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Event-based communication strategies for vehicles navigating by
aiding their inertial navigation systems (INSs) with terrestrial sig-
nals of opportunity (SOPs) are developed. The following problem is
considered. Multiple navigating vehicles with access to global nav-
igation satellite system (GNSS) signals are aiding their on-board
INSs with GNSS pseudoranges. While navigating, vehicle-mounted
receivers draw pseudorange measurements from terrestrial SOPs with
unknown emitter positions and unknown and unsynchronized clocks.
The vehicles share INS data and SOP pseudoranges to collabora-
tively estimate the SOPs’ states through an extended Kalman filter
(EKF). After some time, GNSS signals become unavailable, at which
point the navigating vehicles use shared INS and SOP information
to continue navigating in a collaborative inertial radio simultaneous
localization and mapping (CIRSLAM) framework. Two event-based
communication strategies to share this information are developed,
where instead of sharing information at a fixed-rate when measure-
ments become available, information is only shared whenever any
vehicle’s position error could violate a user-specified position error
threshold with some desired probability. Simulation results are pre-
sented demonstrating the tradeoff between localization performance
and the accumulated transmitted data when the event-based trans-
mission scheme is employed versus sharing data at the fixed-rate.
Experimental results are presented demonstrating two unmanned
aerial vehicles (UAVs) navigating in a CIRSLAM framework with SOP
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pseudoranges drawn from terrestrial cellular towers. The event-based
communication scheme reduced the cumulative communicated data
by 86.6% compared to a fixed-rate scheme, while maintaining the
specified error constraint.

I. INTRODUCTION

Today’s vehicular navigation systems extract position
information from a suite of diverse and complementary
onboard sensors. For example, a global navigation satellite
system (GNSS) receiver provides stable absolute position
information and an inertial measurement unit (IMU) and
other dead reckoning sensors (e.g., wheel encoders) provide
short-term accurate information [1], [2]. After prolonged
periods of GNSS signal unavailability, the position solution
degrades to unsafe levels as error-corrupted dead reckoning
information is integrated without correction from an abso-
lute position information source.

Vehicle-mounted sensors (e.g., cameras [3], [4] or li-
dar [5], [6]) can reduce IMU drift during GNSS unavail-
ability by tracking features in the environment (e.g., walls,
light poles, trees, etc.) and then inferring the vehicle’s
relative motion with respect to the features via a simulta-
neous localization and mapping (SLAM) framework [7].
However, after extended periods of time without GNSS
aiding corrections, the vehicles’ position estimate will still
drift due to the accumulation of sensor errors (e.g., camera
scale factor [8] and lidar range errors due to dust and water
particles [9]).

Over the past decade, signals of opportunity
(SOPs) [10]; such as AM/FM radio [11], cellular [12], [13],
[14], [15], [16], [17], [18], digital television [19], [20], [21],
and low Earth orbit (LEO) satellite signals [22], [23], [24],
[25]; have been studied and demonstrated as an effective
backup or alternative source of absolute positioning
information, providing corrections to an inertial navigation
system (INS) in the absence of GNSS signals [26], [27].
SOPs posses several desirable characteristics for vehicular
navigation: 1) available in most environments of interest,
2) difficult to jam all SOPs, since their signals are scattered
throughout the spectrum, 3) produce low geometric dilution
of precision, since their transmitters are geometrically
diverse, 4) signal reception with carrier-to-noise ratio that
is often tens of decibels (dBs) higher than that of GNSS
signals, 5) free to use with SOP navigation receivers
that do not require network subscriptions, and 6) no
deployment cost, since their infrastructure is already
operational and maintained by service providers. Even if
GNSS pseudoranges are reliable, adding terrestrial SOP
pseudorange measurements to the navigation filter will
significantly reduce positioning errors for land, sea, and
air vehicles, primarily due to a reduction of the inherently
large GNSS vertical dilution of precision (VDOP) [28].

However, unlike GNSS, whose satellites’ positions and
clock states are known to the navigating vehicle, the po-
sitions and clock states of SOP transmitters are typically
unknown a priori and must be estimated [29], [30], [31].
Extend Kalman-filter based radio SLAM frameworks have
been developed to iteratively estimate the SOPs’ states
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along with the states of the navigating vehicle [27]. Radio
SLAM is similar to traditional SLAM used with cameras
and lidar, except the radio SLAM problem has unique
complexities, since it must deal with stochastic and dynamic
SOP clock biases and drifts.

Whether cameras, lidar, or SOPs are used as an INS aid-
ing source, collaboration between multiple vehicles can im-
prove vehicle positioning performance compared to stand-
alone navigation by sharing and fusing their individual
sensor information [32], [33], [34], [35], [36]. However,
the tradeoff for this performance improvement is increased
system cost, complexity, and communication burden. Com-
munication of inertial data particularly comes with a large
communication burden due to the substantial amount of
IMU data produced by each vehicle, the communication of
which is required to maintain proper intervehicle correla-
tions for consistent EKF-produced estimates. To reduce the
communication burden associated with transmitting IMU
data, vehicles can transmit state estimates and associated co-
variances. To deal with unknown intervehicle correlations,
covariance intersection fusion has been a popular method of
choice to approximate the unknown correlations [32], [34],
[37], [38], [39], [40], [41], [42]. While covariance intersec-
tion avoids tracking the actual intervehicle correlations, the
produced estimation error covariance still tend to be larger
than the actual covariance of the errors. In contrast to prior
approaches, this article maintains intervehicle correlations
and deals with the communication burden by determining
the minimal sufficient INS information that must be com-
municated to maintain consistent estimates. An event-based
communication scheme is developed, which minimizes the
amount of communicated information by transmitting data
only if an event of interest is triggered [43], [44]. In the
proposed approach, measurements are discarded unless an
event is triggered to maintain state estimation consensus
among the filters running at each vehicle. A relaxation of this
assumption can be readily achieved in which local measure-
ments at each of the vehicles are processed between event
triggers, whereby covariance intersection is performed after
an event is triggered [34].

In recent years, event-based communication has been
studied in several contexts (see [45] and references therein).
These studies have led to different event-triggering tests,
such as: 1) level-triggering, which compares the amplitude
of a signal versus a predefined threshold [46]; 2) average
estimation error covariance, which checks the average of
the time-history of the trace of the estimation error covari-
ance [47]; 3) state difference, which uses the difference be-
tween a vehicle’s current state and the last transmitted state;
4) residual-based, which checks the difference between
the actual and predicted measurement [48]; 5) innovation
variance-based tests [43], and 6) weighted difference of
sequential measurements [49].

While several event-triggering tests have been devel-
oped, the development of event-based tests in the contexts
of collaborative SLAM using an INS has not been consid-
ered. In [50], an event-based scheme was developed for a
distributed filter; however, it was studied using a simplified

linear dynamics model. In [51], an event-based scheme was
developed for cooperative SLAM for a nonlinear dynamics
model in two dimensions and used covariance intersection
to maintain intervehicle cross-correlations. This article de-
velops an event-based scheme for a CIRSLAM framework,
in which multiple vehicles estimate the unknown states of
terrestrial SOPs along with the states of navigating vehicles
using shared SOP and INS information.

The CIRSLAM framework was originally presented
in [52], which compared vehicle positioning errors when
using time of arrival (TOA) with using time difference of
arrival measurements. This article uses TOA measurements
in the CIRSLAM framework and determines when these
measurements should be communicated to collaborators.
In [49], measurements are transmitted to a central relay
station for event testing to determine if the measurements
should be relayed to distributed nodes. In contrast, this
article develops an event-based scheme, where event testing
is conducted locally in a distributed fashion, where vehicles
only exchange information if the norm of the estimation
error will violate a user-specified position error threshold
with some desired probability. Two norms important for
vehicular navigation are considered: two-norm, which tests
absolute positioning error and infinity-norm, which tests
the largest error in any coordinate direction. The developed
theory and algorithms are evaluated through high-fidelity
simulations and experimental results with IMU data and
cellular SOPs. It is important to emphasize that while the
EKF equations presented in this article support the use of
SOPs, the event-based tests developed in this article are
independent of them and can be applied to other multisensor
integrated navigation applications.

The rest of this article is organized as follows. Section II
provides an overview of the CIRSLAM framework as well
as the event-based communication strategies studied in this
article. Section III describes the dynamics model of the
SOPs and navigating vehicles as well as the receivers’
measurement model. Section IV describes the EKF-based
CIRSLAM framework. Section VI develops an event-based
communication scheme. Section VI presents simulation
results comparing an event-based information communica-
tion scheme with a fixed-rate scheme. Section VII presents
experimental results of collaborating unmanned aerial vehi-
cals (UAVs) using cellular SOPs to aid their INSs. Finally,
Section VIII concludes this article.

II. OVERVIEW OF CIRSLAM FRAMEWORK AND
PROBLEM STATEMENT

A high-level block diagram of the CIRSLAM frame-
work is illustrated in Fig. 1. This framework enables a team
of navigating vehicles to share INS data, GNSS pseudo-
ranges, and SOP pseudoranges. During the time between
measurement epochs, each vehicle uses its IMU data and
clock models to perform an EKF time update and then
packages INS information into �n to share it with the other
navigating vehicles. At each measurement epoch, receivers
equipped on each vehicle produce pseudoranges to GNSS
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Fig. 1. High-level diagram of an EKF-based CIRSLAM using GNSS
(when available) and SOP pseudoranges. All drawn SOP pseudoranges
and INS data are fused through an EKF running on each vehicle. This

fusion takes place by packaging information into {�n}N
n=1 and

broadcasting them using an event-based strategy, which employs a
mechanism to close τ only when needed.

satellites (when GNSS signals are available) and pseudo-
ranges to SOP transmitters. This information is then sent
to a local EKF measurement update step and is packaged
into �n along with the INS information. Typically, EKFs
operate at a fixed rate of the measurement epoch, which
would require the transmission of �n whenever GNSS or
SOP pseudoranges are produced. This article is concerned
with alleviating the communication burden by developing
event-based strategy, which only triggers transmission and
the EKF update so to achieve a user-specified position
error bound with some desired probability. The probability
density function of the value that triggers the event is
studied to ensure the user-specified values are maintained.
A fully connected graph is assumed, i.e., all vehicles are
able to communicate with all other vehicles. To prevent
transmitting large amounts of IMU data, only the INS state
and information to construct the state transition matrix
are communicated. This information is used to maintain
intervehicle correlations.

