS condition 
is more frequently observed than the NLOS-only condi-
tion. Unlike the NLOS-only bias term, the LOS + NLOS bias 
term, which is L N

nt +  in Figure 1, is bounded. Reflected sig-
nals with a large delay when compared with the 1.5-chip 
width of the GNSS signal (e.g., a 300-m width for a GPS L1 
C/A-code chip) do not cause any bias in the pseudorange 
measurements if the direct signal is also received and 
tracked [34]. For short-delay reflected signals (i.e., the de-
lay is less than 1.5 chips), L N

nt +  depends on the receiver’s 
correlator design, and it is a function of the difference of 
the travel distances (i.e., ),RLOS

n n
2t -  received signal am-

plitudes (i.e., ),A ALOS
n n
2 -  and phases (i.e., )LOS

n n
2z z-  of the 

reflected and direct signals, where · n
2^ h  and · LOS

n^ h  repre-
sent the reflected and direct signals from the nth satellite, 
respectively [see Figure 1(b)].

The receiver used in the field experiments of this study, 
which will be explained in the “Experimental Field Test 
Results” section, utilizes the a posteriori multipath esti-
mation (APME) method [35]; therefore, the multipath er-

ror envelop of the APME method was used to predict L N
nt +  

in this study. The amplitudes and phases of the received 
reflected and direct signals were obtained through ray-
tracing simulations.

Probabilistic Error Bound and Advanced RAIM
Accuracy in the field of navigation usually refers to the 
95th-percentile value of the positioning error distribution 
[36]. However, when navigation safety is of concern, a con-
siderably higher probability (e.g., 99.99999% for the verti-
cal guidance of aircraft) should be considered to obtain an 
error bound [23]. This error bound (i.e., the PL) includes 
the true position of a user with a required high probabil-
ity. If the PL is larger than the alert limit (AL) of a certain 
safety-critical operation (e.g., 35 m for the vertical guid-
ance of an aircraft down to 200 ft above the runway), the 
position output from the navigation system is deemed un-
reliable because it is not guaranteed that the true position 
is within the AL with the required probability. In this case, 
the navigation system is declared unavailable and must not 
be used to ensure navigation safety (i.e., navigation integ-
rity is guaranteed by a timely alert).

Among various methods and augmentation systems—
e.g., ground-based augmentation systems [37]–[39] and 
satellite-based augmentation systems [40], [41]—to guar-
antee the integrity of satellite navigation systems, RAIM 
is often preferred because it requires no or minimal sup-
port from infrastructure. The basic idea of RAIM is to 
check the consistency among position solutions obtained 
by subsets of pseudorange measurements. If all the subset 
solutions are almost identical, all the signals can be con-
firmed to be fault free, and the position output of a receiver 
is deemed reliable.

Many RAIM algorithms have the functionality of FDE 
and PL calculations. FDE rejects faulty signals that cause 
erroneous position solutions through a consistency check 
using redundant measurements. A minimum of six pseu-
dorange measurements is necessary to detect and exclude 
a single fault. PL is a probabilistic error bound of a posi-
tion solution, and HPL is particularly relevant to ground 
vehicles. For aerial vehicles, the vertical PL should also be 
considered [42], [43]. After performing FDE, the HPL can 
be calculated, as shown in Figure 2.

It should be noted that RAIM is suitable for the real-time 
integrity monitoring of received GNSS signals; however, the 
focus of this study is not on guaranteeing real-time naviga-
tion integrity. Instead, a method is proposed to predict satel-
lite navigation reliability at every location on urban roads 
before an automated vehicle arrives at a location. The prob-
abilistic position error bound (i.e., the HPL) is used as a safe-
ty metric to represent satellite navigation reliability. After 
the reliability is predicted and provided to a vehicle as part 
of the road information, the vehicle can detour around the 
low-reliability region (i.e., the high-HPL region) or prepare 

GNSS Pseudorange
Measurements + Orbit Data

Position Solution and
Test Statistic Calculation

Fault Exclusion
Yes

No

Test Statistic
>Threshold?

(Fault Detection)

HPL Calculation HPL Calculation
After Fault Exclusion

FIG 2 The FDE and HPL calculation of the RAIM algorithm.

Authorized licensed use limited to: The Ohio State University. Downloaded on April 13,2023 at 05:02:10 UTC from IEEE Xplore.  Restrictions apply. 



IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE  •  99  •  NOVEMBER/DECEMBER 2022IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE  •  98  •  NOVEMBER/DECEMBER 2022

its other navigation sensors to not utilize GNSS measure-
ments when passing through the low-reliability region.

For this purpose, advanced RAIM (ARAIM) with an MHSS 
algorithm [36], [44] that can handle multiple faults and con-
stellations is adopted in this study. It is expected that a ground 
vehicle will experience multiple GNSS signal faults on urban 
roads. Currently, most GNSS receivers used by automated ve-
hicles are capable of tracking multiple GNSS constellations 
(e.g., GPS and GLONASS were used in this study). By intro-
ducing multiple hypotheses of signal failures, ARAIM can 
detect and exclude multiple faults in multiple constellations 
and consider the possibility of further fault modes when cal-
culating the HPL. Therefore, ARAIM, among various RAIM 
algorithms [45], is appropriate for FDE based on predicted 
pseudoranges and HPL prediction for automated ground ve-
hicles in urban environments.

The MHSS-based FDE algorithm detects faulty signals 
by using a solution separation threshold test. Solution sep-
aration is the difference between fault-free and fault-
tolerant position solutions. The receiver’s state x, which 
is ,x xD+t t  can be estimated by the weighted least-squares 
estimator, whose update equation is given by [34], [44]

	 ( ) ,G WG G Wx 1 tD D= < <-t � (2)

where the descriptions of the symbols are given in Table 3. 
The fault-free position solution is estimated from the all-
in-view satellites, whereas the fault-tolerant position solu-
tion assumes one or more possible faulty signals; thus, it 
is estimated from a subset of satellites. Then, the solution 
separation threshold test is expressed as [44]

	 | | ,x x T( ) ( )
,q q

k
k q

0 #-t t � (3)

where the descriptions of the symbols are given in Table 3. 
If the solution separation for any axis exceeds a certain 
threshold, signal faults are likely to exist, and exclusion of 
these faults should be attempted.

If the solution separation threshold test passes without ex-
cluding any satellite signals, the HPL is computed as follows. 
In the MHSS-based HPL calculation method, the HPL is ob-
tained as a bound that includes all the HPLs corresponding 
to the fault-free and fault-tolerant position solutions. The 
HPL for the q-axis (i.e., HPLq) is calculated as [44]

Symbol Description

x State vector of a user’s receiver, which is defined as ,r c tT T
u ud6 @

t Pseudorange measurement vector, which is defined as , , TN1 ft t6 @
xD t Difference between a receiver’s state vector x and its estimate from the previous iteration xt

tD Difference between the pseudorange measurement vector t  and the expected pseudorange vector tt  based on the satellite positions and xt

G Geometry matrix

W Weighting matrix, which is the inverse of a diagonal matrix whose diagonal elements are the measurement noise variances

q Either q = 1 or q = 2 for the east or north axis of the horizontal plane, respectively

x ( )
q
0t Fault-free position solution for the q-axis estimated from the all-in-view satellites

x ( )
q
kt Fault-tolerant position solution for the q-axis and k th fault mode

T ,k q Solution separation threshold for the q-axis and k th fault mode (k  = 0 represents the fault-free condition)

HPLq HPL for the q-axis

( )Q $ Tail probability function of the standard Gaussian distribution

b( )
q
k Nominal bias of the position solution for the q-axis and k th fault mode

( )
q
kv Standard deviation of the position solution for the q-axis and k th fault mode

N fault esmod Total number of fault modes

p ,fault k Probability that the k th fault mode occurs

PHMIHOR Probability of hazardously misleading information for the horizontal component

PHMIVERT Probability of hazardously misleading information for the vertical component

P ,sat not monitored Probability that independent simultaneous satellite faults are not monitored

P ,const not monitored Probability that simultaneous constellation faults are not monitored

Table 3. The mathematical notations related to HPL calculation.
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where the descriptions of the symbols are given in Table 3. 
Detailed information and mathematical formulations of 
the ARAIM user algorithm are provided in [44]. If the so-
lution separation threshold test does not pass (i.e., a fault 
is detected), fault exclusion should be attempted. After the 
exclusion of faulty signals, the HPL should be calculated 
considering the probability of wrong exclusion. The HPL 
equation in this case has an additional factor to (4). De-
tailed discussions are available in [44].

