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Abstract 
Foraging theory has been the inspiration for several decision-making algorithms for task-processing agents facing random 
environments. As nature selects for foraging behaviors that maximize lifetime calorie gain or minimize starvation probabil-
ity, engineering designs are favored that maximize returned value (e.g. profit) or minimize the probability of not reaching 
performance targets. Prior foraging-inspired designs are direct applications of classical optimal foraging theory (OFT). 
Here, we describe a generalized optimization framework that encompasses the classical OFT model, a popular competitor, 
and several new models introduced here that are better suited for some task-processing applications in engineering. These 
new models merge features of rate maximization, efficiency maximization, and risk-sensitive foraging while not sacrificing 
the intuitive character of classical OFT. However, the central contributions of this paper are analytical and graphical 
methods for designing decision-making algorithms guaranteed to be optimal within the framework. Thus, we provide a 
general modeling framework for solitary agent behavior, several new and classic examples that apply to it, and generic 
methods for design and analysis of optimal task-processing behaviors that fit within the framework. Our results extend 
the key mathematical features of optimal foraging theory to a wide range of other optimization objectives in biological, 
anthropological, and technological contexts. 
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1. Introduction 

Foraging theory has been a source of inspiration for opti-
mization (Passino 2002, 2005), autonomous vehicle control 
(Andrews et al. 2004; Quijano et al. 2006; Andrews et al. 
2007a; Pavlic and Passino 2009), and distributed resource 
allocation (Finke et al. 2006; Andrews et al. 2007b; Finke 
and Passino 2007; Quijano and Passino 2007). In each case, 
automated agents prosecute tasks that are analogous to food 
encountered by animals in the environment. Just like food, 
tasks can be scarce, are encountered randomly, carry a ran-
dom handling time, and carry a random value that is analo-
gous to calorie content. In addition, when an agent chooses 
to prosecute a task, it may face increased risk of harm dur-
ing the handling of the task (e.g. from fatigue or from forces 
analogous to predation). Just as natural selection will favor 
animal behaviors that maximize lifetime calorie content or 
minimize the probability of starvation, engineering design 
favors decision-making algorithms that maximize accumu-
lated value or minimize the probability of not reaching 
performance targets. Thus, by translating from biological 
currencies (e.g. calories) to engineering currencies (e.g. 
dollars), foraging behaviors shown to be advantageous in 

nature become optimal algorithms for engineered agents in 
random environments. 

Unfortunately, although an autonomous agent may be 
easily viewed as a forager, the objectives favored by natural 
selection are not necessarily good models for optimization 
in engineering. For example, an eagle in fight may select 
from prey it encounters so that it maximizes calories over its 
lifetime. However, an autonomous air vehicle (AAV) with a 
fnite number of packages to deposit on targets has a much 
shorter time horizon and thus will prioritize its targets dif-
ferently. Nevertheless, the simplicity of the intuitive results 
from optimal foraging theory (OFT) makes it attractive for 
the design of autonomous decision-making algorithms. In 
this paper, we identify the key structures responsible for 
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that simplicity so that optimization objectives that better 
ft engineering scenarios can lead to similar foraging-like 
designs. Thus, this paper extends the work of Andrews 
et al. (2007a) who applied the principle results of classical 
optimal foraging theory directly to AAV cases. 

In particular, we describe a generalized framework for 
the analysis and design of optimal autonomous behav-
iors of solitary task-processing agents. We also give algo-
rithms for designing behaviors within this framework that 
are guaranteed to meet suffciency conditions for optimal-
ity. Our framework encompasses two popular models of 
optimal foraging, which include the prey and patch mod-
els that inspired existing solitary agent designs (Andrews 
et al. 2004; Quijano et al. 2006; Andrews et al. 2007a). 
Four additional models that also ft within the framework 
are introduced to handle cases that are unft for classical 
foraging analysis but are applicable for engineered agent 
design. Thus, the framework and the generalized optimal-
ity algorithms allow for the rapid development of optimal 
behaviors in new solitary agent contexts (e.g. more appli-
cable for engineering design than science). However, they 
also provide methods for comparing behaviors that are opti-
mal under different utility functions. For example, we show 
that when fnite-lifetime success thresholds are introduced 
into optimization objectives, the resulting behaviors have 
the same form of classical OFT but prioritize targets in an 
order that varies with the size of the success threshold. 

The paper is structured as follows. In Section 2, we intro-
duce the Markov renewal–reward process that character-
izes a generic solitary task-processing agent and defne the 
advantage-to-disadvantage function, which is an abstract 
optimization objective that encapsulates several aspects of 
existing foraging theory. We also describe the models used 
in classical OFT and show that their objectives have the 
structure of an advantage-to-disadvantage function. In addi-
tion, we provide motivating examples from the literature 
of existing applications of foraging theory to engineering. 
In Section 2.3, we defne four new optimization objectives 
that have an advantage-to-disadvantage structure. Each of 
these new objectives models a special fnite-lifetime task-
processing agent with an intake threshold for success (e.g. 
a military autonomous air vehicle performing automated 
target processing with a fnite arsenal that must reach an 
accumulated target value by the time its arsenal is depleted). 
Two of these fnite-event models are inspired by classical 
rate (CR) maximization (Charnov 1973, 1976; Stephens 
and Krebs 1986), and two are inspired by effciency max-
imization. These fnite-lifetime objectives may better ft 
behaviors for autonomous agents that have short missions 
than the classical OFT that has inspired existing decision-
making algorithms. In Section 3, a graphical approach 
to multivariate optimization of advantage-to-disadvantage 
functions is discussed, and a more rigorous quantitative 
approach is explored in Section 4. Algorithms based on 
that approach are given in Appendix A that are guaran-
teed to fnd an optimal task-processing behavior for par-
ticular scenarios. A summarized comparison of optimal 

behaviors found by those algorithms for each of the six 
example advantage-to-disadvantage functions is given in 
Section 5. In addition, simulation results are given that 
show how behaviors developed with the methods in this 
paper have better performance in fnite-lifetime scenarios 
when compared with conventional foraging-inspired task-
choice behaviors. Finally, some concluding remarks and 
suggestions for future research are given in Section 6. 

2. Model of an autonomous task-processing 
agent 

In this section, we present a model of a task-processing 
agent and show how it generalizes several foraging-
inspired optimization problems from robotics and computer 
science. The summary of the bio-inspired engineering 
applications is given in Section 2.1, and the related opti-
mization problem from classical foraging theory is pre-
sented in Section 2.2. Then, in Section 2.3, we present four 
new optimization objectives that are better fts to model 
desirable behaviors for task-processing agents with fnite 
lifetimes. As these objectives each ft within the general-
ized framework, they can be solved with the generalized 
methods described in Sections 3 and 4. Moreover, conver-
sion from a classical OFT-inspired decision-making imple-
mentation involves little more than a change of parameters. 
This conversion process is emphasized in Section 5, which 
compares the results of applying the analytical methods in 
Section 4 to each of the example optimization objectives 
described here. 

Consider an autonomous agent that can complete n ∈ 
{1, 2, . . . } types of tasks. For task type i ∈ {1, 2, . . . , n}, 
the agent processes pi ∈ [0, 1] fraction of encountered 
type-i tasks and spends an average of τi ≥ 0 time process-
ing each selected type-i task. So task-processing behavior 
is completely characterized by vectors p � [p1, p2, . . . , pn]T 

and τ � [τ1, τ2, . . . , τn]T. Next, let R be the set of the real 
numbers, R≥0 be the set of non-negative real numbers, and 
R≥0 � R≥0 ∪ {∞}. For each type i ∈ {1, 2, . . . , n}, con-
straints on feasible behaviors are modeled with constants 

− + −pi , p ∈ [0, 1] and τ , τ+ ∈ R≥0 so that the feasible set ofi i i 
behaviors is 

− +F � {( p, τ ) ∈ [0, 1]n × R
n 
≥0 : pi ≤ pi ≤ pi , 

−τ ≤ τi ≤ τ+ , i ∈ {1, 2, . . . , n}},  (1)  i i 

which is a convex separable polyhedron. The opti-
mal behavior will maximize the generic advantage-to-
disadvantage function (Pavlic 2007) 

n 
a + piai( τi)

A( p, τ ) i=1J ( p, τ ) � � ,  (2)  nD( p, τ ) 
d + pidi( τi) 

i=1 
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−where a ∈ R and d ∈ R are constants and ai : [τ , τ+] →i i −
R and di : [τ , τ+] → R are functions of time τi associatedi i 
with type i ∈ {1, 2, . . . , n}. 

2.1. Background: foraging-inspired 
task-processing agents 

OFT was popularized by Stephens and Krebs (1986). It is 
based on the work of Charnov (1973), and recently updated 
results and new applications have been summarized by 
Stephens et al. (2007). OFT assumes that a solitary forager 
goes through Markov renewal cycles of searching for and 
responding to foraging opportunities. At every encounter, 
the forager’s energy stores will rise or fall based on the for-
ager’s behavior, the environment, and the encountered item. 
In particular, each prey type i ∈ {1, 2, . . . , n} is encoun-
tered at rate λi, and those encounters that are chosen for 
processing have an average gain gi( τi) and average cost 
ci( τi). During the search time between encounters, the for-
ager pays cost cs/λ where λ � λ1 + λ2 + · · · + λn (i.e. 1/λ 
is the average time between encounters, and cs is the cost 
paid per unit time searching). If the forager is viewed as an 
autonomous task-processing agent, then the prey it encoun-
ters are the tasks it must choose whether and how long to 
process. Stephens and Krebs (1986) describe two popular 
special cases of the general problem: 

(i) The prey model. In this case, it is assumed that tasks (i.e. 
prey) come in lumps that have fxed processing times 

−(i.e. processing-time bounds are such that τ = τ+ > 0i i 
for each type i). The agent (i.e. forager) must only select 
whether to process or ignore the task. 

(ii) The patch model. In this case, it is assumed that the 
agent processes every encountered task (i.e. preference 

− +bounds pi = pi = 1 for each type i), but each encoun-
tered task is a clumped patch of prey with decreasing 
marginal returns (e.g. due to depletion of prey within 
the patch). Hence, the agent must decide how long to 
process each task. 

As described in the selection of examples below, these 
ecological models of a solitary forager have been used 
to inspire optimal designs of autonomous mobile vehicles 
(Andrews et al. 2004, 2007a; Pavlic and Passino 2009), 
resource allocation strategies for distributed temperature 
regulation (Quijano et al. 2006), and Web sites that attract 
attention of humans on the Internet (Pirolli and Card 1999; 
Pirolli 2005, 2007). In this work, we show how the forager 
is a special case of a more general task-processing frame-
work. The solutions we provide for this framework apply to 
a wider set of applications than the original foraging and 
foraging-inspired cases. Moreover, this generalized frame-
work can be used as a tool to compare the operation and 
effcacy of different policies. 

