UC Irvine 2019 Publications

Title

Pseudorange measurement outlier detection for navigation with cellular signals

Authors

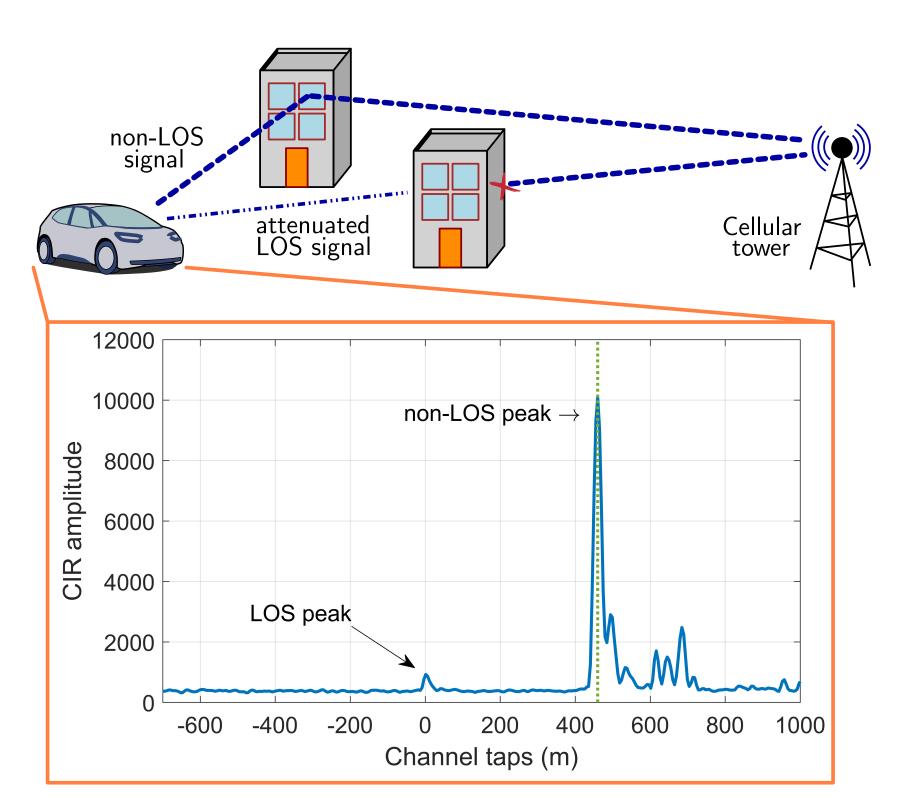
Maaref, M. Khalife, J. Kassas, Z.

Publication Date

2019-04-16

BACKGROUND

- Autonomous ground vehicles (AGVs) will operate in deep urban canyons where global navigation satellite system (GNSS) signals are unusable or unreliable.
- In these environments, signals of opportunity, particularly cellular long-term evolution (LTE) signals are abundant and can be considered as an alternative navigation source in the absence of GNSS signals.


MOTIVATION

- The ASPIN Laboratory has developed proprietary, state-of-the-art receivers and navigation frameworks for AGV navigation with LTE signals, demonstrating meter-level accuracy with standalone LTE signals.
- As the number of systems that rely on cellular signals for navigation grows, the need for monitoring the integrity of their navigation solution becomes essential.

APPROACH

Developed an autonomous measurement outlier detection and exclusion framework for ground vehicle navigation using LTE cellular signals and an inertial measurement unit (IMU). The proposed framework accounts for:

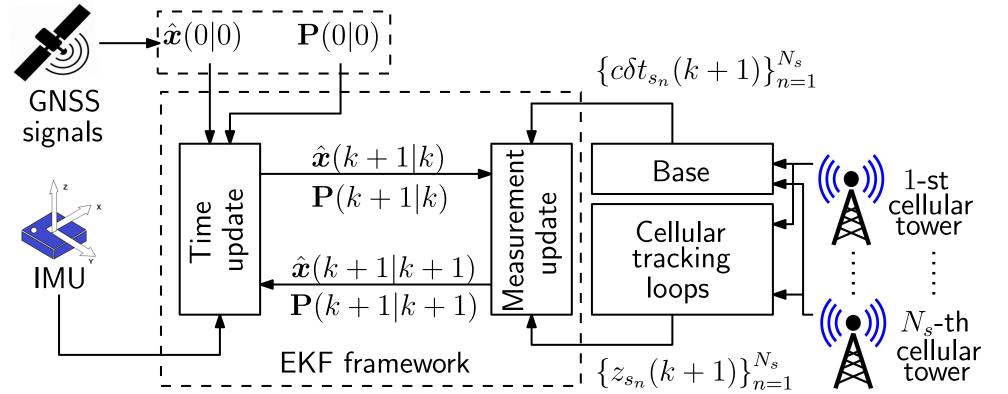
- line-of-sight blockage
- short multipath delays

Pseudorange Measurement Outlier Detection for Navigation with Cellular Signals

MAHDI MAAREF, JOE KHALIFE, AND ZAK KASSAS

STATE AND MEASUREMENT

State Model


$$\boldsymbol{c} \triangleq \begin{bmatrix} \boldsymbol{x}_{v}^{\mathsf{T}}, \boldsymbol{x}_{\mathrm{clk},r}^{\mathsf{T}} \end{bmatrix}^{\mathsf{T}}, \boldsymbol{x}_{v} \triangleq \begin{bmatrix} I \\ G \bar{\boldsymbol{q}}^{\mathsf{T}}, G \boldsymbol{r}_{r}^{\mathsf{T}}, G \dot{\boldsymbol{r}}_{r}^{\mathsf{T}}, \boldsymbol{b}_{g}^{\mathsf{T}}, \boldsymbol{b}_{a}^{\mathsf{T}} \end{bmatrix}$$
$$\boldsymbol{c}_{\mathrm{clk},r} \triangleq \begin{bmatrix} c \delta t_{r}, c \dot{\delta} t_{r} \end{bmatrix}^{\mathsf{T}}, G \boldsymbol{r}_{r}^{\mathsf{T}} \triangleq [x_{r}, y_{r}, z_{r}]^{\mathsf{T}}$$

 ${}^{I}_{G}\bar{\boldsymbol{q}}^{\mathsf{T}} \in \mathbb{R}^{4}$: quaternion vector $oldsymbol{b}_g \in \mathbb{R}^3$: gyroscope bias $\boldsymbol{b}_a \in \mathbb{R}^3$: accelerometer bias Measurement Model

$$\boldsymbol{z}_{s} = \begin{bmatrix} z_{s_{1}}, \dots, z_{s_{N_{s}}} \end{bmatrix}^{\mathsf{T}}, \quad \boldsymbol{r}_{s_{n}} \triangleq \begin{bmatrix} x_{s_{n}}, y_{s_{n}}, z_{s_{n}} \end{bmatrix}^{\mathsf{T}},$$
$$\boldsymbol{z}_{s_{n}}(k) = \left\| {}^{G}\boldsymbol{r}_{r}(k) - \boldsymbol{r}_{s_{n}} \right\|_{2} + c \left[\delta t_{r}(k) - \delta t_{s_{n}}(k) \right] + v_{s_{n}}(k)$$

NAVIGATION FRAMEWORK

The observations $\{z_{s_n}\}_{n=1}^{N_s}$ are fused through an extended Kalman filter (EKF), which produces an estimate of the receiver's state vector \hat{x} and an associated estimation error covariance **P**.