Prediction of Conservative HPL in Urban Environments
Predicting the exact HPL of a vehicle at a certain location 
and time is virtually impossible due to imperfections in 

3D urban digital maps as well as the presence of nearby 
dynamic objects, which cannot be predicted. For example, 
nearby vehicles can block satellite signals, as illustrated in 
Figure 3(a). Therefore, the HPL will be predicted conser-
vatively by assuming that the vehicle of interest is always 
surrounded by taller vehicles. Considering the height of 
the vehicle used for the field test (1.7 m), the height and 
width of a typical dump truck (3.3 and 2.5 m, respectively), 
and the typical width of a lane (3.7 m), an elevation mask of 
33º was set, including a slight margin. In other words, to be 
conservative, satellite signals with less than a 33º elevation 
are assumed to be blocked by nearby vehicles.

Signal reflection and blockage due to static objects, 
such as buildings, can be predicted by ray-tracing simu-
lation if exact 3D urban digital maps are available [46], 
[47]. However, it should be noted that the signal reception 
conditions in each lane can vary significantly [48]. For ex-
ample, a vehicle can have an LOS reception of a certain 
satellite signal in one lane but may not receive the signal 
from the same satellite in another lane because of build-
ing blockage [see Figure 3(b)].

To perform ray-tracing simulations to predict signal block-
age due to buildings and NLOS-only or LOS + NLOS bias (i.e., 

NLOS
nt  or L N

nt +  in Figure 1), commercial 3D urban digital 
maps from 3dbuildings and Wireless InSite commercial ray-
tracing software were used. Figure 4 shows an example of a 
ray-tracing simulation. It was assumed that the exterior walls 
of all buildings were made of concrete. The time of arrival 
(TOA) of GNSS signals was calculated using the shooting and 
bouncing ray (SBR) method described in [49], which is used to 
find geometrical propagation paths between a transmitter and 
a receiver using a 3D map. In the SBR method, among the rays 
transmitted from the source, the rays that hit the building are 
specularly reflected and traced until the maximum number of 
reflections is reached. Then, NLOS

nt  or L N
nt +  is predicted using 

the simulated TOAs, amplitudes, and phases of GNSS signals 
from ray tracing according to the signal reception condition. 
The GPS and GLONASS constellations were considered based 
on their almanac information.

To reduce the computational complexity of the ray-tracing 
simulation, it was assumed that the receiver received only 
direct and single reflected signals. If a signal was reflected 
by buildings more than once, it was assumed that the signal 
was not received by the vehicle. This assumption does not sig-
nificantly affect the accuracy of conservative HPL prediction 
because the received signal strength of multiple reflected sig-
nals is low, and a receiver may not track such signals.

With the predicted pseudoranges from the ray-tracing 
simulation, the HPL can be predicted following the pro-
cedure in Figure 2. An example map of the conservatively 
predicted HPL is given in Figure 5. If the number of visible 
satellites at a certain location is insufficient for FDE, the lo-
cation is marked as unavailable because the HPL prediction 
is not performed in this case. It should be noted that the HPL 

Lane 1 Lane 2

(a)

(b)

FIG 3 (a) The GNSS signal blockage due to a nearby vehicle.  
(b) The different signal reception conditions in two lanes.

FIG 4 The ray tracing at a single node within a 3D urban digital map.
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at a given location varies with time because GNSS satellites 
move. Fortunately, future satellite positions are reliably pre-
dictable based on ephemerides [34]. Thus, the conservative 
HPLs over a certain time horizon at each location can be cal-
culated in advance in a cloud server. Automated vehicles can 
use this information without concern about their onboard 
computational power. Since the conservative HPL prediction 
at each location and time can be performed independently, 
a cloud server with enough parallel processors can quickly 
generate HPL prediction maps of regions of interest.

Experimental Field Test Results
To verify the proposed methodology for conservatively pre-
dicting HPL in urban environments, field tests were per-
formed to calculate the HPL based on actual pseudorange 
measurements. Then, the HPL based on measured pseu-
doranges (i.e., the measured HPL) was compared with the 
conservative HPL based on predicted pseudoranges (i.e., 
the conservatively predicted HPL). The HPL varies over 
time, as satellite geometry changes. Further, the HPL is 
impacted by the surrounding environment. To check if the 
proposed methodology is applicable to various times and 
environments, field tests were performed in two different 
cities: Irvine, California, and Riverside, California.