2.1.1. Autonomous mobile vehicles Andrews et al. (2007a) 
show how both the prey and patch models described by 

Stephens and Krebs (1986) can be used to model an AAV 
(e.g. for military or surveillance applications). In partic-
ular, they consider a Dubins’s car (Dubins 1957) model 
of an air vehicle (e.g. a fxed-wing vehicle that travels at 
a constant speed and has a maximum turn radius). As it 
sweeps over the ground, an on-board sensor detects rela-
tively slow targets below the vehicle. The agent responds to 
each target detection either with ignorance or by choosing 
to complete a task for a certain amount of time. Some tasks 
have a fxed processing time (e.g. dropping bombs or food), 
and other tasks can be processed continuously by the agent 
(e.g. reconnaissance). Processing each task is costly to the 
agent (e.g. due to additional fuel use), but completing a task 
returns a value to the agent’s designer (e.g. dollars of proft 
or some currency encoding priority). 

Just as prey can be grouped into types based on returned 
net energy gain and handling time, these tasks can be 
grouped into n types based on net value gi( τi) −ci( τi) 
and processing time τi for each type i ∈ {1, 2, . . . , n}. 
Furthermore, Andrews et al. (2007a) use results from 
Stone (1975) to show that if a vehicle encounters a cluster 
(i.e. patch) of high-value targets that it may process contin-
uously, the accumulated value gi( τi) −ci( τi) of processing 
the targets in patch type i ∈ {1, 2, . . . , n} over time τi is 
the area under a decaying exponential (i.e. the density of 
targets in the patch decays due to the depletion of remain-
ing tasks after processing). Thus, patches of tasks have 
diminishing marginal returns just like patches of prey in for-
aging models. So descriptions of optimal animal foraging 
behavior are also recipes for optimal vehicle task-type (i.e. 
prey model) and processing-length (i.e. patch model) poli-
cies. Andrews et al. (2007a) use fying-vehicle simulations 
to verify that policies generated by both the prey model 
and the patch model perform well in stochastic environ-
ments; however, the analogy can be applied to autonomous 
underwater, outer-space, or ground vehicles as well. For 
example, a domestic autonomous ground vehicle that can 
collect trash, clean foors, and organize furniture faces ran-
dom tasks in its environment that it must choose whether to 
process or momentarily ignore while searching for a more 
valuable task. 

On-line implementation of OFT-inspired behaviors. 
In both the prey-model application described by 
Andrews et al. (2007a) as well as the temperature 
regulation example described in the following, the 
encounter rates with each task type must be estimated 
before the prey-model algorithm is used at each encounter 
to determine whether tasks should be processed or ignored. 
When encounter rates are available, the prey-model 
algorithm can be completed in linear time that scales 
with the number of task types. In addition, the ratio of 
the number of encounters with a type to the total time 
will asymptotically converge to the true encounter rate 
in the environment, and so a simple method exists for 
estimating the encounter rate. Although this on-line 
implementation of the prey model is relatively simple to 
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implement, Pavlic and Passino (2010) present a much 
simpler decision-making heuristic that converges to prey-
model-optimal behavior without the need for encounter 
rate estimation. In particular, they show that an asymptot-
ically optimal forager needs only to compare its present 
accumulated gain–total time ratio to the gi/τi ratio of each 
encountered task to determine whether the task should 
be processed or ignored. This heuristic is the natural 
extension of the conventional patch model implementation 
to the prey-model case. Thus, on-line implementa-
tions of OFT-inspired decision-making are suitable for 
autonomous agents with strict timing requirements and 
simple computational abilities. 

2.1.2. Resource allocation: distributed temperature regu-
lation Quijano et al. (2006) develop a method for applying 
the prey model to distributed resource allocation, and they 
test their strategies in a working physical temperature con-
trol experiment. Their apparatus consists of eight zones that 
each include a temperature sensor and a heating element. 
The zones are arranged so that there is signifcant cross cou-
pling (i.e. heat from one zone causes the temperature to rise 
not only at its local sensor but also on the sensors of nearby 
zones). This apparatus could be a model of a large room 
with multiple temperature actuators or a building with mul-
tiple rooms. Assuming that at most one heating element can 
be energized at a time, Quijano et al. design a policy for a 
centralized controller that determines which if any heating 
element should be activated at each time so that all zones 
achieve a single desired temperature. 

This temperature regulation problem connects to forag-
ing theory by using a ‘foraging for error’ method such as 
that described by Passino (2002, 2005). At each instant of 
time, there is an error associated with each zone represent-
ing the difference between the desired temperature and the 
temperature at its sensor. Quijano et al. (2006) create an 
error index that maps all errors to a fnite set of integers; 
that is, they generate a mapping i( e) from error magnitude 
e ∈ R to error type i ∈ {1, n}. For each error type i, they  
also associate a value gi and a heating time τi that both 
are monotonically increasing with error magnitude (i.e. a 
higher error magnitude is associated with a higher value 
and a higher heating time). The centralized controller ran-
domly chooses which zone to monitor at each time. Hence, 
it encounters each error type just as a forager encounters 
prey types. At each encounter with error e, it identifes the 
error type i( e) and the associated value gi(e) and heating 
time τi(e) and uses the prey model to determine whether to 
activate the zone for the τi(e) heating time or to move to the 
next zone. Quijano et al. actually implement four such error 
foragers simultaneously and show that the resulting strategy 
achieves uniform temperature regulation across all zones 
and rejects temperature disturbances even under delays and 
sensor noise. 

Similar foraging-inspired resource-allocation algorithms 
could be used on mobile agents deployed on factory foors 

that must balance queues of raw materials. If a raw mate-
rial is loaded into a physical queue from one end only, the 
queue will frequently be overloaded on that end. A mobile 
robot that must move around the queue to shift resources 
from one location to another could prioritize its movements 
based on the height of each location in the queue compared 
to the average height. Those areas with the greatest off-
average error would be highest value and thus would attract 
the greatest attention from the re-allocation agent. 

2.1.3. Web design Pirolli (2007) gives a summary of so-
called ‘information foraging’ analyses of human behavior 
on the Internet that are based on classical optimal forag-
ing theory. In one example, humans are viewed as foragers 
that accumulate information from Web sites that are viewed 
as patches of information, and it is assumed that humans 
will allocate time in each Web patch according to optimal 
foraging theory. Hence, Web developers must organize con-
tent on their Web pages in order to maximize the time an 
optimal information forager should spend using their sites. 
For example, one of the key results of the patch model of 
optimal foraging theory is that foragers will spend less time 
in all patches if the average time between patch encoun-
ters decreases. In particular, the forager leaves each patch 
when the patch marginal returns fall below a particular 
threshold, and that threshold increases as the search time 
between patches decreases. Likewise, if fast search engines 
return several relevant responses to a search query, the 
information-foraging human will spend very little time vis-
iting each site before moving to the next site in the search 
results. Consequently, Web sites designed to retain visi-
tors for as long as possible (e.g. to maximize exposure to 
advertisements) must dynamically arrange content based on 
the search request so that the site sustains a high level of 
marginal returns of relevant information. 

2.2. Classical optimal foraging objective 

In Section 2.1, we described several examples of how OFT 
has been used in the technological design of autonomous 
vehicles, resource allocation algorithms, and dynamic Web 
sites. Here, we summarize the classical OFT optimization 
objective and show how it is a special case of the advantage-
to-disadvantage function. We also show how a related but 
different optimization objective favored by some behavioral 
ecologists is also an advantage-to-disadvantage function. 
Later, in Section 2.3, we present other optimization objec-
tives that are better suited for engineering applications (e.g. 
AAV delivery schedules when there are a fnite number of 
packages to deliver to a random set of targets). 

OFT studies behaviors that maximize Darwinian 
ftness, which is an unmeasurable quantity in general. 
Charnov (1973) and Pyke et al. (1977) suggest that the life-
time rate of total gain to total time is a suffcient ftness 
surrogate because it predicts behaviors that achieve maxi-
mal foraging gain for minimal foraging time, which are the 
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two objectives from the classic optimization model of natu-
ral selection (Schoener 1971). Unfortunately, for any fnite 
lifetime, this optimization objective strongly depends on 
precise knowledge of how gain and time covary (Charnov 
1973; Pavlic 2007). So lifetimes are assumed to be very 
long (i.e. practically infnite with respect to prey handling 
and search times) so that the sensitivity of the optimization 
objective to the covariances is vanishingly small. 

In particular, Charnov (1973) assumes that encounters 
with each type come from an independent Poisson count-
ing process. So the process describing all encounters is the 
merged Poisson process, and the energetic intake is mod-
eled by a Markov renewal–reward process corresponding 
to this merged process. Over a long time, to maximize 
both cycle gain and number of cycles, the optimal foraging 
behavior ( p, τ ) ∈ F should maximize the stochastic limit of 
total gain to total time (Pavlic 2007). That is, the behavior 
should maximize the rate 

n 
sλipi (gi( τi) −ci( τi) ) − c 

i=1 ,  (3)  n 

1 + λipiτi 

i=1 

which matches Equation (2) with 

sa � −c , ai( τi) � λi (gi( τi) −ci( τi) ) , 

d � 1, and di( τi) � λiτi.  (4)  

−The prey model lets τ � τ+ for each task type i ∈i i 
{1, 2, . . . , n} and fnds the optimal p ∈ [0, 1]n , and the 

− +patch model lets p � p � 1 for each patch type i ∈i i 
{1, 2, . . . , n} and fnds the optimal τ ∈ [0, ∞)n (Stephens 
and Krebs 1986). 

The expectation of ratios. Some observational evidence 
(e.g. Nonacs 2001) contradicts predictions from the 
marginal value theorem (MVT), which is the principle 
result of the patch model (Charnov 1973, 1976; Stephens 
and Charnov 1982; Stephens and Krebs 1986). In response, 
arguments from Templeton and Lawlor (1981) have been 
used as fodder for expectation-of-ratios (EoR) (Harder 
and Real 1987; Bateson and Kacelnik 1996; Bateson and 
Whitehead 1996) objective functions of the form 

sn 
λi gi( τi) −ci( τi) − c 

λpi 1 ,  (5)  
λ + τii=1 λ 

which matches Equation (2) with 
s 

λi gi( τi) −ci( τi) − c 
λa � 0, ai( τi) � , d � 1,1λ

λ + τi 

and di( τi) � 0. 

These two optimization objectives are signifcantly differ-
ent, but because they are advantage-to-disadvantage func-
tions, they can both be analyzed with the generic methods 
presented in this work. 