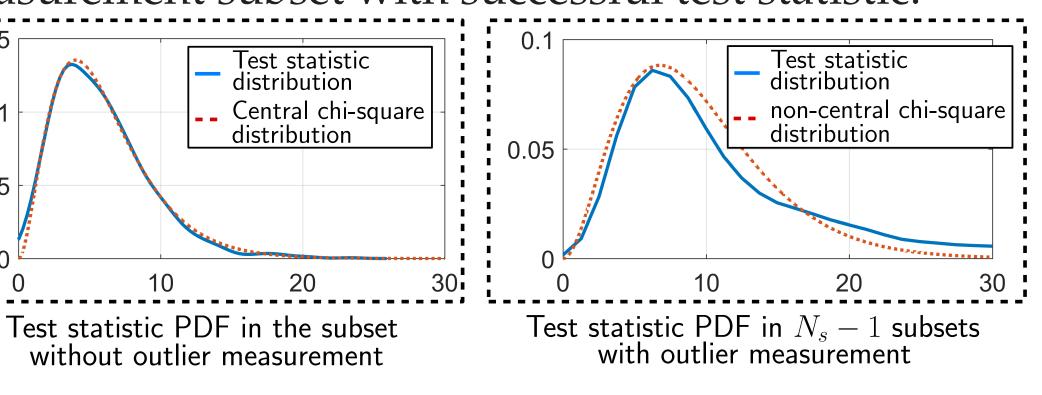
OUTLIER DETECTION

In order to distinguish between outlier-free measurements and those subject to outliers, a measurable scalar parameter is defined that provides information about pseudorange measurement errors. This parameter, called a test statistic, is a random variable with a known distribution (i.e., chi-square) and is defined as

$$\varphi(k+1) \triangleq \boldsymbol{\nu}^{\mathsf{T}}(k+1)\mathbf{S}^{-1}(k+1)\boldsymbol{\nu}(k+1),$$

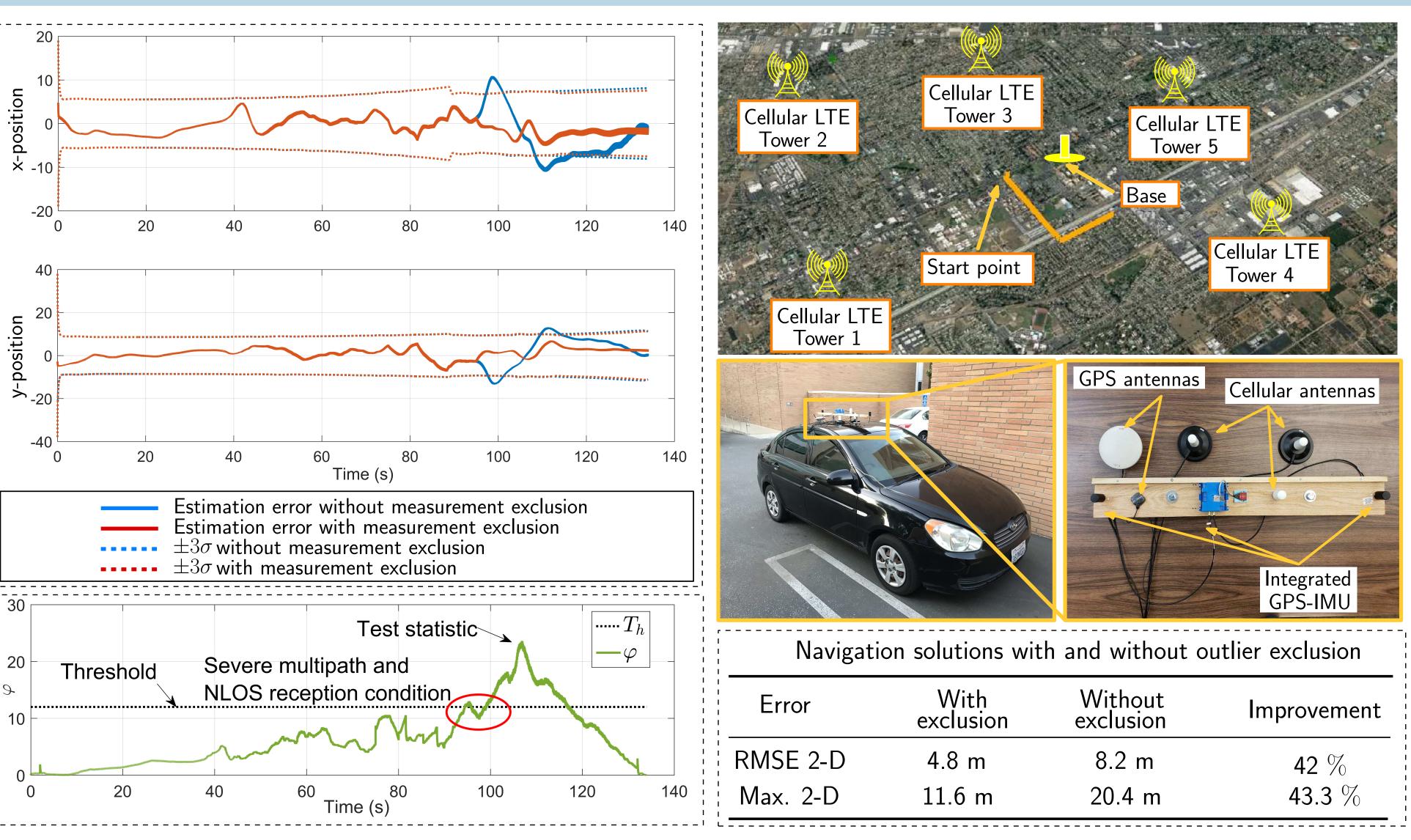
where ν and **S** represent the innovation vector and its associated covariance, respectively. Outlier detection is achieved by comparing $\varphi(k+1)$ against a detection threshold T_h , namely