During the experiments, GPS and GLONASS measure-
ments were collected using a Septentrio AsteRx-i V re-
ceiver. The GNSS antenna was placed on top of the ground 
vehicle (Figure 6). GNSS constellations during the experi-
ments in Irvine and Riverside are included in Figure 7. 
Figure 8 presents a small portion of the urban test envi-
ronment in Irvine as an example, which included several 
tall buildings that significantly changed the measured HPL 
values. In Riverside, complex-shaped buildings were dis-
tributed along the test trajectory. The experiments were 
conducted along approximately 4.5- and 1.6-km roads in 
Irvine and Riverside, respectively.

As shown in Figure 3(b), the signal reception condition 
can dramatically change according to the lateral location of a 
vehicle on the road. It is theoretically possible to predict the 
HPL at every location, as in Figure 5; however, the prediction 
accuracy depends on the accuracy of the 3D building and 
road maps. For example, a slight height error of a building 
model or a lateral position error of a road model in a digital 
map can cause a visible satellite to be predicted as invisible 
during ray-tracing simulation. Unfortunately, commercially 
available 3D digital maps have limited accuracy. As a con-
servative approach, multiple ray-tracing simulations were 
performed by changing the vehicle’s lateral location across 
the road. If a certain satellite was invisible at one location, 
the satellite was treated as an invisible satellite when pre-
dicting the HPL at the given longitudinal location of the road. 
Furthermore, NLOS

nt  and L N
nt +  were also predicted at every 

lateral location across the road, and the largest value was 
chosen for the pseudorange prediction, to be conservative.

Figure 9 describes the conservatively predicted HPL 
along two 1.5-km roads with tall buildings. The ground 
vehicle freely changed its driving lane during the field 
tests. However, its measured HPL was always less than 
the conservatively predicted HPL that assumed the most 
challenging lateral location, having the largest number of 
signal blockages and largest NLOS-only and LOS + NLOS 
biases. When the vehicle drove along a lane with better 
satellite visibility (i.e., a lane distant from a tall building), 
the measured HPL was significantly lower than the con-
servatively predicted HPL that assumed the most challeng-
ing lane with poor satellite visibility, as in the case of a 
1.3-km distance location in Figure 9(b). Nevertheless, the 
most challenging lane needs to be assumed when the HPL 
is predicted because it is not practical to restrict the driv-
ing lane of a vehicle.

40
20

0U
p 

(m
)

0

100

200

300
–400

–350
–300

–250
–200

–150

East (m)
North (m)

10 20 30 40 >50 Unavailable
Predicted HPL (m)

FIG 5 The conservatively predicted HPL with a 33º elevation mask at a certain 
time epoch. This map varies with time because of GNSS satellite motion.

GNSS Antenna

AsteRx-i
Module

Storage

FIG 6 The experimental settings. A GNSS antenna is attached to the top 
of a ground vehicle. The GNSS signals are processed using a Septentrio 
AsteRx-i receiver module. GNSS measurements and navigation data are 
stored on a laptop placed inside the vehicle.
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Application Case Study: Safety-Constrained Path Planning
The predicted satellite navigation reliability map (i.e., the 
HPL prediction map) can be utilized by an automated vehi-
cle for various purposes to ensure safe driving. Because the 

reliability of satellite navigation signals is already known 
through the HPL prediction map, an automated vehicle can 
plan a safe trajectory ahead of time. If the navigation sen-
sors of the vehicle rely heavily on GNSS, it would be better to 
detour around high-HPL regions. Most automated vehicles 
utilize IMUs, which are calibrated using GNSS. Therefore, 
IMU outputs in a high-HPL region should not be relied on.

