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Abstract—In the study of the behavior of human groups, it 
has been observed that there is a strong interaction between the 
cohesiveness of the group, its performance when the group has 
to solve a task, and the patterns of communication between the 
members of the group. Developing mathematical and computa-
tional tools for the analysis and design of task-solving groups 
that are not only cohesive but also perform well is of importance 
in social sciences, organizational management, and engineering. 
In this paper, we model a human group as a dynamical system 
whose behavior is driven by a task optimization process and 
the interaction between subsystems that represent the members 
of the group interconnected according to a given communica-
tion network. These interactions are described as attractions and 
repulsions among members. We show that the dynamics char-
acterized by the proposed mathematical model are qualitatively 
consistent with those observed in real-human groups, where the 
key aspect is that the attraction patterns in the group and the 
commitment to solve the task are not static but change over 
time. Through a theoretical analysis of the system we provide 
conditions on the parameters that allow the group to have cohe-
sive behaviors, and Monte Carlo simulations are used to study 
group dynamics for different sets of parameters, communication 
topologies, and tasks to solve. 

Index Terms—Cohesion, consensus, human group dynamics, 
networks, task performance, ultimate boundedness. 

I. INTRODUCTION 

IN DISCIPLINES ranging from psychology, sociology, 
social work, and engineering, significant efforts have been 

undertaken to understand the dynamics of human groups, that 
is, the processes within the group resulting from the actions 
of its members and the interaction among each other and their 
environment [1]–[3]. Studies suggest that human groups can-
not be examined by considering each member in isolation [4]. 
Elements, such as the situation the group is in, the particular 
characteristics of each individual, and his or her interactions 
with other group members, have to be considered for the analy-
sis and understanding of the dynamics of the group. Lewin [5] 
provided a theoretical analysis of group dynamics where he 
states that a group is a dynamical system in which the behavior 
of a member is guided by the interplay between its individual 
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features and the environment. “Environment” in this context 
includes other members of the group and the social setting. 
Lewin summarizes this process using the formula 

B = I(P, H) (1) 

which describes a group member’s dynamics (B) as a func-
tion (I) of the interaction between his or her individual 
attributes (P) and the social environment (H). In this paper, 
we propose a mathematical characterization of group dynam-
ics that is conceptually consistent with Lewin’s formula. To 
model the function I of the interaction between a group mem-
ber and the social environment he or she is in, we focus on the 
relationship between three important processes that affect the 
dynamics of a group: 1) cohesion between the group mem-
bers; 2) performance of the group while solving a complex 
task; and 3) the patterns in the flow of information between 
members. 

One of the most well studied concepts in the analysis of 
group dynamics is group cohesion. Cohesion is defined by 
Festinger [6] as “the resultant of all the forces acting on the 
members to remain in the group.” According to Festinger, 
these forces depend on the attractiveness of each member to 
other members and to the activities that the group is participat-
ing in. Group cohesion then directly depends on the attractions 
between members, and has an important effect on group uni-
formity: a highly cohesive group is subject to pressures that 
result in uniformity among its members, that is, a consensus 
between the members of the group toward some goal [6]–[8]. 
Another important concept in the analysis of human group 
dynamics is group performance. Individuals work together 
in a way that their collective effort leads the group to have 
a good performance. Hence, the success of a task-oriented 
group is defined by its performance on a task [9]. Evidence 
suggests that there is a strong relationship between group 
cohesion and task-performance. Mullen and Copper [10] and 
Beal et al. [11] studied the results of different experiments 
that examined the relation between cohesion and perfor-
mance in groups, and concluded that there is a bidirectional 
effect between group cohesion and task-performance: “cohe-
sion makes groups more successful, but groups that succeed 
also become more cohesive” [3]. Cohesive groups are success-
ful largely because the contributions of each group member 
are coordinated with those of the other members. At the same 
time, the success in groups tends to enhance the cohesiveness 
between the members of the group [3]. These studies sug-
gest that in the bidirectional relation between performance and 
cohesion, the impact of performance on cohesion is stronger 
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than the impact of cohesion on performance [10]. The third 
concept in group dynamics that we consider in this paper is 
the structure of flow of information between members and its 
impact on performance and cohesion. In a group, members 
exchange information with other members of the group fol-
lowing a communication network. The study of the impact 
of the communication network topology (i.e., the pattern of 
interconnections) on the group has focused on the analysis 
of the effect of the degree of centralization and the number 
of group members on the performance and cohesion of the 
group. A group with a high degree of centrality is one in 
which an individual or few individuals serve as a hub for 
communications. Studies suggest that groups with commu-
nication networks that have a decentralized topology have a 
better performance than the centralized ones when the group 
has to solve complex tasks [12]–[14]. In these studies, tasks 
considered as complex had a higher number of task goals, 
pathways to complete the goals, and load of information 
than the ones considered as simple [15], [16]. Also, studies 
have shown that the number of people that interact with an 
individual affects both cohesion and performance. Too large 
of a number of individuals interacting with an individual 
results in a reduction of the performance and cohesion in the 
group [10]. 

