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Pseudorange Measurement Outlier Detection for
Navigation with Cellular Signals

MAHDI MAAREF, JOE KHALIFE, AND ZAK KASSAS

BACKGROUND
• Autonomous ground vehicles (AGVs) will

operate in deep urban canyons where global
navigation satellite system (GNSS) signals are
unusable or unreliable.

• In these environments, signals of opportu-
nity, particularly cellular long-term evolution
(LTE) signals are abundant and can be consid-
ered as an alternative navigation source in the
absence of GNSS signals.

MOTIVATION
• The ASPIN Laboratory has developed pro-

prietary, state-of-the-art receivers and navi-
gation frameworks for AGV navigation with
LTE signals, demonstrating meter-level accu-
racy with standalone LTE signals.

• As the number of systems that rely on cellu-
lar signals for navigation grows, the need for
monitoring the integrity of their navigation
solution becomes essential.

APPROACH
Developed an autonomous measurement outlier
detection and exclusion framework for ground ve-
hicle navigation using LTE cellular signals and an
inertial measurement unit (IMU). The proposed
framework accounts for:

• line-of-sight blockage

• short multipath delays
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STATE AND MEASUREMENT
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T 2 R4: quaternion vector
bg 2 R3: gyroscope bias
ba 2 R3: accelerometer bias
Measurement Model
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NAVIGATION FRAMEWORK

The observations {zsn}
Ns

n=1 are fused through an ex-
tended Kalman filter (EKF), which produces an es-
timate of the receiver’s state vector x̂ and an asso-
ciated estimation error covariance P.
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OUTLIER DETECTION
In order to distinguish between outlier-free mea-
surements and those subject to outliers, a measur-
able scalar parameter is defined that provides in-
formation about pseudorange measurement errors.
This parameter, called a test statistic, is a random
variable with a known distribution (i.e., chi-square)
and is defined as

'(k + 1) , ⌫T(k + 1)S�1(k + 1)⌫(k + 1),

where ⌫ and S represent the innovation vector and
its associated covariance, respectively. Outlier de-
tection is achieved by comparing '(k+1) against a
detection threshold Th, namely

'(k + 1)  Th : no outliers present,
'(k + 1) > Th : outlier present.

OUTLIER EXCLUSION

Step 1: Construct Ns subsets of Ns � 1 pseudorange
measurements each of which excludes one pseudor-
ange measurement.
Step 2: Assuming that only one of the cellular mea-
surements is outlier, apply outlier detection proce-
dure to each subset.
Step 3: This results in a test statistic failure in all sub-
sets except one.
Step 4: Feed the navigation solution block with the
measurement subset with successful test statistic.
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