As an application case study, the path planning of an auto-
mated vehicle based on the HPL prediction map is considered. 
Unlike traditional strategies for path planning to minimize 
travel distances and times, the primary focus here is the navi-
gation safety of an automated vehicle. Therefore, the optimi-
zation problem is formulated with safety considerations as

	

imize ( , ) · ( , )

subject to
( , )

,

min dist p p HPL p t

N
N HPL p t T
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where the descriptions of the symbols are given in Table 4.
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The cost function in (5) aims to find an optimal path 
that minimizes both the travel distance and HPL along the 
path (recall that a smaller HPL indicates a higher satellite 
navigation reliability). The first constraint in (5) considers 
the ratio of the number of safe nodes to that of the total 
nodes. For example, if THPL  is set to 10 m and Tsafe  is set to 
95%, a candidate path with more than 5% of nodes having 
an HPL of more than 10 m will not be selected as an optimal 
path. The second constraint in (5) ensures the avoidance of 
a candidate path with continuous signal outages. The out-
puts from automotive-grade IMUs quickly diverge if GNSS 
signals are unavailable or unreliable for a certain period. 
Therefore, continuous signal outages are more problemat-
ic than intermittent signal outages for similar total outage 
durations. For example, if Dsafe  is set to 150 m, a candidate 
path with continuous signal outages for more than a 150-m 
distance will not be selected as an optimal path.

Table 5 compares the optimization problem formula-
tions of previous studies [14], [15] and the current study. 
Unlike the previous studies, where only travel distance 
and navigation reliability (i.e., the positioning error [14] 
and the HPL without considering measurement faults 
[15]) were considered, the proposed optimization problem 
considers GNSS unavailability and continuous signal out-
ages, as well, to obtain a more realistic solution.

To solve the optimization problem in (5), the A* algo-
rithm [50] was applied, which is a widely used search 
algorithm that can find an optimal path to a given tar-
get node. The A* algorithm was implemented as shown 
in Algorithm 1 to find an optimal solution to the safety-
constrained path planning problem. The overall road 
structure of a given map, which is expressed by a graph 
composed of nodes and edges, is denoted by .P  Given start 
and target nodes, the A* algorithm finds the cheapest path 
[i.e., a sequence of nodes that minimizes the cost function 
in (5)] based on the sum of the backward cost (the cumu-
lative cost) and forward cost (the heuristic cost). The open 
set, which is implemented as a priority queue that stores 
nodes that have been visited but whose successors have 
not been explored, is denoted by .O  pcurrent  denotes the 
currently visited node, and pneighbor  denotes a neighbor 
node of .pcurrent

For each iteration, all neighbor nodes of pcurrent  are 
stored in O  and the overall cost f of each 
neighbor node is calculated. The overall cost 
f is defined as the sum of cumulative cost g 
and heuristic cost h. The Euclidean distance 
(i.e., the straight line distance) to the target 
node was used as the heuristic cost. After cal-
culating the cost of each neighbor node, the 
node in O  with the smallest f is selected 
as pcurrent  and is moved to the close set .C  The 
iteration ends when the target node is reached 
or when the open set O  becomes empty. If the 

target node is reached, the final optimal path π can be found 
by reconstructing the nodes in C.

Considering the four candidate paths in Figure 10, which 
are between Costa Mesa, California, and Irvine, the key 
metrics related to the optimization problem in (5) along 
each candidate path are summarized in Table 6. The GPS 
and GLONASS pseudoranges were measured along the paths 
during the field tests to obtain the measured HPL. The re-
sults of this experiment are summarized as follows:

■■ The costs, which are the output of the cost function in 
(5), of paths 1, 2, 3, and 4 were 56,428, 52,137, 110,398, 
and 92,805, respectively. Therefore, path 2 has the min-
imum cost. Because path 2 satisfies all the constraints 
in (5), it was selected as the optimal path.

■■ Although the average HPLs of the four paths were 
similar, the ratios of safe nodes and the maximum con-
tinuous distances with unacceptable HPLs (i.e., the 
predicted HPL is unavailable or above )THPL  were sig-
nificantly different. In particular, in path 2, the ratio of 
safe nodes was 100%, and there was no section where 
the predicted HPL was unacceptable. This implies that 
an autonomous vehicle can know path 2 has better 

Symbol Description

r Sequence of nodes between start node pstart  and target 
node ,p target  i.e., { , , , , }p p p pstart t etarg2 3 fr =

Nnodes Total number of nodes along a path

,dist p pk k1-^ h Euclidean distance between nodes pk 1-  and pk ( p pstart1 =  
and p p t etargNnodes = )

,HPL p tk^ h Conservatively predicted HPL at node pk  and time t, which 
is given by the HPL prediction map

T HPL Maximum allowable HPL value (i.e., the HPL threshold)

( )N $ Number of nodes satisfying the given condition

Tsafe Threshold for the ratio of nodes satisfying HPL threshold T HPL

DHPL unacceptable Continuous distance where the predicted HPL is 
unavailable or above T HPL

Dsafe Threshold for DHPL unacceptable

Table 4. The mathematical notations related to the proposed 
safety-constrained path planning algorithm.

