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Abstract The following problem is considered. An air vehicle detects a
mobile target using its own sensor(s), but delays attack. While the
target is being detected, the air vehicle takes several looks at the
target, thus producing target state estimates. Some time later (on
the order of minutes), the same or another air vehicle views the
target area again. The target is not detected on the second set of
looks. We assume that it has moved. Since the target has moved
away, where should we look for it? This is a prediction and search
problem. Prediction uses historic information to predict the future
states (location and kinematics), and search is to look for the target
based on the prediction results. Since we assume that the time sep-
aration between the two set of looks is quite significant, traditional
prediction based on historic kinematics information alone will not
work well. The target kinematics information is diluted quickly as
the radius of possible target locations from that of the first set of
looks gets bigger. However, the previous kinematics (target route
history) at least provides a center location for future possible tar-
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get locations. As will be shown, we can rely on terrain-based state
prediction to determine the likelihood of the new target position.
The effects of the terrain are captured by something known as a
hospitability map. A hospitability map provides a likelihood or a
"weight” for each point on the earths surface proporticnal to the
ability of a target to move and maneuver at that location,
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1. Introduction

The overall objective of this research is to explore innovative modeling and
estimation techniques that result in more robust estimation when model uncer-
tainties exist. With this overall goal in mind, we are pursuing research prob-
lems in the area of uninhabited autonomous vehicles (UAVs), The problem
studied here was proposed by AFRL/VA and is described below.

An air vehicle detects a target using its own sensor(s), but delays attack.
Some time later {on the order of minutes), the same or another air vehicle views
the target area again. The target is not detected on the second look. There are
three possibilities why the target was not detected on the second look. (a) The
first vehicle did not actually detect the target in the first look; it was a false
detection. (b) The target is still there, but the second vehicle could not detect
it; it was a misdetection. (c) The target moved. In the work presented here, we
assume case (c) that the target moved.

Since the target has moved away, where should we look for it? This is a
prediction and search problem, Prediction uses historic information to predict
the future states (location and kinematics), and search is to look for possible
future states based on the prediction results. As the elapsed time gets bigger,
“the difference between prediction and search becomes blurrier. So we need to
design a technique that uses both prediction and search, either simultaneously
or alternatively.

Because the time separation between two looks is quite significant, tra-
ditional prediction simply based on historic kinematics information will not
work. The target kinematics information is diluted quickly as the radius of
possible target locations from that of the first look gets bigger. However, the
previous kinematics at least provides a center location for the possible target
locations.

As will be shown, we can rely on terrain based state prediction to determine
the likelihood of the new target position. The effects of terrain are captured by
something known as a hospitability map [1, 2, 3] A hospitability map provides
a likelihood or a "weight” for each point on the earths surface proportional to
the ability of a target to move and maneuver at that location. Here high hos-
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pitability map values denote that a target can move and maneuver quickly over
the corresponding terrain. Likewise, low hospitability value indicates that a
target cannot easily move over that terrain. The following factors are consid-
ered in deriving a hospitability value; slope, surface roughness, transportation,
zeology, landform, soil, vegetation, hydrology, urban areas, and climate.

2. Approach
2.1. Propagation of the probability density

The first UAV’s look at the target provides an initial probability density
(assumed to be a joint Gaussian) of the target’s location. Since we have only
one look at the target, we cannot make any assumptions about the velocity
and heading of the target when it moves, The best we can do is to model.
the movement as a diffusion process in all directions as characterized by the
following Ito equations

dr = 8, (1}
dy = 6, (2)

where dx and dy are scalar white Brownian motion process. The probability
density of the targets location based upon the Ito equations is given by the
following partial differential equation called the Fokker-Planck equation.

dp _ old%p cr!"ff 52p
dt 248z 24y*

This section is concerned with the numerical solution of the Fokker-Planck
equation over the rectangular region 0 < = < a,0 < y < b, where p is known
initially, based upon the first look at the target, at all points within and on the
boundary of the rectangle. Also, it is known subsequently at all points on the
boundary. Define the co-ordinates, (x, y, t), of the mesh points as

(3)

T =iAx y = jAy t = nAt (4)

where i, j, and n are positive integers, and denote the values of p at these
mesh points by
pliAz, jAy, nAt) = pijn (3}

The explicit finite-difference approximation of Equation 3 is given by
2
Pijon+l —Bijn _ T
A = Eiﬂ:;jg [Pi-1n — 2Pijn + Pit1.4n]
il
+w[ﬁi,jnl.n - Epih;l'.n +Pt',j+1,n] (E‘}
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Solving for p; jne1 yields:

2
¥,
Pijn+l = Dign T At (m:&—mx:rz [Pt'—l.j.ﬂ — 2pijn + Pi+1_.;r'.n]

o2
+m{?ﬁ.j—l,n - 2p;jn+ Pi.j+1,n]) (7

which is valid only when
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At (2&9:'3 + E&yz) =3

2.2. Hospitability map as a measurement

Once we have propagated the probability density function (pdf) for the target
location, we apply the hospitability map as a measurement at every time instant
(ndt) to "constrain™ the pdf to regions of high hospitability. This operation is
characterized by the following update equation

: 1 _

Pifjlﬁ = EF;J,nHt'.j (8)
where the - is used to denote the unupdated pdf and the “+" is used to denote
the updated pdf, c is the normalizing constant, and Hj ; is the i*", j* cell of
the hospitability matrix. This updated pdf is used in propagating to the next
time instant.

