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Abstract 

Midges (Anarete pritchardi) coordinate their fight motions to form a cohesive group during 

swarming. In this paper, individual midge motion dynamics, sensing abilities, and fight 

rules are represented with a midge swarm model. The sensing accuracy and fight rule 

are adjusted so that the model produces trajectory behavior, and velocity, speed, and 

acceleration distributions, that are remarkably similar to those found in midge swarm 

experiments. Mathematical analysis of the validated swarm model shows that the distances 

between the midges’ positions and the swarm position centroid, and the midges’ velocities 

and the swarm velocity centroid, are ultimately bounded (i.e., eventually satisfy a bound 

expressed in terms of individual midge parameters). Likewise, the swarm position and 

velocity centroids are shown to be ultimately bounded. These analytical results provide 

insights into why the identifed individual midge sensing characteristics and fight rule lead 

to cohesive swarm behavior. 

Keywords: Anarete pritchardi Kim (Diptera: Cecidomyiidae), midge, swarm, boundedness 

analysis. 
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1. Introduction 

Coordinated group motion has been studied extensively for a wide range of species 

(e.g., bacteria, insects, fsh, and birds) via experiments, simulations, and mathematical 

analyses (Parrish and Hamner, 1997; Gueron et al., 1996; Mogilner and Edelstein-Keshet, 

1999; Okubo et al., 2001; Couzin et al., 2002; Mogilner et al., 2003; Ballerini et al., 2008; 

Schultz et al., 2008). In a particularly early and infuential study, Okubo and Chiang 

(1974) conducted a series of experiments where they flmed midge swarms fying over a 

white-colored “swarm marker,” an object over which midges are attracted to swarm for 

the purpose of mating (Chiang, 1968; Chiang et al., 1978, 1980). By using shadows from 

the sun on the white marker, they were able to distinguish between individual midge 

trajectories for all members of a swarm. This gave them position trajectories in the (x, y) 

plane, from which they computed position variances and velocities for the midges at each 

sampling time. They computed the swarm position centroid as it varied over time. They 

showed that the speed distribution of the midges in a swarm obeyed a 2-dimensional 

Maxwell-Boltzmann distribution, and that the distributions of the velocities relative to 

the velocity centroid, in the x and y dimensions, were Gaussian. They showed that the 

velocity autocorrelation coeÿcient varied with lag, and that the density functions for midge 

position relative to the swarm position centroid are not Gaussian, but are peaked near zero. 

Moreover, they showed the mean midge velocity depends on the distance from the middle 

of the swarm, with a tendency for higher velocities near the edge of the swarm. Using the 

data sets from (Okubo and Chiang, 1974), Okubo et al. (1976) computed the acceleration 

feld, which shows that accelerations are generally higher near the edges of the swarm. 

Mathematical analysis of midge swarms was initiated in (Okubo and Chiang, 1974), and 

later expanded upon in (Okubo, 1986). In both these works, the focus was on comparisons 

between di� usion processes and swarm dynamics in terms of autocorrelation functions. 



– 4 – 

In frst part of this paper, a nonlinear stochastic discrete-time (“individual-based”) 

model is introduced and it is shown how to tune the parameters of the midge’s individual 

rule for fight and sensing accuracy so that simulated midge fight characteristics and 

distributions (e.g., velocity and acceleration) closely match those in (Okubo and Chiang, 

1974; Okubo et al., 1976) (since the experimental data sets are not available, only a visual 

comparison is possible). Apparently, this is the frst time that an individual-based model 

has been tuned to represent the midge swarm data. In the second part of this paper, 

swarm cohesiveness is studied via mathematical analysis of its boundedness properties. 

Boundedness of discrete-time swarms was frst studied in (Liu and Passino, 2004b), with 

corresponding continuous-time results given in (Liu and Passino, 2004a). In both these 

studies, however, the work was entirely mathematical, with no connection to a biological 

swarm. Here, the work in (Liu and Passino, 2004a,b) is extended so it applies to midge 

swarms. This involves including a representation of the swarm marker and specifc rules 

to represent how individual midges decide to fy relative to the swarm marker and other 

members of the swarm. Also, it requires the development of ultimate boundedness results 

for both the distances between individual positions/velocities and swarm position/velocity 

centroids, and the swarm positions/velocity centroids themselves. Our analysis is unique 

with respect to past analysis on midge swarms (Okubo and Chiang, 1974; Okubo, 1986) and 

more generally the literature on analysis of biological swarms (e.g., the work in (Gueron 

et al., 1996; Mogilner and Edelstein-Keshet, 1999; Okubo et al., 2001; Mogilner et al., 

2003)) both in the form of model used, and in the properties studied. 

There is an important philosophical issue that needs to be raised about the contribution 

of this paper. First, the primary focus here is not to produce a perfectly accurate model 

of midge swarm behavior, analogous to how other studies of groups of animals have 

approached modeling (e.g., honey bees). Clearly, a good model would have to rely on better 

data (rather than the relatively old data used here, and for a relatively small number of 
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midges) and possibly additional aspects of the mathematical representation (e.g., other 

terms). Second, the primary focus here is not on the mathematical analysis of a model, for 

example, to obtain the most general conditions (and least conservative results) possible for 

cohesive behavior of groups. What is the focus? It is a “wholistic” focus. The focus here 

is to come up with a reasonably good model that is still analytically tractable, and show a 

useful property in an analytical way, which has signifcant value beyond just computational 

studies (e.g., in providing insights into mechanisms that lead to cohesive behavior). The 

paper succeeds at this approach, and hence is a signifcant contribution over what has been 

found in the literature along these lines. This philosophy is not new. It is essentially the 

philosophy that is used in control system design in engineering. You come up with a plant 

model that is “good enough,” develop a controller, and then prove mathematically that the 

close-loop system will, for instance, be stable. You do not want a perfect plant model as 

you will not be able to use any standard controller synthesis technique, and you will not 

be able to mathematically prove stability. The key is to take a wholistic view, taking into 

consideration model complexity in terms of the whole control system design process and 

goals and what you can achieve for them. 

2. Midge Swarm Model 

A nonlinear stochastic mathematical model is introduced and shown to be able to 

represent the data taken from real midge swarms in (Okubo and Chiang, 1974; Okubo 

et al., 1976). The model used for individual midge dynamics and sensing is kept particularly 

simple (e.g., detailed insect fight dynamics are ignored) to ensure that when multiple 

midges are composed into a set of interacting midges in a swarm, analytical tractability is 

maintained for the study in the next section. 



– 6 – 

2.1. Mathematical Model 

Consider a swarm of N midges where the ith midge has point mass dynamics 

x i(k + 1) = x i(k) + v i(k)T (1) 

v i(k + 1) = v i(k) + 
1 
u i(k)T (2) 

Mi 

Here, xi ∈ ℜn is the position (in meters), vi ∈ ℜn is the velocity (m/sec), Mi is the mass, 

and ui ∈ ℜn is the force input (Newtons) for the ith midge. The sampling period is T 

seconds and to simplify notation “(kT )” was replaced with “(k)” where k is the time index. 

Basically, Equation (2) is an Euler approximation of “force equals mass times acceleration.” 

For simulations n = 3, but in analysis n is arbitrary. 

PN PNLet x̄(k) = 1 xi(k) and v̄(k) = 1 vi(k) be the position centroid and velocity 
N i=1 N i=1 

centroid of the swarm at the kth time step, respectively. Let eip(k) = xi(k) − x̄(k) and 

eiv(k) = vi(k) − v̄(k). Let xm ∈ ℜn be a fxed position relative to a “swarm marker,” and 

where the midges seek to swarm (for convenience, we will refer to xm as the swarm marker, 

when in actuality it is a fxed distance from the marker). Let e m
i (k) = xi(k) − xm. 

Assume each midge can sense its position relative to both x̄ and xm, but with some 

errors. Let d p
i ∈ ℜn and d m

i ∈ ℜn be these sensing errors (e.g., noise) for midge i, 

respectively. Hence, each midge senses 

êip(k) = e ip(k) − dip(k) 

êim(k) = e im(k) − dim(k) 

and uses these values in the fight rule below to decide how to coordinate inter-midge 

motion and their position relative to the swarm marker. Assume that the sensing errors 

have magnitudes bounded by 

kdip(k)k ≤ Dp 
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kdim(k)k ≤ Dm (3) 

for any i, where Dp and Dm are known non-negative constants and k · k is the 2-norm. 

Since no constraints are placed on the size of Dp and Dm, arbitrarily poor sensing of the 

errors eip(k) and e
i
m(k) can be represented. For instance, a particular midge could be near 

the position centroid (center) of the swarm, and far from the swarm marker, but sense that 

it is near the edge of the swarm and close to the swarm marker. Essentially, the assumption 

here is that some subset of the swarm members appear as spots on the retina of the midge 

and an averaging process is completed to determine some type of estimate as to where the 

body of the swarm is. There is no additional limit placed on the rate of variation of the 

sensing errors. In particular, dip(k) and d
i
m(k) are allowed to be bounded noise so that the 

misperceptions of relative positions can change signifcantly from one sampling instant to 

the next for each midge in the swarm. 