> $\varphi(k+1) \leq T_h$: no outliers present, $\varphi(k+1) > T_h$: outlier present.


OUTLIER EXCLUSION

Step 1: Construct N_s subsets of $N_s - 1$ pseudorange measurements each of which excludes one pseudorange measurement.

Step 2: Assuming that only one of the cellular measurements is outlier, apply outlier detection procedure to each subset.


Step 3: This results in a test statistic failure in all subsets except one.

Step 4: Feed the navigation solution block with the measurement subset with successful test statistic.

EXPERIMENTAL DEMO

ACKNOWLEDGMENT AND REFERENCES

This work was supported in part by the National Science Foundation (NSF) under Grant 1751205 and the Office of Naval Research (ONR) under Grant N00014-16-1-2305 and Grant N00014-16-1-2809.

[1] M. Maaref, J. Khalife, and Z. Kassas. "Integrity Monitoring of LTE Signals of Opportunity-Based Navigation for Autonomous Ground Vehicles," In Proceedings of ION GNSS Conference, September 2018, pp. 2456–2466. [2] M. Maaref, J. Khalife, and Z. Kassas. "Integrity Monitoring of LTE Signals of Opportunity-Based Navigation for Autonomous Ground Vehicles," GPS World Magazine, October 2018, pp. 48.