Here, we propose a mathematical characterization of the 
dynamic behavior of human groups that is consistent with 
what has been observed in behavioral studies on cohesion, per-
formance, and communication networks. The development of 
mathematical models of groups has gained a lot of attention 
from different disciplines. In social psychology, mathemati-
cal descriptions of the behavior of human groups have been 
studied. For example, Helbing [17] proposed a gradient-based 
model of the dynamics of individuals in a group. They intro-
duce the concept of social force, which is a vector quantity 
that drives the behavior of an individual, and it depends on 
the interaction with other members of the group and external 
social influences such as trends, public opinions, and social 
norms. Pentland and Liu [18] studied the modeling and auto-
matic recognition of human behavior under specific situations 
using statistical tools. The main assumption in the model is 
that the patterns in behavior of the individuals in a group 
can be described as the concatenation of multiple prototyp-
ical behaviors. Moussaïd et al. [19] modeled the behavior 
of pedestrians that walk in groups. Here, the motion of the 
pedestrians is directed by the action of a force that results 
from the combination of different components: the pedes-
trian’s motivation to move in a desired direction, the repulsion 
effect to avoid collisions with other pedestrians and obsta-
cles, and the social interaction with other members of the 
group. In engineering, there is a well-developed theoretical 
framework for the modeling and analysis of systems with mul-
tiple interactive agents [20]–[24]. It focuses on the modeling 
of systems that are composed of agents that have a behav-
ior that depends on the interaction between them and follow 
a communication network that can be constant or changing 
in time. In that analysis, the main goal is to find the condi-
tions that make the agents reach an agreement in different 
scenarios such as changes in the communication topology. 

These models have been used in a variety of appli-
cations that include control of cooperative autonomous 
vehicles [25], distributed learning of pattern recognition 
models [26], and synchronization of microgrids in power 
systems [27]. 

Most of these models focus on describing the cohesive 
behavior of the groups, modeling the attraction forces act-
ing on the individuals, and determining the conditions on 
the communication network and parameters of the model so 
that the group achieves certain stability properties. To our 
knowledge, modeling the relationship between cohesion and 
performance as observed in human groups has been over-
looked. Our aim is to model the dynamics of a group that, 
given a network of communication between its members, not 
only tends to be cohesive but at the same time attempts to 
solve a complex task. Our contribution is twofold. First, we 
propose a computational model of the dynamics of human 
groups that have a communication network and work to solve 
a task, providing a mathematical formulation of Lewin’s for-
mula [5] that is consistent with the observations in real-human 
groups during task-solving processes. We do not try to pro-
pose models to recreate the specific experiments with humans 
that have been done to study these dynamics. Our aim is 
to design a mathematical model that characterizes dynam-
ics that are qualitatively consistent with those observations in 
human groups. This paper is conceptually related to [17] and 
[28, Ch. 11], where the behavior of a group is modeled 
as the result of social forces acting on its members. The 
main difference is that this paper is focused on the devel-
opment and analysis of a model that captures the relationship 
between cohesion and performance on the group given the 
patterns of information flow among its members. Second, we 
build on and extend the models of multiagent system dynam-
ics in [20], [22], [23], and [29]. Gazi and Passino [20] and 
Liu and Passino [29] modeled the attraction and repulsion 
dynamics of groups of individuals that are evaluated accord-
ing to a performance function or “resource environment,” and 
Li [22] and Yu et al. [23] extended these results to the case 
where there is a weighted communication topology that defines 
the patterns in communication between the individuals. In this 
paper, we formulate a model of a group of individuals that 
interact according to a general communication network topol-
ogy, where the attraction weights and the commitment to opti-
mize the performance function change over time (Section II). 
We show that a key aspect for a cohesive group to be suc-
cessful (i.e., having a good performance) is that the attraction 
patterns between the members of the group and the commit-
ment to solve the task are not static but dynamic and develop 
over time, playing an important role in shaping the behavior 
of the group. We provide a mathematical analysis of group 
cohesiveness that is an extension of the analysis developed 
in [29, Th. 1], where we study the conditions in our model 
that allow the group to be cohesive (Section III). Moreover, 
we show through simulations (Section IV) the impact of the 
parameters of the model and the communication networks 
on the behavior of the group in terms of group performance 
and group cohesion when the group is required to solve a 
complex task. 
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II. MATHEMATICAL MODEL 

We propose a mathematical formalization of Lewin’s for-
mula (1) that characterizes the dynamics of the behavior of 
each group member. We model the group as a network of 
interconnected dynamical systems in which a group member’s 
variables are driven by his/her personal characteristics, inter-
action with the other members, and performance in solving a 
given task. One of the main features of our model is that the 
interaction patterns of an individual and his/her commitment 
to solve a task are not static, but develop over time. 