Suppose the force input (“fight rule”) for the ith midge at the kth step is 

u i(k) = −Mikpê
i
p(k) − Mikmê

i
m(k) − Mikdv 

i(k) 

N kx � � 
X −1 i − xj k2 � � 

2 i − xj+Mikr exp x (4) 
2rs

j=1,j 6=i 

This equation is from (Liu and Passino, 2004a). Here, −Mikpêp
i (k) is an “attraction term” 

that represents that individual i tries to move toward its noisy estimate of the swarm 

position centroid. The term −Mikmê
i
m(k) represents a midge’s attraction to the swarm 

marker. Since the noisy signals êip(k) and ê
i
m(k) are used in these terms, aggregation around 

the swarm centroid and swarm marker are only loosely sought (e.g., one particular midge 

may at some time be attracted to aggregate at a di� erent swarm marker location than 

another midge due to the sensing noise). The scalars kp > 0 and km > 0 are “attraction 

gains” which indicate how aggressive each midge is in aggregating (coordinating its motion 

to maintain a tightly cohesive group) and staying close to the swarm marker. The gain 
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kd > 0 is a “velocity damping gain.” The gain kr > 0 is a “repulsion gain” which sets how 

much the midges want to be kept at a distance from other midges, and rs represents its 

“repulsion range.” A relatively small value, near the dimensions of a midge, will be used for 

rs. The fast roll-o of the Gaussian nonlinearity in the repulsion term is used to represent 

that the ith midge has little infuence on the jth midge if they are far apart, and hence, two 

such midges do not need to be able to sense each other’s positions. On the other hand, if 

midges are close together, the approach to repulsion indicates that midges can accurately 

sense other midge positions and thereby repel each other, or that if they collide they will 

push each other away. Simulations show that this repulsion term is e ective in avoiding any 

two midges being at nearly the same position at the same time. 

2.2. Representing Midge Swarm Data 

The best midge swarm representation that could be derived in this paper was obtained 

by tuning the model just presented in Section 2.1. This model is presented frst. Afterwards, 

the alternatives that were considered are discussed in detail. 

Although typically a swarm has N ≤ 20, choose N = 25, the number of midges in the 

“series 5 data” (Okubo and Chiang, 1974). Assume each midge weighs 0.12 mg which sets 

the value of Mi. Let T = 0.01 sec. Let xm = [0, 0, 0]⊤ . Let dip(k) and d
i
m(k), for each k and 

i, have all their components uniformly distributed on kdp[−1, 1] and kdm[−1, 1], respectively, 

with kdp = kdm = 0.1 so that midges’ sensing of ep
i (k) and em

i (k) can be o by ±10 cm in 

each dimension at each k (changing these values has impact on simulated swarm behavior, 

e.g., if the parameters are made larger, the swarm is “noisier” and not as compact). Since a 

swarm’s diameter is 10–12 cm (Okubo and Chiang, 1974), this is a relatively high magnitude 

of sensing noise (e.g., a midge at the edge of a swarm can perceive itself to be on the other 

side of the swarm and a midge that perceives itself to be exactly at xm, could be 10 cm 
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√ 
from it). The choice of the noise sequences gives Dp = Dm = 0.03 = 0.1732. Tuning the 

model led to kp = 100, km = 10, kd = 5, and kr = 1000. A value rs = 0.001 was used 

since a midge is about 2 mm long (Okubo, 1986). Initial conditions for the midge positions 

were set at random values such that they were ±5 cm from xm in each dimension. Initial 

conditions for the midge velocities were set at random directions with speeds that were 

uniformly distributed on [0, 80] cm/sec. Other distributions for initial conditions produced 

similar results. Simulations represent 20 sec. of real time; this is a signifcantly longer data 

collection time period than in (Okubo and Chiang, 1974). 

Plots of 9 of the N = 25 midges for 1 sec. at the end of the 20 sec. simulation are 

shown in Figure 1 with trajectories only shown in the (x, y) plane. Interestingly, these 

trajectories have characteristic shapes similar to the individual midge trajectories shown in 

Figs. 13–22 in (Okubo and Chiang, 1974) (notice the occasional abrupt turns and erratic 

behavior that interrupts smooth arcs). Figure 2 shows that swings of 4-5 cm can occur in 

the components of x̄(k) and that the standard deviations on components of xi(k) are in the 

range of 2 cm as in Figs. 7–10 in (Okubo and Chiang, 1974). 

The distributions for the normalized components of ep and ev are shown in Figure 3. 

The top three plots show three normalized distributions for components of ep, which roughly 

match the distribution shown in Fig. 42 (series 5 data) in (Okubo and Chiang, 1974). The 

bottom three plots of Figure 3 show a good ft with the Gaussian 0.3 exp (− 2/800) (where 

is a normalized value in the x, y, or z dimension) that is taken from Fig. 35 (series 5 

data) in (Okubo and Chiang, 1974). 

Figure 4 shows the speed distribution for the 2-dimensional case along with a 

Maxwell-Boltzmann distribution ft taken from Fig. 32 (series 5 data) in (Okubo and 

Chiang, 1974). This shows that the speed distribution matches the one found from the 

experimental data very well. The mean 2-d velocity was found to be 31.3 cm/sec. for series 
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Fig. 1.— Simulation of midge position trajectories (shown in (x, y)-plane). The “×” marks 

starting points of the trajectories, and the dots represent the midges at the end of the 

simulation. 

4 data and 25 cm/sec. for series 5 data (Okubo and Chiang, 1974), whereas here the mean 

2-d velocity for the model is 26.19 cm/sec., a good match. 

The normalized velocity distributions for the x direction are shown in Figure 5. Similar 

plots are found for the y and z cases. The shape of the plot is similar to the corresponding 

one for the x direction as seen in Fig. 56 in (Okubo and Chiang, 1974). The normalized 

acceleration distributions for the x direction are shown in Figure 6. Similar plots are found 

for the y and z cases. The shape of the plot is quite similar to the corresponding one for 

the x direction as seen in Figs. 5–6 in (Okubo et al., 1976) for the series 5 data (e.g., the 

peaks in the median accelerations are at about ±500 cm/sec2 in both cases). 
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Fig. 2.— Midge swarm simulation, plots of x̄(k), v̄(k), and standard deviations of position 

trajectories in each dimension. 

2.3. Alternative Flight Rules for Midge Swarm Representation 

The simulations of the last subsection show that fight rules used by the midges in a 

swarm could be specifed via Equation (4) with the gains given above (e.g., kp, km, kd, kr, 

and rs). In this subsection, an evaluation of alternative fight rules for Equation (4) is given. 

2.3.1. Adding and Deleting Terms from the Midge Flight Rule 

First, evaluations were made of whether additional terms in Equation (4) result in an 

even more accurate representation of the midge swarm experimental data. A common term 

used in swarm simulations and analysis (e.g., see (Couzin et al., 2002)) is an “alignment” 

term which has also been called a “velocity attraction” term. The purpose of such a term 

is for each midge to align its direction of fight to other members of the swarm (or, for 
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Fig. 3.— Distributions of normalized components of ep and ev. The normalization factors 

are ˙x, ˙y, and ˙z, the standard deviations of the appropriate component of xi over i at each 

k. 

example, the noisily sensed swarm velocity centroid). When such a term (i.e., a term 

êi (k)) is added to Equation (4) and the gains tuned, it was not possible to match the −Mikv v 

experimental data in (Okubo and Chiang, 1974; Okubo et al., 1976) better than is done in 

the previous subsection. In fact, when reasonably close matches were found to the position, 

velocity, and acceleration distributions, it was found that the swarm wandered as a cohesive 

group with variations of almost ±10 cm in the components of x̄(k). This is not surprising 

as the velocity attraction term causes the midge fight directions to align with each other 

thereby causing the swarm to stay cohesive but move purposefully in a single direction. 

Other alignment rules result in similar behavior. 

The principle of parsimony would support the validity of fight rules other than the 

one given by Equation (4), if for example, one of the terms from Equation (4) could be 
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Fig. 4.— Speed distribution for the 2-dimensional case (bar plot) along with a 2-dimensional 

Maxwell-Boltzmann speed distribution 0.012v exp (−v2/800) (line plot) where v is the speed 
p 

2 2v = v + v . x y 

eliminated but the swarm data is still adequately represented. Consider each term of 

Equation (4). The repulsion term must be present in order to ensure that two midges 

are not in the same position at the same time. The velocity damping term −Mikdv
i(k) 

in Equation (4) is used to represent that midges cannot fy arbitrarily fast; it represents 

physical constraints and hence must be present. The swarm marker attraction term 

−Mikmê  m
i (k) must be present to represent that in nature swarms do indeed hover over 

swarm markers (letting km = 0 results in a swarm position centroid that will eventually 

wander long distances). It is not known, however, if the aggregation term −Mikpê
i
p(k) (or 

one like it) is used by the midges. It was included in the last section since experiments 

show that relatively small swarms are maintained over larger markers (e.g., via Fig. 1 in 

(Okubo and Chiang, 1974) for N = 20, a swarm marker area is about 750 cm2 , and the 
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Fig. 5.— Velocity distributions for the x direction as a function of normalized x component 

of ep. The vertical line represents zero on the horizontal axis. For the boxplots, the middle 

line in each box is the median value, boxes with notches that do not overlap represent that 

the medians of the two groups di� er at the 5% signifcance level, the edges of the boxes are 

the 25th and 75th percentiles, whiskers (dashed lines) represent 1.5 times the interquartile 

range, and outliers are designated with a “+”. 

swarm diameter is only 10-12 cm). Interestingly, if the −Mikpê  p
i (k) term is removed from 

Equation (4), and the value of km is changed from km = 10 to km = 100, then simulations 

show that all the distributions (e.g., velocity and acceleration) match those from (Okubo 

and Chiang, 1974) reasonably well (the reason for this is that on average x̄(k) is reasonably 

close to xm). However, the plot for km = 100 corresponding to Figure 2 (not included here 

in the interest of space) shows that x̄(k) only has swings of 2 cm, which is inconsistent 

with (Okubo and Chiang, 1974). Basically, km had to be increased to km = 100 to get 

the mean velocity of the midges in the swarm to match the one found in experiments; 
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Fig. 6.— Acceleration distributions for the x direction as a function of normalized x compo-

nent of ep. The vertical line represents zero on the horizontal axis. The boxplot is explained 

in the caption of Figure 5. 

however, such a high gain results in very close regulation of the swarm position centroid to 

the swarm marker. Above, by having both the kp and km gains it was possible to match 

the acceleration and velocity distributions, and only loosely regulate the swarm around the 

swarm marker. Hence, it seems that terms of the type shown in Equation (4) are all needed 

for a valid representation of the experimental midge swarm data. 

