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Abstract Basic elements of cognition have been identifed in the behaviour displayed by 
animal collectives, ranging from honeybee swarms to human societies. For example, an in-
sect swarm is often considered a “super-organism” that appears to exhibit cognitive behav-
iour as a result of the interactions among the individual insects and between the insects and 
the environment. Progress in disciplines such as neurosciences, cognitive psychology, social 
ethology and swarm intelligence has allowed researchers to recognise and model the dis-
tributed basis of cognition and to draw parallels between the behaviour of social insects and 
brain dynamics. In this paper, we discuss the theoretical premises and the biological basis of 
Swarm Cognition, a novel approach to the study of cognition as a distributed self-organising 
phenomenon, and we point to novel fascinating directions for future work. 
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1 Introduction 

The term Swarm Cognition is the juxtaposition of two concepts that evoke, on the one hand, 
the power of collective behaviours displayed by natural swarms, and on the other hand the 
complexity of cognitive processes in the vertebrate brain. Behind the words, there is a rel-
atively young and genuine interdisciplinary effort which aims at developing an alternative 
epistemological perspective on cognition that may help to bridge the still existing gap be-
tween behavioural and neuroscientifc explanations of cognitive phenomena (Marshall and 
Franks 2009; Trianni and Tuci 2009). The aim of this paper is twofold: frst, we intend to il-
lustrate the theoretical premises and the empirical evidence underlying this relatively novel 
approach to the study of cognitive phenomena. Second, we aim at pointing the reader to 
those open challenges and interesting research questions that are specifcally brought about 
by the Swarm Cognition perspective on cognition. We expect that, by reviewing theoretical 
and methodological bases as well as by pointing to fascinating directions for future work, 
we contribute to open a space in which scientists from different disciplines with a common 
interest in cognition can constructively interact and nurture this challenging idea with solid 
empirical data. 

Recent fndings suggest that at a certain level of description, operational principles used 
to account for the behaviour of natural swarms turn out to be powerful tools in identify-
ing the neuroscientifc basis of cognition. In other words, the massively parallel animal-to-
animal interactions which operationally explain cognitive processes of natural swarms are 
functionally similar to neuron-to-neuron interactions which underlie the cognitive abilities 
of organisms, including humans (see Couzin 2009; Visscher and Camazine 1999). Starting 
from these observations, Swarm Cognition represents a novel interdisciplinary perspective 
that aims at unifying the study of cognitive abilities in biological collectives by looking 
at them as self-organising social entities. Self-organisation is considered to be the com-
mon mechanism that allows relatively simple units (e.g. ants, bees and neurons) to display 
complex spatio-temporal patterns. As a consequence, Swarm Cognition aims at explaining 
colony behaviour and cognition in terms of self-organising processes determined by the in-
teraction among the low-level units and their environment. In other words, Swarm Cognition 
encourages scientists to look at the rules of interaction that describe the behaviour of natural 
swarms as effective operational principles which can be used to identify the neural basis of 
cognition in neural assemblies. 

Within the Swarm Cognition framework, what counts as “cognitive” goes beyond the 
phenomena that can be ascribed to single biological individuals and extends to group-level 
behaviour (Goldstone and Gureckis 2009). Cognition can be recognised both in individu-
als and in groups because the properties of cognitive behaviour do not depend on the locus 
of the process. For example, it is possible to talk about cognitive behaviour in the con-
text of decision-making performed by ant colonies, despite the fact that no individual ant 
is aware of the full range of possible alternatives or possesses an explicitly programmed 
solution (Franks et al. 2003). Moreover, cognition is at the same time characterised as in-
formation processing and adaptive behaviour. This “dual identity” goes beyond the com-
mon dichotomy in which cognition is either related to behavioural phenomena (Pfeifer and 
Scheier 1999), or to the neural mechanisms that support cognitive processes (Schartz 1990). 
Swarm Cognition postulates that these two aspects are deeply intertwined, and that a holis-
tic approach is necessary to advance our current understanding. By studying cognition as a 
distributed phenomenon emerging from the self-organisation of simple units embodied and 
situated in their ecological niche, useful insights can be obtained into both the underlying 
mechanisms and behavioural manifestations of cognition. 



Author's personal copy

5 Swarm Intell (2011) 5: 3–18 

Research work in Swarm Cognition aims at providing a principled understanding of the 
mechanisms of cognition through the use of various existing methods in neuro- and cogni-
tive sciences, as well as through the development of new methodologies based on the design 
of autonomous artifcial swarm systems, that is, simulated or real autonomous agents capa-
ble of displaying cognitively rich behaviour (e.g. artifcial agents that focus their attention 
on relevant features of the environment, categorise them and make decisions in multiple-
choice conditions). The glue that holds diverse disciplines together has to be found in the 
theoretical perspective which advocates that cognition is the emergent result of the collective 
dynamics of either interacting autonomous agents or basic control units in a single agent, and 
in which the single interacting entities have no reference to the global pattern or cognitive 
phenomenon they are contributing to create. 