III. MODEL DESCRIPTION

In this section, the dynamics model of the SOP transmit-
ters and the vehicles’ states as well as the measurement mod-
els are provided. These models are used in the subsequent
sections for the development of the EKF-based CIRSLAM
framework.

A. SOP Dynamics Model

Each SOP will be assumed to emanate from a spa-
tially stationary terrestrial transmitter, and its state vector
will consist of its three-dimensional (3-D) position states
rsop,m � [xsop,m, ysop,m, zsop,m]T ∈ R3 and clock error states

xclk,sop,m � [cδtsop,m, cδ̇tsop,m]T ∈ R2, where c is the speed
of light, δtsop,m is the clock bias, δ̇tsop,m is the clock drift,
m = 1, . . . , M, and M is the total number of SOPs.

The SOP’s discretized dynamics are given by

xsop,m (k+1) = Fsop xsop,m(k) + wsop,m(k), k = 1, 2, . . . ,

Fsop =
[
I3×3 03×2

02×3 Fclk

]
, Fclk=

[
1 T
0 1

]
(1)

where In×n denotes the n × n identity matrix, 0m×n denotes
the m × n matrix of zeros, T is the constant sampling in-

terval, xsop,m =
[
rT

sop,m, xT
clk,sop,m

]T
∈ R5, and wsop,m ∈ R5

is the process noise, which is modeled as a discrete-time
zero-mean white noise sequence with covariance Qsop,m =
diag

[
03×3, c2Qclk,sop,m

]
, where

Qclk,sop,m =
[
Swδtsop,m

T + Swδ̇tsop,m

T 3

3 Swδ̇tsop,m

T 2

2

Swδ̇tsop,m

T 2

2 Swδ̇tsop,m
T

]
.

The terms Swδtsop,m
and Swδ̇tsop,m

are the clock bias and drift
process noise power spectra, respectively, which can be
related to the power-law coefficients, {hα,sop,m}2

α=−2, which
have been shown through laboratory experiments to charac-
terize the power spectral density of the fractional frequency
deviation of an oscillator from nominal frequency according
to Sδtsop,m ≈ h0,sop,m

2 and Sδ̇tsop,m
≈ 2π2h−2,sop,m [53].

B. Vehicle Dynamics Model

Let {bn} denote a body frame fixed at the nth navigating
vehicle, where n = 1, . . . , N and N is the total number of
navigating vehicles, and let {g} denote a global frame, e.g.,
the Earth-centered inertial (ECI) frame [54]. Moreover, let
θbn ∈ R3 represent the 3-D orientation vector of the body
frame with respect to the global frame and rbn ∈ R3 the 3-D
position vector of the nth navigating vehicle expressed in
{g}. Given the nth INS’s true 3-D rotational rate vector bnω ∈
R3 in the body frame and its 3-D acceleration gabn ∈ R3 in
the global frame, the standard kinematics equations can be
expressed in continuous time as

θ̇bn (t ) = bnω(t ) (2)

r̈bn (t ) = gabn (t ). (3)

In the rest of this article, the 3-D orientation vector of
the body frame with respect to the global frame will be
represented by the 4-D quaternion vector bn

g q̄ ∈ R4.
1) IMU Measurement Model: The IMU on the nth

navigating vehicle contains a triad-gyroscope and a
triad-accelerometer, which produce measurements nzimu �
[nωT

imu,
naT

imu]T of the angular rate and specific force, which
are modeled using strapdown equations as

nωimu(k) = bnω(k) + bgyr,n(k) + ngyr,n(k) (4)
naimu(k) = R

[
bn
g q̄(k)

] (
gabn (k) − ggn(k)

) + bacc,n(k)

+ nacc,n(k) (5)

where R[bn
g q̄] is the equivalent rotation matrix of bn

g q̄ (see Ap-
pendix A); ggn is the acceleration due to gravity acting on the
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nth navigating vehicle in the global frame; bgyr,n ∈ R3 and
bacc,n ∈ R3 are the gyroscope and accelerometer biases, re-
spectively; ngyr,n and nacc,n are measurement noise vectors,
which are modeled as zero-mean white noise sequences
with covariances Qngyr,n and Qnacc,n, respectively; and k is
the sample counter which represents the time instances
IMU data is available according to t = kTimu, for an IMU
sampling period Timu.

2) INS State Kinematics: The gyroscope and ac-
celerometer biases in (4)–(5) are dynamic and stochastic;
hence, they must be estimated in the EKF as well. As such,
the INS 16-state vector is given by

xins,n =
[

bn
g q̄

T
, rT

bn
, ṙT

bn
, bT

gyr,n, bT
acc,n

]T
∈ R16

where ṙbn ∈ R3 is the 3-D velocity of the navigating vehicle.
The INS states evolve in time according to

xins,n (k + 1) = fins

[
xins,n(k), bnω(k), gabn (k)

]
where fins is a vector-valued function of standard strap-
down kinematic equations, which discretizes (2)–(3) by
integrating bnω and gabn to produce bn

g q̄(k + 1), rbn (k + 1),
and ṙbn (k + 1), and uses a velocity random walk model for
the biases, which is given by

bgyr,n(k + 1) = bgyr,n(k) + wgyr,n(k) (6)

bacc,n(k + 1) = bacc,n(k) + wacc,n(k) (7)

where wgyr,n and wacc,n are process noise vectors that drive
the in-run bias variation (or bias instability) and are modeled
as white noise sequences with covariance Qwgyr,n and Qwacc,n,
respectively. The INS state vector is augmented with the
navigating vehicle-mounted receiver’s clock state vector
xclk,r,n ∈ R2 to obtain the nth navigating vehicle’s state
vector xr,n = [ xT

ins,n, xT
clk,r,n]T ∈ R18.

REMARK While this article develops an aided INS using
an inertial frame (e.g., the ECI frame), other forms of the
function fins may be used in the CIRSLAM framework, de-
pending on the navigation frame chosen, the mechanization
type, and the INS error model used.

3) Receiver Clock State Dynamics: The nth vehicle-
mounted receiver’s clock states evolve according to

xclk,r,n(k + 1) = Fclkxclk,r,n(k) + wclk,r,n(k) (8)

where wclk,r,n ∈ R2 is the process noise vector, which is
modeled as a discrete-time zero-mean white noise sequence
with covariance Qclk,r,n, which has an identical form to
Qclk,sop,m, except that Swδtsop,m

and Swδ̇tsop,m
are now replaced

with receiver-specific spectra Swδtr,n
and Swδ̇tr,n

, respectively.

C. Pseudorange Measurement Model

The pseudorange measurements made by the nth re-
ceiver on the mth SOP, after discretization and mild approx-
imations discussed in [29], are modeled as

nzsop,m( j) = ‖rbn ( j) − rsop,m‖2

+ c · [
δtr,n( j) − δtsop,m( j)

] + nvsop,m( j) (9)

where nvsop,m is the measurement noise, which is modeled
as a discrete-time zero-mean white Gaussian sequence with
variance nσ 2

sop,m and j ∈ N represents the time index at
which {nzsop,m}N

n=1 is available, which could be aperiodic.
Note that for measurement variables, the upper-left sub-
script is used to denote the vehicle identity number drawing
the measurement and the lower-right subscript is used for
the transmitter that the measurement is drawn from. The
pseudorange measurement made by the nth receiver on
the lth GNSS SV, after compensating for ionospheric and
tropospheric delays, is related to the navigating vehicle’s
states by

nzsv,l ( j) = ‖rbn ( j) − rsv,l ( j)‖2

+ c · [
δtr,n( j) − δtsv,l ( j)

] + nvsv,l ( j) (10)

where nzsv,l � nz′
sv,l − cδtiono − cδttropo; δtiono and δttropo

are the ionospheric and tropospheric delays, respectively;
nz′

sv,l is the uncorrected pseudorange; and nvsv,l is the
measurement noise, which is modeled as a discrete-time
zero-mean white Gaussian sequence with variance nσ 2

sv,l ;
and l = 1, . . . , L, where L is the total number of GNSS
SVs.

IV. COLLABORATIVE INERTIAL RADIO SIMULTANE-
OUS LOCALIZATION AND MAPPING (CIRSLAM)

This section develops the EKF-based CIRSLAM frame-
work, illustrated in Fig. 1, to fuse pseudorange measure-
ments from unknown SOPs and GNSS (if available) to aid
each navigating vehicle’s INS. A method to efficiently share
INS data between collaborators is also discussed.

A. EKF-Based CIRSLAM Framework

In a CIRSLAM framework, the states of the SOPs
are simultaneously estimated along with the states of the
navigating vehicles. This can be achieved through an EKF
with state vector

x �
[
xT

r,1, . . . , xT
r,N , xT

sop,1, . . . , xT
sop,M

]T
.

The EKF produces an estimate, given by x̂(k| j) �
E[x(k)|Z j] of x(k), where E[ · | · ] is the conditional expec-
tation operator, Z j � {z(i)} j

i=1, z is a vector of INS-aiding
measurements (e.g., from GNSS or SOPs), k ≥ j, and j is
the last time-step an INS-aiding measurement was available.

Collaborating navigating vehicles that estimate com-
mon states using mutual observations traditionally fuse
information (state estimates and/or observations) from each
collaborator using one of two main architectures

1) Centralized: Each vehicle sends raw sensor data to
a central fusion center, which estimates a common
state vector and periodically sends the estimate to
each vehicle. Centralized architectures produce con-
sistent estimates, i.e., the EKF-produced estimation
error covariance matches the covariance of the actual
estimation error, since all intervehicle correlations
are properly maintained. The drawback is in the large
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Algorithm 1: Distributed CIRSLAM Framework.
Given: x̂( j| j) and Px( j| j), each of the N vehicles
conducts the following:

for n = 1, . . . , N
• Local Prediction: Locally produce x̂r,n(k| j)

using an INS and clock models and
{x̂sop,m(k| j)}M

m=1 using SOP dynamics model.
• Communication: Package x̂r,n(k| j),

pseudorange measurements,
and INS data into �n and transmit �n if τ is
closed.