2.3.2. Rules Based on Metric Distance 

While it has been shown that terms of the type seen in Equation (4) are all needed to 

represent the experimental data, we have not established that terms of the specifc form in 

Equation (4) are needed. In this and the following subsection we examine whether there 
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are other attraction and repulsion rules that use less information and result in matching the 

swarm data as well as was done in the last subsection. 

Common rules for attraction and repulsion in swarms (e.g., see (Couzin et al., 2002; 

Parrish and Hamner, 1997))) say that a midge should move away from other midges that 

are within a “repulsion range” rr, but toward other midges that are outside the radius rr, 

but inside the “attraction range” ra > rr. Let 

� 
Nr(i, k) = j : kx i(k) − xj (k)k ≤ rr, j = 1, ..., N 

denote the set of indices of the neighbors of midge i that are within the repulsion range of 

rr at time k. Here, as with the rule in Equation (4), the value of rr = 1 mm since a midge 

is 2 mm in length. Let 

� 
Na(i, k) = j : rr < kx i(k) − xj (k)k ≤ ra, j = 1, ..., N 

denote the set of indices of the neighbors of midge i that are in the “attraction range” of 

midge i at time k. Let 

i 1 X 
x̄  r(k) = xj (k)|Nr(i, k)| 

j∈Nr(i,k) 

denote the position centroid of the neighbors of midge i in the repulsion range rr at time k. 

Note that for all k, |Nr(i, k)| 6= 0 since i ∈ Nr(i, k). Let 

i 1 X 
x̄ a(k) = xj (k)|Na(i, k)| 

j∈Na(i,k) 

denote the position centroid of the neighbors of midge i in the attraction range at time 

i i i i ik. Let epa(k) = xi(k) − x̄ a(k) and êpa(k) = epa(k) − dip(k) and use this in place of êp(k) 

i i iin Equation (4). Let e pr(k) = xi(k) − x̄ r(k) and use +Mikre pr(k) in place of the repulsion 

term in Equation (4). Note that if ra is too small, then midges will frequently become 

“disconnected” from the swarm. Here, however, drastic e ects like a midge wandering o 
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and never returning (a permanent disconnection) are not seen due to the presence of the 

attraction term to the swarm marker in Equation (4). 

After running many simulations, it was determined that (i) the noise needed to be at a 

high magnitude in order to match the swarm data and in particular the speed distribution 

(hence, kdp = kdm = 0.1 was used in all cases); and (ii) it was logical to begin with a low 

value of ra and increase its value while keeping the other midge fight rule parameters the 

same as in Section 2.2 (i.e., in no cases was it found that further tuning of the parameters 

improved the matching to the swarm data). Using ra =1 cm it was not possible to tune 

the gains so that the swarm data is even close to being matched. Other small values of 

ra produced the same poor results. Intermediate values of ra (e.g., ra = 5 cm) result in 

matching a few features of the swarm data, but with midges occasionally swinging far 

outside the swarm body. Only when ra is increased to ra = 9 cm did the matching of the 

swarm data improve. There were, however, still a few relatively wide swings of a few midges 

away from the body of the swarm. When ra = 10 cm this e ect was eliminated and the 

model matched the swarm data as well as in Section 2.2. Of course, values of ra > 10 cm 

also resulted in good matching of the data. Considering the diameter of the swarm (10–12 

cm) these high values of ra correspond to the case where each midge has almost all the 

other midges within ra so that this attraction rule becomes indistinguishable from the one 

used in Section 2.2. 

2.3.3. Rules Based on Topological Distance 

Next, in (Ballerini et al., 2008) it was shown that birds interacted with each other 

using a “topological distance” (a fxed number of nearest neighbors) rather than the 

metric distance like we just considered. Let Nn(i, k) denote the set of indices of the Nc, 

1 ≤ Nc ≤ N , nearest neighbors to midge i at time k (for consistency with the last rule, this 
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includes midge i as its own nearest neighbor). Let 

X 
x̄i (k) = 

1 
x i(k)nn Nc 

j∈Nn(i,k) 

denote the position centroid of the Nc nearest neighbors of midge i at time k. Let 

i i iê (k) = xi(k) − x̄ (k) − di (k) and use this in place of ê (k) in Equation (4). Since the pnn nn p p 

repulsion rule has little e ect, we simply keep the one in Equation (4). Note that with 

Nc = N = 25 this attraction rule is the same as the one used in Section 2.2 to match the 

swarm data. For the birds in (Ballerini et al., 2008) a value of Nc of 6 or 7 was found when 

N was in the range of hundreds to tens of thousands. This implies that Nc = 2 is a natural 

starting point for trying to match the swarm data (although in this case groups of size 2 

could become disconnected from the swarm, the attraction to the swarm marker alleviates 

this problem as it did above). Simulations show that if a value of Nc = 2 is used it is not 

possible to tune the gains of the rule to even get close to matching the experimental swarm 

data. Similar poor results are obtained for other small values of Nc. For 10 ≤ Nc ≤ 20, 

however, it was possible to match much of the swarm data except for periodic swings of 

the trajectories far outside the main body of the swarm. For 20 < Nc ≤ 25 the frequency 

and magnitude of the swings outside the main body of the swarm decrease so the model 

matched the swarm data as well as in Section 2.2. 

In summary, while both the metric and topological approaches to defning the attraction 

rule can be tuned to represent the swarm data, good representations were only obtained 

when the rules closely approximated the attraction rule in Section 2.2 (i.e., with high values 

of r and Nc). Hence, it seems that if the midges use less information to defne an attraction 

rule, the swarm data cannot be matched. It is for this reason that cohesiveness analysis 

is only considered for the case when the fight rule in Equation (4) is used with the gains 

defned in Section 2.2. 
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3. Swarm Cohesiveness Analysis 

In this section, the dynamics of the error system for the ith midge are defned as the 

di� erences between the midge position and velocity and the swarm position and velocity 

centroids, respectively. After some preliminary technical results, the frst main result is 

given. It states that the error system is ultimately bounded, which means that all midge 

position and velocity trajectories are eventually bounded relative to the swarm position 

and velocity centroid trajectories. Next, the dynamics of the velocity centroid and swarm 

position centroid relative to the swarm marker are defned. Then, in the second main result 

it is shown that the distance between the swarm position centroid and the swarm marker is 

ultimately bounded. Moreover, the velocity centroid is ultimately bounded. 

3.1. Error Dynamics 

Consider an error system with eip(k) = xi(k) − x̄(k) and eiv(k) = vi(k) − v̄(k). Using 

simple algebra, the error dynamics are 

i i i e p(k + 1) = e p(k) + e v (k)T 

X 
i i 1 1 

N 
1 

ev(k + 1) = ev (k) + u i(k)T − uj (k)T (5) 
Mi N Mj

j=1 

Substitute the ui in Equation (4) into the error dynamics in Equation (5). First, notice that 

1 

Mi 
u i(k) = −kpe pi (k) + kpd p

i (k) − kme m
i (k) + kmd m

i (k) − kdv 
i(k) 

N � −1 j k2 � 
X kxi − x � � 

2 i − xj+ kr exp x (6) 
2rs

j=1,j 6=i 

Also, 

N N X X1 1 1 
uj (k) = kpd

j
p(k) − kmx̄(k) + kmxm

N Mj N 
j=1 j=1 
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N X1 
dj+ km (k) − kdv̄(k) (7) 

N m 
j=1 

PN1 jwhere we used the facts that e = 0 and 
N j=1 p 

� � 
1 

N N kxj − x � �X X −1 ℓk2 
kr exp 2 xj − x ℓ = 0 

N rs 
2 

j=1 ℓ=1,ℓ 6=j 

From Equations (5), (6), and (7) we have 

e iv (k + 1) = −(kp + km)Te
i
p(k) + (1 − kdT ) e 

i
v(k) + U i(k) 

where 

U i(k) = kpTd p
i (k) + kmTd

i
m(k) 

N N X X1 1 − kpTdp
j (k) − kmTd

j
m(k)N N 

j=1 j=1 

N � � 
X −1

2 
kxi − xj k2 � 

j 
� 

+krT exp 
2 

x i − x 
rs

j=1,j 6=i 

which is a nonlinear non-autonomous system. 

i iDefne Ei = [e p 
⊤ 
, e v 

⊤
] 
⊤ 
and E = [E1⊤, E2⊤ 

, . . . , EN ⊤] 
⊤ 
. With I an n × n identity 

matrix, the error dynamics of the ith midge may be written as 

A B 
z }| { z }| {
    

I TI 0 
 Ei(k + 1) =  Ei(k) +  U i(k) (8) 

−(kp + km)TI (1 − kdT ) I I 

If we view the swarm as an interconnected system with each midge being a subsystem, 

then the matrix A in Equation (8) specifes the internal system dynamics for each midge 

subsystem in the error system, and U i(k) gives the external input for each midge i at time 

step k. 
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3.2. Preliminaries 

The following result will be used in both the theorems below. 