Although Swarm Cognition is an interdisciplinary feld that crosses traditional bound-
aries between classic disciplines in neuro- and cognitive sciences, the research activities 
carried out in different domains are meant to be highly integrated and fully complementary. 
Cooperation among different scientifc disciplines is achieved through a comparative and a 
synthetic approach. The comparative approach calls for the recognition of the mechanisms 
underlying cognitive processes in both brains and swarms, and promises the identifcation of 
general rules that support the cognitive abilities of organisms at different levels of biological 
complexity. Such rules should therefore be general enough to provide a principled under-
standing of the cognitive process under study, so that they can be exploited and engineered 
within artifcial swarm systems. The synthetic approach proceeds through the synthesis of 
the cognitive processes under study in artifcial swarm systems, and aims at directly gener-
ating and understanding the mechanisms relevant for the cognitive processes, by employing 
stochastic models, dynamical systems theory, or network theory. This approach can lead 
to the identifcation of the rules that embrace the organisational principles of the system. 
Finally, by confronting artifcial and natural systems, research work in Swarm Cognition 
should attempt a generalisation of the discovered principles. Clearly, different systems may 
be incompatible when observed at a microscopic/individual level. However, at a macro-
scopic/system level, it should be possible to identify common features that enable us to iso-
late the mechanisms exploited to bring forth cognitive processing. The identifcation of such 
mechanisms constitutes the main scientifc output of the research work in Swarm Cognition. 

The paper is organised as follows. In Sect. 2, we briefy introduce the concept of self-
organisation and we illustrate what are the novelties in the Swarm Cognition approach, and 
how much it builds upon existing scientifc disciplines. Sections 3 and 4 illustrate two dif-
ferent ways in which bridges across different disciplines can be built in search of the distrib-
uted, self-organised mechanisms that support cognition. In particular, in Sect. 3, we review  
research work in which cognitive processes are recognised in the self-organised behaviour 
of natural swarms. This work, described in Passino et al. (2008), models the nest site selec-
tion behaviour of honeybee swarms, and recognises processes that effectively correspond 
to attention and short-term memory. Such processes, however, are not observed at the level 
of the individual insect, but rather pertain the level of the swarm behaviour. In Sect. 4, we  
review the work described by Marshall et al. (2009), drawing a parallel between nest site 
selection behaviour in ants and honeybees and brain dynamics during decision-making in 
a perceptual choice task. The authors show that the swarm behaviour can be described by 
the same dynamical system that was proposed for decision-making by Ratcliff and Smith 
(2004). In Sect. 5, we argue that the Swarm Cognition approach can progress through the use 
of a particular type of simulation model, namely swarm robotics models, in which control 
systems are designed to guide a group of autonomous embodied agents required to coop-
eratively solve a specifc task. Each section concludes with a discussion of open research 
questions and by offering some ideas for future work. 
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2 Self-organisation in natural swarms 

Swarm Cognition has its foundations in the studies of self-organising systems, particu-
larly biological systems that can display complex, adaptive behaviour. The notion of self-
organisation started to be discussed in the mid-twentieth century by a multi-disciplinary 
group of scientists, such as the thermodynamicists Nicolis and Prigogine (1977) or the  cy-
berneticians Ashby (1962) and von Foerster (1960). Self-organisation refers to a spatio-
temporal pattern that can be observed in a system (e.g. a physical structure or a temporal 
organisation), which is not explicitly programmed in the individual components of the sys-
tem, but emerges from the numerous interactions among them. Each component is subject 
to simple rules, which are dependent only on the local confguration of the system, with-
out any reference to global properties. Early studies on self-organisation mainly focused on 
physical rather than biological systems. To date, it has been recognised that certain behav-
iours of insect populations can be considered self-organised (Camazine et al. 2001). This is 
not a trivial discovery, also considering that the complexity of the individual insects—with 
their sensing, motor and cognitive abilities—could allow for alternative explanations of the 
group’s organisation. Instead, rather than being a limiting factor for self-organisation, the in-
dividual abilities enhance the number and the complexity of the self-organised patterns that 
can be observed in animal collectives, far beyond the possibilities of non-biological systems 
(Detrain and Deneubourg 2006). For instance, it has been shown that self-organised behav-
iours can fnd optimal solutions to complex problems, such as ants choosing the shortest path 
from the nest to a foraging location (Deneubourg et al. 1983, 1990). To date, self-organised 
behaviours have been demonstrated in real biological societies, especially in—but not lim-
ited to—social insects. Much work has been devoted to the study of collective motion in 
fsh, birds and mammals, as well as to collective decisions, synchronisation and social dif-
ferentiation (for some recent reviews, see Camazine et al. 2001; Couzin and Krause 2003; 
Couzin 2007; Sumpter 2010; Franks et al. 2002; Strogatz  2003). 

The basic ingredients of self-organisation are often recognised in multiple interactions, 
which generate positive and negative feedback processes that allow the system to amplify 
certain random fluctuations, and to control the evolution of a coherent spatio-temporal pat-
tern. A self-organising system is therefore able to achieve and sustain a certain spatio-
temporal structure despite external infuences (Camazine et al. 2001). In a biological system 
like an ant colony, however, the behaviour displayed by the single individuals can be mod-
ulated by some environmental factors, as well as by the needs of the colony. External and 
internal factors can therefore infuence the system organisation, which adaptively responds 
to the newly encountered conditions (Garnier et al. 2007). In this case, the self-organising 
system can be considered a complex dynamical system close to a bifurcation point. This 
means that the system, upon variation of some control parameters—e.g. temperature or pop-
ulation density—rapidly changes, presenting new spatio-temporal patterns—e.g. a new type 
of collective behaviour or physical structure. The formation of these patterns is also depen-
dent on random fuctuations, which play an important role in the organisation of the system: 
when at the bifurcation point, these fuctuations allow the system to “choose” among the 
new appearing solutions. Finally, self-organising systems are often distributed within their 
environment. As a consequence, positive feedback mechanisms allow the amplifcation of 
some information found by one or a few system components, enabling the system as a whole 
to promptly react to such local, weak environmental signals. 

