Vehicular Navigation with Cellular CDMA Signals

Joe Khalife, Kimia Shamaei, and Zaher M. Kassas

Motivation

The global navigation satellite system (GNSS) is at the heart of autonomous vehicles navigation systems. However, GNSS signals are unreliable due to:
- Severe attenuation in deep urban canyons
- Intentional and/or unintentional jamming
- Spoofing!

Approach: Exploit SOPs

Ambient signals of opportunity (SOPs) may enhance and assist conventional navigation techniques.

Cellular CDMA as SOP

- Uses code division multiple access (CDMA), which is good for ranging
- Abundant and free to use
- Higher received power and bandwidth than GNSS

CDMA Receiver Stages

A three-stage cellular CDMA software-defined radio (SDR) has been implemented in order to extract the “pseudorange”, ρ, and the base transceiver station (BTS) information.

1. **Acquisition Stage**
 - Signals from different BTSs are identified and a coarse estimate of their corresponding code delay and Doppler frequency is obtained.

2. **Tracking Stage**
 - The code delay and Doppler frequency estimates are maintained and refined using tracking loops.
 - The pseudorange is also calculated.

3. **Decoding Stage**
 - The message transmitted by the BTS is decoded and information that can be used for navigation is extracted.

Navigation Solution

To estimate the position of the receiver and its clock bias, r, and δt, respectively, a weighted least-squares (WLS) problem with pseudorange measurements from 4 or more BTSs is solved.

Pseudorange Model

Under measurement noise v, ρ is given by:

$$\rho = ||r - r_{\text{BTS}}|| + c \cdot (\delta t - \delta t_{\text{BTS}}) + v.$$

The position of the BTS, r_{BTS}, and the pseudorange, ρ, are known. The clock bias of the BTS, δt_{BTS}, is also needed to solve for the receiver’s state. It can be estimated either in a mapping/navigating receiver framework or in a simultaneous mapping and localization (SLAM) framework.

References