Lemma 1 The matrix A in Equation (8) is convergent if 
 
 4 √ if k2 − 4(kp + km) ≥ 0 

k2−4(kp+km) d 
T < kd+ 

d (9) 
  kd k2if d − 4(kp + km) < 0

kp+km 

Proof: It can be proven that matrix A has n repeated values of the eigenvalues of 
  

1 T 
matrix Ã =  . From |zI − Ã| the characteristic equation 

−(kp + km)T 1 − kdT 

z2 + [kdT − 2] z + 1 − kdT + (kp + km)T
2 = 0 which has roots 

� � q
1 

z1,2 = k2 − 4(kp + km)2 − kdT ± T d2 

To have a convergent A: 

1. If k2 − 4(kp ) ≥ 0, then we need d + km 
� � q

1 −1 < 2 − kdT ± T k2 − 4(kp ) < 1d + km
2 

Notice that z1,2 < 1 always holds with (kp + km) > 0. To have −1 < z1,2, we need 

q 
−2 < 2 − kdT − T kd 

2 − 4(kp + km) 

that is 

4 
T < p

k2 − 4(kp + km)kd + d 

2. If kd 
2 − 4(kp + km) < 0, we need kz1,2k < 1. So 

2 � � 
(2 − kdT ) + T 2 4(kp + km) − kd 

2 < 4 

4 − 4kdT + 4(kp + km)T
2 < 4 

kdThat is 0 < T < .
(kp+km) 



�

� �

� �

�

�
�
�
�
�


















� � �
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The proofs in the remainder of the paper rely on a few facts. First, when matrix 

˜ Q̃⊤A is convergent, for any given matrix Q = > 0 (positive defnite), there exists a 

unique matrix P̃ = P̃⊤ > 0 which is the solution of the discrete Lyapunov equation 

A⊤ ˜ ˜ ˜PA − P̃ = −Q̃. Given P and Q that satisfy the discrete Lyapunov equation above, 

defne M,m respectively as twice the values of the maximum and minimum eigenvalues of 
� � � � 

˜ ˜ ˜ ˜P given Q̃ = I, i.e., M = 2�max P | ̃  and m = 2�min P | ̃  . Next, with P̃ , Q and Q=I Q=I 

2λmax(P̃ ) 
M defned above, the minimum of function f(P,˜ Q̃) = is M , that is, λmin(Q̃) 

2�max(P̃ ) 
M = = min f(P ,˜ Q̃) (10) 

�min(Q̃) Q̃ 
Q̃=I 

3.3. Ultimate Boundedness of Midge Swarm Error Dynamics 

Our frst main result, proven next, states that there exists a known ultimate bound (in 

terms of the midge parameters) on the distances between the midge positions and velocities 

and the swarm centroid position and centroid velocity, and the error system trajectories 

will eventually satisfy this bound. 

Theorem 1 Consider the error system described by the model in Equation (5). Assume 

the noise satisfes Equation (3). Assume T is suÿciently small such that the condition in 

Lemma 1 holds. Then, the trajectories of the swarm error system are uniformly ultimately 

bounded, and Ei for all i will converge to the set b, where 

� � � � q 
Ei kAk2 2 

b = E : ≤ M kAk + M + 2 M , i = 1, 2, . . . , N (11) 
2 

is attractive and compact, with M defned in Equation (10) and 

� � � � 
1 

= 2kpDp + 2kmDm + (N − 1)kr exp − rs T (12) 
2 
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Proof: To study the boundedness of the error dynamics, it is convenient to choose a 

Lyapunov function for each midge as 

Vi(k) = Ei(k) 
⊤ 
PEi(k) (13) 

with P = P⊤ > 0 a 2n× 2n positive defnite matrix. Then we have 

Vi(k + 1) = Ei(k + 1) 
⊤ 
PEi(k + 1) 

Ei(k) 
⊤ 

= A⊤PAEi(k) + 2U i(k)⊤B⊤PAEi(k) 

+ U i(k)⊤B⊤PBU i(k) 

and 

�Vi(k) = Vi(k + 1) − Vi(k) 

⊤ � � 
= Ei(k) A⊤PA− P Ei(k) + 2U i(k)⊤B⊤PAEi(k) 

| {z } 
−Q 

+ U i(k)⊤B⊤PBU i(k) (14) 

Note that given any Q = Q⊤ > 0, the existence of a desired P is guaranteed. Choose for 

the composite system 
N X 

V (k) = Vi(k) 
i=1 

where Vi(k) is given in Equation (13). In what follows, we seek to fnd conditions where 

�Vi(k) < 0 for all i so that �V (k) < 0. 

First, since for any matrix M = M⊤ > 0 and vector X 

�min(M)X⊤X ≤ X⊤MX ≤ �max(M)X⊤X 

where �min(M) and �max(M) denote the minimum and maximum eigenvalue of M , 

respectively, then we have 

N N� � � �X X 
�min(P ) E

i(k) 
2 ≤ V (k) ≤ �max(P ) E

i(k) 
2 

(15) 
i=1 i=1 
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Next, we need to bound the U i(k) contribution in Equation (8). Notice that any 
� � 

− 1 kψk2 

function F ( ) = exp 2 
rs 

k k, with any real vector, has a unique maximum value of 2 

� � 
exp −1

2 
rs which is achieved when k k = rs (Gazi and Passino, 2003). So 

� 
j k2 � � �N X −

2
1 kxi − x � 

j 
� 1 

exp 
2 

x i − x ≤ (N − 1) exp − rs 
rs 2 

j=1,j 6=i 

Thus, from Equation (3) we have 

X X 
U i(k) ≤ kpTDp + kmTDm + kpT 

1 
N 

Dp + kmT 
1 

N 

Dm
N N 

j=1 j=1 
� � 

1 
+(N − 1)krT exp − rs

2 

Using Equations (14) and (15), the fact that kBk = 1, and the fact that since P > 0, 

kPk = �max(P ), we have 

N X 
�V (k) = �Vi(k) 

i=1 

N hX 
≤ −�min(Q) E

i(k) 
2 
+ 2�max(P ) U

i(k) kAk Ei(k) 
i=1 

i 
+ �max(P ) U

i(k) 
2 

N � � 
X 2 

≤ − Ei(k) 
2 
+ M kAk Ei(k) + 

M 

2 
i=1 

where M = 2�max(P ). For the last step, by inspecting the above inequality it can be seen 

that minimizing M is desirable for achieving boundedness with a small bound so Q = I 

was chosen. 

To fnd the set b note that 

2 

�Vi(k) ≤ − Ei(k) 
2 
+ M kAk Ei(k) + 

M 
(16) 

2 

Solving the equation on the right-hand-side gives that �Vi(k) < 0 for all i (and hence, 

�V (k) < 0) when 
� � q 

Ei(k) > M kAk + kAk2 M 
2 + 2 M

2 
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So the set b given in the statement of the theorem is attractive and compact. 

Remark 1 The fact that b is “attractive” means that if Ei(k) trajectories start outside 

b, they will eventually enter that set, and stay in that set for all time. Hence, if a midge 

starts at a large distance from the main body of the swarm, and at zero velocity, it will 

eventually join the group and stay within a known bound from the swarm position and 

velocity centroid. 

Remark 2 If there is a higher magnitude of sensing noise (quantifed by the noise bounds 

Dp and Dm), or higher values of the repulsion gain kr, repulsion range rs, or N , then 

intuitively it is expected that the size of the swarm will grow. The above result is consistent 

with this intuition. In particular, if Dp, Dm, kr, rs, or N increases, the size of b, denoted 

by | b|, increases as can be seen by inspecting Equations (11) and (12). 

3.4. Ultimate Boundedness of Midge Swarm Position and Velocity Centroids 

To study the boundedness of the midge swarm position and velocity centroids their 

dynamics are frst defned. Note that 

x̄(k + 1) − xm = x̄(k) − xm + v̄(k)T 
N X 

v̄(k + 1) = v̄(k) + 
1 1 

uj (k)T (17) 
N Mj

j=1 
� �

¯ ¯ = −kmT (x̄(k) − xm) + (1 − kdT )v̄(k) + kpdp + kmdm T 

PN PN¯ ¯with dp(k) = 1 di (k) and dm(k) = 1 di (k). Let C(k) = [(x̄(k) − xm)⊤v̄(k)⊤]⊤ .
N i=1 p N i=1 m 

With I an n× n identity matrix, the dynamics are 

Ā  B̄ 
z }| { z }| {
    

I TI 0 
   ¯C(k + 1) =  C(k) + U(k) (18) 

−kmTI (1 − kdT ) I I 
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¯ ¯ ¯where U(k) = (kpdp(k) + kmdm(k))T . 