The latter remarks are particularly relevant for Swarm Cognition studies. Insects in a 
colony are capable of collectively retrieving, distributing and processing information, as a 
result of a sophisticated network of interactions among individuals (Detrain et al. 1999; 
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Detrain and Deneubourg 2006; Garnier et al. 2007). Based on this evidence, several sci-
entists have recently suggested that it is possible to ascribe cognitive abilities to the insect 
colony, as emerging from a self-organising process. One important goal of Swarm Cogni-
tion is exactly the recognition and the study of the cognitive abilities that pertain to collective 
systems (see Passino et al. 2008 and Turner 2011 within this issue). Such cognitive abili-
ties need to be precisely described and explained in terms of self-organising processes that 
involve multiple interactions among the individual units of the system. In this way, Swarm 
Cognition aims at uncovering the self-organising basis of the cognitive processes observed 
in collective systems. Collective mechanisms may prove to be functionally similar to the 
mechanisms observed in the vertebrate brain (Marshall et al. 2009), as we shall discuss 
in Sect. 4. In this respect, Swarm Cognition aims at building bridges between ethologi-
cal studies of collective behaviours, and experimental/neuro-scientifc studies of cognitive 
processes. 

The above discussion suggests which are the peculiar features that characterise Swarm 
Cognition with respect to other disciplines. In our view, Swarm Cognition partly falls in the 
larger feld of swarm intelligence, especially for those studies that focus on the recognition 
of the cognitive abilities of collective systems, be they natural or artifcial. However, Swarm 
Cognition addresses fundamental questions that are normally ignored in swarm intelligence 
studies: (i) What are the cognitive processes brought forth by the colony while performing a 
given behaviour? (ii) What are the mechanisms that support the emergence of the observed 
cognitive abilities? (iii) Does the colony present cognitive abilities that are not commonly 
observed, and under what conditions does this happen? Experimental studies in natural and 
laboratory conditions should be performed to verify the claims about the cognitive abilities 
attributed to the collective system, and to uncover the dynamics of the system under study. 
On the other hand, Swarm Cognition extends beyond the boundaries of swarm intelligence 
by linking to studies in cognitive neurosciences. The novel contribution of Swarm Cogni-
tion to such felds consists in proposing a different epistemological perspective that puts 
together information processing and adaptive behaviour. The ultimate goal is to fnd gen-
eral mechanisms supporting cognitive behaviour at different levels of biological complexity, 
and featuring universality and optimality properties. Finally, as we shall discuss in Sect. 5, 
Swarm Cognition can contribute to artifcial intelligence and artifcial life by exploiting the 
acquired knowledge to synthesise innovative artifcial systems presenting cognitive abilities 
based on distributed, self-organising mechanisms. 

3 Recognising cognition in natural swarms: honeybee swarm cognition during 
nest-site selection 

In honeybee (Apis mellifera) nest-site selection, a cluster is formed by the colony splitting 
itself when the queen and about half of the old colony depart and assemble nearby, often 
on a tree branch (see Fig. 1(a)). To fnd a new home, “scout” bees from the swarm cluster 
begin to search a large area for a suitable new nest-site, typically in the hollow of a tree. 
Scouts assess the quality of sites based on cavity volume, entrance height, entrance area, 
and other attributes that are correlated with colony success. Bees that fnd good sites return 
to the cluster and their initial number of waggle runs or “dance strength” (with each run 
communicating the angle and radial distance to the nest-site via the angle the run makes 
relative to the sun and the length of the run) is in proportion to the quality of the nest-site. 
Such bees will revisit the site many times, but each time they return to the cluster their dance 
strength decreases until they no longer dance. The number of recruits to each nest-site is in 
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Fig. 1 (a) Detail of the surface of a swarm of honeybees (Apis mellifera). When searching for a new home, 
honeybees form a dense cluster, or swarm, on a tree branch or other suitable structure. The swarm consists of 
several thousand bees, with the queen at their centre. Scout bees depart from the swarm, discover potential 
nest sites in hollow tree-trunks or similar cavities, and return. On returning, scout bees advertise the vector 
of their discovery by performing “waggle-dances” on the surface of the swarm (Von Frisch 1967), which are 
followed by other bees that may then fy off to fnd the advertised site themselves (photo: Thomas Schlegel). 
(b) Tandem-running rock ants (Temnothorax albipennis). During house-hunting, scouts of the genus Tem-
nothorax discover potential nest sites in small cavities, then return to the old nest to recruit others to their 
discovery. Initially recruitment is by a slow-process known as “tandem-running”, where one ant physically 
leads another and thereby teaches them the route (Franks and Richardson 2006), so they can in turn recruit 
others (photo: Tom Richardson) 

proportion to the number of dances for each site on the cluster. “Unemployed” scouts either 
rest or seek to observe dances. If they easily fnd a dancer, they get recruited to a relatively 
high quality site. If they must wait too long to fnd a dancer, this means that there are not 
many good nest-sites currently being assessed so they go explore the environment for more 
sites. There is a quorum-sensing process at each nest-site, where once there is a certain 
number of bees at the site, the bees from that site “choose it” by returning to the cluster to 
prompt lift-off and guide the swarm to its new home. There is signifcant time-pressure to 
complete the nest-site selection process as fast as possible since weather and predators pose 
signifcant threats to an exposed colony. However, enough time must be dedicated to ensure 
that many bees can conduct independent evaluations of the site and all agree that it is the 
best site found. Hence, during nest-site selection the swarm optimises a balance between 
time minimisation and site quality choice maximisation. 