• Assimilation: Unpackage {�i}N
i=1\n, assemble

x̂(k| j), and produce Px(k| j).
• Correction: Perform EKF measurement update

to produce x̂(k|k) and Px(k|k).
end for

amount of raw sensor data that must be communi-
cated to the central fusion center. Furthermore, the
central fusion center is a single point of failure for
the system.

2) Distributed: Each vehicle estimates a copy of the
state vector using its own sensor data and then each
vehicle shares and fuses these copies using covari-
ance intersection (or one of its variants). Distributed
architectures typically require less data transmission
between collaborators, since raw sensor data is fil-
tered locally at each vehicle. The drawback is in
the difficulty of reaching consensus, i.e., in reach-
ing agreement between the estimate copies, when
intervehicle correlations are unknown [55]. While
covariance intersection techniques are used to fuse
estimates with unknown intervehicle correlations,
they typically produce overly conservative estimates,
i.e., the EKF-produced estimation error covariance
is larger than the actual covariance of the estimation
error.

In contrast to traditional centralized and distributed
approaches, the approach of the distributed CIRSLAM
framework illustrated in Fig. 1 is for each navigating vehicle
to monitor the entire state vector x, but to distribute the INSs
(the EKF time update step) among the navigating vehicles
and to optimize how often �n is transmitted for aiding cor-
rections (the EKF measurement update step). This approach
eliminates a single point of failure, reduces the amount
of transmitted data, and with the appropriate transmitted
information in �n, the entire state vector x that is monitored
at any particular vehicle will be brought into consensus
with the state vector monitored at all other vehicles. These
benefits comes at the cost of a larger computational burden
for the entire system compared to a traditional centralize
approach due to running identical navigation filters at each
vehicle. The distributed CIRSLAM framework’s operation
is summarized in algorithm 1.

B. Local Prediction

Each vehicle only locally produces a prediction of its
own state vector x̂r,n(k| j) and of the SOPs’ {x̂sop,m(k| j)}M

m=1.
The full state prediction x̂(k| j) and the corresponding pre-
diction error covariance Px(k| j) become available locally
during the assimilation step, which is described in Sec-
tion IV-D.

1) State Prediction: To produce x̂r,n(k| j) =
[x̂T

ins,n(k| j), x̂T
clk,r,n(k| j)]T, the INS on-board the nth

navigating vehicle integrates nzimu between aiding updates
to produce a prediction of xins,n. The one-step prediction is
given by

x̂ins,n( j + 1| j) = f ins

[
x̂ins,n( j| j), bn ω̂( j), gâbn ( j)

]
(11)

where bn ω̂( j) and gâbn ( j) are the estimates of bnω( j) and
gabn ( j), respectively, obtained from (4)–(5) and x̂ins,n( j| j)
[27], and the function fins contains standard strapdown INS
equations mechanized in an ECI frame, which are described
in [56] and [57]. Assuming there are κ time-steps be-
tween aiding updates, the navigating vehicle uses IMU data
{nzimu(i)}k

i= j to recursively solve (11) to produce x̂insn (k| j),
where k ≡ j + κ . The vehicle-mounted receiver’s κ-step
clock state prediction follows from (8) and is given by

x̂clk,r,n(k| j) = Fκ
clkx̂clk,r,n( j| j)

where

Fκ
clk �

{
I2×2 κ = 0∏κ

i=1 Fclk κ > 0

The SOPs’ κ-step state prediction, which follows from (1),
is given by

x̂sop,m(k| j) = Fκ
sop x̂sop,m( j| j), m = 1, . . . , M.

2) Prediction Error Covariance: Although the predic-
tion error covariance is not produced at this point in the
algorithm, its computation is presented here to explain why
the cross-correlations are unavailable, which prohibit its
production until assimilation, which is discussed in Sec-
tion IV-D. The κ-step covariance prediction is given by

Px(k| j) = F(k, j)Px( j| j)FT(k, j) + Q+(k, j) (12)

F(k, j)�diag
[
Fr,1(k, j), . . . , Fr,N (k, j), Fκ

sop, . . . , Fκ
sop

]
Fr,n(k, j) � diag

[
�ins,n(k, j), Fκ

clk

]
�ins,n(k, j) �

k∏
i= j

�ins,n(i) (13)

where �ins,n(i) is the Jacobian of f ins evaluated at x̂ins,n(i| j).
The structure of �ins,n(i) is provided in Appendix A. The
matrix Q+(k, j) is the propagated process noise covariance,
which has the form

Q+(k, j) � diag

[
Q+

r,1(k, j), . . . , Q+
r,N (k, j)

Q+
sop,1(k, j), . . . , Q+

sop,M (k, j)

]
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Fig. 2. Local prediction for vehicle n. The inputs are IMU data
{nzimu(i)}k

i= j and the current state estimates x̂r,n( j| j) and

{x̂sop,m( j| j)}M
m=1. The outputs are the time updates x̂r,n(k| j) and

{x̂sop,m(k| j)}M
m=1 and the Jacobian �ins,n(k, j).

Q+
r,n(k, j) �

k∑
i= j

Fr,n(i, j)Qr,n(i)FT
r,n(i, j)

Q+
sop,m(k, j) �

k∑
i= j

F(i− j)
sop Qsop,m

[
FT

sop

](i− j)

where Qr,n(i) � diag[Qins,n(i), c2Qclk,r,n] and Qins,n is the
nth navigating vehicle’s discrete-time linearized INS pro-
cess noise covariance. The structure of Qins,n(i) is provided
in Appendix A. The local prediction for vehicle n is illus-
trated in Fig. 2.

Note that at this point in the algorithm, the prediction
error covariance (12) cannot be computed at vehicle n,
∀ n ∈ {1, . . . , N}, since all matrices {�ins,n(k, j)}N

n=1 are not
available at each vehicle. Specifically, the cross-correlation
components cannot be computed. In the next section, it is
shown what INS information each vehicle transmits, so
that the cross-correlation can be computed, enabling the
computation of (12) at each vehicle during the assimilation
step.

C. Vehicle-to-Vehicle Communication

To produce the prediction error covariance (12) at each
vehicle, the matrices {�ins,n(k, j)}N

n=1 must be available. It
can been seen in Appendix A that the components of these
matrices are a function of IMU data from each respective
navigating vehicle. Therefore, two possible approaches to
make {�ins,n(k, j)}N

n=1 available to each vehicle are: 1) each
vehicle communicates its raw IMU data or 2) each vehicle
communicates the full matrix (13). On one hand, IMU
data rates are typically between 100 to 400 Hz, with six
floating-point values per data sample. On the other hand,
the matrix (13) is in R15×15, requiring the transmission of
225 floating-point values every EKF measurement update,
which typically takes place between 5 to 10 Hz. These data
rates make the transmission of either raw accelerometer and
gyroscope data or the matrix (13) undesirable for several
reasons: 1) large communication bandwidth requirement
when scaling this application to many collaborating vehi-
cles, 2) packet drops due to lossy communication channels,
and 3) privacy concerns.

To address this communication burden, instead of trans-
mitting raw IMU data or the full matrix (13) every instant

a measurement becomes available, a packet �ins,n con-
taining minimal sufficient INS information to reconstruct
an approximation of (13) is transmitted once per κ-step
propagation. The structure of (13) after a κ-step propagation
and the packet �ins,n containing the terms that are needed
to reconstruct the approximation are provided in Appendix
B. The preconditions for this approximation to be valid are
the same assumed for the standard EKF and that the time
between transmissions is not too large. The error introduced
due to this approximation is dependent on the time between
transmissions and the vehicles’ dynamics. Higher dynamics
applications require a higher transmission rate (smaller time
between transmissions). As time between transmissions
increase, the approximation (43) accumulates additional
error. Specifically, the approximation made on the rotation
matrices degrades. This approximation has been shown to
introduce only around 1 m of error for transmission periods
of around 1 s for fixed-wing drone dynamics [58].

The INS information �ins,n is packaged inside of �n,
along with other information for each vehicle to produce
an EKF update, and then is broadcasted by the nth vehicle
at the fixed rate of measurement epochs. The packet �n is
given by

�n(k)�
{
x̂ins,n(k| j), �ins,n(k, j), nzsv(k), nzsop(k)

}
(14)

where nzsv and nzsop are GNSS and SOP pseudoranges,
respectively, which are discussed further for each strategy
in the following sections.

D. Assimilation

Assuming a fully connected graph, as in Fig. 1, the
packets {�n(k)}N

n=1 contain all components of the state
prediction to assemble x̂(k| j) and (12). To assemble x̂(k| j),
the INS states {x̂ins,n(k| j)}N

n=1 are augmented in the appro-
priate order with the clocks’ and SOPs’ states. Note that
the clocks’ and SOPs’ dynamics are linear; therefore, they
do not need to be transmitted. Instead, Fclk and Fsop are
stored at each vehicle for the time update of these states. To
assemble (12), the matrix F(k, j) is first assembled by using
the information in {�ins,n}N

n=1 provided in Appendix A.
Specifically, the vectors v1,n and v2,n are used to reconstruct
the skew-symmetric matrices 	v1,n×
 and 	v2,n×
 in (43)
through

	a×
 =
⎡
⎣ 0 −a3 a2

a3 0 −a1

−a2 a1 0

⎤
⎦ , a �

⎡
⎣a1

a2

a3

⎤
⎦ . (15)

The quaternions q̄1,n and q̄2,n are converted to rotation
matrices through

R[q̄] = I3×3 − q4	q×
 + 2	q×
2

where q̄ � [q, q0]T = [q1, q2, q3, q0]T and q0 is the real
component of the quaternion. Each vehicle may now make
the same computation in (12). Finally, use nzsv(k) and nzsv(k),
to augment the measurements to perform the EKF measure-
ment update and the corresponding corrected estimation
error covariance as described follows.
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E. EKF Measurement Update

In this section, the EKF-based CIRSLAM measurement
update is described. The EKF measurement update will
correct the navigating vehicles’ INS and clock states given
the measurement vector

z �
[
zT

sv, zT
sop

]T
(16)

zsv �
[

1z
T
sv, . . . ,

Nz
T
sv

]T
, zsop �

[
1z

T
sop, . . . ,

Nz
T
sop

]T

nzsv =[
nzsv,1, . . . ,

nzsv,L
]T

, nzsop =[
nzsop,1, . . . ,

nzsop,M
]T

.