2.3. New objectives for finite-event scenario 

The success of classical OFT to describe animal foraging 
behavior is not uniform across species and environments. 
Likewise, some applications will be ill suited for solutions 
inspired by OFT. In Section 2.3.1, we focus on criticisms 
of the OFT formulation for cases where task-processing 
agents cannot be assumed to have unending operation. 
Then, in Section 2.3.2, we introduce a novel optimization 
model of an autonomous task-processing agent that may 
better ft applications that are less suitable for OFT. 

2.3.1. OFT inadequacies in finite-lifetime models Classi-
cal foraging theory is not well suited for modeling fnite 
lifetimes where either success thresholds must be met or 
only a fnite number of tasks can be processed. For exam-
ple, a small bird may perish from the heat lost during the 
night if it does not eat enough during the day. Likewise, 
an AAV dispatched for a fnite periods of time (e.g. due to 
daily fuel constraints) may fail each mission if it ignores 
too many tasks with a low marginal return (e.g. by avoid-
ing low-proft-per-time tasks in favor of waiting for high-
proft-per-time tasks, it may return too little overall proft 
in its fnite mission time to justify its overall fuel cost). 
In the infnite lifetime case, future opportunities are cer-
tain, and so waiting can be a benefcial tactic. However, in 
the fnite-lifetime case, future opportunities are uncertain, 
and so successful foragers should be biased toward present 
returns. 

To handle cases with survival thresholds over short times, 
Stephens and Charnov (1982) describe a risk-sensitive for-
ager that maximizes the probability that a net gain threshold 
will be achieved by some critical time. This risk-sensitive 
foraging model is also used by Andrews et al. (2007a) for an 
AAV application where the vehicle is given a value thresh-
old it must reach by the end of its mission time. Initially, the 
AAV specializes on targets that have a high value-to-time 
ratio. However, at the end of its life, if it has not accu-
mulated enough value to reach its goal threshold, it begins 
to generalize on all targets it encounters. Hence, the risk-
sensitive behavior is a perturbation of the rate-maximizing 
behavior that becomes most pronounced at the end of life 
(i.e. at the end of an agent’s mission). However, the risk-
sensitive model not only uses limiting forms of the mean 
and variance of the accumulated gain, but it is also based 
on results that follow from the central-limit theorem. Hence, 
even though the formulation is meant to prescribe behaviors 
for short-lifetime agents, it is based on assumptions that are 
only true for agents with long lifetimes. 

As discussed by Wajnberg (2006), OFT can be used 
to describe the behavior of an insect that searches for 
hosts to lay her eggs in. However, it is best suited to 
model this scenario when typical lifetimes are too short to 
deplete the egg supply. However, several studies have shown 
that egg-limited parasitoids are not uncommon (Rosenheim 
and Rosen 1991; Minkenberg et al. 1992; Fletcher et al. 
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1994; Prokopy et al. 1994; Rosenheim 1996; Heimpel and 
Rosenheim 1998). Furthermore, in AAV applications where 
packages (e.g. bombs or food bundles) are dropped on tar-
gets, the mission will likely be limited by the number of 
packages able to be stored within the AAV. In Section 2.3.2, 
we develop a simple task-processing model that fts within 
the advantage-to-disadvantage framework and accounts for 
both success thresholds and limitations on number of tasks 
processed. 

2.3.2. Autonomous agent model for finite-event scenario 
Consider a task-processing agent similar to that described 
in Section 2.1. That is, consider an agent that encounters n 
types of tasks where a task of type i ∈ {1, 2, . . . , n} is char-
acterized by its Poisson encounter rate λi, processing pref-
erence pi, average processing time τi, average gain g( τi), 
and average cost c( τi). That agent pays an average search 
cost cs/λ between encounters, where λ � λ1 +  · · ·  +  λn 

is the encounter rate of the Poisson process resulting from 
merging the n independent encounter processes for each 
task type. However, also let N ∈ {1, 2, . . . } be the number 
of processed encounters in a mission duration. For exam-
ple, a forager may need to eat or store N items to survive 
over winter, or a female may have N eggs to lay in encoun-
tered hosts, or an AAV must deliver one of N packages to 
each deserving target. In each case, the time to complete 
each mission is fnite and random, but the number of tasks 
completed in each mission is fxed at N . 

Instead of considering the Markov renewal process that 
renews at each encounter at a rate of λ1 +  · · ·  +  λn, it is  
convenient to focus on the Markov renewal process that 
renews at every processed encounter at the lower rate of 
p1λ1 + p2λ2 + · · · + pnλn. The agent mission can be rep-
resented by either process, but many cycles of the former 
process may complete during a single cycle of the latter 
process. Hence, for this fnite-event agent, the expectation 
of total net gain G( N), cost C( N), and time T( N) are  given  
by n 

sλipi (gi( τi) −ci( τi) ) − c 

E( G( N) )  = N i=1 ,  (6)  n 

λipi 

i=1 

n 

λipici( τi) 
s+ c

E( C( N) )  = N i=1 
n ,  (7)  

λipi 

i=1 

and n 

1 + λipiτi 

E( T( N) )  = N i=1 
n .  (8)  

λipi 

i=1 

These statistics can then be combined to form optimization 
objectives suitable for different applications. In particular, 
the fnite-event agent can maximize 

(i) Excess rate. Because mission durations are fnite by def-
inition, success thresholds can be added. Let GT ∈ R 
be a gain penalty charged to the agent after its N pro-
cessed encounters (e.g. an autonomous vehicle must 
accumulate GT dollars of proft from the frst N tasks 
it randomly encounters and picks for processing). That 
is, GT is the value threshold the agent must reach to 
be dispatched on another mission. This threshold will 
often be positive, but it may be negative (e.g. it may 
be a handicap allowed to the agent). In this case, opti-
mal behaviors maximize the ratio of excess net gain 
to total time, which is the advantage-to-disadvantage 
function 

E( G( N) )  −GT 

E( T( N) )  

= 

n 

λipi 

i=1 

GT 

gi( τi) −ci( τi) − 
N 

n 

s− c

. (9)  

1 + λipiτi 

i=1 

In this case, decreasing threshold GT to zero or increas-
ing the number of cycles N will make their effect on the 
optimal behavior negligible. In particular, as N → ∞, 
fnite-event excess-rate (ER) maximization is equiva-
lent to classical infnite-time rate maximization. That is, 
when future opportunities are certain, choices should 
be made based on the balance between returned gain 
and required processing time (i.e. marginal rate). How-
ever, when future opportunities are uncertain (i.e. low 
N) or the threshold for success is high (i.e. high GT ), 
the optimal behavior shifts toward high-gain tasks that 
better guarantee meeting the success threshold. That 
is, when the agent is at risk of not meeting its suc-
cess threshold, it spends relatively more time processing 
(i.e. earning gain for certain) and relatively less time 
searching. 

(ii) Time-discounted net gain. Classical OFT describes 
behaviors that simultaneously maximize net gain and 
minimize foraging time. The relative importance of 
time minimization over gain maximization is varied in 
order to minimize the opportunity cost (Houston and 
McNamara 1999) of each activity. That is, the opti-
mal rate of gain represents the maximum gain that can 
be returned for each unit of time. An OFT behavior 
accumulates gain in each activity only if there is no 
other activity that could return more mean gain for that 
amount of time. Hence, the optimal rate of gain repre-
sents the gain–time tradeoff that minimizes opportunity 
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cost. Instead, the gain–time tradeoff can be fxed a pri-
ori. In particular, an optimal behavior might maximize 
the advantage-to-disadvantage function 

E( G( N) )  −GT − w E( T( N) )  = 
n 

GT 

λipi gi( τi) −ci( τi) − − wτi − cs − w 
N 

N i=1 ,n 

λipi 

i=1 

(10) 

where discount rate w ∈ R is a constant representing the 
relative importance of the time objective over the gain 

− − −objective. In cases where p = p = · · · = p = 0, we 1 2 n 
assume that cs + w ≥ 0 to avoid the pathological case 
where it is best for the forager not to do any process-
ing. We include the threshold GT for completeness, but 
it only shifts the objective function by a constant value, 
and so it has no impact on the optimal solution. That is, 
when maximizing ER above, the relative value of gain 
and time foat with the environment and the success 
threshold; for high thresholds in environments where 
encounters return relatively low gain, high-gain oppor-
tunities have a greater value. In this case, because the 
relative gain–time value is fxed, the success threshold 
has no effect on optimal solutions. 

(iii)Excess efficiency. Stephens and Krebs (1986) criticize 
using efficiency (i.e. beneft-to-cost) objectives because 
they neglect the impact of time and do not differenti-
ate between behaviors that bring large gains at large 
costs and small gains at small costs. However, effciency 
is a commonly used metric in engineering applica-
tions. In addition, in our fnite-event model, the impact 
of time is explicitly modeled by cost functions, and 
gain thresholds help to differentiate between high-gain– 
high-cost and low-gain–low-cost behaviors. So we can 
defne an effciency metric that answers both concerns 
of Stephens and Krebs. Let GT ∈ R be a minimum total g 
gross gain required for success. An optimally effcient 
behavior will maximize the advantage-to-disadvantage 
function 

n GT 

λipi gi( τi) − 
g 

E( G( N) )  + E( C( N) )  −GT N 
g i=1 = . nE( C( N) )  

sc + λipici( τi) 
i=1 

(11) 

Again, decreasing threshold GT or increasing number of g 
cycles N suffciently will make their impact on the opti-
mal behavior negligible. If the task-processing agent is 
given a low success threshold or a large number of tasks 
to complete, it should not greatly perturb its behavior 
from the pure effciency maximizer. 

(iv)Cost-discounted gain. Just as the gain–time tradeoff 
can be fxed a priori, so can the gain–cost tradeoff. 
In particular, an optimal behavior could maximize the 
advantage-to-disadvantage function 

E( G( N) )  + E( C( N) )  −GT − w E( C( N) )  = g 

n GT 
sλipi gi( τi) − 

g − wci( τi) − wc 
N 

N i=1 , (12) n 

λipi 

i=1 

where discount rate w ∈ R is a constant representing the 
relative importance of the cost objective over the gain 
objective. Again, we assume that cs + w ≥ 0 in cases 
where p1 

− = · · · =  pn 
− = 0 to avoid the pathological 

case, and we include the GT threshold for completeness. g 

These four optimization objectives are all advantage-to-
disadvantage functions, and they will be graphically exam-
ined in the examples from Section 3. Results of the 
application of the algorithms described in Section 4 will be 
given in Section 5. 

3. A graphical optimization approach 

It can be instructive to study advantage-to-disadvantage 
functions graphically, especially when those functions lack 
properties required for analytical tractability. Here, we 
extend the graphical optimization approach described by 
Stephens and Krebs (1986) to arbitrary advantage-to-
disadvantage functions with arbitrary constraints. We use 
insights from the graphical process to compare and contrast 
the example optimization objectives discussed in Section 2. 
An analytical optimization approach is given in Section 4 
along with algorithms that are guaranteed to fnd an optimal 
task-processing behavior for certain scenarios. 