Our second main result, proven next, states that there exists a known ultimate bound 

(in terms of the midge parameters) on the di� erence between the swarm position centroid 

and the swarm marker that will eventually be satisfed. Also, it shows that the velocity 

centroid is ultimately bounded. The pattern of the formulation and proof follow that of the 

last subsection closely; hence, the presentation is brief. 

Theorem 2 Consider the dynamics described by the model in Equation (18). Assume the 

noise satisfes Equations (3). Assume T satisfes Equation (21). Then, the swarm position 

and velocity centroids are uniformly ultimately bounded, and C(k) will converge to the set 

¯ 
b, where 

���� q
¯ ¯¯ 

M kĀk + kĀk2 ¯ M 
2 + 2 ¯ Mb = C : kCk ≤ , i = 1, 2, . . . , N (19) 

2 

¯is attractive and compact, with M = 2�max(P̄ ) and 

¯ = (kpDp + kmDm) T (20) 

¯Proof: Using Lemma 1, A is convergent if 

T < 

 
 

 

√ 
k 

4 
2 

if kd 
2 − 4km ≥ 0 

kd+ 
d
−4km (21) 

k

k 
m

d if k2 − 4km < 0d 

V̄ (k) = C(k)⊤ ¯ ¯ P̄⊤Choose a Lyapunov function PC(k) where P = > 0 is a 2n × 2n 

positive defnite matrix. Then, using the approach in the last proof, −Q̄ = Ā⊤P̄ Ā  − P̄ , let 

Q̄ = I, and ¯ M = 2�max(P̄ ). 

Remark 3 Since ¯ b is attractive, if the swarm position centroid starts out large relative to 

the swarm marker, it will eventually become within a known bound of the swarm marker. 









�
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Also, if the swarm velocity centroid starts out very large, it will eventually become within a 

known size. 

Remark 4 If there is a higher magnitude of sensing noise (quantifed by the noise bounds 

Dp and Dm), then intuitively it is expected that the error between the swarm position 

centroid and swarm marker, along with the velocity centroid, will grow. The above result is 

¯consistent with this intuition. In particular, if Dp or Dm increase, the size of b, denoted 

by |¯ b|, increases as can be seen by inspecting Equations (19) and (20). Note, however, 

that unlike in Theorem 1 neither the repulsion gain kr, size of the repulsion range rs, nor 

N a ect the size of the bound. 

Remark 5 Note that if N is large, and dip(k) and d
i
m(k) are zero mean random variables 

1
2

for each k, then Dp and Dm in the statement of the theorem can be replaced by Dp and 

1
2 

¯ ¯Dm, respectively, since these overbound dp(k) and dm(k). Hence, in some cases |¯ b| can 

be reduced in size. 

Remark 6 Each of the two theorems require that T be suÿciently small in order to obtain 

the bounds. These conditions, in Equations (9) and (21), are both satisfed for the values 

of T , kp, km, and kd found for the validated midge swarm model in Section 2. The bounds 

determined in each of the two theorems can be computed from the parameters for the 

validated midge swarm model in Section 2. Generally, however, the bounds found in this 

paper are conservative since multiple overbounding arguments are used in the proofs of 

the theorems. Nevertheless, the analysis process itself provides signifcant insights into the 

swarm dynamics that emerge from local fight rules of individual midges. 
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4. Conclusions 

A mathematical model was introduced and shown to produce trajectory behavior, and 

velocity, speed, and acceleration distributions, that are quite similar to those found in the 

midge swarm experiments in (Okubo and Chiang, 1974; Okubo et al., 1976). The frst main 

mathematical result showed that all midge position and velocity trajectories are eventually 

bounded relative to the swarm position and velocity centroid trajectories, respectively. The 

second main result showed that the distance between the swarm position centroid and the 

swarm marker is ultimately bounded, as is the velocity centroid. Explicit bounds were 

provided in terms of midge parameters for both results, and several insights were gained on 

how the midge fight rule results in swarm cohesion. 

In the modeling study, it is noteworthy that the only attraction term for the fight rule 

that led to a good representation of the experimental data was −Mikpê
i
p(k) with sensing 

noise of a signifcant magnitude. Other attraction rules that used less information (e.g., the 

ones based on metric and topological distance in Sections 2.3.2 and 2.3.3) could not match 

the experimental data unless they approximated −Mikpê  p
i (k). This provides evidence that 

individual swarm members try to move toward a noisy estimate of the swarm centroid in 

order for the swarm to maintain cohesion. Superfcially, though, it appears to be impossible 

for any midge to implement the −Mikpê
i
p(k) attraction term since it is unlikely that any 

midge will know the positions of all other midges at any point in time so it can compute the 

centroid. It is not, however, claimed here that any midge explicitly computes the centroid. 

All that is needed is for the midge to be able to aggregate midge position information (e.g., 

via gross patterns detected in its visual system); its aggregation of the information can be a 

very noisy estimate of the underlying centroid of positions of the other midges. Recall that 

when a midge is in the middle of the swarm, it will undoubtedly perceive the centroid to 

be some distance away (e.g., along the edge of the swarm), and hence will move away from 
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the actual swarm position centroid. There is only one instance when the −Mikpê
i
p(k) term 

contributes a force input that defnitely corresponds to a midge making progress toward 

moving to the position centroid: If the midge is far away from the position centroid (e.g., 

outside the main body of the swarm), the term will result in movement in the general 

direction of the swarm position centroid since the noise is bounded about the position 

centroid. 

Next, note that the matching of the midge’s experimental speed distribution to the 

Maxwell-Boltzmann speed distribution for molecules in a gas was frst recognized in (Okubo 

and Chiang, 1974). Clearly, this matching means that there is signifcant randomness in 

speeds of the midges in a swarm. Indeed, the modeling study here shows that without noise 

of a signifcant magnitude driving the velocity (i.e., the second equation in Equation (2)) 

it was not possible to obtain the Maxwell-Boltzmann speed distribution so that the swarm 

data could be properly represented. Here, noise was injected in two places. First, it played 

a signifcant role in defning the sensing noise on the attraction term as was just discussed. 

Second, there was noise in sensing the swarm marker. Having these two noise sources 

allowed for independent adjustment of how close the swarm tracked the swarm marker so 

that this feature could also be represented with the model. 

While the noisy attraction term plays a key role in representing the swarm, the 

repulsion term does not since it acts on such short distances, essentially defning what 

happens when midges collide. Indeed, the experimental data could have been represented 

just as well with either the repulsion term in Equation (4) or the +Mikre
i (k) repulsion pr 

term defned in Section 2.3.2. Moreover, since epr 
i (k) ≤ (N − 1)rr, the cohesiveness results 

of the last section will also hold if +Mikre
i (k) is used as the repulsion term in Equation (4) pr 

(but, di� erent bounds will be obtained). 

In the analysis, it is noteworthy that two key derivations made the cohesiveness 
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analysis possible. First, both the average error between any midge and the swarm position 

centroid and the average repulsion force for the swarm were zero (see equations just below 

Equation (7)). This arises since if there were no noise, every pair of midges in the swarm 

attract each other or repel each other by equal amounts, but in opposite directions. Since 

the average repulsion force is zero, one less term is included in U i(k) that needs to be 
PNover-bounded. The fact that 1 e p

j = 0 simplifes the proof; if it were not zero then 
N j=1 

there is additional cross-coupling in the swarm between the Ei(k) and Ej (k), j 6= i, that 

would have to be accounted for in the analysis. Second, it was possible to load all the 

terms that could be bounded from above into U i(k). These two facts allowed for the 

derivation of the error dynamics in Equation (8) that had the special form of a linear term 

(specifed via A) and a nonlinear stochastic term quantifed via U i(k). Lemma 1 showed 

that Equation (8) is a stable linear system driven by a bounded nonlinear input term. The 

remainder of the proof of ultimate boundedness used a sequence of standard ideas from 

algebra and analysis. Next, the swarm position centroid minus the swarm marker, and 

the velocity centroid dynamics, were derived using similar ideas to the error dynamics in 

Equation (8) (e.g, the fact that 1 
PN ej = 0). Due to the similarity of the two error 

N j=1 p 

systems it was possible to use the same proof pattern to show that the dynamics were 

uniformly ultimately bounded. For both cases, the matrices A and Ā  were shown to have 

eigenvalues in the unit disk for the swarm parameters found in Section 2. The ultimate 

bounds were also computed from the midge parameters, but for the simulations conducted 

these bounds were quite conservative (several orders of magnitude larger than the achieved 

diameter of the swarm by the end of a 20 sec. simulation run). 