The following correction equations are valid for: GNSS
availability (L > 0) and GNSS unavailability (L = 0).
Given a state prediction x̂(k| j), the state update is computed
according to the equations provided in Appendix C. The
corresponding estimation error covariance is given by

Px(k|k) = Px(k| j) − L(k)S−1(k)LT(k)

L(k) � Px(k| j)HT(k) (17)

S(k) � H(k)L(k) + R(k) (18)

ν(k) � z(k) − ẑ(k| j) (19)

where ẑ(k| j) is a vector containing the predicted GNSS
and SOP pseudoranges. The matrix H is the measurement
Jacobian and has the form

H =
[
Hsv,r 0NL×5 M

Hsop,r Hsop

]
, Hsv,r � diag

[
1Hsv,r, . . . ,

N Hsv,r

]

nHsv,r =

⎡
⎢⎣

01×3
n1̂T

sv,1 01×9 hT
clk

...
...

...
...

01×3
n1̂T

sv,L 01×9 hT
clk

⎤
⎥⎦

Hsop,r � diag
[

1Hsop,r, . . . ,
N Hsop,r

]
where nHsop,r has the same structure as nHsv,r, except n1̂T

sv,l

is replaced with n1̂T
sop,m

Hsop �
[
1HT

sop, . . . ,
N HT

sop

]T

nHsop = diag
[

nHsop,1, . . . ,
nHsop,M

]
n1̂sv,l �

r̂bn − rsv,l

‖r̂bn − rsv,l‖ , n1̂sop,m � r̂bn − r̂sop,m

‖r̂bn − r̂sop,m‖
nHsop,m �

[
−n1̂T

sop,m, −hT
clk

]
, hclk � [1, 0]T

and R is the measurement noise covariance. Note that R
is not necessarily diagonal, since there are no assump-
tions made on the measurement noise statistics, except that
R � 0.

Note that if GNSS pseudoranges become completely
unavailable, i.e., L = 0 and z ≡ zsop, the state and covari-
ance corrections are identical, except that the Jacobian is
adjusted to account for GNSS SV pseudoranges no longer
being available, specifically

H ≡ [
Hsop,r, Hsop

]
. (20)

V. EVENT-BASED COMMUNICATION STRATEGY

This section develops an event-based communication
strategy, which aims to minimize the amount of commu-
nicated data between collaborators, subject to a specified
constraint on the vehicles’ position estimation errors.

A. Problem Formulation

1) Objective: The objective of the event-based infor-
mation fusion scheme is to minimize the rate at which
the data packets {�n}N

n=1 are broadcasted by the navigating
vehicles, while maintaining a specified estimation perfor-
mance constraint. The performance constraint is defined
such that the norm of any vehicle’s position estimation error
r̃bn remains below a specified maximum threshold ξmax with
probability p. Systems designers may be interested in the
overall magnitude of the error (2-norm) or the maximum
error in a coordinate direction (∞-norm). To this end, two
norms are considered: ‖r̃bn‖2 and ‖r̃bn‖∞. Formally, the
performance constraint to be maintained is

Pr
[‖r̃bn‖q ≤ ξmax

] ≥ p, n = 1, . . . , N (21)

where Pr[A] denotes the probability of event A and q is
user-specified to be q ≡ 2 or q ≡ ∞.

2) Approach: In contrast to all vehicles transmitting
{�n}N

n=1 at a fixed rate, which is the rate at which measure-
ments are made; in the event-based scheme, {�n}N

n=1 are
transmitted and an EKF measurement update is performed
only if (21) would be violated, if transmission of {�n}N

n=1
does not occur. Since the position estimation error r̃bn is
not available to the navigating vehicles, an online test is
formulated using each vehicle’s position estimation error
covariance Prbn

, which is available to each vehicle via the
EKF estimator. This online test will be used to check if
(21) would be violated if transmission does not occur. In
the next two sections, two tests are formulated: ‖r̃bn‖2 and
‖r̃bn‖∞. Note that SOP measurements are discarded unless
an event is triggered to maintain state estimation consensus
among the filters running at each vehicle. If the navigation
filter designer wishes, local EKF measurements may be
processed between event triggers, and then a covariance in-
tersection may be performed after an event is triggered [34].
In what follows, the true estimation error covariance is
approximated using the one estimated by the EKF. This
approximation is reasonable when positioning errors are
small, which yield small linearization errors. The position
errors are small initially, since the vehicles initially have
access to GPS, and then small errors are maintained after
GPS is cut off by correcting the INS using the SOPs.

B. Two-Norm Test Formulation

LEMMA V.1 Consider the performance constraint (21) with
q ≡ 2 and a user specified p and ξmax. Testing if (21) is
violated is equivalent to checking if

‖Prbn
‖2 ≤ ξ 2

max

ηn
, n = 1, . . . , N (22)
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is violated, where Prbn
is the estimation error covariance

associated with the nth navigating vehicle, and ηn is the
value of the inverse cumulative distribution function (CDF)
of the Mahalanobis norm-squared of the estimation error
‖r̃bn‖2

M evaluated at p.

PROOF To formulate the test for (21) corresponding to
‖r̃bn‖2, the Mahalanobis norm (or Mahalanobis distance) of
the position estimation error for vehicle n, denoted ‖r̃bn‖M,
is used, which is given by

‖r̃bn‖M(k) =√
[rbn (k) − r̂bn (k|k)]TP−1

rbn
(k|k)[rbn (k) − r̂bn (k|k)]. (23)

In this context, the Mahalanobis norm provides a measure of
how many standard deviations the true position is away from
the estimated position. In what follows, it will be shown
how ‖r̃bn‖M is related to the performance constraint (21),
and how it leads to a simple test that each vehicle may
perform to determine if {�n}N

n=1 should be transmitted. Time
dependency will be dropped in the sequel to simplify the
notation.

Since the covariance Prbn
is a real-valued, symmetric,

positive-definite matrix, it has an eigendecomposition

Prbn
= UnDnUT

n

D = diag
[
λn,1,λn,2,λn,3

]
(24)

where λn,i is the ith eigenvalue of Prbn
and Un is an orthog-

onal matrix whose ith column is the ith eigenvector of Prbn
.

Substituting (24) into (23) and squaring both sides yields

‖r̃bn‖2
M = ξT

nD−1
n ξn (25)

ξn � UT(rbn − r̂bn ). (26)

The vector ξn = [ξn,1, ξn,2, ξn,3]T is the position estimation
error r̃bn expressed in frame {g}, rotated by the orthogonal
(rotation) matrix UT into a coordinate frame { f }, whose
axes coincide with the principal axes of an ellipsoid. This
ellipsoid is known as the probability concentration ellipsoid
E , which represents the probability p of the error ξn lying
on or within the ellipsoid [59], where

p = Pr
[‖r̃bn‖2

M ≤ ηn
]
. (27)

Given p and the distribution of ‖r̃bn‖2
M, the value ηn can

be determined [60]. The principal axes of the confidence
ellipsoidE are found by expanding the righthand side of (25)
and substituting the expansion into the inequality ‖r̃bn‖2

M ≤
ηn from (27), which gives

ξ 2
n,1

ηnλn,1
+ ξ 2

n,2

ηnλn,2
+ ξ 2

n,3

ηnλn,3
≤ 1 (28)

which is the equation of an ellipsoid with radii
√

ηnλn,i,
for i = 1, 2, 3. The ellipsoid and the bounding constraint
corresponding to ‖r̃bn‖2 ≤ ξmax are illustrated as a 2-D
example in Fig. 3.

Note that, although the value of ξn is not available to
the navigating vehicle, the eigenvalues {λn,i}3

i=1 and the
specified probability p governing the size and shape of the

Fig. 3. Probability concentration ellipse E with origin r̂bn and radii√
ηnλn,i, i = 1, 2.

ellipsoid E are available and upper-bound the “size” of ξn.
Specifically, ‖ξn‖2 is bounded by the major axis of E , which
is given by

max
E

‖ξn‖2 = max
E

‖r̃bn‖2 =
√

ηnλmax[Prbn
] (29)

where max
E

d denotes the maximum value of d in set

E , λmax[X] denotes the maximum eigenvalue of X, and
‖r̃bn‖2 = ‖ξ‖2 has been used, which holds since the 2-norm
is invariant under coordinate frame rotation. Since the error
constraint ξmax is also invariant under coordinate frame
rotation, the problem boils down to checking if the major
axis of the ellipsoid E is less than ξmax, i.e.,√

ηnλmax[Prbn
] ≤ ξmax. (30)

Finally, noting that λmax[Prbn
] = ‖Prbn

‖2 for covariance ma-
trices and by solving (30) in terms of the specified con-
straints, the test simplifies to checking the violation of

‖Prbn
‖2 ≤ ξ 2

max

ηn
.

�

C. Infinity-Norm Test Formulation

LEMMA V.2 Consider the performance constraint (21) with
q ≡ ∞ and a user-specified coordinate frame {g}, proba-
bility p, and maximum error ξmax. Testing if (21) is violated
is equivalent to checking if

‖Prbn
‖max ≤ ξ 2

max

ηn
, n = 1, . . . , N (31)

is violated, where ‖X‖max denotes the maximum norm of a
matrix X ∈ Rd1×d2 , which is given by

‖X‖max � max{|Xi j| |i = 1, . . . , d1, j = 1, . . . , d2}.
The matrix Prbn

is the position estimation error covariance
associated with the nth navigating vehicle and ηn is the value
of the inverse cdf of the Mahalanobis norm-squared of the
estimation error ‖r̃bn‖2

M evaluated at p.
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Fig. 4. Probability concentration ellipsoid E with radii sα �
√

ηnλn,α ,
α = 1, 2, 3, and plane P2, representing one of six surfaces of the cube

constraint. If E intersects the cube constraint at plane P2, then the ellipse
E2 exists.

PROOF The test formulation and the ∞-norm error con-
straint are coordinate frame dependent, since the ∞-norm
is not invariant under coordinate frame rotations. Therefore,
the coordinate frame {g} in which the test is conducted
is specified by the user along with ξmax and p, (e.g., test
if p is less than the probability that the maximum of the
north, east, and down (NED) errors is less than ξmax). In
contrast to the bounding circle (sphere in 3-D) associated
with the constraint ‖r̃bn‖2 ≤ ξmax in Fig. 3, the constraint
‖r̃bn‖∞ ≤ ξmax is geometrically interpreted as a square
(cube in 3-D), which is symmetric about the origin, with
each of its sides a distance of ξmax from the origin. Since the
probability concentration ellipsoid E provides a bounding
surface for which the estimation error is contained within,
for a specified probability p, a test will be formulated to
check if E is contained within the cube corresponding to
‖r̃bn‖∞ ≤ ξmax.