Because Equation (2) is a ratio, its value can be depicted 
as the slope of a line, and so optimization is fnding the 
line with the steepest slope. This process is illustrated in 
Figure 1. Here, the shaded area is constructed by plotting 

n nthe point ( 1 pidi( τi) ,  1 piai( τi) )  for  every  (  p, τ ) ∈i= i= 
F . For each of those points, the slope of the line con-
necting it to the point ( −d, −a) is equal to the advantage-
to-disadvantage function for the corresponding behavior. 
So optimization consists of rotating a ray originating from 
( −d, −a) from  −90◦ toward 90◦ and stopping at the angle 
just before the ray leaves the shaded region for the last time. 
If ( −d, −a) is within the shaded region, the ray will never 
leave the region between −90◦ and 90◦ of rotation, and so 
the 90◦ ray should be used. In general, the shaded region 
need not be convex nor connected, but it should be closed 
(e.g. it could be a fnite set of points). 



� � �
�

�� �

�

512 The International Journal of Robotics Research 30(5) 

Fig. 1. Graphical optimization of an advantage-to-disadvantage 
function. Each point in the shaded region corresponds to a differ-
ent feasible behavior ( p, τ ), and the slope of the line connecting 
that point to ( −d, −a) is the value of the objective function J ( p, τ ) 
for that behavior. Hence, the three open circles correspond to three 
distinct behaviors that result in the same suboptimal rate J−. An  
optimal behavior falls on the ( −d, −a)-ray with the greatest posi-
tive slope. Here, the flled circle corresponds to the unique optimal 
behavior that results in the optimal rate J∗ , which is the slope of 
the corresponding ( −d, −a)-ray. 

3.1. Optimization of the classical objective 

For the following, let 

λ � 
n 

i=1 

λi, g � 
n 

i=1 

λi 
pigi( τi) ,

λ 
c � 

n 

i=1 

λi 
pici( τi) ,

λ 

and τ � 
n 

i=1 

λi 
piτi. 

λ 

The average time between encounters is 1/λ, and λi/λ is 
the probability that an encounter is with a task of type 
i ∈ {1, 2, . . .  , n}. The expected processing gain, process-
ing cost, and processing time for a single encounter are g, 
c, and τ , respectively, and the rate of gain in Equation (3) is 
equivalent to 

n 
csλi cs pi (gi( τi) −ci( τi) ) − 

λ λ g − c − 
i=1 λ= . (13) n 11 λi + τ+ piτi λλ λ 

i=1 

For all i ∈ {1, 2, . . .  , n}, assume that λi/λ is constant with 
respect to λ (i.e. an encounter density); this assumption 
assists in the qualitative analysis of the impact of param-
eter changes on the optimal ( p, τ ) behavior. Increases in 
the optimal τ or g refect increased preferences for higher 
processing times or processing gains, respectively. 

Graphical optimization of this function is shown in 
Figure 2 for a given search cost cs and encounter rate 
λ. As the average interarrival time 1/λ or search cost cs 

increases, the point ( −1/λ, cs/λ) anchoring the ray with 
slope J∗ will move to the left. Consequently, the point of 
tangency between the ray and the feasible behavior frontier 
will move to the right. That point corresponds to the opti-
mal combination of average processing time τ and average 
net processing gain ( g − c). If cs or 1/λ increase to beyond 

Fig. 2. Graphical optimization of the classical optimization objec-
stive. As search cost c or interarrival time 1/λ increases, the mean 

processing time τ will increase. 

the point where cs/λ matches the ( g − c)-peak of the feasi-
ble behavior frontier, the optimal average processing time τ 
will continue to increase although the optimal average net 
processing gain ( g − c) decreases. 

In words, small increases in search cost cs/λ cause 
the optimal processing time to increase in order to return 
more average processing gain from each encounter. How-
ever, large increases in search cost cs/λ cause the optimal 
processing time per encounter to increase in spite of the 
resulting decreasing average processing gain per encounter. 
In this region of decreasing average processing gain, the 
increased average processing time preempts the very costly 
searching (i.e. rather than adding gain from processing, 
search cost is being removed by searching relatively less). 
This effect is a result of opportunity cost minimization; 
there is less opportunity cost for additional processing when 
searching is itself very costly. Processing tasks not only 
accumulates gain, but it prevents the loss of gain through 
searching. A task-processing agent ceases processing a task 
when it is likely that a task with higher marginal returns 
will be found quickly. However, when there is a long time 
between encountered tasks, it is better to burn fuel process-
ing a task longer than burning fuel searching for a new task 
because gain is accumulated while processing but not while 
searching. 

3.2. Optimal behaviors from alternative 
objectives 

For simplicity in this graphical analysis, assume the special 
− + ∗ case of patch problems (i.e. p = p = p � 1 for eachi i i 

i ∈ {1, 2, . . .  , n}). These results can be extended to prey-
model problems by translating increased task-processing 
times to increased preference for task types with higher 
processing times; these prey-model effects (e.g. prefer-
ence reversal) are explored in Section 5 after the analytical 
methods in Section 4 are introduced. Consider fnite-event 
maximization of the following: 
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(i) Excess rate. In this case, Equation (9) is 

n n 
GT 

sλi (gi( τi) −ci( τi) ) − λi − c 
N 

i=1 i=1 
n 

1 + λiτi 

i=1 

GT cs 

g − c − + 
N λ = , (14) 

1 + τ 
λ 

which is equivalent to Equation (13) with the per-cycle 
search cost cs/λ augmented by the per-cycle average 
success threshold GT /N . That is, in the patch case, 
every fnite-event task-processing agent that maximizes 
ER can be transformed into an equivalent infnite-time 
rate maximizer by increasing search cost. So increas-
ing threshold GT or decreasing number of cycles N will 
have the same effect on the fnite-event ER maximizer 
as increasing search cost cs on the infnite-time rate 
maximizer, and Figure 2 also describes this case. This 
result is consistent with the idea that thresholds induce 
an exploration cost which is reduced when future oppor-
tunities are certain. That is, because the agent receives 
no gain while searching, searching is a less desirable 
activity when high gain thresholds must be met. 
Stephens and Charnov (1982) present a risk-sensitive 
model of foraging behavior that predicts the optimal 
combination of gain mean and variance to maximize 
the probability of reaching a critical energetic thresh-
old. Stephens and Krebs (1986) show that optimal 
risk-sensitive processing times will be: 

• greater than rate-maximized processing times 
when the energetic threshold is less than expected 
gain; hence, present gains are increased to reduce 
lifetime gain variance (i.e. reduce uncertainty); 

• less than rate-maximized processing times when 
the energetic threshold is greater than expected 
gain; hence, lifetime gain variance is increased 
(i.e. to increase probability of very high accu-
mulated gain) by increasing number of lifetime 
encounters at the cost of reduced lifetime mean 
gain; 

• identical to rate-maximized processing times 
when the energetic threshold is equal to expected 
gain. 

So the time-limited task-processing agent trades per-
encounter gain with number of encounters to maximize 
the probability of reaching a success threshold. 
The ER task-processing model modifes the CR max-
imizing model in a similar way. However, this model 
has a fxed number of encounters and a variable time, 
and the gain success threshold is essentially a forced 
cost. Consequently, results are opposite the expected 

results from risk-sensitivity theory. In particular, when 
the success threshold is: 

• positive, the agent increases processing times; 
in this context, a positive threshold implies that 
the agent suffers a loss from each processed 
encounter, and so the opportunity cost of more 
processing time is reduced; the agent delays the 
next encounter in order to mitigate the effect of 
the next positive threshold; 

• negative, the agent decreases processing times; 
in this context, a negative threshold implies that 
the agent receives a gain from each processed 
encounter, and so the opportunity cost of more 
processing is increased; at this heightened cost, 
the agent cannot afford to spend more time pro-
cessing when future negative thresholds are left to 
be encountered; 

• zero, the agent behaves like a CR maximizer. 

(ii) Time-discounted net gain. Under the patch assump-
tion, the time-discounted net-gain (TDNG) objective 
function in Equation (10) does not have a convenient 
slope-maximizing graphical interpretation; however, a 
different graphical method can be used, and this method 
reveals a relationship between time-discounted net-
gain maximization and rate maximization. In particular, 
Equation (10) in the patch case is equivalent to 

cs 1 GT 

N((g − c) − wτ) − N + w + . 
λ λ N 

(∗) 
(∗∗) 

Because N > 0 and ( ∗∗) is constant, TDNG optimiza-
tion is identical to optimization of ( ∗) �( g − c) −wτ . 
So possible solutions come from the dark upper fron-
tier in Figure 2, which corresponds with the behaviors 
that maximize ( g−c) for a given τ and minimize τ for a 
given g−c (i.e. the behavior will be Pareto optimal with 
respect to these two optimization objectives). The par-
ticular solution from this frontier is dependent on the 
selection of w ∈ R, which is a cost rate that converts 
time into gain. 
Graphical TDNG optimization is shown in Figure 3. 
Just as in Figure 2, each point in the shaded area of 
Figure 3(a) is the pair ( τ , g − c) corresponding to a par-
ticular ( p, τ ) behavior. In this example, the frontier of 
the shaded area is smooth and continuous, and so it can 
be represented as a differentiable function ( g − c) (  τ ), 
and the optimal processing average processing time τ ∗ 

is the point where ( g−c) ( τ ∗) = w and ( g−c) < 0. So 
optimization of smooth frontiers is depicted as fnding a 
point of deceleration that is tangent to a line with slope 
w. Two such lines are shown in Figure 3(a); the thick 
portions of those lines correspond to ( cs , λ) combina-
tions where TDNG and rate maximization are equiva-
lent. As discussed by Houston and McNamara (1999), 
if w is set to the maximal value of Equation (14) (i.e. the 
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Fig. 4. Optimization based on effciency. In (a), excess-effciency 
Fig. 3. Time-discounted net-gain optimization. The shaded area 
used in graphical rate maximization is also used in (a); however, 
the optimal TDNG behavior corresponds to the point of tangency 
with a line of slope w. Here, the steeper cost rate w1 > w2 is 

1∗associated with a shorter average time τ < τ2∗ because time 
is more expensive. As shown in (b), for a given w, the optimal 
TDNG τi is the point of tangency between of tangency between 
gi( τi) −ci( τi) and a line of slope w. 

maximum long-term rate of gain), the corresponding 
gain–time tradeoff will also maximize long-term rate of 
gain. 
In Section 4, we give precise analytical methods for 
optimization of this function. Meanwhile, we observe 
that because ( g − c) −wτ is a weighted sum, then 
for each type i ∈ {1, 2, . . . , n}, the optimal processing 
time τ ∗ is the point that maximizes gi( τi) −ci( τi) −wτi.i 
So TDNG optimization is equivalent to the decoupled 
optimization of the n versions of this expression. In 
particular, for each i ∈ {1, 2, . . . , n}, if the optimal 

−processing time τ ∗ ∈( τ , τ+), then it must be thati i i 
gi( τi) −ci( τi) = w and gi ( τi) −ci ( τi) < 0. So opti-
mization of each type has an identical structure to the 
optimization of the aggregate. As shown in Figure 3(b), 
each optimal processing time is the point of tangency 
with a line of slope w. As shown by the dark line seg-
ments in Figure 3(a), once the optimal processing time 
is found for every type, the line with slope w that inter-
sects ( τ ∗, (  g − c)∗ ) can be used to fnd the set of ( cs , λ) 
combinations that lead to the same optimal behavior in 
the rate-maximizing case. 