References

- Z. Kassas and T. Humphreys, "Observability analysis of collaborative opportunistic navigation with pseudorange measurements," *IEEE Transactions on Intelligent Transportation Systems*, vol. 15, no. 1, pp. 260– 273, February 2014.
- [2] J. Morales, P. Roysdon, and Z. Kassas, "Signals of opportunity aided inertial navigation," in *Proceedings of ION GNSS Conference*, September 2016, pp. 1492–1501.
- [3] K. Shamaei, J. Khalife, and Z. Kassas, "Performance characterization of positioning in LTE systems," in *Proceedings of ION GNSS Conference*, September 2016, pp. 2262–2270.
- [4] K. Shamaei, J. Khalife, and Z. Kassas, "Comparative results for positioning with secondary synchronization signal versus cell specific reference signal in LTE systems," in *Proceedings of ION International Technical Meeting Conference*, January 2017, pp. 1256–1268.
- [5] Z. Kassas, J. Morales, K. Shamaei, and J. Khalife, "LTE steers UAV," GPS World Magazine, vol. 28, no. 4, pp. 18–25, April 2017.
- [6] K. Shamaei, J. Khalife, and Z. Kassas, "Ranging precision analysis of LTE signals," in *Proceedings of European Signal Processing Conference*, August 2017, pp. 2788–2792.
- [7] Z. Kassas, J. Khalife, K. Shamaei, and J. Morales, "I hear, therefore I know where I am: Compensating for GNSS limitations with cellular signals," *IEEE Signal Processing Magazine*, pp. 111–124, September 2017.
- [8] K. Shamaei, J. Khalife, and Z. Kassas, "Pseudorange and multipath analysis of positioning with LTE secondary synchronization signals," in *Proceedings of Wireless Communications and Networking Conference*, April 2018, pp. 286–291.
- [9] J. Khalife and Z. Kassas, "Navigation with cellular CDMA signals part II: Performance analysis and experimental results," *IEEE Transactions* on Signal Processing, vol. 66, no. 8, pp. 2204–2218, April 2018.
- [10] K. Shamaei, J. Khalife, and Z. Kassas, "Exploiting LTE signals for navigation: Theory to implementation," *IEEE Transactions on Wireless Communications*, vol. 17, no. 4, pp. 2173–2189, April 2018.
- [11] A. Abdallah, K. Shamaei, and Z. Kassas, "Indoor positioning based on LTE carrier phase measurements and an inertial measurement unit," in *Proceedings of ION GNSS Conference*, September 2018, pp. 3374–3384.
- [12] K. Shamaei, J. Morales, and Z. Kassas, "Positioning performance of LTE signals in Rician fading environments exploiting antenna motion," in *Proceedings of ION GNSS Conference*, September 2018, pp. 3423– 3432.
- [13] M. Maaref, J. Khalife, and Z. Kassas, "Integrity monitoring of LTE signals of opportunity-based navigation for autonomous ground vehicles," in *Proceedings of ION GNSS Conference*, September 2018, pp. 2456– 2466.
- [14] K. Shamaei and Z. Kassas, "LTE receiver design and multipath analysis for navigation in urban environments," *NAVIGATION, Journal of the Institute of Navigation*, vol. 65, no. 4, pp. 655–675, December 2018.
- [15] M. Maaref, J. Khalife, and Z. Kassas, "Lane-level localization and mapping in GNSS-challenged environments by fusing lidar data and cellular pseudoranges," *IEEE Transactions on Intelligent Vehicles*, vol. 4, no. 1, pp. 73–89, March 2019.
- [16] J. Morales and Z. Kassas, "Stochastic observability and uncertainty characterization in simultaneous receiver and transmitter localization," *IEEE Transactions on Aerospace and Electronic Systems*, vol. 55, no. 2, pp. 1021–1031, April 2019.
- [17] K. Shamaei, J. Morales, and Z. Kassas, "A framework for navigation with LTE time-correlated pseudorange errors in multipath environments," in *Proceedings of IEEE Vehicular Technology Conference*, 2019, pp. 1–6.
- [18] Z. Kassas, P. Closas, and J. Gross, "Navigation systems for autonomous and semi-autonomous vehicles: Current trends and future challenges," *IEEE Aerospace and Electronic Systems Magazine*, 2019, accepted.
- [19] M. Maaref and Z. Kassas, "Ground vehicle navigation in GNSSchallenged environments using signals of opportunity and a closed-loop map-matching approach," *IEEE Transactions on Intelligent Transportation Systems*, 2019, accepted.
- [20] Z. Kassas, M. Maaref, J. Morales, J. Khalife, and K. Shamaei, "Robust vehicular localization and map matching in urban environments through IMU, GNSS, and cellular signals," *IEEE Intelligent Transportation Systems Magazine*, 2019, submitted.