The ellipsoid E expressed in {g} is found by substituting
(23) into the inequality ‖r̃bn‖2

M ≤ ηn from (27), which gives

1

ηn
r̃T

bn
P−1

r̃bn
r̃bn ≤ 1. (32)

The bounding cube is represented as a collection of six
planes, defined by normal vectors ±ni, i = 1, 2, 3, each
of which is parallel to the corresponding unit vectors that
define the coordinate frame {g}, e.g., n2 corresponds to the yg

direction and is parallel to e2, where ei ∈ R3 is the standard
unit basis vector, containing a one in the ith position and
zeros elsewhere. Given the constraint ξmax, the ith plane,
denoted Pi, is given by

nT
i r̃bn − ξmax = 0. (33)

If the ellipsoid E extends beyond the plane Pi, an intersect-
ing ellipse Ei � E ∩ Pα will exist. The relationship between
E , Pi, and Ei for i = 2 are illustrated in Fig. 4.

Since E and the bounding cube are both symmetric
about the origin of {g}, it suffices to test if ∃Ei, for only
the three positive directions to determine if E is contained
within the bounding cube. In what follows, the test for a
general ith plane is formulated. The points on and within
the intersecting ellipse Ei represents the solution space that
satisfies both (32) and (33). The expression for this solution
space is found using the next steps. First, the ith parallel
vectors are set equal to each other, i.e., ni ≡ ei, which gives

eT
i r̃bn = ξmax (34)

which equates the ith element of r̃bn to ξmax. Second, (34)
is substituted into (32). For convenience, in the remainder
of the test formulation, r̃bn will be arranged to place ξmax to
the first element of a vector and the remaining elements will
follow in a newly defined vector ui ∈ R2. The matrix P−1

r̃bn

is modified accordingly, so that the ith diagonal element
is placed into the top-left element, denoted βi and the
corresponding cross-correlation elements are permutated
into vector bi ∈ R2, and the remaining elements are placed
into A ∈ R2×2. These permutations are performed using a
permutation matrix Ni through

yi � Ni r̃bn =
[
ξmax

ui

]
, Yi � NiP−1

r̃bn
NT

i =
[
βi bT

i

bi Ai

]

Ni �
[

eT
i

Gi

]
, Gi =

[
eT
α\i

eT
α+1\i

]
, α = 1, 2, 3.

Noting the properties of permutation matrices

NiNT
i = NT

i Ni = I3×3

the ellipsoid equation in (32) may be rewritten as

yT
i Yiyi =

[
ξmax

ui

]T [
βi bT

i

bi Ai

] [
ξmax

ui

]
≤ ηn. (35)

To check if there is a feasible solution to (35), the lefthand
side of the inequality is minimized over the remaining
variables ui and then the optimal value is compared with
the righthand side of the inequality. Since P−1

rbn
� 0, then

A = GαP−1
rbn

GT � 0, making this a convex optimization
problem with a known optimal value, which is given by [61]

inf
u

[
ξmax

ui

]T [
βi bT

i

bi Ai

] [
ξmax

ui

]
= ξ 2

maxSi (36)

where Si is the Schur complement of Ai, which is equal to

Si = βi − bT
i A−1

i bi. (37)

Checking if ∃Ei for i = 1, 2, 3 to determine if E is in-
tersecting the bounding cube is equivalent to checking if
S−1

i ≥ ξ 2
max/ηn. Conversely, checking if �Ei for i = 1, 2, 3

to determine if E is contained within the bounding cube is
equivalent to checking if

S−1
i <

ξ 2
max

ηn
for i = 1, 2, 3. (38)
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Note that the Schur complement Si is nonsingular, since
P−1

rbn
� 0 [61].

The number of tests in (38) can be reduced from three
to one by testing only max

i
S−1

i . Conveniently, this value is

equal to the maximum entry of Prbn
. To see this, consider

the matrix block inversion property of the Schur comple-
ment [61][

βi bT
i

bi Ai

]−1

=
[

S−1
i −S−1

i bT
i A−1

i

−A−1
i biS−1

i A−1
i +A−1

i biS−1
i bT

i A−1
i

]
(39)

The lefthand side of (39) is

Y−1
i = NiPr̃bn

NT
i . (40)

From (39), one can deduce that S−1
i is equal to the top-

left element of Y−1
i . From (40), one can conclude that the

top-left element of Y−1
i is equal to the ith diagonal element

of Pr̃bn
, since permutations conducted on the inverse of a

matrix correspond to permutations conducted on the matrix
itself. Finally, since the largest elements of a symmetric
positive-definite matrix are the diagonal elements, it suffices
to check the largest element of the matrix. Therefore, the test
to determine if the performance constraint (21) with q ≡ ∞
will be violated, boils down to each vehicle checking

‖Prbn
‖max ≤ ξ 2

max

ηn
.

�
If the test (22) or (31) fails for any vehicle, the vehi-

cle whose test fails requests all vehicles to transmit their
{�n}N

n=1, and subsequently all vehicles perform an EKF
correction upon receiving the communicated packets from
other vehicles. An event-trigger threshold on the EKF-
produced 3σ error standard deviations of the vehicles’
position states, over which the transmission of {�n}N

n=1 is
requested, can be found by taking the square root of (22),
which yields

3σ ≤ 3
ξmax√

ηn
. (41)

VI. SIMULATIONS

This section presents simulation results demonstrating
the event-based information transmission schemes devel-
oped in Section V. First, the simulation environment and
settings are discussed. Then, the probability density func-
tion (pdf) of ‖r̃bn‖2

M is characterized, which is needed to
compute ηn using the inverse cdf on (27).

A. Simulation Environment and Settings

The simulation environment consists of N = 4 UAV-
mounted receivers and M = 6 SOP transmitters. The re-
ceivers were set to have GPS available for the first 50 s of
their trajectory and then unavailable for the remaining 150 s
portion of the trajectory. SOP pseudoranges were available
for their entire trajectories. The simulated UAV trajectories,
SOP transmitters’ positions, and the UAVs’ positions at the

Fig. 5. True trajectories the UAVs traversed (yellow), SOP transmitters’
positions (blue pins), and the UAVs’ positions at the time GPS was cut

off (red).

time GPS was set to become unavailable are illustrated in
Fig. 5. The following describes the methods used to produce
the simulated data.

1) UAVs’ Trajectories: The UAVs’ simulated trajecto-
ries were generated using a standard six degree of freedom
(6DoF) kinematic model for airplanes [57]. Each vehicle
performed the same maneuvers, which included the follow-
ing segments conducted in succession over a 200 s period:
10 s straight and level linear acceleration along the direction
of travel; 5 ◦ pitching climb for 30 s; 22 s straight and level
linear velocity, while rolling to 60◦; five 60 ◦ left-banking
turns. These trajectory segments were chosen because they
collectively excite all 6DoF of the UAVs, i.e., both hor-
izontal and vertical directions and all three angles (roll,
pitch, and yaw), allowing the event-based communication
strategies to be studied under various maneuvers.

2) IMU Data: The gyroscope and accelerometer data
were generated at 100 Hz using the simulated vehicles’
accelerations and rotation rates through (4) and (5), re-
spectively. The evolution of each vehicle’s gyroscope and
accelerometer biases was generated according to (6) and
(7), respectively, using driving process noise with spec-
tra Swgyr,n ≡ (10−8) · I3×3 and Swacc,n ≡ 10−8 · I3×3, respec-
tively. The power of the corrupting white noise was set to
correspond to a consumer-grade IMU. IMUs of this quality
typically state the noise values in terms of accumulated
noise. Each axis of the IMU was set to have an accumulated
noise of 0.3 deg /s and 2.5 milligravities for the gyroscope
and accelerometer, respectively. These spectra are mapped
to the discrete-time noise covariances Qngyr,n, Qnacc,n, Qwgyr,n,
and Qwacc,n through the equations provided in Appendix A.

3) Receiver Clock: Each UAV-mounted receiver
was set to be equipped with a typical temperature-
compensated crystal oscillator (TCXO), with parameters
{h0,rn , h−2,rn}4

n=1 = {9.4 × 10−20, 3.8 × 10−21}. These pa-
rameters are used to compute the process noise covariance
Qclk,r,n that drive the receiver clock dynamics found accord-
ing to (1).

4) GPS Pseudoranges: GPS L1 C/A pseudoranges
were generated at 1 Hz according to (10). The position
of each GPS satellite was generated by producing their
orbits using Receiver Independent Exchange (RINEX) files,
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downloaded from a continuously operating reference sta-
tion (CORS) server [62]. Pseudorange from 11 GPS satel-
lites (L = 11) were set to be available for t ∈ [0, 50) s, and
unavailable (L = 0) for t ∈ [50, 200] s. The GPS pseudor-
ange measurement noise terms were set to be independent
from each other with measurement noise variance computed
according to [63]

nσ 2
sv,l, j =

c2temlBDLLT 2
c σ 2

s

2n(C/N0)l, j

[
1+ 1

TCO
n(C/N0)l, j

]
(42)

where teml ≡ 0.5 chips is the early minus-late correlator
spacing, BDLL ≡ 0.05 Hz is the delay lock loop (DLL)
bandwidth, Tc ≡ 1/(1.023 × 106) s is the chip duration,
n(C/N0)l, j (in Hz) is the time-varying received carrier-to-
noise ratio at UAV n from satellite l , which was derived from
the RINEX files, σs ≡ 17 is a scaling parameter to account
for unmodeled errors, and TCO ≡ 10 ms is the coherent
integration time. Equation (42) is the model used in this
work; however, other models may be used. Another com-
mon model often employed is the scaled C/N0 - elevation
model [64]. The point at which GPS was cut off is illustrated
as a red “X” in Fig. 5.