(iii)Excess efficiency. The graphical optimization approach 
shows that effciency maximization and rate maximiza-
tion can have similar optimal solutions. In these patch 
problems, Equation (11) is 

n 

i=1 

λigi( τi) − 

n 

n 

i=1 

GT 
g

λi 
N 

= 
g − 

cs 

GT 
g 

N , (15) 
sc + λici( τi) λ 

+ c 

i=1 

which resembles Equation (14) and has optimization 
depicted by Figure 4(a). 

maximization is shown to be similar to excess-rate maximiza-
stion. Here, as search cost c or interarrival time 1/λ increases, 

the mean processing cost c will increase. So long as processing 
cost increases are due to processing time increases, mean process-
ing time τ will also increase. This result qualitatively matches 
what is expected for rate maximization. In (b), cost-discounted 
gain (CDG) optimization is shown for one particular type, i ∈ 
{1, . . . , n} with linear processing cost. In this example, the type’s 
processing cost ci( τi) is depicted as a linear function ciτi, which  
makes CDG optimization identical to TDNG optimization when 
each type’s processing time is scaled by ci. 

In particular, if the processing cost functions are mono-
tonically increasing with time, changes in the envi-
ronment associated with increases in optimal-rate pro-
cessing time will also be associated with increases 
in optimal-effciency processing time. The effciency 
defned by Equation (15) is equivalent to a long-term 
rate of gain after time has been converted to a different 
currency. In this case, those currency conversions vary 
among types and the environment. 

(iv)Cost-discounted gain. Under the patch assumption, the 
cost-discounted gain (CDG) function in Equation (12) 
is 

cs GT 

N (g − wc) − N + 
g 

, 
λ λ 

which is maximized at the same point as g − wc. As in  
TDNG optimization, optimization of each type can be 
decoupled from the other types. In particular, for each 
i ∈ {1, 2, . . . , n}, each optimal processing time τ ∗ max-i 
imizes gi( τi) −wci( τi). In the special case where pro-
cessing costs are linear in time, optimization is depicted 
by Figure 4(b). That is, optimization is nearly identical 
to the TDNG case except that the processing time in 
type i ∈ {1, 2, . . . , n} is scaled by ci. 

So not only can each of the fnite-event optimization objec-
tives be optimized using similar methods, but they all have 
results that are qualitatively identical to CR maximization 
results. Hence, these optimization objectives can be used 
to model behaviors that do not perfectly ft the classical 
foraging model. 

The EoR objective in Equation (5) apparently does not 
have a convenient structure for graphical optimization. 
In Section 4, we give analytical strategies for its opti-
mization. Meanwhile, to motivate a graphical optimization 
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method, we observe that because Equation (5) is a weighted 
sum, then it can be shown that optimization of Equa-
tion (5) reduces to optimization of ( gi( τi) −ci( τi) −cs/λ) / 
( 1/λ+τi) for each i ∈ {1, 2, . . . , n}. Each of these functions 
is an advantage-to-disadvantage function nearly identical to 
Equation (14) when n = 1, and so the standard graphical 
optimization procedure can be applied to each type sepa-
rately. However, although EoR optimization can be com-
pleted separately for each type i ∈ {1, 2, . . . , n}, the optimal 
processing times are still related by global parameters cs 

and λ. 

4. An analytical optimization approach 

The graphical approach described in Section 3 makes qual-
itative predictions about average behaviors but is inappro-
priate for more precise investigations. Here, we apply a 
more rigorous analysis approach. In particular, we describe 
the mathematical structure of smooth objective functions at 
points of optimality. In Appendix A, we provide detailed 
descriptions of algorithms that are guaranteed to fnd these 
points of optimality. However, for brevity, in this sec-
tion we connect the characterization of a generalized task-
processing optimum to the popular algorithms used in OFT-
type applications. Finally, we summarize the application of 
algorithms from Appendix A to the example advantage-
to-disadvantage functions described in Section 2, and we 
list some observations about important similarities and 
differences in the results. 

4.1. Characterization of optimal behaviors 

Here, we must characterize the optimality of Equation (2) 
over the set of behaviors in Equation (1). We give conditions 
that guarantee that a behavior is a strict local maximum of 
Equation (2). If the optimization objective is strictly con-
vex, these conditions describe its unique global maximum. 

or 

−τ ∗ = τ and D∗ aj( τj 
∗) < A∗dj ( τj 

∗) , (17b)j j 

or 

τ ∗ = τ+ and D∗ aj( τj 
∗) > A∗dj ( τj 

∗) . (17c)j j 

The condition in Equation (17a) ensures that the interior 
coordinate is at a stationary point of the objective func-
tion with local convexity. The conditions in Equations (16), 
(17b), and (17c) ensure that the extreme coordinates sit on 
downward slopes at the edge of the objective function. So 
Equations (16) and (17) defne sufficiency conditions for 

∗optimality. Under these conditions, ( p , τ ∗) must be a strict 
local maximizer. If Equation (2) is convex everywhere, then 
the behavior is its unique global maximizer. 

4.2. Motivating interpretations 

Detailed algorithms for fnding points that meet the 
described optimality conditions are given in Appendix A. 
Here, we show how the conditions in Equations (16) 
and (17) are natural generalizations of familiar classical for-
aging theory and present summaries of the existing OFT 
algorithms to motivate the general cases in Appendix A. 
Elements of these two cases can be found in each of the 
generalized algorithms. In particular, task types are ranked 
by some generalized proftability and then partitioned into 
take-most and take-few sets, and processing times are found 
through some generalized marginal value theorem. 

4.2.1. Prey model as optimal task-type choice: profitability 
ordering When applied to Equation (3) for the prey-model 

− = τ ∗ −case (i.e. when it is given that τ+ = τi and pi = 0i i +and pi = 1 for each type i), the extreme-preference rule in 
Equation (16) is equivalent to ⎧ ⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎩ 

n ∗ sλipi (gi(τi 
∗)−ci(τi 

∗)) −c 
gj(τj 

∗)−cj(τj 
∗) i=1Our analysis uses Lagrange multiplier theory (Bertsekas 

1995), and so we assume that ai and di are twice contin-
0 if  < n ,

τ ∗ 
j ∗ 

i τ ∗ 
i1+ λip 

∗ = i=1 (18)puously differentiable for each type i ∈ {1, 2, . . . , n} in an 
open neighborhood of the optimal behavior. 

j n ∗ sλipi (gi(τi 
∗)−ci(τi 

∗)) −c 
gj(τj 

∗)−cj(τj 
∗)

1 if  > i=1 

Take some feasible behavior ( p ∗ , τ ∗) ∈ F , and let ,
τ ∗ 

j 
n ∗ 

i τ ∗ 
i1+ λip∗ ∗A∗ � A( p , τ ∗) and D∗ � D( p , τ ∗). For each type j ∈ i=1 

{1, 2, . . . , n}, assume that which is the familiar zero–one rule (Stephens and Krebs 
1986) where aj( τj 

∗) /dj( τj 
∗) is the  profitability gj( τj 

∗) /τ ∗ ofj− 
∗ pj if D∗ aj( τj 

∗) < A∗dj( τj 
∗) ,  type j ∈ {1, 2, . . . , n}. This rule states that if task types are 

p = (16)j +p if D∗ aj( τj 
∗) > A∗dj( τj 

∗) .  indexed by proftability so that
j 

g1( τ1 
∗) −c1( τ1 

∗) g2( τ2 
∗) −c2( τ2 

∗)
− + >Because pj = pj or pj = pj for each type j ∈ {1, 2, . . . , n}, τ1 

∗ τ2 
∗ 

we call Equation (16) the extreme-preference rule. In addi-
gn( τ ∗) −cn( τ ∗)n ntion, for each type j ∈ {1, 2, . . . , n}, assume that > · · · > , 

τ ∗ 
n 

D∗ aj( τ ∗ = A∗dj ( τ ∗ then there is a critical k∗ ∈ {0, 1, . . . , n} such that 
j ) j ) 

⎧ ⎪⎨ 

⎪⎩ 
−τ < τ  ∗ < τ+ and and (17a) p ∗ = 

1 if  j ≤ k∗ 
j j j 

j 0 if  j > k∗∗ ∗D∗ aj ( τj ) < A∗dj ( τj ) ,  . 
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Fig. 5. Graphical summary of the prey-model result. For a task 
type i ∈ {1, 2, 3, 4, 5}, the average processing time τ ∗ and average i ∗ net gain gi are plotted as a dot. The maximum long-term rate of 
gain J∗ is the slope of the dashed line which separates the pro-
cessed types, 1, 2, and 3, from the ignored types, 4 and 5. The 
proftability of each type is the slope of the dotted line connecting 
the origin to its (gain, time)-coordinate. 

That is, k∗ partitions the set of types {1, 2, . . . , n} into a take-
all set {1, 2, . . . , k∗} and a take-none set {k∗ + 1, . . . , n}. 

∗Moreover, it is the optimal rate J∗ � J ( p , τ ∗) that 
partitions the proftabilities in the same manner. That is, 

∗ ∗ g gk∗ gk∗+1 g1 > J∗ n> · · · > > > · · · > 
τ ∗ τ ∗ τ ∗ τ ∗ 

1 k∗ k∗+1 n 

∗where optimal net gain g � gj( τj 
∗) −cj( τj 

∗) for each j ∈j 
{1, 2, . . . , n}. This relationship is depicted in Figure 5 for a 
case with n = 5. 

Key results from this analysis are that: 

• There is an ordering of task-type preference that is 
invariant of the environment. If it is optimal to exclude 
tasks of type  k, tasks of type �> k must also be 
excluded. Similarly, if it is optimal to include tasks of 
type k, tasks of type j < k must also be included. This 
ordering does not depend on the encounter rates nor the 
cost of search. 