Elements of a honeybee swarm performing nest-site selection can be viewed as a physical 
basis for group cognition mechanisms (Passino et al. 2008, 2010). Individual bees are cog-
nition units interconnected via dances and cues, and sensory units that are allocated to either 
search or nest-site assessment tasks. Nest-site quality evidence accumulates in parallel for 
each candidate site, is built on “early” sensory processing and bee-to-bee communications, 
and is held in a spatially distributed group-level memory. This “group memory” is encoded 
in multiple dancing bees on the cluster and aggregates of bees at candidate sites. The group 
memory at the cluster is a group-level estimate of the relative site qualities (proportionally 
more bees dancing for a site indicates it is of higher quality), while at the nest sites it rep-
resents the swarm’s current preferences (more bees at a site indicates that the swarm thinks 
the site is of higher quality and is hence preferred). A second layer of “late” processing is 
achieved at several locations in the swarm. For instance, at the cluster when recruits follow 
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randomly encountered dances, the number of recruits to each site is proportional to the total 
number of dancers for each site, which is a group memory. When it is diffcult to locate a 
dancing bee, workers are allocated to search for potential nests rather than to nest-site as-
sessment, and this is also a clear use of group memory. Layered processing occurs at the 
nest sites during quorum sensing which is a parallel self-referential check of swarm prefer-
ence exceeding a threshold. To provide justifcation that this Swarm Cognition perspective 
is more than just an extended analogy, Passino et al. (2008, 2010) frst conduct a series of 
simulated behavioural tests to evaluate the ability of the swarm to (i) discriminate between 
site qualities even in the presence of signifcant individual bee nest-site assessment noise, 
(ii) avoid being misled by multiple inferior distractor nest sites via parallel processing and 
simultaneously focus on the best sites, and (iii) order the percentage of choices for each site 
according to relative nest-site qualities and thereby avoid negative context-dependent effects 
on choice performance. Next, they show that Swarm Cognition mechanism parameters that 
represent both early and late processing have been tuned by natural selection to provide a 
balance between speed and accuracy of choice. Moreover, the key determinant of Swarm 
Cognition success, accurate group memory, is a result of this same balance. The analysis 
at multiple levels illustrated by Passino et al. (2008, 2010), spanning from mechanisms and 
behaviours to the adaptation level, serves to solidify connections between the biology of 
social insects, neuroscience, psychology, and cognitive ecology. 

While the focus of Passino et al. (2008, 2010) was on honeybees, the methodology may 
represent a generic approach to the scientifc investigation of group decision-making in 
Swarm Cognition. This methodology entails: (i) construction of a model that is validated 
with experiments, (ii) development of a deep understanding of the physics, elements, com-
munications, and low/high level dynamics of the sociobiological process in order to iden-
tify the physical basis of cognition; (iii) execution of behavioural tests with both experi-
mental and modelling approaches, and (iv) consideration of the robustness and adaptation 
of the decision-making via model-based simulations of how the perturbation of experi-
mentally validated behavioural parameters affects group-level performance. This method-
ology demands attention to physics and biology, yet admits that models have value in con-
ducting certain types of behavioural tests (ones that may be diffcult to administer in ex-
periments) and evaluations of adaptation (that are likely impossible to study experimen-
tally). 

There are a number of future directions that may be fruitful to investigate in the study 
of honeybee Swarm Cognition. First, there is a need to study cognition processes during 
other modes of hive operation (e.g. during social foraging). Second, it would be interesting 
to explore if higher-level cognition processes are using the group memory in the swarm. 
For instance, can a swarm exhibit classical conditioning? For this, we would need to fnd a 
stimulus that gives rise to some swarm response. Then, we would fnd a new stimulus that 
we can associate with the frst stimulus (e.g. by presenting it before the frst stimulus). Then, 
after repeated trials where we paired the two stimuli to get the response, we would determine 
if the new stimulus could give rise to the same response as the frst stimulus, without presen-
tation of the frst stimulus. The swarm would have then learnt a new stimulus-response pair. 
At frst glance, one would think that the swarm could exhibit classical conditioning since 
individual bees can do so. Yet, we would be seeking classical conditioning at the group, not 
individual level. Evidence that classical conditioning occurred at the group and not individ-
ual level would be present if no individual learnt the new stimulus-response pairing during 
the swarm (group) training process. 
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4 Drawing parallels between mechanisms in swarms and brains 

As the previous section showed, there are potential qualitative parallels between neural-
based cognition, and group cognition in colonies of social insects, such as honeybees. It is 
interesting to examine how far the analogies between neural and swarm cognition can be 
taken. In particular, can more rigorous and quantitative analogies be made, and is there any 
beneft from doing so? Just as the mechanism of decision-making in a social insect colony 
can be understood through observation of the individual behaviours of its components, so 
modern neuroscientifc techniques such as single-neuron recording allow the neural mech-
anisms behind individual decision-making to be discovered. The neural basis of decision-
making in vertebrate brains has now been extensively studied through well-established per-
ceptual decision-tasks, combining neural recordings with manipulation of decisions through 
varying task diffculty (e.g. Roitman and Shadlen 2002). 