For future work, it would frst be of interest to perform experiments to determine if 

the midge fight rule is indeed encapsulated by Equation (4). Second, it would be useful to 

show that the mathematical results still hold if there are di� erent gains used in the midge 

fight rule in Equation (4) for each midge (e.g., di� erent kp gains on each midge) since it is 
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unlikely that individual midges use exactly the same gains. Third, it would be useful to fnd 

tighter ultimate bounds on the error and centroid trajectories. 
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	1. Introduction 
	Coordinated group motion has been studied extensively for a wide range of species (e.g., bacteria, insects, fsh, and birds) via experiments, simulations, and mathematical analyses (Parrish and Hamner, 1997; Gueron et al., 1996; Mogilner and Edelstein-Keshet, 1999; Okubo et al., 2001; Couzin et al., 2002; Mogilner et al., 2003; Ballerini et al., 2008; Schultz et al., 2008). In a particularly early and infuential study, Okubo and Chiang (1974) conducted a series of experiments where they flmed midge swarms fy
	In frst part of this paper, a nonlinear stochastic discrete-time (“individual-based”) model is introduced and it is shown how to tune the parameters of the midge’s individual rule for fight and sensing accuracy so that simulated midge fight characteristics and distributions (e.g., velocity and acceleration) closely match those in (Okubo and Chiang, 1974; Okubo et al., 1976) (since the experimental data sets are not available, only a visual comparison is possible). Apparently, this is the frst time that an i
	There is an important philosophical issue that needs to be raised about the contribution of this paper. First, the primary focus here is not to produce a perfectly accurate model of midge swarm behavior, analogous to how other studies of groups of animals have approached modeling (e.g., honey bees). Clearly, a good model would have to rely on better data (rather than the relatively old data used here, and for a relatively small number of 
	There is an important philosophical issue that needs to be raised about the contribution of this paper. First, the primary focus here is not to produce a perfectly accurate model of midge swarm behavior, analogous to how other studies of groups of animals have approached modeling (e.g., honey bees). Clearly, a good model would have to rely on better data (rather than the relatively old data used here, and for a relatively small number of 
	midges) and possibly additional aspects of the mathematical representation (e.g., other terms). Second, the primary focus here is not on the mathematical analysis of a model, for example, to obtain the most general conditions (and least conservative results) possible for cohesive behavior of groups. What is the focus? It is a “wholistic” focus. The focus here is to come up with a reasonably good model that is still analytically tractable, and show a useful property in an analytical way, which has signifcant

	2. Midge Swarm Model 
	A nonlinear stochastic mathematical model is introduced and shown to be able to represent the data taken from real midge swarms in (Okubo and Chiang, 1974; Okubo et al., 1976). The model used for individual midge dynamics and sensing is kept particularly simple (e.g., detailed insect fight dynamics are ignored) to ensure that when multiple midges are composed into a set of interacting midges in a swarm, analytical tractability is maintained for the study in the next section. 
	2.1. Mathematical Model 
	2.1. Mathematical Model 
	Consider a swarm of N midges where the imidge has point mass dynamics 
	th 

	x (k+1) = x (k)+ v (k)T (1) 
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	i
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	v (k+1) = v (k)+ u (k)T (2) 
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	i
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	Here, x∈ℜis the position (in meters), v∈ℜis the velocity (m/sec), Mi is the mass, and u∈ℜis the force input (Newtons) for the imidge. The sampling period is T seconds and to simplify notation “(kT)” was replaced with “(k)” where k is the time index. Basically, Equation (2) is an Euler approximation of “force equals mass times acceleration.” For simulations n= 3, but in analysis n is arbitrary. 
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	Let x¯(k)= x(k) and v¯(k)= v(k) be the position centroid and velocity 
	1 
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	Ni=1 Ni=1 centroid of the swarm at the ktime step, respectively. Let e(k)= x(k) − x¯(k) and e(k)= v(k) − v¯(k). Let xm ∈ℜbe a fxed position relative to a “swarm marker,” and where the midges seek to swarm (for convenience, we will refer to xm as the swarm marker, when in actuality it is a fxed distance from the marker). Let e (k)= x(k) − xm. 
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	Assume each midge can sense its position relative to both x¯ and xm, but with some errors. Let d ∈ℜand d ∈ℜbe these sensing errors (e.g., noise) for midge i, respectively. Hence, each midge senses 
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	eˆ(k)= e (k) − d(k) 
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	and uses these values in the fight rule below to decide how to coordinate inter-midge motion and their position relative to the swarm marker. Assume that the sensing errors have magnitudes bounded by 
	d(k)≤ Dp 
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	d(k)≤ Dm (3) 
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	for any i, where Dp and Dm are known non-negative constants and · is the 2-norm. Since no constraints are placed on the size of Dp and Dm, arbitrarily poor sensing of the errors e(k) and e(k) can be represented. For instance, a particular midge could be near the position centroid (center) of the swarm, and far from the swarm marker, but sense that it is near the edge of the swarm and close to the swarm marker. Essentially, the assumption here is that some subset of the swarm members appear as spots on the r
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	Suppose the force input (“fight rule”) for the imidge at the kstep is 
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	This equation is from (Liu and Passino, 2004a). Here, −Mikpeˆ(k) is an “attraction term” that represents that individual i tries to move toward its noisy estimate of the swarm ikmeˆ(k) represents a midge’s attraction to the swarm marker. Since the noisy signals eˆ(k) and eˆ(k) are used in these terms, aggregation around the swarm centroid and swarm marker are only loosely sought (e.g., one particular midge may at some time be attracted to aggregate at a di. erent swarm marker location than another midge due
	This equation is from (Liu and Passino, 2004a). Here, −Mikpeˆ(k) is an “attraction term” that represents that individual i tries to move toward its noisy estimate of the swarm ikmeˆ(k) represents a midge’s attraction to the swarm marker. Since the noisy signals eˆ(k) and eˆ(k) are used in these terms, aggregation around the swarm centroid and swarm marker are only loosely sought (e.g., one particular midge may at some time be attracted to aggregate at a di. erent swarm marker location than another midge due
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	kd > 0 is a “velocity damping gain.” The gain kr > 0 is a “repulsion gain” which sets how much the midges want to be kept at a distance from other midges, and rs represents its “repulsion range.” A relatively small value, near the dimensions of a midge, will be used for rs. The fast roll-o of the Gaussian nonlinearity in the repulsion term is used to represent that the imidge has little infuence on the jmidge if they are far apart, and hence, two such midges do not need to be able to sense each other’s posi
	th 
	th 


	2.2. Representing Midge Swarm Data 
	2.2. Representing Midge Swarm Data 
	The best midge swarm representation that could be derived in this paper was obtained by tuning the model just presented in Section 2.1. This model is presented frst. Afterwards, the alternatives that were considered are discussed in detail. 
	Although typically a swarm has N ≤ 20, choose N = 25, the number of midges in the “series 5 data” (Okubo and Chiang, 1974). Assume each midge weighs 0.12 mg which sets the value of Mi. Let T =0.01 sec. Let xm = [0,0,0]. Let d(k) and d(k), for each k and i, have all their components uniformly distributed on kdp[−1,1] and kdm[−1,1], respectively, with kdp = kdm =0.1 so that midges’ sensing of e(k) and e(k)can be o by ±10 cm in each dimension at each k (changing these values has impact on simulated swarm behav
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	from it). The choice of the noise sequences gives Dp = Dm == 0.1732. Tuning the model led to kp = 100, km = 10, kd = 5, and kr = 1000. A value rs =0.001 was used since a midge is about 2 mm long (Okubo, 1986). Initial conditions for the midge positions were set at random values such that they were ±5 cm from xm in each dimension. Initial conditions for the midge velocities were set at random directions with speeds that were uniformly distributed on [0,80] cm/sec. Other distributions for initial conditions p
	0.03 

	Plots of 9 of the N = 25 midges for 1 sec. at the end of the 20 sec. simulation are shown in Figure 1 with trajectories only shown in the (x,y) plane. Interestingly, these trajectories have characteristic shapes similar to the individual midge trajectories shown in Figs. 13–22 in (Okubo and Chiang, 1974) (notice the occasional abrupt turns and erratic behavior that interrupts smooth arcs). Figure 2 shows that swings of 4-5 cm can occur in the components of x¯(k) and that the standard deviations on component
	i