• As the maximum long-term rate of gain J∗ decreases 
(e.g. due to a global decline in encounter rates or an 
increase in search cost), the optimal task-processing 
strategy should be more inclusive (i.e. more types 
should be included in the take-all set). Likewise, as 
the maximum long-term rate of gain J∗ increases, the 
optimal strategy should be more exclusive. 

Moreover, the zero–one rule means that fnding the optimal 
take-all set of task types involves a combinatorial search 
through a set of 2n different p preference profles. How-
ever, because of the invariant task-type ordering, there are 
at most n + 1 possible p vectors that must to be checked 
(i.e. the preference vectors [0, 0, . . . , 0]T, [1, 0, . . . , 0]T, 
[1, 1, . . . , 0]T, …, and  [1,  1,  . . . , 1]T). 

4.2.2. Patch model as an optimal processing-time choice: 
marginal value When Equation (17) is applied to 
Equation (3) for the patch model case (i.e. when it is given 

− + ∗ −that p = p = p = 1 and τ = 0 and τ+ = ∞ for each i i i i i 
type i), Equation (17a) is equivalent to 

τ ∗ > 0 and gj ( τj 
∗) −cj ( τj 

∗) < 0j 

and 
n � ∗ λip gi( τi 

∗) −ci( τi 
∗) − cs 

i 
i=1 gj( τj 

∗) −cj( τj 
∗) = ,n ∗1 + λipi τ ∗ 

i 
i=1 

(19) 
which is the familiar marginal value theorem (Charnov 
1973, 1976). Consider the special single-type patch case 

− + −where n = 1, p = p = 1, τ = 0, and τ+ = ∞.1 1 1 1 
Then Equation (19) is equivalent to � s 

g1( τ1 
∗) −c1( τ1 

∗) − c 
λ1g1( τ1 

∗) −c1( τ1 
∗) = . (20) 1 + τ ∗ 

1λ1 

In addition, the graphical analysis in Figure 2 of this case 
degenerates so that all behaviors fall on the bold Pareto 
frontier, and that frontier traces the shape of the net gain 
function τ1 → g1( τ1) −c1( τ1). The resulting graph is 
exactly the situation described by Equation (20). That is, 
the optimal task-1 processing time τ1 

∗ occurs at the point of 
tangency between the function g1 − c1 and a ray originating 
from the point ( −1/λ1, cs/λ1). 

5. Examples: theory and application 

Here, we examine the consequences of objective function 
choice on the design of decision-making behaviors for task 
processing. In particular, we apply methods from Section 4 
to the example functions from Section 2. In Section 5.1, the 
salient theoretical differences between the resulting opti-
mal behaviors are compared. In Section 5.2, the results 
from a mobile agent simulation are presented to compare 
the performance of a conventional foraging-inspired task-
selection behavior with a similar behavior developed using 
the refned methods described in this paper. 

5.1. Comparison of theoretical results 

Applying the behavioral-design algorithms from Section 2 
and Appendix A yields the generalized proftabilities and 
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MVT conditions summarized in Table 1. In each case, 
task types are assigned indices ordered by decreasing max-
imum generalized proftability, and any interior optimal 
processing time will satisfy the generalized MVT condi-
tion. Comparing each row reveals features distinctive to 
each associated objective function, and noting similarities 
reveals important structural features of classes of objective 
functions. 

The classical MVT condition in the frst row states that 
the optimal processing time occurs when the instantaneous 
rate of gain in each patch drops to the long-term rate of 
gain. This feature is mirrored in generalized MVT condi-
tions for the ER case in the second row as well as the excess 
effciency (EE) case in the fourth row. For all three cases, 
the optimal behavior for one task type is coupled to the 
optimal behavior for another task type due to the mutual 
effects on the environmental average. This feature is due 
to the presence of decision variables in the denominator 
of the corresponding advantage-to-disadvantage objective 
functions. 

Because the corresponding advantage-to-disadvantage 
functions do not have decision variables in their denomina-
tors, the generalized MVT condition for the TDNG case, the 
CDG case, and the EoR case state that the optimal process-
ing times can be determined independently of each other 
(i.e. processing time determination is separable). However, 
the optimal times are modulated by a common environ-
mental parameter. In the TDNG and CDG cases, it is the 
discount factor w that represents the relative importance of 
gain maximization and time or cost minimization. Hence, 
in these two cases, the encounter rates and search cost have 
no impact on the optimal behavior. Thus, by fxing the dis-
count factor, the opportunity cost of searching is also fxed 
and thus does not vary with the environment. However, in 
the EoR case, even though optimal processing times can be 
determined independently, they all simultaneously respond 
to changes in search cost or encounter rates in a qualita-
tively similar way as the optimal processing times in the 
classical case. In fact, for the single-type patch case, the 
EoR and classical cases match. 

In Section 3, it was shown how in the patch case, ER opti-
mization is identical to classical optimization if the cs/λ 
search cost is augmented by the GT /N per-task thresh-
old. However, as shown in the second row of the table, 
in prey or general cases, the proftability ordering for the 
ER and classical cases will not match. In the patch case, 
higher success thresholds imply longer optimal process-
ing times because of a greater premium on accumulating 
gain to reach the threshold. Similarly, for the general ER 
case, higher success thresholds lead to a shift in proftability 
orderings toward task types with higher gain. For example, 
classical long-term rate maximization does not differenti-
ate between two task types with ( g1( τ1) ,  τ1) =( $5, 5 s) and 
( g2( τ2) ,  τ2) =( $25, 25 s). However, when given a threshold 
of GT = $10 over N = 1 tasks, ER maximization properly 
prefers the latter task type that is guaranteed to reach the 

GT = $10 threshold. Maximization of the EE objective has 
a similar feature; as the gross threshold per task GT /N ratiog 
increases, task types with greater gross gain are preferred 
more. 

The invariance of proftability ordering is a key result of 
classical OFT. Although the risk-sensitive foraging model 
of Stephens and Charnov (1982) that is applied to an 
autonomous vehicle problem by Andrews et al. (2007a) 
does predict that time-limited foragers facing success 
thresholds will tend to generalize and include task types that 
would otherwise be excluded by a rate maximizer, it does 
not predict that foragers should ever change specializations. 
However, the ER maximization analysis above suggests that 
task types that a task-processing agent would specialize 
on at low thresholds may be excluded entirely from very 
high threshold cases. A similar preference reversal is also 
predicted by a stochastic dynamic programming analysis 
of foragers facing mortality (i.e. fnite lifetimes) by 
Iwasa et al. (1984). As discussed in Section 2.3.1, the 
risk-sensitive models of Stephens and Charnov (1982) still 
make subtle assumptions about long task-processing mis-
sions with many tasks processed. Hence, the invariance of 
task-type ordering may be a result of the many-task long-
run-time assumptions present in popular foraging mod-
els. In engineering applications where there are relatively 
few tasks or high success thresholds, bio-inspired task-type 
ordering should be evaluated carefully. 

5.2. Simulation results 

Table 2 shows simulation results from for fve different 
fnite-event task-choice (i.e. prey-model) strategies with 
each of four different net gain success thresholds. These 
simulations are similar to those by Andrews et al. (2007a) of 
a fxed-wing AAV searching continuously over an area for 
tasks to process (e.g. targets for package deposit, objects to 
collect); however, they apply equally as well to other mobile 
vehicle scenarios. 

The statistics in the tables were generated from 300 
Monte Carlo samples for each of the 5 × 4 cases. The three 
rows that correspond to each gain threshold GT show the 
mean and standard error of the mean (SEM) for total net 
gain and total time accumulated in each run as well as the 
percentage of runs where the total gain met or exceeded 
the success threshold. Each run terminated immediately 
after the simulated agent completed exactly N = 300 
tasks. The particular numerical details of the simulation 
(e.g. encounter rates, gains, times) are given in the cap-
tion of the table. Because the simulation represents a task-
choice problem (i.e. lumped tasks where each task type 
has fxed mean processing time and net gain), the aver-
age net gain ( gi( τi) −ci( τi) ) for each task type i has been 
abbreviated gi. 

Along with the fve strategies used to generate Table 2, 
some additional trivial strategies that are relatively simple 
to analyze can be used as benchmarks. For example: 
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Table 1. Sample optimization results for type i ∈ {1, 2, . . .  , n}. The six rows correspond to the fve objective functions discussed: 
long-term rate of gain (Classical), excess rate (ER), time-discounted net gain (TDNG), excess effciency (EE), cost-discounted gain 
(CDG), and expectation of ratios (EoR). Likewise, JER and JEE refer to the ER and EE objective functions, and J refers to the classical 
optimization objective. In all cases, an optimal behavior will have types ranked by maximum generalized proftability and will meet the 
generalized MVT condition for interior processing times. 

Objective Generalized proftability Generalized MVT condition 

gi(τi)−ci(τi)Classical τi 
gi( τi) −ci( τi) = J ( p, τ ) 

gi(τi)−ci(τi)−GT /NER τi 
gi( τi) −ci( τi) = JER( p, τ ) 

TDNG gi( τi) −ci( τi) −wτi gi( τi) −ci( τi) = w 
gi(τi)−GT /Ng gi(τi)EE = JEE( p, τ )ci(τi) ci(τi) 

CDG gi( τi) −wci( τi) gi( τi) = wci( τi) 
s s 

gi(τi)−ci(τi)− gi(τi)−ci(τi)−c c 

EoR 1 
λ gi( τi) −ci( τi) = 1 

λ 
+τi +τiλ λ 

Table 2. Simulation results for prey-model-inspired agent simulation. Statistics are generated by taking 100 Monte Carlo samples of 
a mobile agent with a mission that ends after processing N = 300 tasks. Each agent faces an environment with a search cost rate 

sc = 0.1 value currency per unit time and fve prey-model task types described by the 3-tuples ( λ1, g1, τ1) =( 0.5, 30, 10), ( λ2, g2, τ2) = 
( 0.25, 50, 20), ( λ3, g3, τ3) =( 0.4, 80, 35), ( λ4, g4, τ4) =( 0.1, 100, 110), ( λ5, g5, τ5) =( 0.8, 55, 50) of encounter rate (per unit time), 
average net gain (value currency), and average process time (unit time). Five different task-choice scenarios are tested: the ‘Take all’ 
strategy processes all encountered tasks; the classical rate (CR) strategy uses the standard prey model from classical OFT; the excess 
rate (ER) strategy uses a prey model based on ER maximization; the estimated classical rate (eCR) strategy uses a simple heuristic 
described by Pavlic and Passino (2010) that converges to the prey-model result; the estimated excess rate (eER) uses a modifed form of 
the eCR heuristic applied to ER maximization. The four scenarios shown differ in their success threshold GT . Each  G row gives the 
sample mean and standard error of the mean (SEM) for the total accumulated gain for each of the fve different strategies in each of the 
four different scenarios. Similarly, the T rows give the sample mean and SEM for total time, and the @GT rows give the proportion 
of runs that met or exceeded the corresponding success threshold GT . Particularly notable @GT rows have been emphasized in bold. 