Various “competing accumulator” models exist to describe decision-making by neural 
populations. As shown by Bogacz et al. (2006), under appropriate parameterisations sev-
eral of these apparently distinct models can be shown to be equivalent to each other. 
A particularly infuential model is known as the “leaky competing accumulator”, or Usher– 
McClelland model (Usher and McClelland 2001). This model represents a decision-making 
process implemented by populations of sensory neurons subject to noise, and exciting ac-
cumulator (or integrator) populations. The decision problem is to select the stronger sig-
nal from the sensory populations. The accumulator populations in their turn suppress each 
other’s activation, so that the larger the activation of one accumulator the greater the strength 
of inhibition it exerts on the other. These populations also leak accumulated evidence at some 
rate. When one of the accumulator populations reaches a pre-specifed activation threshold, 
a decision is made for the corresponding alternative. The populations thus modelled and 
their behaviour match the neural recording data taken during perceptual decision-making 
tasks (e.g. Roitman and Shadlen 2002). A simplifed linear version of the Usher–McClelland 
model for choice between two alternatives can be expressed as a pair of coupled stochastic 
ordinary differential equations (ODEs), as described by Bogacz et al. (2006): 

ẏ1 = I1 + cη1 − y1k − y2w, 
(1) 

ẏ2 = I2 + cη2 − y2k − y1w. 

In (1), y1 and y2 are the activation levels of the two accumulator populations. These re-
ceive input from the sensory neurons corresponding to each alternative, with signal strengths 
I1 and I2. The signals are subject to Gaussian white noise with mean zero (i.e. a Wiener 
process ηi ) with standard deviation c (noise is described as equal for both signals above, but 
this is not necessary). The accumulators’ activation ‘leaks’ at rate k, and the accumulators 
inhibit each other with strength w. When one of the accumulators reaches a threshold, z, a  
decision for the corresponding alternative is implemented. 

As noted by several authors (e.g. Visscher 2007; Passino et al. 2008), there are strik-
ing parallels between the neural architecture just described, and the decision-processes of 
social insect colonies searching for a new home, such as described in the previous section 
for honeybees. To summarise, colonies of ants (genus Temnothorax) and honeybees (Apis 
mellifera) periodically search for new nest sites, either due to destruction of the home site, 
in order to fnd a superior nearby alternative, or to form a daughter colony through fssion 
(e.g. see Fig. 1(a)). In both ants and honeybees, scouts search for and discover potentially 
suitable sites, make a noisy assessment of site quality, and then recruit nestmates to evaluate 
their discovery, via tandem-running in ants (see Fig. 1(b)) or, as described in the previous 
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section, the waggle-dance in honeybees. The strength of this recruitment is proportional to 
the perceived quality of the site. When one of the decision populations reaches a thresh-
old, known as a quorum, the colony begins emigrating to the corresponding nest site. One 
potential model of collective decision-making in social insect colonies describes recruiters 
committed to each alternative attempting to infuence others to switch their commitment 
directly, again using a pair of stochastic ODEs (Marshall et al. 2009): 

⎧ ⎪ ẏ1 = (n − y1 − y2)(q1 + cηq1) + y1(n − y1 − y2)(r1 + cη ) ⎪ r1 ⎨ − y1k + y1y2(r1 − r2 + cηr1 − cηr2), (2) ⎪ ẏ2 = (n − y1 − y2)(q2 + cηq2) + y2(n − y1 − y2)(r2 + cη ) ⎪ r2 ⎩ − y2k − y1y2(r1 − r2 + cηr1 − cηr2). 

In (2), the yi now correspond to the number of scouts voting (i.e. waggle-dancing or tandem-
running) for a potential nest site i, n is the total size of the scout population, qi and r arei 

respectively the rates of independently discovering and becoming committed to site i, and  
of recruiting uncommitted scouts to site i. Rates ri are the rates of recruitment of scouts to 
alternative i, that are already committed to the other alternative. A number of independent 
Wiener processes model noise in each of these rates. 

The informal description of neural decision-making and swarm decision-making above 
yields some apparent similarities, namely populations integrating noisy evidence and com-
peting to reach a decision threshold. Yet, on a more formal level, comparison of (1) and  (2) 
seems to present as many differences as similarities. In particular, (1) is a system of linear 
equations, whereas (2) is non-linear. On what basis could one hope to fnd common organi-
sational principles in these decision-making systems at these very different levels of biologi-
cal complexity, which simultaneously seem to be similar but different? One very compelling 
idea is to apply optimality theory to analysing the behaviour of these different systems. In 
other words, the proposal is to take a functional approach to comparing the behaviour of 
these different mechanisms. For decision-making, it is reasonable to assume that the speed 
and accuracy of decision-making constitute a universal currency to be optimised. Organ-
isms should behave so as to increase decision speed while reducing decision accuracy, or 
vice-versa, according to need. This idea has already been applied to the Usher–McClelland 
model of neural decision-making by Bogacz et al. (2006). The Neymann–Pearson lemma, 
familiar to many scientists concerned with data analysis, states that the optimal compro-
mise between speed and accuracy of decision-making over two alternatives is achieved by 
computing a function of the difference in the integrated evidence for each alternative. Bo-
gacz and colleagues showed how the Usher–McClelland model, and the other competing 
accumulator models that can be reduced to it, can be parameterised to approximate opti-
mal decision-making (Bogacz et al. 2006). By setting the decay and inhibition rates to be 
equivalent, the Usher–McClelland model can be simplifed to a one-dimensional stochastic 
process known as the drift-diffusion model (Ratcliff 1978), in which the difference between 
accumulated evidence is integrated to a decision threshold. This procedure of integrating the 
difference corresponds to the application of the Neymann–Pearson lemma just mentioned, 
and hence implements optimal decision-making, with the integration threshold being var-
ied to compromise optimally between speed and accuracy of decision-making. Formally, 
the drift-diffusion model is the continuous-time limit of the sequential application of the 
Neymann–Pearson lemma (i.e. the ‘sequential probability ratio test’, for which data are 
assumed to be discrete), and can be characterised as a Brownian-motion process with a 
constant drift: 