5) SOP Pseudoranges: Pseudoranges were generated
to the SOPs at 5 Hz according to (9). The evolution of each
SOP’s clock bias was modeled according to the dynamics
discussed in Section III-A, using parameters that correspond
to a typical oven-controlled crystal oscillator (OCXO), with
{h0,sop,m, h−2,sop,m}6

m=1 = {8 × 10−20, 4 × 10−23}. The SOP
transmitters’ positions {rsop,m}6

m=1 were surveyed from cel-
lular tower locations in downtown Los Angeles, California,
USA. The SOP pseudorange measurement noise terms were
set to be independent with a measurement noise variance ac-
cording to (42), except that teml ≡ 1, nσ 2

sv,l, j is replaced with
nσ 2

sop,m, j , Tc ≡ 1/(1.2288 × 106), σs ≡ 22, TCO ≡ 1/37.5 s,
and the carrier-to-noise ratio n(C/N0)m, j is replaced with a
time-varying log-distance path-loss model [65]

n(C/N0)′m, j = P0 − 10γ · log10(d ( j)/D0)

n(C/N0)m, j = 10
[

n(C/N0 )′m, j/10
]

where P0 ≡ 56 dB-Hz is a calibration carrier-to-noise ratio
at a distance D0 ≡ 1400 m, d ( j) � ‖erb( j) − ersop,m‖2, and
γ ≡ 2 is the path-loss exponent. The calibration values P0

and D0 are values commonly observed by the authors during
experimental campaigns [12], [66], [67]. The SOP pseu-
dorange measurement noise variance computation assumes
that the correlation function within the DLL is equivalent to
GPS. This is a reasonable assumption for cellular code divi-
sion multiple access (CDMA) signals, when teml is between
0.8 and 1.25 chips. More sophisticated models for cellular
CDMA are discussed in [68], for long-term evolution (LTE)
are discussed in [69], and for 5 G are discussed in [70].

B. EKF-Based CIRSLAM Filter Initialization

The initial estimates (at t = 0 s) of the UAVs’ states
were initialized by drawing a random error vector from
a multivariate Gaussian distribution and then adding the

error to the “ground truth” state at t = 0. This initialization
method is used instead of directly drawing the state estimate
to deal with the quaternion initialization, which requires
special handling. This method is described in the next three
steps. First, the random error for each UAV was drawn
according to

x̃r,n(0|0) ∼ N [
017×1, Pxr,n (0|0)

]
Pxr,n(0|0) � diag

[
Pxins,n(0|0), Pxclk,r (0|0)

]
Pxins,n(0|0)≡diag

[(
10−2

)·I3×3, 9·I3×3, I3×3,
(
10−4

)·I6×6

]
Pxclk,r,n (0|0) ≡ diag [9, 1]

were a ∼ N (μ, C) indicates that a is Gaussian-distributed
with mean μ and covariance C. Second, to produce the
initial quaternion estimate, two approaches are common and
may be used. The small angle errors may be used to create a
rotation matrix, which can then be converted to quaternion
and multiplied by the true angle in order to produce a
new quaternion, which will serve as the initial estimate.
Alternatively, the resulting angle error θ ∈ R3, which are
the first three elements of x̃r,n, may be mapped to an error
quaternion q̃n ∈ R4, which are then applied to the true state
according to the equations discussed in [27, Appendix C].
Third, to produce initial estimates of the remaining states,
the remaining error components of x̃r,n are applied to the
true states as standard additive error.

The SOPs’ state estimates were initialized ac-
cording to x̂sop,m(0|0) ∼ N [xsop,m(0), Psop(0|0)], for
m = 1, . . . , M, where xsop,m(0) ≡ [rT

sop,m, 104, 10]T, and
Psop(0|0) ≡ (104) · diag[I3×3 0.1, 0.01]. This initialization
scheme is used in simulation to ensure consistent initial
priors in the EKF. In practice, if the initial SOPs’ states
are completely unknown, then a random position for each
SOP may be drawn in the vicinity of the UAVs with a
large enough uncertainty to encompass all possible points
that a signal could be received from. The clock states may
be initialized to zero with a large uncertainty. As long
as there are enough vehicle’s or the vehicles are moving,
the position and clock states of the SOPs are observable.
Observability conditions are thoroughly analyzed in [29],
[71], [72]. In [72], it was found that although individual
clock biases were stochastically unobservable, the position
estimates are estimable. In addition, a study with varying
receiver-to-transmitter geometric configurations and clock
qualities was conducted in [52].

C. Mahalanobis Norm-Squared Distribution Characteri-
zation

In this section, the pdf of ‖r̃bn‖2
M is characterized, which

is needed to compute ηn using the inverse cdf on (27). If r̃bn

is Gaussian distributed, then ‖r̃bn‖2
M would be Chi-squared

distributed, with three DoF. However, no assumption is
made on the distribution of r̃bn during GPS availability or
GPS unavailability and is characterized during each period.
To determine the pdf of ‖r̃bn‖2

M, 5 × 104 Monte Carlo runs
were conducted using the environment illustrated in Fig. 5.
The same simulation settings described in Section VI-A
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Fig. 6. (a) Histogram of ‖r̃b1 ‖2
M during GPS availability (L = 11) and

gamma distribution with parameters s1 = 3/2 and θ1 = 2 and (b)
histogram of ‖r̃b1 ‖2

M during GPS unavailability (L = 0) and gamma
distribution with parameters s2 = 3/2 and θ2 = 2.63.

were used, except that each run used a different initial state
estimate and different realizations of process and measure-
ment noise. The value of ‖r̃bn‖2

M was recorded for each run
for n = 1, . . . , N . GPS was set to be available for t ∈ [0, 50)
s with L = 11 and unavailable (L = 0) for t ∈ [50, 200] s.
Fig. 6 illustrates the Monte Carlo runs histogram of ‖r̃bn‖2

M
for UAV 1, from which it is deduced that the pdf follows a
gamma distribution given by:

p
(‖r̃bn‖2

M; s, θ
) = 1

(s)θ s

(‖r̃bn‖2
M

)s−1
e

−‖r̃bn ‖2
M

θ

where s and θ are the shape and scale parameter of the
gamma distribution, respectively, and  is the complete
gamma function, which is defined as

(z) �
∫ ∞

0
xz−1e−xdx.

A maximum likelihood estimator was employed to
find the parameters s and θ [73]. During GPS availability
(L = 11), the parameters were found to be {s, θ} ≈ {3/2, 2},
which is equivalent to a chi-squared distribution, with three
DoF. During GPS unavailability (L = 0), the parameters
were found to be {s, θ} ≈ {3/2, 2.63}. The estimated pdf
for the GPS availability period is also plotted in Fig. 6(b)
to show the shift in the pdf’s scale parameter when GPS
becomes unavailable.

It is important to note that during GPS unavailabil-
ity the shape and scale parameters {s, θ} depend on the
environment (e.g., number of SOPs and their geometric
distribution). However, in a practical scenario, the param-
eters {s, θ} may be determined online when GPS is still
available. To do this, the following procedure may be used.
First, in addition to the EKF running that has access to
GPS, a parallel EKF is run with GPS fictitiously cut off.
Second, the estimated UAVs’ positions using SOPs only
(GPS unavailability) are difference with the GPS produced
position estimates in order to calculate a time history of r̃bn ,
n = 1, . . . , N . Third, the time history r̃bn is downsampled to
make it approximately white, since the errors are typically
correlated for a short time. Fourth, the distribution of ‖r̃bn‖2

M

is characterized by passing the downsampled signal through
a maximum likelihood to estimate the gamma distribution
parameters [73].

D. Simulation Results

This section presents simulation results to demon-
strate the event-based communication strategies to compare
their resulting estimation performance and corresponding
communication rates versus a fixed-rate communication
scheme.

To this end, the same environment illustrated in Fig. 5
was simulated using the settings described in section VI-A.
GPS was set to be available for t ∈ [0, 50) s, and unavailable
for t ∈ [50, 200] s. Two EKF-CIRSLAM estimators were
run to estimate the UAVs’ trajectories. The only difference
between the estimators is in when the communication of
{�n}4

n=1 takes place and the EKF correction step is per-
formed: 1) fixed-rate, when measurements are made or 2)
event-based, when any UAV violates (22) or (31).

Each estimator was initialized according to the proce-
dure discussed in Section VI-B. For the event-based run,
the two-norm (q = 2) test in (22) was employed, where
the constraints specified on the UAVs’ position estimates
were set to be ξmax ≡ 10 m with a confidence probability
p ≡ 0.999. Using this p and the shape and scale parameters
found in Section VI-C, the inverse cdf of (27) evaluated to
η1 ≈ 16.27 and η1 ≈ 21.37 for the GPS availability and un-
availability periods, respectively. Plugging these values into
(22) yielded ‖Prb1

(k| j)‖2 ≤ 6.15 and ‖Prb1
(k| j)‖2 ≤ 4.68

for the GPS available and unavailable periods, respectively.
The infinity-norm (q = ∞) test in (31) was also employed
on the UAVs’ east, north, and down position covariance
during a separate run. Plugging the above values into
(31) yielded ‖Prb1

(k| j)‖max ≤ 6.15 and ‖Prb1
(k| j)‖max ≤

4.68 for the GPS available and unavailable periods,
respectively.

To visualize the reduction of the transmitted data, the
accumulation of transmitted data was recorded for each
scheme by summing the number of transmitted bits each
time a packet transmission occurred. The size of the packet
in bits was found by summing the number of values in
(14) and setting each value to be a 32-bit float data type,
as described in [58]. For a comparative analysis, the accu-
mulation of transmitted data for transmitting raw IMU data
was also recorded.

Fig. 7 shows the resulting east, north, and down errors
and corresponding ±3σ bounds of UAV 1 along with the
±3σ bound event-trigger thresholds (41) during GPS un-
availability. To avoid convoluting the plot, only results for
the test in (22) are shown in Fig. 7, since it was found that the
resulting EKF plots were very similar to using the infinity-
norm (q = ∞) test in (31). This is due to the dominant ver-
tical uncertainties, which make ‖Prb1

(k| j)‖2‖Prb1
(k| j)‖max.

Such uncertainty is due to the poor geometric diversity
in the vertical direction for terrestrial SOPs. Fig. 8 shows
the resulting log{det[Prb1

(k| j)]} for using the fixed-rate and
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Fig. 7. Resulting north, east, and down errors and corresponding ±3σ

bounds for UAV 1 for transmitting �n using the event-based and
fixed-rate communication schemes.