Method
Travel 
Distance

Navigation 
Reliability

GNSS 
Unavailability

Continuous 
GNSS Outage

Zhang and Hsu [14] ✓ ✓ ✗ ✗

Maaref and Kassas 
[15]

✓ ✓ ✗ ✗

Proposed ✓ ✓ ✓ ✓

Table 5. The comparison of optimization problem formulations  
for safety-constrained path planning.
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GNSS signal quality than the other paths before driv-
ing by solving the optimization problem in (5) using the 
HPL prediction map and Algorithm 1.

■■ Paths 1 and 4 are also feasible solutions because they 
satisfied all the constraints of (5). However, neither 
path 1 nor path 4 is an optimal solution according to the 
proposed cost function that considers both travel dis-
tances and predicted HPLs.

■■ Path 3 is not a feasible solution because it violated the 
second constraint that requires DHPL unacceptable  to be less 
than ,Dsafe  which was set to 150 m. The proposed op-
timization problem successfully screened a path with 
continuous GNSS signal outages that could potentially 
threaten the vehicle’s driving safety.

■■ In all cases, the conservatively predicted HPL bounded 
the measured HPL 100% of the time.

Conclusion
The reliability of GNSS signals is crucial to ensure driv-
ing safety because various navigation sensors of automated 
vehicles rely on GNSS signals. This article considered the 
HPL obtained by the ARAIM algorithm as a metric to mea-
sure navigation reliability at a given location and time on 
urban roads. Due to the uncertainty of nearby dynamic ob-
jects and the limited accuracy of 3D urban digital maps, 
a method to conservatively predict the HPL was proposed 
and validated experimentally. The pseudorange biases and 
presence of signal reflections and blockages, which are 
necessary to predict the HPL in urban environments, were 
simulated by ray-tracing with 3D maps. The generated HPL 
prediction map can serve as useful road information for 
various navigation applications. As a case study, the HPL 
prediction map was applied for the safety-constrained path 
planning of an automated ground vehicle. Unlike previous 
studies, the proposed optimization problem considered the 
unavailability of GNSS signals and continuous GNSS signal 

Start Node:
Costa Mesa

Target Node:
Irvine

Path 1 (22 January)

Path 2 (23 January)

Path 3 (24 January)

Path 4 (25 January)

FIG 10 The four candidate paths between Costa Mesa and Irvine. GNSS signals along the paths were collected during four consecutive days.

Data: , , , ,p p HPLP t etstart arg  ,D Tsafe HPL

Result: π 
,pf p dist pstart start t etarg!^ ^h h

D p 0HPL unacceptable start !^ h
safenode p 1start !^ h

pO start!

while    is not emptyO  do
    pcurrent !  node in O  having smallest f
    pO O current! -

    if D p DHPL unacceptable current safe$^ h  then
        continue
    end
    if pcurrent  is p target then
        !r  reconstructed path from C
        Nnodes !  total number of nodes in r
        Nsafe nodes !  sum of safenode of all nodes in r
        if /N N Tsafe nodes nodes safe2  then
            return r
        end
        continue
    end
    pC C current! +

    for every neighbor of pcurrent  do
        ,g p dist p p HPL p g p·neighbor neighbor current neighbor current! +^ ^ ^ ^h h h h
        ,h p dist p pneighbor neighbor t etarg!^ ^h h
        f p g p h pneighbor neighbor neighbor! +^ ^ ^h h h
        if HPL pneighbor^ h  is unacceptable then
            safenode p 0neighbor !^ h
            D pHPL unacceptable neighbor !^ h
            ,D p dist p pHPL unacceptable current neighbor current+^ ^h h
        else
            safenode p 1neighbor !^ h
            D p 0HPL unacceptable neighbor !^ h
        end
        pO O neighbor! +

    end
end
return failure

Algorithm 1. The A* algorithm implementation for safety-
constrained path planning.
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outages that occur in urban environments. A specific im-
plementation of the A* algorithm to find an optimal path 
was also suggested and demonstrated.
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