ẋ = A + cη. (3) 
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In (3), x is proportional to the difference in size of the two accumulator populations (x ∝ 
y1 −y2), A is the strength of drift and captures the signal in the decision problem, and c is the 
standard deviation of the noise in the decision problem. When x = 0 there is no accumulated 
evidence, and the process continues until either a positive or negative decision threshold is 
reached. Hence, there is a tendency to move towards the correct decision boundary due to 
the signal (A), but noise (c) can push the decision process in the wrong direction, and the 
decision thresholds can be varied to compromise between speed and accuracy of decisions. 

Attempting a similar optimality analysis with the collective decision-making model of (2) 
gives, in the limit of all scouts being committed to some potential site, a rather more com-
plicated decision process (Marshall et al. 2009) 

n 2 r1 − r2 
ẋ = − x 2 √ + cηr . (4)

2 2 

As before, x ∝ y1 − y2; however, now the equation is quadratic rather than linear as in (3). 
Yet both the signal and the noise in the decision process are scaled by the same factor, so 
in fact a simple non-linear transformation allows (4) to be expressed in terms of the optimal 
drift-diffusion model (3) (Marshall et al. 2009). 

The analysis just outlined demonstrates how optimality theory can be applied to collec-
tive decision-making, and how analytic techniques developed in theoretical neuroscience 
can be applied to understand social insect colonies. The analysis also shows how social in-
sect colonies may be able to approximate statistically optimal decision-making. Much fur-
ther work remains, for example in testing the predictions from this optimality analysis with 
emigrating ant and honeybee colonies. However, work also remains to be done in consid-
ering refnements of the decision-making analysis, such as incorporating prior information, 
but also in considering the optimality criteria used themselves. When importing optimality 
criteria from the theoretical literature and from other disciplines, it is important to remember 
that the real maximand for organisms is fitness, and the means to maximise this may not be 
the same in different biological systems, despite apparent similarities between them. 

5 Swarm cognition and artificial life 

As discussed in Sect. 1, the Swarm Cognition epistemological perspective aims at over-
coming any body-brain dualism by recognising the signifcance of bodily, environmen-
tal, and neural factors as causal elements of cognition. However, as recently mentioned 
in Barsalou (2010), neurophysiological and behavioural accounts of cognitive phenomena 
have not always been converging in the last 30 years of cognitive science research. That 
is, it has been diffcult to unveil causal relationships between neurophysiological and be-
havioural/environmental variables, without reducing cognition to either the neural or the 
behavioural domain. This is often due to the characteristics of classic methodological tools 
in neuro- and cognitive sciences, which restrict the observational domain to either the neu-
rons or the behaviour of an organism. In order to encourage the development of a holistic 
explanation of cognition, Swarm Cognition is relying on research methods which are com-
plementary to those already used by neuro- and cognitive sciences. In particular, Swarm 
Cognition intends to exploit artifcial life (hereafter, ALife) models as a methodological tool 
in which neural, behavioural, and environmental factors can be concurrently observed and 
manipulated. As suggested by Langton (1988), ALife is life made by man rather than by 
nature. The goal of ALife is to re-create in an artifcial world instances of biological phe-
nomena in order to derive general theories about life. There are several different types of 
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Fig. 2 Swarm of s-bots (see 
Dorigo et al. 2004, and  http:// 
www.swarm-bots.org) that  
cooperate in order to transport an 
heavy object that cannot be 
moved by a single s-bot (Tuci et 
al. 2006) 

ALife models. Multi-robot or swarm robotics systems are interesting ALife methods that 
we think can be very helpful to strengthen the Swarm Cognition methodological toolkit. 
Generally speaking, physical or simulated robots are excellent tools to study brain–body– 
environment dynamics and their bearing on the emergence of cognitive abilities such as 
categorisation, decision-making, attention and learning (Harvey et al. 2005). 

Swarm robotics is an emergent feld of collective robotics that studies robotic systems 
composed of numerous robots tightly interacting and cooperating to reach a common goal 
(see Fig. 2). The robots in a swarm are characterised by limited communication abilities, 
local sensing, and autonomous control. However, they are potentially capable of performing 
complex tasks by coordinating in a group. Indeed, a peculiar feature of swarm robotics sys-
tems is the transfer of behavioural complexity from the individual to the interactions among 
individuals. Viewed from a Swarm Cognition perspective, robots of a swarm can be consid-
ered cognitive units playing either the role of the individual insect in a swarm, or the role 
of neurons or of an assembly of neurons in the brain. Within the Swarm Cognition frame-
work, this transfer of complexity from the individual behaviour to the interactions among 
individuals is fundamental to understand how cognitive processes can be supported by dis-
tributed systems. Swarm robotics is therefore a valuable means to study self-organisation in 
embodied and situated models. 