2.3. An optimal search strategy

In developing an optimal search strategy, we decided we wanted to minimize
the distance moved and maximize the probability density of the next search
cell. Consequently, we developed a search strategy based upon minimizing the
following cost function over all cells (i,j)

Wa
Probablity that the target iz in cell (1, 7)

Ji; = Wy Distance tocell (i, §) + !

where W, and W, are weighting factors.

3. Simulation Results
3.1. Propagation and update

Figure 7.1 below shows the results of propagation and update over a
300 second period of simulation. Notice the pdf seems to "flow” around
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the small values of hospitability as desired. A human looking at the
hospitability map might make a similar prediction, however the UAV
must do this in an automated fashion. Next we look at how to use these
results to develop an optimal search strategy.
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Figure 7.1, Simulation results

3.2, Search strategy results

In this research, we optimized the search cost function by exhaus-
tively computing its value over every cell. For comparison, we used a
gradient decent algorithm . Future research, we will look for more effi-
cient methods of doing this optimization. When a cell is searched and
nothing is found, the algorithm will zero out that cell and all the cells it
passes over in getting to that cell (also assuming nothing was found). It
is set to zero because we know with high certainty that the target is not
there if not detected.

Figure 7.2 below, shows the results of the exhaustive search strategy
as applied to the example in Figure 7.1, Recall in this example the
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simulation time was set to 300 seconds. To simulate the fact that the
search UAV does not arrive on the scene until sometime later, we start
the search at 150 seconds into the simulation. The search begins at the
location where the first UAV found the target.

Notice in Figure 7.2 that the algorithm produces a tri-modal pdf. Also
notice in Figure 7.2, that the search algorithm basically zeros out the
"first” mode of the probability density before "plowing™ a path through
the "larger” mode of the pdf. This behavior seems very natural and
sensible from a humans point of view. However, the UAV must be able
to do this anonymously
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Figure 7.2, Simulation results of exhaustive search (The white lines represent the search path

Figure 7.3 shows the response of a gradient decent approach to solve
the search optimization. Notice that the search vehicle never leaves the
first mode. It gets trapped in a local minimum. However, it may be
possible to change this behavior by applying techniques such as genetic
algorithms to force the algorithm to look in different areas of the search
space.
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Figure 7.5, Simulation results of gradient descent search {The white lines represent the search
path

4, Future Research

In future research, we will look for more efficient methods of doing
search optimization. When a cell is searched and nothing is found, the
algorithm zeros out that cell probability and all the cells it passes over
in getting to that cell (also assuming nothing was found). It is set to zero
because we know with high certainty that the target is not there if not
detected.

Notice in optimizing the search we chose an optimization scheme
based on cost of each individual cell. However, since we are able to
look at cells along the way to the optimal cell, what is really needed is a
cost function that considers the cost of the whole path from cell to cell.
Further the cost of each cell is changing in time as the diffusion of the
Fokker Planck equation is propagated.

The search algorithm has some properties analogous to a weighted
travelling salesman problem. For example, there is the distance between
gach cell in the search space that we want to minimize and each cell
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is weighed by the probability that the target is in the cell. Again, the
probability is changing in time as the diffusion of the Fokker Planck
equation is propagated. Hence this is a very complex problem that will
require a lot more work to solve effectively.

Other areas we will pursue in the future is multiple hypothesis genera-
tion/testing hypothesis generation. This is a kinematics and terrain con-
straints driven process and the hypothesis validation is a feature driven
process. The hypothesis generation could be imbedded in the target dy-
namics modeling (nonlinear and hybrid) and the hypothesis validation
process is carried out in the kinematics and ID feature updating pro-
cess. Because of low resolution nature in terrain maps (DTED or HM
maps) and the multi-directional motion of the target, a multiple hypoth-
esis testing approach is most suitable.

Since we need to find out if the target we detected in the later looks
is the one that we detected in the first look, effective incorporation of
feature information in the updating/validating process is very crucial.
Also, as the time separation is getting bigger, the prediction operation
becomes more a constrained search operation. Since the possible search
space could be huge, a multiresolution-based search approach is most
desirable. Further, we proposed using different propagation methods
for the Fokker-Plank equation such as the particle filter and the Gaus-
sian wavelets estimator (GWE) which is an efficient finite dimension
approximation for the hybrid densities.
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