	The distributions for the normalized components of ep and ev are shown in Figure 3. The top three plots show three normalized distributions for components of ep, which roughly match the distribution shown in Fig. 42 (series 5 data) in (Okubo and Chiang, 1974). The bottom three plots of Figure 3 show a good ft with the Gaussian 0.3 exp (− /800) (where 
	2

	is a normalized value in the x, y, or z dimension) that is taken from Fig. 35 (series 5 data) in (Okubo and Chiang, 1974). 
	Figure 4 shows the speed distribution for the 2-dimensional case along with a Maxwell-Boltzmann distribution ft taken from Fig. 32 (series 5 data) in (Okubo and Chiang, 1974). This shows that the speed distribution matches the one found from the experimental data very well. The mean 2-d velocity was found to be 31.3 cm/sec. for series 
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	Fig. 1.— Simulation of midge position trajectories (shown in (x,y)-plane). The “×” marks starting points of the trajectories, and the dots represent the midges at the end of the simulation. 
	4 data and 25 cm/sec. for series 5 data (Okubo and Chiang, 1974), whereas here the mean 2-d velocity for the model is 26.19 cm/sec., a good match. 
	The normalized velocity distributions for the x direction are shown in Figure 5. Similar plots are found for the y and z cases. The shape of the plot is similar to the corresponding one for the x direction as seen in Fig. 56 in (Okubo and Chiang, 1974). The normalized acceleration distributions for the x direction are shown in Figure 6. Similar plots are found for the y and z cases. The shape of the plot is quite similar to the corresponding one for the x direction as seen in Figs. 5–6 in (Okubo et al., 197
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	Fig. 2.— Midge swarm simulation, plots of x¯(k), v¯(k), and standard deviations of position trajectories in each dimension. 
	2.3. Alternative Flight Rules for Midge Swarm Representation 
	2.3. Alternative Flight Rules for Midge Swarm Representation 
	The simulations of the last subsection show that fight rules used by the midges in a swarm could be specifed via Equation (4) with the gains given above (e.g., kp, km, kd, kr, and rs). In this subsection, an evaluation of alternative fight rules for Equation (4) is given. 
	2.3.1. Adding and Deleting Terms from the Midge Flight Rule 
	2.3.1. Adding and Deleting Terms from the Midge Flight Rule 
	First, evaluations were made of whether additional terms in Equation (4) result in an even more accurate representation of the midge swarm experimental data. A common term used in swarm simulations and analysis (e.g., see (Couzin et al., 2002)) is an “alignment” term which has also been called a “velocity attraction” term. The purpose of such a term is for each midge to align its direction of fight to other members of the swarm (or, for 
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	example, the noisily sensed swarm velocity centroid). When such a term (i.e., a term eˆ(k)) is added to Equation (4) and the gains tuned, it was not possible to match the 
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	experimental data in (Okubo and Chiang, 1974; Okubo et al., 1976) better than is done in the previous subsection. In fact, when reasonably close matches were found to the position, velocity, and acceleration distributions, it was found that the swarm wandered as a cohesive group with variations of almost ±10 cm in the components of x¯(k). This is not surprising as the velocity attraction term causes the midge fight directions to align with each other thereby causing the swarm to stay cohesive but move purpo
	The principle of parsimony would support the validity of fight rules other than the one given by Equation (4), if for example, one of the terms from Equation (4) could be 
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	Fig. 4.— Speed distribution for the 2-dimensional case (bar plot) along with a 2-dimensional Maxwell-Boltzmann speed distribution 0.012vexp (−v/800) (line plot) where v is the speed 
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	eliminated but the swarm data is still adequately represented. Consider each term of Equation (4). The repulsion term must be present in order to ensure that two midges are not in the same position at the same time. The velocity damping term −Mikdv(k) in Equation (4) is used to represent that midges cannot fy arbitrarily fast; it represents physical constraints and hence must be present. The swarm marker attraction term −Mikmeˆ (k) must be present to represent that in nature swarms do indeed hover over swar
	eliminated but the swarm data is still adequately represented. Consider each term of Equation (4). The repulsion term must be present in order to ensure that two midges are not in the same position at the same time. The velocity damping term −Mikdv(k) in Equation (4) is used to represent that midges cannot fy arbitrarily fast; it represents physical constraints and hence must be present. The swarm marker attraction term −Mikmeˆ (k) must be present to represent that in nature swarms do indeed hover over swar
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	Fig. 5.— Velocity distributions for the x direction as a function of normalized x component of ep. The vertical line represents zero on the horizontal axis. For the boxplots, the middle line in each box is the median value, boxes with notches that do not overlap represent that the medians of the two groups di. er at the 5% signifcance level, the edges of the boxes are the 25and 75percentiles, whiskers (dashed lines) represent 1.5 times the interquartile range, and outliers are designated with a “+”. 
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	swarm diameter is only 10-12 cm). Interestingly, if the −Mikpeˆ (k) term is removed from m is changed from km = 10 to km = 100, then simulations show that all the distributions (e.g., velocity and acceleration) match those from (Okubo and Chiang, 1974) reasonably well (the reason for this is that on average x¯(k) is reasonably close to xm). However, the plot for km = 100 corresponding to Figure 2 (not included here in the interest of space) shows that x¯(k) only has swings of 2 cm, which is inconsistent wit
	swarm diameter is only 10-12 cm). Interestingly, if the −Mikpeˆ (k) term is removed from m is changed from km = 10 to km = 100, then simulations show that all the distributions (e.g., velocity and acceleration) match those from (Okubo and Chiang, 1974) reasonably well (the reason for this is that on average x¯(k) is reasonably close to xm). However, the plot for km = 100 corresponding to Figure 2 (not included here in the interest of space) shows that x¯(k) only has swings of 2 cm, which is inconsistent wit
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	Fig. 6.— Acceleration distributions for the x direction as a function of normalized x component of ep. The vertical line represents zero on the horizontal axis. The boxplot is explained in the caption of Figure 5. 
	-


	−2000 −1500 −1000 −500 0 500 1000 1500 2000 −2.7605 −1.7904 −0.82023 0.14992 1.1201 2.0902 3.0604 e p/s x, x dir a x , cm/sec2 
	– 15 – 
	– 15 – 


	however, such a high gain results in very close regulation of the swarm position centroid to the swarm marker. Above, by having both the kp and km gains it was possible to match the acceleration and velocity distributions, and only loosely regulate the swarm around the swarm marker. Hence, it seems that terms of the type shown in Equation (4) are all needed for a valid representation of the experimental midge swarm data. 



	2.3.2. Rules Based on Metric Distance 
	2.3.2. Rules Based on Metric Distance 
	While it has been shown that terms of the type seen in Equation (4) are all needed to represent the experimental data, we have not established that terms of the specifc form in Equation (4) are needed. In this and the following subsection we examine whether there 
	While it has been shown that terms of the type seen in Equation (4) are all needed to represent the experimental data, we have not established that terms of the specifc form in Equation (4) are needed. In this and the following subsection we examine whether there 
	are other attraction and repulsion rules that use less information and result in matching the swarm data as well as was done in the last subsection. 

	Common rules for attraction and repulsion in swarms (e.g., see (Couzin et al., 2002; Parrish and Hamner, 1997))) say that a midge should move away from other midges that are within a “repulsion range” rr, but toward other midges that are outside the radius rr, but inside the “attraction range” ra >rr. Let 
	 
	Nr(i,k)= j : x (k) − x(k)≤ rr,j =1,...,N 
	i
	j 

	denote the set of indices of the neighbors of midge i that are within the repulsion range of rr at time k. Here, as with the rule in Equation (4), the value of rr = 1 mm since a midge is 2 mm in length. Let 
	 
	Na(i,k)= j : rr <x (k) − x(k)≤ ra,j =1,...,N 
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	denote the set of indices of the neighbors of midge i that are in the “attraction range” of midge i at time k. Let 
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	j∈Nr(i,k) denote the position centroid of the neighbors of midge i in the repulsion range rr at time k. Note that for all k, |Nr(i,k)|= 0 since i∈ Nr(i,k). Let 
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	x¯ (k)= x(k)
	a
	j 

	|N
	|N
	a(i,k)| 

	j∈Na(i,k) 
	denote the position centroid of the neighbors of midge i in the attraction range at time 
	i iii i
	k. Let e(k)= x(k) − x¯ (k) and eˆ(k)= e(k) − d(k) and use this in place of eˆ(k) ii i
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	in Equation (4). Let e (k)= x(k) − x¯ (k) and use +Mikre (k) in place of the repulsion term in Equation (4). Note that if ra is too small, then midges will frequently become “disconnected” from the swarm. Here, however, drastic e ects like a midge wandering o 
	in Equation (4). Let e (k)= x(k) − x¯ (k) and use +Mikre (k) in place of the repulsion term in Equation (4). Note that if ra is too small, then midges will frequently become “disconnected” from the swarm. Here, however, drastic e ects like a midge wandering o 
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	and never returning (a permanent disconnection) are not seen due to the presence of the attraction term to the swarm marker in Equation (4). 

	After running many simulations, it was determined that (i) the noise needed to be at a high magnitude in order to match the swarm data and in particular the speed distribution dp = kdm =0.1 was used in all cases); and (ii) it was logical to begin with a low value of ra and increase its value while keeping the other midge fight rule parameters the same as in Section 2.2 (i.e., in no cases was it found that further tuning of the parameters a =1 cm it was not possible to tune the gains so that the swarm data i
	(hence, k
	improved the matching to the swarm data). Using r
	cm) these high values of r