It is important to make clear that not all swarm robotics models meet the requirements 
of Swarm Cognition. There are several swarm robotics models in which the behavioural 
repertoire of single agents have been explicitly designed by drawing inspiration from the 
behaviour observed in natural swarms. From our point of view, being loosely or strongly 
inspired by the behaviour of natural swarms is not suffcient to make a swarm robotic model 
relevant to Swarm Cognition. Robotics models that “serve the cause” of Swarm Cognition 
should be designed in order to contribute to the identifcation of common working princi-
ples that underlay the targeted cognitive phenomena. For this, it is important that, whatever 
is the nature of the scientifc contribution of the robotic model, this contribution must be 
developed within a comparative framework in which what the model delivers in term of sci-
entifc knowledge is confronted to existing neuroscientifc or ethological knowledge of the 
modelled cognitive phenomenon. This confrontation can be accomplished in various ways. 
The model can either be used as an “intuition pump” to develop hypotheses concerning the 
mechanisms underlying certain cognitive phenomena (see also Dennett 1995), or as a proof-
of-concept to show that indeed the considered cognitive phenomenon can be explained by 
the supposed mechanisms captured by the model. 

At present, there are only few robotics models that specifcally target issues of relevance 
in Swarm Cognition. Santana and Correia (2010) describe a study in which a robot is re-

http://www.swarm-bots.org
http://www.swarm-bots.org
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quired to perform a navigation task, including obstacles avoidance, by exploiting a particular 
visual attention system, which relies on the behaviour of a group of autonomous agents that 
inhabit its sensory input. These agents search in a collectively coordinated way for obsta-
cles exploiting the ant foraging metaphor. The results show that parsimonious and accurate 
visual attention, operating on a by-need basis, is attained by making the activity of the vi-
sual attention agents modulated by the robot’s action selection process. A by-product of the 
system is the maintenance of active, parallel and sparse spatial working memories. In short, 
the model exhibits the self-organisation of a relevant set of features composing a cogni-
tive system. This visual attention model has been further extended and validated on physical 
autonomous robots in a paper published in this special issue (see Santana and Correia 2011). 

Morlino et al. (2010) describe a simulation model which aims at studying collective 
perception in a robotic swarm. The goal of this study is to understand which are the self-
organising processes underlying the collective perception of a macroscopic environmental 
feature, which is not accessible to the individual robots due to their limited perceptual abil-
ities and to the nature of their individual exploration strategies. Therefore, multiple robots 
need to interact in order to give a collective response that correlates with the macroscopic 
variable. The results show that the agents rely on two different visual communication strate-
gies which tend either to inhibit or to excite the signalling behaviour of neighbouring robots. 
The authors conclude their work by pointing to the fact that the presence of two counter-
acting mechanisms that regulate the activity of the group is common to systems as diverse 
as brains and swarms. A positive feedback loop allows to amplify small perturbations and 
quickly spread information in a system, while a negative feedback loop controls the compe-
tition between different options and modulates the information spreading. 

Decision-making as well as collective attention and categorisation are defnitely cognitive 
phenomena that may be targeted by swarm robotics models in search for a holistic explana-
tion of cognition. For example, the N-choice problem (i.e. a decision-making problem where 
the number of alternatives N is a priori unknown) can be instantiated in many interesting ro-
botics scenarios, in which the robots cooperate in order to make the best choice among N 
available alternatives. The N-choice problem captures the challenges that honeybee are fac-
ing when searching for a new nest-site, as illustrated in Sect. 3. A potential robotic scenario, 
in which the robots are required to solve a N-choice problem, could be one in which envi-
ronmental features have to be categorised and a selection among multiple possibilities has 
to be performed. In this scenario, each individual robot does not know how many potential 
alternatives will be discovered, neither what is their relative quality. Nevertheless, the swarm 
as a whole has to be able to make good decisions, exploiting a collective process that also ac-
counts for speed-accuracy trade-offs. In the context of decision-making, it is also important 
to assess the ability of a system to discriminate between comparable options. Many differ-
ent organisms are recognised to follow the Weber’s law in decision-making, which describes 
the relationship between the magnitude of a stimulus and the intensity perceived (Deco et 
al. 2007). It is therefore important to study the basic mechanisms behind decision-making 
in collectives, and to test the adherence with the Weber’s law, in order to fnd comparable 
dynamics between brains and swarms. 

Another research topic is distributed estimation of numerousness. Numbers are entities 
that, in spite of the efforts of neuroscientifc investigations, remain allegedly associated to 
the domain of logic reasoning. That is, entities that seem to evade any operational defnition 
grounded on the current scientifc understanding of the neural basis of cognition. Although 
recent studies show that numbers and animals’ judgements concerning the relative locations 
of objects into their perceivable surroundings may emerge from similar brain structures and 
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functions, our explanatory paradigms appear too weak to house logical entities into bio-
logically plausible determinants. This may be due to the limitations of current neuroscien-
tifc methods in providing empirical evidence for holistic explanations of brain functioning. 
Swarm robotics models may be a powerful methodological tool to generate insights on how 
a group of functionally independent entities may produce phenomena that can be considered 
embodied instances of logical entities. For example, consider a swarm of robots that must 
decide whether they are more or less than a given number. In order for the swarm to be 
able to self-estimate its cardinality, the individuals of the swarm have to be equipped with 
underlying mechanisms that translate into the language of physical interactions properties 
such as number and quantities. If it is possible to fnd the required (cognitive) ingredients 
to allow the robots to count themselves, we generate powerful hypothesis-testing machines 
that will hopefully help us to shed light on the neuro-biological basis of numbers and other 
elements of logic reasoning. Experimentation on human subjects could verify the validity of 
the proposed models. 