Fig. 8. Resulting logarithm of the determinant of the estimation error
covariance for the position states of UAV 1 for the event-based and

fixed-rate communication schemes, as well as the event-trigger threshold.

Fig. 9. Accumulation of the communicated data for transmitting IMU
data, transmitting the packet � at a fixed-rate, and transmitting the packet

� using the event-based communication scheme.

event-based communication schemes. The resulting accu-
mulation of transmitted data for each scheme is illustrated in
Fig. 9. Similar plots were noticed for the other three UAVs.

The following may be concluded from these plots.
First, note from Fig. 7 that the estimation uncertainties
associated with the event-based communication scheme are
consistently larger than the ones produced by the fixed-rate

scheme. This is due to skipped measurement updates when
the test (22) is satisfied. Second, it can be seen that the UAV’s
position uncertainties reduce when the errors approach the
trigger threshold, which causes all UAVs to transmit their
data packets and perform an EKF update. The threshold
is triggered only by the UAVs’ vertical uncertainty, which
is expected due to the large vertical dilution of precision
due to all of the SOPs residing under the UAVs. Third, the
degradation in estimation performance by skipping these
measurements is captured by the distance between the cor-
responding ±3σ bounds in Fig. 7 and by log{det[Prb1

(k| j)]}
curves in Fig. 8. Fourth, it can be seen from Fig. 8 that
event-triggering curves due to (22) and (31) result in larger
uncertainty compared to fixed-rate triggering, as expected,
with the ∞-norm being slightly larger than the 2-norm
due to the less event triggering by the ∞-norm. Note that
if a worst quality clock was equipped on the vehicles or
SOPs, the error variances still appear bounded, however
they would increase. A study on the CIRSLAM position
error covariance for varying clock qualities was conducted
in [52]. Finally, from Fig. 9, the following accumulation
of transmitted data for each communication strategy was
determined: 6.46 MB for transmitting � at a fixed-rate and
3.06 MB for transmitting � using the event-based scheme.
Therefore, although using the event-based strategy to trans-
mit � causes a small increase in position uncertainty, the ac-
cumulated transmitted data is reduced by 52.6% compared
to transmitting � using fixed-rate scheme. Transmitting
raw IMU data at a fixed-rate accumulated 18.6 MB of
transmitted data. The event-based communication strategy
reduces the required amount of transmitted data by 83.6%
compared to transmitting raw IMU data.

VII. EXPERIMENTAL DEMONSTRATION

This section presents an experimental demonstration
of the event-based communication scheme developed in
Section VI using two UAVs equipped with consumer-grade
IMUs and software-defined radios (SDRs).

A. Hardware and Software Setup

A consumer-grade L1 GPS active patch antenna [74]
and an omnidirectional cellular antenna [75] were mounted
on each UAV to acquire and track GPS signals and multiple
cellular transmitters, respectively, whose signals were mod-
ulated through CDMA. The GPS and cellular signals were
simultaneously downmixed and synchronously sampled via
two-channel Ettus E312 universal software radio peripher-
als (USRPs). This data was then postprocessed through the
Multichannel Adaptive TRansceiver Information eXtractor
(MATRIX) SDR, which produced pseudorange measure-
ments from all GPS L1 C/A signals in view and three cellular
transmitters at 10 Hz [76]. The IMU data was sampled at
100 Hz from the UAVs’ on-board proprietary navigation
system, which was developed by Autel Robotics. The IMU
data and pseudoranges were sent to a MATLAB-based
CIRSLAM framework, which conducted the event testing,
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Fig. 10. Experiment hardware setup.

Fig. 11. Time history of received C/N0 for UAV 1 and UAV 2 from
SOP 1,2, and 3, produced by the MATRIX SDR.

emulated the packet transmissions {�n}2
n=1, and ran the

EKF. Fig. 10 depicts the hardware and software setup.
In a real-time scenario, there will be a time difference

between when pseudoranges are made by each vehicle and
when all packets are received by other vehicles. This can
cause an issue in traditional centralized EKFs, since the
EKF time update requires the time difference between the
previous EKF measurement update and the new measure-
ment time for linearization. Since each vehicle may not
be perfectly synchronized with other vehicles and the time
when measurements arrive at the processor is not the time
the measurements were made, linearization errors could
accumulate. This would traditionally require maintaining
the absolute time of all vehicles. However, in the proposed
approach, the transmission of the packet �n contains locally
produced prior state estimates, which circumvents the need
for each vehicle to maintain other vehicles’ absolute time.
Since the system is time-invariant, only the current measure-
ment counter must be maintained and each vehicle must en-
sure that all packets are received from all other vehicles for
the current measurement count. A small latency may be in-
troduced to insure all measurements for a particular counter
or batch of counters have arrived before performing the EKF
measurement update. If a subset of measurements arrive
after the EKF update is processed, then those measurements
may be discarded to maintain estimation consensus with
minimal degradation in performance, since the SOP CDMA
pseudorange measurements are arriving at 10 Hz [58]. If the
system designer decides to process the late measurements, a
consensus algorithm should be ran. A vehicle in the system
could be selected to maintain the measurement counter for
the entire system. If that vehicle becomes unresponsive, a
new vehicle could assume this responsibility.

B. CIRSLAM Initialization and Settings

The CIRSLAM framework was initialized using the fol-
lowing procedure. The state vector estimate was initialized
according to

x̂(0|0)=
[
x̂T

r,1(0|0), x̂T
r,2(0|0), x̂T

sop,1(0|0), . . . , x̂T
sop,3(0|0)

]T

where the estimates of each UAV’s orientation bn
g

ˆ̄q(0|0),
position r̂bn (0|0), and velocity ˆ̇rbn (0|0) were set to val-
ues parsed from the beginning of the UAV’s navigation
system log files, which were recorded during the trajec-
tory, and the IMU biases b̂gyr,n and b̂acc,n were initialized
by averaging 5 s of gravity-compensated IMU measure-
ments, while the vehicles were stationary and after their
IMUs had warmed up. The cellular SOP transmitters’ ini-
tial state estimates were drawn according to x̂sop,m(0|0) ∼
N ([rT

sop,m, xT
clk,sop,m(0)]T, Psop,m(0|0)). The true transmit-

ters’ positions {rsop,m}3
m=1 were surveyed beforehand ac-

cording to the framework described in [77] and verified
using Google Earth. The initial clock bias and drift

xclk,sop,m(0) = c
[
δtsop,m(0), δ̇t sop,m(0)

]T
m = 1, . . . , 3

were solved for by using the initial set of cellular transmitter
pseudoranges using (9) according to

cδt sop,m(0) = ‖rbn (0) − rsop,m‖ + cδt r,n(0) − zsop,m(0)

cδ̇t sop,m(0) = [cδtsop,m(1) − cδtsop,m(0)]/T,

where cδt sop,m(1)=‖rbn (1)−rsop,m‖+cδt r,n(1)−nzsop,m(1)
and the receiver’s clock bias cδt r,n(0) and cδt r,n(1) was
provided by the GPS receiver while GPS was available.

The corresponding estimation error covariance was ini-
tialized according to

Px(0|0) = diag
[
Pxr (0|0), Pxsop,1 (0|0), . . . , Pxsop,3 (0|0)

]
Pxr (0|0) = diag

[
Pxr,1 (0|0), Pxr,2 (0|0)

]
Pxr,n (0|0) � diag

[
Pximu,n (0|0), Pxclk,r,n (0|0)

]
Pximu,n (0|0)≡diag

[
(0.1)·I3×3, 9·I3×3, I3×3,

(
10−4

)·I6×6

]
Pxclk,r,n (0|0) ≡ diag [0.1, 0.01] n = 1, 2

Psop,m(0|0) ≡ 103 · diag
[
I3×3, 0.3, 0.03

]
, m = 1, 2, 3.

The process noise covariance of the receiver’s clock
Qclk,r,n was set to correspond to a typical TCXO. The pro-
cess noise covariances of the cellular transmitters’ clocks
were set to correspond to a typical OCXO, which is usu-
ally the case for cellular transmitters [78]. The power
spectral density matrices associated with the gyroscope
and accelerometer noise were set to Sngyr ≡ (

7 × 10−4
)2 ·

I3×3 and Snacc ≡ (
5 × 10−4

)2 · I3×3, respectively. The power
spectral density matrices associated with the gyroscope
and accelerometer bias variations were set to Swgyr ≡(
1 × 10−4

)2 · I3×3 Swacc ≡ (
1 × 10−4

)2 · I3×3, whose values
were found empirically using raw IMU data. The mea-
surement noise variances {nσ 2

sop,m}3
m=1 for UAV n ∈ {1, 2}

were time-varying, and calculated according to (42), ex-
cept that teml ≡ 1, nσ 2

sv,l, j is replaced with nσ 2
sop,m, j , Tc ≡
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Fig. 12. (a) Experimental environment with three cellular SOPs and two UAVs. (b)–(e) Mapping and navigation results for CIRSLAM with fixed
transmission rate.

Fig. 13. (a)–(b) UAV navigation results for fixed-rate (blue solid) and event-based (yellow dashed) information fusion. (c) Mapping results for SOP 1
using fixed-rate (blue) and event-based (yellow) information fusion.

Fig. 14. Accumulation of the communicated data for transmitting IMU
data, transmitting the packet � at a fixed-rate, and transmitting the packet
� using the event-based communication scheme during the experiment.

1/(1.2288 × 106), σs ≡ 10, TCO ≡ 1/37.5 s, and the carrier-
to-noise ratios {n(C/N0)m, j}3

m=1, n ∈ {1, 2}, are replaced
with the received carrier-to-noise ratio estimated by the
MATRIX SDR, which are plotted in Fig. 11.