N = 300 tasks per mission, 100 Monte Carlo samples 

Take all CR ER eCR eER 

G: 16,555 ± 35 10,954 ± 17 20,520 ± 24 11,172 ± 113 16,534 ± 46 
@GT : 100% 100% 100% 100% 100% 

T : 11,107 ± 42 4,399 ± 9 9,242 ± 13 4,541 ± 55 9,855 ± 32 

Take all CR ER eCR eER 

G: 16,565 ± 30 10,946 ± 16 20,473 ± 25 11,218 ± 128 18,119 ± 38 
@GT : 100% 100% 100% 98% 100% 

T : 11,119 ± 42 4,391 ± 8 9,227 ± 13 4,567 ± 63 11,668 ± 43 

Take all CR ER eCR eER 

G: 16,642 ± 33 10,958 ± 16 25,153 ± 11 11,270 ± 103 18,647 ± 44 
@GT : 100% 0% 100% 5% 100% 

T : 11,158 ± 38 4,393 ± 8 15,645 ± 42 4,586 ± 50 12,779 ± 46 

Take all CR ER eCR eER 

G: 16,546 ± 34 10,993 ± 16 25,141 ± 14 10,965 ± 91 18,796 ± 39 
@GT : 55% 0% 100% 0% 100% 

T : 11,092 ± 40 4,421 ± 8 15,605 ± 53 4,440 ± 43 13,120 ± 44G
T

 =
16

,5
00

 
G

T
 =

13
,5

00
 

G
T

 =
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00
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G
T

 =
6,

00
0 

(a) An agent seeking to achieve its GT success threshold a cs search cost per unit time and an average search-
in its N runs could wait to accept only tasks of the ing time of 1/λ4 = 10 time units; so the average 
type 4 because that type has the highest average net total gain after N = 300 tasks is ( N) (  g4 − cs/λ4) = 
gain g4 = 100. For each of these N tasks, there is ( 300) ( 100 − 0.1/0.1) = 29700, and the average total 
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time is ( N) (  τ4 +1/λ4) =( 300) ( 110+1/0.1) = 36,000 
time units. This strategy meets each of the four GT 

thresholds given, but each mission is much longer. In 
particular, despite having an average mission time of 
more than double the average mission time of the ER 
strategy for the GT = 16,500 case, it returns less than 
20% more value. 

(b) An agent could wait to accept only tasks of type 1 
because that type has the highest proftability (i.e. net 
gain–processing time ratio). For N = 300 tasks, the 
average total gain is then 8,940, and the average total 
time is 3,600 time units. Despite the high total gain– 
total time ratio of this strategy, it completes the N = 
300 tasks so quickly that it does not meet three of the 
example GT thresholds from Table 2. 

(c) An agent could wait to accept only tasks of type 3 
because that type has the highest ER proftability for 
the GT = 16,500 and N = 300 case (i.e. arg maxi( gi − 
GT /N) /τi = 3). In this case, the average total gain 
is then 23,925, and the average total time is 11,250 
time units. This simple strategy achieves all four suc-
cess thresholds in less than a third of the time required 
for the strategy in (a) that also is uniformly successful. 

Both of the single-type strategies in (a) and (b) are suc-
cessful, but they depend upon a low search cost rate cs 

and a high encounter rate for their preferred task type. If 
the environment is relatively sparse in tasks of the desired 
type, the agent will engage primarily in costly searching 
as it ignores encounters with other types that may be more 
frequent. A better strategy is to balance the benefts of wait-
ing for more proftable types with the benefts of reducing 
costly search time. In addition, reducing the time of mis-
sions allows mobile agents to be re-deployed more quickly 
thus increasing the value returned overall. 

Hence, the strategies in Table 2 represent different meth-
ods of prioritizing all task types to achieve success thresh-
olds to avoid pitfalls of the single-type case. 

• The take-all strategy is provided as a multiple-type 
benchmark. An agent following the take-all strategy 
does not discriminate; the agent processes every task 
encounter and the mission ends after exactly N encoun-
ters. As this strategy does not depend upon the success 
threshold GT , its performance does not vary across dif-
ferent GT selections. Consequently, for GT = 16,500, 
the strategy does worse than others that avoid low-gain 
tasks and instead search longer for high-gain tasks. 

• The CR strategy uses the classic prey-model algorithm 
for task-type choice. In this simulation, the strategy uses 
a priori  knowledge of the encounter rate λi and the prof-
itability gi/τi of each task type i to group task types 
into take-all and take-none sets. The encounter rates 
could also be estimated as in Andrews et al. (2007a); 
however, this idealized case is presented here for com-
parison with the estimated classical rate (eCR) strategy 
described in the following. Because the CR strategy is 

based on a rate-maximization assumption, the CR strat-
egy has a very high total gain–total time ratio. Hence, 
for missions limited by time as opposed to number of 
tasks, it would likely return relatively high gain. How-
ever, when task-processing opportunities are limited, 
the strategy gives too much priority to task types with 
low processing times. 

• The ER strategy uses the generalized prey-model algo-
rithm for task-type choice. That is, it is identical to the 
CR strategy except that the realized net gain from each 
task type i is gi − GT /N . Consequently, its task-choice 
priorities vary with GT . Thus, moving from  GT = 9,000 
to GT = 13,500 causes a shift in task-choice priorities 
that leads to a behavior mode that has a longer total mis-
sion time but also returns a higher total gain. As with 
the CR strategy, the ER simulation here is performed 
with a priori  knowledge of encounter rates to compare 
its performance with the estimated excess rate (eER) 
strategy described in the following. 

• The eCR strategy uses the simple behavioral heuris-
tic described by Pavlic and Passino (2010) to make 
process–ignore decisions. The heuristic makes no use 
of encounter rates. Instead, it compares the recognized 
proftability to the present total gain–total time ratio in 
order to determine whether an encountered task should 
be processed. The eCR strategy has similar performance 
to the CR strategy. 

• The eER strategy modifes the eCR behavioral heuristic 
to match the ER maximization case. Consequently, its 
performance follows behind the performance of the ER 
strategy. 

Thus, the ER and eER strategies show that simple 
strategies exist that adapt to different mission success 
thresholds by waiting longer for high-gain tasks without 
depending on maximally long mission times. Moreover, the 
intuitive nature and simple implementation of these strate-
gies is ported from classical OFT through the generalized 
framework described in this paper. 

6. Conclusions 

In this paper, we have summarized several applications 
of foraging-inspired decision making in robotics (e.g. 
autonomous air vehicles) and computer science (e.g. 
resource allocation, Web design), and we demonstrate that 
while the resulting algorithms are intuitive and simple to 
implement, the OFT optimization objectives themselves 
may not match engineering problems. We then introduce 
a single advantage-to-disadvantage optimization objective 
that generalizes several of the existing objectives used in 
OFT, and we also give four new models of fnite-run-
time optimality and show how each of them are spe-
cial cases of advantage-to-disadvantage optimization. Each 
fnite-run-time objective function includes a success thresh-
old that mixes elements of CR maximization with shortfall 
minimization (i.e. risk sensitivity). In addition, these four 



520 The International Journal of Robotics Research 30(5) 

models provide optimization frameworks for the design 
of task-processing agents that can only engage in a fnite 
number of tasks (e.g. a vehicle that can only deliver a 
fnite number of packages to a practically infnite number 
of possible targets). As we show in simulation, the gen-
eral framework allows for the design of decision-making 
algorithms with similar attractive structures as OFT-
inspired algorithms but better performance in engineering 
applications. 

We also show how a generic optimization framework pro-
vides a substrate on which different optimal task-processing 
behaviors can be compared. For example, our analysis 
shows a relationship between rate and effciency maximiza-
tion, two approaches that are usually viewed in opposition 
to each other. In addition, our analysis shows how the intro-
duction of success thresholds challenges the invariance of 
task-type preference ordering, which is a key result of clas-
sical optimal foraging theory. These comparisons reveal 
which key features of different optimization metrics can 
lead to vastly different behaviors in application. 

Most applications of foraging theory to engineering 
focus on problems amenable to fnding the optimal prey 
(i.e. task-type) choice or patch residence time (i.e. task-
processing time). However, Pavlic and Passino (2009) apply 
foraging behaviors described by Gendron and Staddon 
(1983) to a fxed-wing AAV that may also choose its search 
speed. In this case, the speed of the vehicle affects its detec-
tion accuracy. Increased speed increases the encounter rate 
with task types that are easy to detect but decreases the 
encounter rate with task types that are diffcult to detect, and 
so predicting the optimal combination of task-type choice 
and search speed is non-trivial. A further complication is 
that increased speed can have increased costs (e.g. in fuel or 
calories). Pavlic and Passino are able to extend the methods 
of Gendron and Staddon from two task types to an arbi-
trary number of task types, but it comes at the cost of a 
simplistic model of detection accuracy. However, the opti-
mization objective is an advantage-to-disadvantage func-
tion with an additional decision variable representing search 
speed. Extending the methods described here to handle this 
case is a valuable future direction that should provide more 
insights into complex task-processing behavior (e.g. when 
more realistic models of detection accuracy are included). 
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Appendix A: Algorithms for finding 
an optimal behavior 

Now that we have characterized optimal behaviors, we 
present three algorithms that fnd an optimal behavior 

∗( p , τ ∗) ∈ F for a task-processing agent when certain 
assumptions are met. Because each algorithm has different 
requirements than the others, one algorithm may apply to 
one task-processing scenario better than another. However, 
all three share the following characteristics: 

• For each type i ∈ {1, 2, . . . , n}, the functions ai and di 

are assumed to be twice continuously differentiable. 
• The types are ordered by maximum generalized prof-

itability so that � � 
a1( τ1) a2( τ2) 

max > max > · · ·  
− + − +τ1∈[τ1 ,τ1 ] d1( τ1) τ2∈[τ2 ,τ2 ] d2( τ2) � 

an( τn) 
> max . 

τn∈[τn 
− ,τn 

+] dn( τn) 

Determination of this ordering is not simple to do in 
general, but the assumptions for each case below greatly 
simplify the task. In two of the three cases, the maxi-

−mum generalized proftability ai/di occurs at τi = τi 
for all i ∈ {1, 2, . . . , n}. In the other case, maximizing 
ai/di is equivalent to either maximizing or minimizing 
ai for all i ∈ {1, 2, . . . , n}. 