6 Conclusions 

The discussions we have presented in the previous sections depict Swarm Cognition as an 
intriguing framework for future investigation on cognitive systems. We started from the 
observation that cognitive processes can be supported by distributed systems, be they com-
posed of a multitude of insects or a population of neurons. In this respect, self-organisation is 
a key process, which leads the system to adaptively react to external disturbances displaying 
a coherent response as a result of a sophisticated network of interactions among the indi-
vidual units of the system. Swarm Cognition therefore promotes the study of cognition as 
an emergent collective phenomenon. This can be done in multiple ways. On the one hand, 
it is suggested to recognise cognition in the behaviour of collectives, ranging from insect 
swarms to human societies. To do so, it is necessary to recognise the relevant interactions 
among individuals in the collectives that implement the information pathways necessary for 
the cognitive process. Going beyond a mere analogy, experimental work must be performed 
to verify the way in which information is retrieved, stored and processed, in order to recog-
nise the abilities and the limits of the collective system under study. On the other hand, 
comparisons must be performed between swarm and neuro-computational models. In this 
case, it is often diffcult to make comparisons on microscopic, structural terms, as the sys-
tems under study can signifcantly differ. However, it could be possible to identify functional 
correlations, borrowing analytic techniques from one feld to better understand the other, and 
building solid bridges for cross-fertilisation among different disciplines. Finally, we have ar-
gued that a synthetic approach to Swarm Cognition can provide further instruments for an 
holistic approach to cognitive sciences. By synthesising cognition in distributed artifcial 
systems, it is possible to concurrently study the environmental, behavioural and neural basis 
of cognition. As an interesting side effect, this synthetic approach can produce a new gen-
eration of artifacts, able to behave autonomously and display cognitive abilities beyond the 
current state-of-the-art. 

Swarm Cognition is still in its infancy. Although the initial developments are quite 
promising, there are several open questions that need to be addressed in order to strengthen 
the scientifc signifcance of the Swarm Cognition perspective. First of all, it is still an open 
question the extent to which hypotheses developed by studying the cognitive responses of 
biological and artifcial collectives such as bees and robots can be effectively compared to 
the activities of neural assemblies. In this respect, we believe that it is necessary to carefully 
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select the methodological tools that can allow a comparison of the mechanisms observed in 
such different systems. As we have shown in Sect. 4, even if it is not possible to directly 
compare the dynamics of neural and swarm models, it is still possible to draw a parallel 
between the two processes at a functional level. Therefore, a grand challenge for Swarm 
Cognition is the development of novel methodologies to recognise and compare, through 
the lenses of self-organisation, phenomena in brains and swarms. 

Moreover, by having a strong reference to Swarm Intelligence research, Swarm Cog-
nition models may encounter diffculties in capturing one of the fundamental properties 
of the brain, which is its structural organisation in more or less functionally separated al-
though interacting and cooperating modules. It is actually an open empirical problem to 
identify distributed models capable of capturing similar structural properties of biological 
brains. This potential limit can be ascribed to the lack of systematic studies in Swarm In-
telligence research addressing structured, hierarchical and heterogeneous systems. In fact, 
much work is devoted to the understanding of the dynamics of specifc behaviours (e.g. 
focking or nest-site selection), without accounting for the relations that these behaviours 
have with other possibly concurrent tasks in which the swarm may be engaged. The goals of 
Swarm Cognition research should therefore extend beyond the boundaries given by specifc 
self-organising behaviours, and account for more complex networks of interactions within 
structured, hierarchical systems. 

A possible criticism to the Swarm Cognition approach concerns the metaphor that con-
siders embodied agents as neuron-like cognitive units: to what extent a reasonable compar-
ison can be made following this metaphor? What is the relevance of embodiment in these 
models? This is a very important issue that can be broadly linked to the debate about embod-
iment and its role in cognition (Pfeifer and Scheier 1999; Anderson 2003). In this respect, 
we champion the idea that embodiment has a fundamental role in cognition, as it determines 
and constraints the ability of organisms to adaptively interact with their physical and social 
environment. This is particularly relevant within the Swarm Cognition framework. In order 
to recognise the role of embodiment in the emergence of collective cognition, it is necessary 
to identify within collective systems which are the relevant interactions supported by the 
system embodiment that contribute to the production of cognitive phenomena, and which 
are the modulation mechanisms that reinforce or suppress such interactions.1 Within this 
epistemological perspective, swarms of robots can be defnitely considered cognitive units, 
with a clear potential to contribute to the development of the Swarm Cognition perspec-
tive. Nevertheless, we believe that Swarm Cognition will come to a scientifc maturity as 
soon as a signifcant corpus of research work will prove that fruitful comparisons can be 
drawn between morphologically different or differently-embodied interacting units, as well 
as between functional descriptions and embodied instantiations of cognition. 

In conclusion, we hope that this paper will help in gathering around this innovative 
perspective an increasing number of scientists interested in cognition. Future work should 
strengthen the theoretical and methodological bases of this approach, and increase the sig-
nifcance of the collective explanation of cognitive processes within the cognitive science 
community. 

Acknowledgements Vito Trianni and Elio Tuci thank their colleagues at LARAL-ISTC for stimulating 
discussions during the preparation of this manuscript. 

1Note that this can equally well include neural assemblies and their embodiment in a bio-chemical substrate. 
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