C. Experimental Results

The UAVs traversed the white trajectories in Fig. 12(c)
and (d), in which GPS was available for the first 50 s then
unavailable for the last 30 s. To collaboratively estimate
these trajectories, the CIRSLAM framework was used and

TABLE I
Estimation Errors: Unaided-INS Versus SOP-Aided INS With

Fixed-Rate and Event-Based Communication

two transmission strategies were studied: 1) event-based
using (22) with ξmax ≡ 20 m and p ≡ 0.95, and for a com-
parative analysis, 2) fixed-rate where τ is closed period-
ically with a period of 0.2 s (see Fig. 1). The estimated
trajectories using each transmission scheme for UAV 1
and UAV 2 are plotted in Fig. 13(a) and (b), respectively.
The north-east RMSEs and final errors for each commu-
nication scheme for the UAVs are summarized in Table I.
The final estimated transmitter location and corresponding
99th-percentile north-east uncertainty ellipse of SOP 1 for
each communication strategy are plotted in Fig. 13(c).
Notice from I, the fixed-rate RMSE and the final error are
significantly lower compared to an INS-only after the GPS
cutoff point (unaided-INS). If a visual inertial odometry
(VIO) system is used instead of an INS, one can expect
similar RMSEs of 3–5 m [79]. From the plots in Fig. 13,
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Fig. 15. Accumulated transmitted data versus the average RMSE
between UAV 1 and UAV 2 when using the event-based communication

scheme with p = 0.95 and a varying ξmax.

one can note a slight degradation in UAV localization per-
formance when comparing the event-based with fixed-rate
schemes; however, the event-based scheme maintained the
specified constraints p and ξmax and the amount of transmit-
ted data was reduced.

To visualize the amount of transmitted data, the accu-
mulated data for each strategy transmitted by each UAV is
plotted as a function of time in Fig. 14. For a comparative
analysis, the accumulated data for transmitting raw IMU
data at a fixed rate is also plotted. In order to calculate
the accumulated data associated with transmitting �, the
size of � in bits was found by summing the number of
values in (14) and setting each value to be a 32-bit float data
type, as described in [58]. It can be seen from Fig. 14 that
transmitting � at a fixed rate required the transmission of
8.38 Mbits, whereas transmitting � using an event-based
strategy reduced the transmission to 1.12 Mbits, a 86.6%
reduction. If raw IMU data was transmitted at a fixed rate
instead of the packet �, the accumulated data was found to
be 10.6 Mbits.

To study the tradeoff between the accumulated data
savings and the position estimate RMSE, the same data
was passed through the CIRSLAM framework for sev-
eral runs, where each run used a different user-specified
max error ξmax. Specifically, the probability was set to
p ≡ 0.95 and the max error was swept from ξmax ≡ 0 to
ξmax ≡ 30. For each run, the RMSEs for UAV 1 and UAV 2
were averaged. The resulting accumulated transmitted data
versus average RMSE curve is plotted in Fig. 15. Notice
from Fig. 15 that when ξmax ≡ 0, the average RMSE and
the accumulated transmitted data are equal to the values
found for the fixed-rate scheme. This is due to ξmax ≡ 0
causing the event-based scheme to transmit at the fixed rate
of measurements arriving. From ξmax ≡ 0 to ξmax ≡ 5, the
data savings are approximately exponential with increasing
RMSE. After ξmax ≡ 5, the data savings are approximately
linear with increasing RMSE, with a rate of 0.172 Mbits per
meter.

VIII. CONCLUSION

This article developed and studied event-based com-
munication strategies for navigating vehicles collabora-
tively aiding their INSs’ with shared measurements. These

strategies aimed to reduce the accumulated shared data
between collaborators, while maintaining a specified ve-
hicle positioning error with probability p. The inequal-
ities (22) and (31) provide simple tests to determine if
the specified constraints will be violated and trigger com-
munication of �n. The pdf of ‖r̃bn‖2

M was characterized,
which enabled computing the threshold that satisfies a
specified p. Simulation and experimental results demon-
strating the event-based communication strategy with spec-
ified constraints were presented. The experimental results
demonstrated that the event-based communication strategy
could reduce the amount of accumulated data by 86.6%
compared to communicating at a fixed-rate, while main-
taining the user-specified UAV position estimation error
constraint.

APPENDIX A

INS STATE TRANSITION AND PROCESS NOISE COVARI-
ANCE MATRICES

The calculation of the discrete-time linearized INS state
transition matrix �ins,n and process noise covariance Qins,n

are performed using strapdown INS equations (2)–(3) re-
solved in an ECI frame as described in [56], [57]. The matrix
�ins,n is given by

�ins,n(i) =

⎡
⎢⎢⎢⎢⎣

I3×3 03×3 03×3 �q̄bgyr,n 03×3

�rq̄,n I3×3 T I3×3 �rbgyr,n �rbacc,n

�ṙq̄,n 03×3 I3×3 �ṙbgyr,n �ṙbacc,n

03×3 03×3 03×3 I3×3 03×3

03×3 03×3 03×3 03×3 I3×3

⎤
⎥⎥⎥⎥⎦

�q̄bgyr,n = − T

2

[
R̂T

n (i + 1) + R̂T
n (i)

]
�ṙq̄,n = − T

2
	[ân(i) + ân(i + 1)] ×
, �rq̄,n = T

2
�ṙq̄,n

�ṙbgyr,n = − T

2
	ân(i)×
�q̄bgyr,n, �ṙbacc,n = �q̄bgyr,n

�rbgyr,n = T

2
�ṙbgyr,n, �rbacc,n = T

2
�ṙbacc,n

where R̂n(i) � R
[

bn
g

ˆ̄q(i| j)
]

is the equivalent rotation ma-
trix of bn

g
ˆ̄q(i| j), which is the estimate of bn

g q̄(i) using all

measurements up to time-step j; ân(i) � R̂T
n (i)[naimu(i) −

b̂acc,n(i| j)], where b̂acc,n(i| j) is the estimate of bacc,n(i) using
all measurements up to time-step j; and 	(·)×
 is the
skew-symmetric matrix obtained according to (15). The
discrete-time linearized INS process noise covariance Qins,n

is given by

Qins,n(i) = T

2
�ins,n(i)Nc,n�

T
ins,n(i) + Nc,n

Nc,n = diag
[
Sngyr,n, 03×3, Snacc,n, Swgyr,n, Swacc,n

]
where Sngyr,n = T Qngyr,n and Snacc,n = T Qnacc,n are the PSD
matrices of the gyroscope’s and accelerometer’s random
noise, respectively, and Swgyr,n = Qwgyr,n/T and Swacc,n =
Qwacc,n/T are the PSD matrices of the gyroscope’s and
accelerometer’s bias variation, respectively, which may
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be derived from values obtained from IMU specification
sheets.

APPENDIX B

INS STATE TRANSITION MATRIX APPROXIMATION

After a κ-step propagation, the INS state transition
matrix takes a simple form, which can be approximated
as [58]

�ins,n(k, j) ≈⎡
⎢⎢⎢⎢⎣

I3×3 03×3 03×3 κT R[q̄1,n] 03×3

	v1,n×
 I3×3 I3×3T �1,n
κT 2

2 R[q̄2,n]
	v2,n×
 03×3 I3×3 �2,n κT R[q̄1,n]

03×3 03×3 03×3 I3×3 03×3

03×3 03×3 03×3 03×3 I3×3

⎤
⎥⎥⎥⎥⎦ (43)

where κ = k − j; 	v1,n×
 ∈ R3×3 and 	v2,n×
 ∈ R3×3 are
skew symmetric matrices whose elements are defined from
the vectors v1,n ∈ R3 and v2,n ∈ R3, respectively; the matri-
ces R[q̄1,n] ∈ R3×3 and R[q̄2,n] ∈ R3×3 are rotation matri-
ces; and �1,n ∈ R3×3 and �1,n ∈ R3×3 are arbitrarily struc-
tured matrices.

Note the following two properties of the structure (43).
First, since 	v1,n×
 and 	v2,n×
 maintain a skew symmetric
form, they can be transmitted using only three elements
each. Second, the scaling pre-multiplying the matrices
R[q̄1,n] and R[q̄2,n] is deterministic and only dependent on
the IMU sampling period T and the number of iterations
κ; therefore, these matrices can be converted to quaternions
q̄1,n and q̄2,n and then transmitted using only four elements
each. From these properties, the sufficient INS information
to package for transmission is found to be

�ins,n �
{
v1,n, v2,n, q̄1,n, q̄2,n, �1,n, �2,n

}
which only requires the transmission of 32 floating-point
values every EKF measurement update.

APPENDIX C

EKF STATE MEASUREMENT UPDATE EQUATIONS

When the orientation of the vehicle is modeled using
quaternions, the standard EKF equations are modified to
deal with the 3-D orientation error correction, which con-
tains one less dimension than the 4-D orientation quaternion
estimate. Specifically, the quaternion estimate correspond-
ing to each vehicle’s orientation is updated using quaternion
multiplication and all other estimates are updated using
standard additive EKF update equations. To this end, define
the state estimate vector as

x̂ �
[
x̂T

r,1, . . . , x̂T
r,N , x̂T

sop,1, . . . , x̂T
sop,M

]T
.

The state estimate of each vehicle is separated into two
parts according to x̂r,n � [bn

g
ˆ̄q

T
, ŷT

n]T, where bn
g

ˆ̄q ∈ R4 is the
orientation quaternion estimate and ŷ ∈ R14 is a vector
containing the remaining estimates of xr,n.

Next, define the EKF correction vector as

x̆ �
[
x̆T

r,1, . . . , x̆T
r,N , x̆T

sop,1, . . . , x̆T
sop,M

]T

where x̆r,n � [θ̆n
T
, y̆n

T]T and θ̆n ∈ R3 is the orientation cor-
rection and y̆n ∈ R14 is a vector containing the remaining
corrections for the vehicle nth.

The EKF correction vector x̆(k), which is to be applied
to the current state prediction x̂(k| j) to produce the EKF
state measurement update x̂(k|k), is computed according to

x̆(k) = K(k)ν(k| j)

where ν(k| j) � z(k) − ẑ(k| j) is the measurement residual,
K = LS−1, and L and S are defined in (17) and (18),
respectively. Finally, the EKF state measurement update
x̂(k|k) is computed by applying θ̆n(k) to bn

g
ˆ̄q(k| j) and y̆(k)

to yn(k| j) for each vehicle n = 1, . . . , N , using

x̂(k|k) =⎡
⎣bn

g
ˆ̄q(k| j) ⊗

[
1
2 θ̆n

T
(k),

√
1 − 1

4 θ̆n
T
(k)θ̆n(k)

]T

ŷn(k| j) + y̆n(k)

⎤
⎦

and applying x̆sop,n to each SOP m = 1, . . . , M, using

x̂sop,n(k|k) = x̂sop,n(k| j) + x̆sop,n(k).
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