• To satisfy the extreme-preference rule from 
Equation (16), the n types are partitioned into a 
high-preference set and a low-preference set. An 
optimal pool size k∗ ∈ {0, 1, . . . , n} exists so that 
the k∗ types with the highest proftabilities form 
the high-preference set and the n − k∗ other types 
form the low-preference set. In particular, for each 
type i ∈ {1, 2, . . . , n} and each k ∈ {0, 1, . . . , n}, the  

kconditional preference pi is so that 

+ 
k pi if i ≤ k, 

pi � − (21) 
pi if i > k, 

∗ ∗and the optimal behavior ( p , τ ∗) will have pj = pj
k∗ 

for 
all j ∈ {1, 2, . . . , n}. 

So after ordering the types appropriately, each algorithm 
fnds an optimal pool size and a set of optimal processing 
times for that pool size. 

A.1. Generalized prey algorithm 

Stephens and Krebs (1986) describe a prey-model algo-
∗rithm that fnds a ( p , τ ∗) to optimize Equation (3) when 

τ ∗ is known a priori  (i.e. it is constrained to a single point 
by the environment). Because τ ∗ is fxed, the functions aii 
and di are replaced with constants ai( τi 

∗) and di( τi 
∗), 

respectively. Here, we present a generalized version of the 
algorithm that does not fx τ ∗ . Instead, we only require 
that the function di is constant and non-zero for each type 
i ∈ {1, 2, . . . , n}. 

Assume that for distinct types j, k ∈ {1, 2, . . . , n}, 
(i) The function dj is constant and non-zero. 
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(ii) Functions dj and dk have the same sign, and constant d 
is either zero or also has this sign. 

(iii)If d = 0, then a < 0. 
(iv)If dj is positive, then aj has a maximum, and if dj is neg-

ative, then aj has a minimum (i.e. proftability function 
aj/dj has a maximum). 

These assumptions guarantee that the objective function has 
a maximum. 

Using (iv), for each type j ∈ {1, 2, . . . , n}, let  τ ∗ be the j 
point that maximizes the generalized proftability function 
aj/dj. Also assume that: 

(v) The indices are ordered by generalized proftability so 
that 

a1( τ ∗ a2( τ ∗ ( τ ∗)1 ) 2 ) an n> > · · · > . 
d1( τ1 

∗) d2( τ2 
∗) dn( τ ∗)n 

Finally, to ensure strict local convexity of the solution, 
assume that: 

(vi)For any k ∈ {0, 1, . . . , n − 1}, 
n 

ka + pi ai( τi 
∗) 

i=1 ak+1( τk 
∗
+1) 

k 
�= 

dk+ 1)
,n 

1( τ ∗ 
k+d + pi di( τi 

∗) 
i=1 

kwhere pi is defned by Equation (21). By these assumptions, 
there is an optimal pool size k∗ ∈ {0, 1, . . . , n} such that 

So k∗ can be found iteratively by choosing the smallest k ∈ 
{0, 1, . . . , n − 1} that satisfes the underbraced expression 

∗( ∗). Then, the behavior ( p , τ ∗) with 

+ 
∗ k∗ pj if j ≤ k∗ , 

p � p = j j −pj if j > k∗ 

for each type j ∈ {1, 2, . . . , n} will be optimal. That is, the 
optimal behavior gives highest preference to the k∗ types 
with highest proftability and ignores the other n −k∗ types. 
So given the n generalized proftabilities, an optimal behav-
ior can be found by iterating through no more than n + 1 
candidate behaviors. 

A.2. Alternative generalized prey algorithm 

The algorithm in Appendix A.1 cannot be used with the 
EoR function in Equation (5) because it has di ≡ 0 for each 
type i ∈ {1, 2, . . . , n}. Here, we provide a similar algorithm 
to handle this case and others so long as d = 0. The algo-
rithm assigns an infinite generalized proftability to each 

type i ∈ {1, 2, . . . , n} with di ≡ 0 and treats all other types 
in the same manner as in Appendix A.1. That is, types are 
ranked by their extended generalized proftabilities. 

Assume that for distinct types j, k ∈ {1, 2, . . . , n}, 
(i) The function dj is constant and possibly zero. 
(ii) The constant d �= 0. 
(iii)If dj �= 0, then it has the same sign as d. 
(iv)If d is positive, then aj has a maximum, and if d is neg-

ative, then aj has a minimum (i.e. function aj/d has a 
maximum). 

These assumptions are nearly identical to those in Appendix 
A.1. Here, cases with d = 0 are excluded in order to include 
cases with di ≡ 0 for at least one type i ∈ {1, 2, . . . , n}. 

∗Take ( p , τ ∗) ∈ F . Using (iv), let τj 
∗ be the point that 

maximizes aj/d for each type j ∈ {1, 2, . . . , n}. Also assume 
that: 

(v) The indices are ordered by extended generalized prof-
itability so that there exists some , u ∈ {0, 1, . . . , n +1}
with �< u and 

aj( τ ∗ 

dj( τj 
∗) = 0 and 

j ) 
> 0 for each type j ∈ {1, . . . , }

d 

and 

1( τ ∗ 
1) au−2( τ ∗ a + + a2( τ ∗+2) u−2) 

> > · · · > 
d +1( τ ∗+1) d2( τ ∗+2) du−2( τu 

∗
−2) 

au−1( τu 
∗
−1) 

> 
du−1( τu 

∗
−1) 

and 

aj( τj 
∗)

dj( τj 
∗) = 0 and 0 > for each type j ∈ {u, . . . , n}. 

d 

For strict local convexity of the solution, assume that: 

(vi)For each type k ∈ {  , + 1, . . . , u − 2}, 
n 

ka + pi ai( τi 
∗) 

ak+1( τ ∗ 
i=1 k+1) �= n 

1( τ ∗ 
k dk+ k+1)

d + pi di( τi 
∗) 

i=1 

where pk
i is defned by Equation (21). By these assumptions, 

the optimal pool size k∗ ∈ {  , + 1, . . . , u − 2} is so that 

So k∗ can be found iteratively by choosing the smallest k ∈ 
{ , +1, . . . , u−2} that satisfes the underbraced expression 

∗( ∗). Then, the behavior ( p , τ ∗) with 

+ 
∗ k∗ pj if j ≤ k∗ , 

p � p = j j −pj if j > k∗ 
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for each type j ∈ {1, 2, . . . , n} will be optimal. So the opti- Next, for each type j ∈ {1, 2, . . . , n} and any k ∈ 
mal behavior can also be found with a search through no {0, 1, . . . , n}, defne τ k so thatj 
more than n + 1 candidates. 

n 
ka + pi ai( τi

k )
aj( τj

k )A.3. Generalized patch algorithm i=1 = ndj ( τj
k ) kThe algorithms in Appendices A.1 and A.2 cannot be used d + pi di( τi

k ) 
with Equation (3) in the patch case because the function i=1 

di( τi) � τi for each type i ∈ {1, 2, . . . , n} (i.e. it is not con- or let 
stant). Here, we give a generalized patch algorithm that can ⎧ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

n
be used when each generalized proftability function comes 
from a certain class of decreasing functions. 

Assume that for distinct types j, k ∈ {1, 2, . . . , n}: 

ka + pi ai( τi
k )

aj( τj
k ) i=1 

τ− if < ,j dj ( τj
k ) n 

kd + pi di( τi
k ) 

(i) The proftability function is strictly decreasing so that k i=1τ �j n− , τj 
+( aj( τj) /dj( τj) )  < 0 for any τj ∈( τ ). ka + pi ai( τi

k )j 
aj( τj

k )(ii) The convexities of aj and dj are such that i=1 
τ+ ifj >− , τj 

+ dj ( τj
k ) n( aj( τj) /dj ( τj) )  < 0 for any τj ∈( τ ). k 

i di( τi
k )j d + p−(iii)For any τj ∈( τj , τj 

+), dj( τj) = 0 and i=1 

• if dj( τj) > 0, then dj ( τj) > 0 (i.e. positive func-
tions are rising); 

• if dj( τj) < 0, then dj ( τj) < 0 (i.e. negative func-
tions are falling). 

So the magnitude of dj is non-zero and increasing 
everywhere on its interior. 

− −(iv)For any τj ∈( τj , τj 
+) and any τk ∈( τk , τk 

+), dj( τj) and 
dk ( τk ) have the same sign, and constant d is either zero 
or also has this sign. 

−These assumptions allow for the case where di( τi ) = 0 
for some type i ∈ {1, 2, . . . , n}. So to guarantee that the 
objective function is well defned, also assume that: 

− −(v) If d1( τ1 ) = d2( τ2 ) = · · · = dn( τ−) = 0, then d = 0.n 

By the assumptions, for each type i ∈ {1, 2, . . . , n}, the prof-
itability function ai( τi) /di( τi) will be well defned for all 

− −τi ∈( τ , τ+), but it may have a singularity at τi = τ , andi i i 
so we extend the initial profitability so that 

−ai( τ ) ai( τi)i � lim .−di( τi ) τi→τi 
− di( τi) 

When there is no singularity or when the singularity is 
removable, this limit will be fnite. That is, the types can 
be partitioned into a set with unbounded proftabilities and 
a set with bounded proftabilities whose bounds can be 
ordered. So assume that 

(vi)The indices are ordered so that there exists some ∈ 
{0, 1, . . . , n − 1} where 

−aj( τj ) = ∞  for each type j ∈ {1, . . . , }−dj( τ )j 

and 
− − −a +1( τ 1) a2( τ 2) an−1( τn−1)∞ > + 

> + 
> · · · >− − − 

+ +d +1( τ 1) d2( τ 2) dn−1( τn−1) 

( τ−)an n> . 
dn( τ−)n 

where pk is defned by Equation (21). These defnitions rep-i 
resent a generalized marginal value theorem. That is, τ k 

i 
represents the optimal patch residence time in patches of 
type i given that the optimal pool size is k; it is well defned 
by the assumption in (ii). Again, to guarantee strict convex-
ity of the objective function at the optimal behavior, assume 
that: 

(vii)For any k ∈ {  , + 1, . . . , n − 1}, 
n 

a + kpi ai( τ k 
i ) −ak+1( τ 1)i=1 k+ = . n − 

k dk+1( τ 1)k+d + pi di( τi
k ) 

i=1 

Finally, defne optimal pool size k∗ ∈ {  , + 1, . . . , n} so 
that 

So k∗ can be found iteratively choosing the smallest k ∈ 
{ , +1, . . . , n−1} that satisfes the underbraced expression 
( ∗). At each iteration, the processing times are chosen using 
the generalized marginal value theorem. Then, the behavior 

∗( p , τ ∗) with 

− +τ if j ≤ , p if j ≤ k∗ ,j ∗ k∗ jτ ∗ � and p � p = j 
τ k∗ j j − 

j if j >� , pj if j > k∗ 

for each type j ∈ {1, 2, . . . , n} will be optimal. So fnding the 
behavior is equivalent to solving no more than n+1 general-
ized marginal value theorem (i.e. patch) problems where the 
highest proftabilities are chosen as high preference types in 
each iteration. 
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