	2.3.3. Rules Based on Topological Distance 
	2.3.3. Rules Based on Topological Distance 
	Next, in (Ballerini et al., 2008) it was shown that birds interacted with each other using a “topological distance” (a fxed number of nearest neighbors) rather than the metric distance like we just considered. Let Nn(i,k) denote the set of indices of the Nc, 1 ≤ Nc ≤ N, nearest neighbors to midge i at time k (for consistency with the last rule, this 
	includes midge i as its own nearest neighbor). Let 
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	denote the position centroid of the Nc nearest neighbors of midge i at time k. Let ii i
	eˆ(k)= x(k) − x¯(k) − d(k) and use this in place of eˆ(k) in Equation (4). Since the 
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	repulsion rule has little e ect, we simply keep the one in Equation (4). Note that with Nc = N = 25 this attraction rule is the same as the one used in Section 2.2 to match the swarm data. For the birds in (Ballerini et al., 2008) a value of Nc of 6 or 7 was found when N was in the range of hundreds to tens of thousands. This implies that Nc = 2 is a natural starting point for trying to match the swarm data (although in this case groups of size 2 could become disconnected from the swarm, the attraction to t
	In summary, while both the metric and topological approaches to defning the attraction rule can be tuned to represent the swarm data, good representations were only obtained when the rules closely approximated the attraction rule in Section 2.2 (i.e., with high values of r and Nc). Hence, it seems that if the midges use less information to defne an attraction rule, the swarm data cannot be matched. It is for this reason that cohesiveness analysis is only considered for the case when the fight rule in Equati
	3. Swarm Cohesiveness Analysis 
	In this section, the dynamics of the error system for the imidge are defned as the di. erences between the midge position and velocity and the swarm position and velocity centroids, respectively. After some preliminary technical results, the frst main result is given. It states that the error system is ultimately bounded, which means that all midge position and velocity trajectories are eventually bounded relative to the swarm position and velocity centroid trajectories. Next, the dynamics of the velocity c
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	Consider an error system with e(k)= x(k) − x¯(k) and e(k)= v(k) − v¯(k). Using simple algebra, the error dynamics are 
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	which is a nonlinear non-autonomous system. 
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	Defne E=[e ,e ] and E =[E,E,...,E] . With I an n× n identity matrix, the error dynamics of the imidge may be written as 
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	If we view the swarm as an interconnected system with each midge being a subsystem, then the matrix A in Equation (8) specifes the internal system dynamics for each midge subsystem in the error system, and U(k) gives the external input for each midge i at time step k. 
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	The following result will be used in both the theorems below. 
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	3.3. Ultimate Boundedness of Midge Swarm Error Dynamics 
	Our frst main result, proven next, states that there exists a known ultimate bound (in terms of the midge parameters) on the distances between the midge positions and velocities and the swarm centroid position and centroid velocity, and the error system trajectories will eventually satisfy this bound. 
	Theorem 1 Consider the error system described by the model in Equation (5). Assume the noise satisfes Equation (3). Assume T is suÿciently small such that the condition in Lemma 1 holds. Then, the trajectories of the swarm error system are uniformly ultimately bounded, and Efor all i will converge to the set b, where 
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	Remark 1 The fact that b is “attractive” means that if E(k) trajectories start outside 
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	b, they will eventually enter that set, and stay in that set for all time. Hence, if a midge starts at a large distance from the main body of the swarm, and at zero velocity, it will eventually join the group and stay within a known bound from the swarm position and velocity centroid. 
	Remark 2 If there is a higher magnitude of sensing noise (quantifed by the noise bounds Dp and Dm), or higher values of the repulsion gain kr, repulsion range rs, or N, then intuitively it is expected that the size of the swarm will grow. The above result is consistent with this intuition. In particular, if Dp, Dm, kr, rs, or N increases, the size of b, denoted b|, increases as can be seen by inspecting Equations (11) and (12). 
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	To study the boundedness of the midge swarm position and velocity centroids their dynamics are frst defned. Note that 
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	Our second main result, proven next, states that there exists a known ultimate bound (in terms of the midge parameters) on the di. erence between the swarm position centroid and the swarm marker that will eventually be satisfed. Also, it shows that the velocity centroid is ultimately bounded. The pattern of the formulation and proof follow that of the last subsection closely; hence, the presentation is brief. 
	Theorem 2 Consider the dynamics described by the model in Equation (18). Assume the noise satisfes Equations (3). Assume T satisfes Equation (21). Then, the swarm position and velocity centroids are uniformly ultimately bounded, and C(k) will converge to the set 
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	Remark 3 Since b is attractive, if the swarm position centroid starts out large relative to the swarm marker, it will eventually become within a known bound of the swarm marker. 
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	Also, if the swarm velocity centroid starts out very large, it will eventually become within a known size. 
	Remark 4 If there is a higher magnitude of sensing noise (quantifed by the noise bounds Dp and Dm), then intuitively it is expected that the error between the swarm position centroid and swarm marker, along with the velocity centroid, will grow. The above result is 
	¯
	consistent with this intuition. In particular, if Dp or Dm increase, the size of b, denoted b|, increases as can be seen by inspecting Equations (19) and (20). Note, however, that unlike in Theorem 1 neither the repulsion gain kr, size of the repulsion range rs, nor N a ect the size of the bound. 
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	Remark 6 Each of the two theorems require that T be suÿciently small in order to obtain the bounds. These conditions, in Equations (9) and (21), are both satisfed for the values of T, kp, km, and kd found for the validated midge swarm model in Section 2. The bounds determined in each of the two theorems can be computed from the parameters for the validated midge swarm model in Section 2. Generally, however, the bounds found in this paper are conservative since multiple overbounding arguments are used in the
	4. Conclusions 
	A mathematical model was introduced and shown to produce trajectory behavior, and velocity, speed, and acceleration distributions, that are quite similar to those found in the midge swarm experiments in (Okubo and Chiang, 1974; Okubo et al., 1976). The frst main mathematical result showed that all midge position and velocity trajectories are eventually bounded relative to the swarm position and velocity centroid trajectories, respectively. The second main result showed that the distance between the swarm po
	In the modeling study, it is noteworthy that the only attraction term for the fight rule that led to a good representation of the experimental data was −Mikpeˆ(k) with sensing noise of a signifcant magnitude. Other attraction rules that used less information (e.g., the ones based on metric and topological distance in Sections 2.3.2 and 2.3.3) could not match the experimental data unless they approximated −Mikpeˆ (k). This provides evidence that individual swarm members try to move toward a noisy estimate of
	In the modeling study, it is noteworthy that the only attraction term for the fight rule that led to a good representation of the experimental data was −Mikpeˆ(k) with sensing noise of a signifcant magnitude. Other attraction rules that used less information (e.g., the ones based on metric and topological distance in Sections 2.3.2 and 2.3.3) could not match the experimental data unless they approximated −Mikpeˆ (k). This provides evidence that individual swarm members try to move toward a noisy estimate of
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	the actual swarm position centroid. There is only one instance when the −Mikpeˆ(k) term contributes a force input that defnitely corresponds to a midge making progress toward moving to the position centroid: If the midge is far away from the position centroid (e.g., outside the main body of the swarm), the term will result in movement in the general direction of the swarm position centroid since the noise is bounded about the position centroid. 
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	Next, note that the matching of the midge’s experimental speed distribution to the Maxwell-Boltzmann speed distribution for molecules in a gas was frst recognized in (Okubo and Chiang, 1974). Clearly, this matching means that there is signifcant randomness in speeds of the midges in a swarm. Indeed, the modeling study here shows that without noise of a signifcant magnitude driving the velocity (i.e., the second equation in Equation (2)) it was not possible to obtain the Maxwell-Boltzmann speed distribution 
	While the noisy attraction term plays a key role in representing the swarm, the repulsion term does not since it acts on such short distances, essentially defning what happens when midges collide. Indeed, the experimental data could have been represented ikre(k) repulsion 
	just as well with either the repulsion term in Equation (4) or the +M
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	pr term defned in Section 2.3.2. Moreover, since e(k) ≤ (N − 1)rr, the cohesiveness results of the last section will also hold if +Mikre(k) is used as the repulsion term in Equation (4) 
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	(but, di. erent bounds will be obtained). 
	In the analysis, it is noteworthy that two key derivations made the cohesiveness 
	analysis possible. First, both the average error between any midge and the swarm position centroid and the average repulsion force for the swarm were zero (see equations just below Equation (7)). This arises since if there were no noise, every pair of midges in the swarm attract each other or repel each other by equal amounts, but in opposite directions. Since the average repulsion force is zero, one less term is included in U(k) that needs to be 
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	over-bounded. The fact that e = 0 simplifes the proof; if it were not zero then 
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	Nj=1 there is additional cross-coupling in the swarm between the E(k) and E(k), j = i, that would have to be accounted for in the analysis. Second, it was possible to load all the terms that could be bounded from above into U(k). These two facts allowed for the derivation of the error dynamics in Equation (8) that had the special form of a linear term (specifed via A) and a nonlinear stochastic term quantifed via U(k). Lemma 1 showed that Equation (8) is a stable linear system driven by a bounded nonlinear 
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	systems it was possible to use the same proof pattern to show that the dynamics were uniformly ultimately bounded. For both cases, the matrices A and Awere shown to have eigenvalues in the unit disk for the swarm parameters found in Section 2. The ultimate bounds were also computed from the midge parameters, but for the simulations conducted these bounds were quite conservative (several orders of magnitude larger than the achieved diameter of the swarm by the end of a 20 sec. simulation run). 
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	For future work, it would frst be of interest to perform experiments to determine if the midge fight rule is indeed encapsulated by Equation (4). Second, it would be useful to show that the mathematical results still hold if there are di. erent gains used in the midge p gains on each midge) since it is 
	For future work, it would frst be of interest to perform experiments to determine if the midge fight rule is indeed encapsulated by Equation (4). Second, it would be useful to show that the mathematical results still hold if there are di. erent gains used in the midge p gains on each midge) since it is 
	fight rule in Equation (4) for each midge (e.g., di. erent k

	unlikely that individual midges use exactly the same gains. Third, it would be useful to fnd tighter ultimate bounds on the error and centroid trajectories. 
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