A. Model Formulation 

The network that describes how the group members are 
interconnected is represented by a directed graph G = (V, E), 
where V = {1, 2, . . . ,N} denotes the set of labels of the N 
individuals of the group, and E ⊆ V × V is the set of edges 
of the graph. Edge (i, j) in E indicates that individual i gets 
information from individual j. All group members that supply 
information to individual i are Ni = {j : (i, j) ∈ E}. Hence, G 
defines the communication patterns between the members of 
the group. Let xi ∈ R

p be a vector of measurable variables that 
indicate the “state” of the individual in the task-solving pro-
cess. In models of human decision processes, these variables 
typically include preferences of the individual, and attributes 
of the alternatives that are involved in the task [30], [31]. 
We refer to xi(t) as the position of individual i at given time 
t, and motion refers to a change in position with respect to 
time. “Position” here is not necessarily physical location, but 
can represent “viewpoint” or “opinion.” 

Let f : Rp → R be a continuously differentiable function 
that evaluates the position of an individual according to the 
task assigned to the group and quantifies its performance. We 
assume that lower values of f correspond to better positions. 
The behavior of an individual in the group is assumed to be 
directly influenced by his or her characteristics, performance 
during the task-solving process, and interaction with other 
members of the group. We refer to these influences as forces 
that determine the individual’s behavior. “Force” is not neces-
sarily the one from physics with units of Newton, but simply 
represents “influence” of some sort. To provide a mathematical 
formalization of Lewin’s formula for behavior, we character-
ize the interaction function I in (1) from the perspective of 
Newton’s second law: forces acting on the group and driving 
its behavior. We assume that the behavior of individual i can 
be described by 

ẋ i(t) = v i(t) 

v̇ i(t) = 
1 

Mi 
u i(t) (2) 

where t ∈ R≥0 is the time variable, ẋi(t) denotes the derivative 
of xi with respect to t, and vi(t) is its velocity at time t. The  
acceleration of the individual is v̇i(t), and ui(t) is the force 
vector that drives the motion of the individual. The variable 
Mi then corresponds to the mass of individual i if it has mass, 
or more generally, it is a parameter that affects the influence 
of ui on the dynamics of group member i. It represents a 

parameter that affects the tendency of viewpoint or opinion to 
change. 

The force ui is defined by four different components 

u i(t) = p i(t)+ a i(t)+ r i(t)− ζiv i(t) (3) 

where pi(t) is the force component that provides the direc-
tion that optimizes the performance of individual i at time t. 
Since lower values of f (xi(t)) indicate a better performance 
of i, we define pi(t) such that it points toward positions where 
f is reduced. Hence, we choose p(t) to move along the (scaled) 
negative gradient of f evaluated at xi(t) 

pi(t) = −η i(t)∇f 
 
x i(t) 

 
(4) 

where ∇f (xi(t)) is the gradient of f evaluated at xi(t), and 
ηi(t) is the magnitude of the influence of the performance on 
the individual’s motion. Later, we will define the dynamics 
of ηi(t) and show that ηi(t) ≥ 0 for all t ≥ 0 if  ηi(0) ≥ 0, 
i = 1, . . . ,N. 

The second component of ui in (3) is the attraction of i to 
every j ∈ Ni in position and velocity, and it is defined as 

ai(t) = −  
1 

|Ni| 
 

j∈Ni 

 
wij(t) 

 
x i(t)− x j(t) 

 

+ bwij(t) 
 
v i(t)− v j(t) 

 
(5) 

where |Ni| is the number of individuals that communicate 
with i, and wij(t) ≥ 0, t ≥ 0 is the attraction strength of 
individual i to individual j ∈ Ni, with b ≥ 0. We have that 
−wij(t)(xi(t)−x j(t)) is the component of ai(t) associated with 
the attraction in position of i to some j ∈ Ni. It indicates that 
a larger separation between individuals implies a larger attrac-
tion of i in the direction of j. A similar statement can be made 
for the attraction in velocity. Note that the attraction strengths 
wij can be represented as weights associated to the edges of 
the graph G. 

The next force component in (3) is the short-range repulsion 
between the group members. We allow the model to include 
behaviors where a group member tries to avoid having the 
same position as the other members he or she communicates 
with to allow some degree of variability during the process 
of solving the task. Let ri(t) be the repulsion of i from the 
individuals in Ni on short distances given by 

r i(t) = 
1 

|Ni| 
 

j∈Ni 
κ ij 

exp 

 

− 
1 

2β 2 
ij 

 x i(t)− x j(t) 
 2 

 
 
x i(t)− x j(t) 

 
(6) 

where κ ij ≥ 0 and β ij ≥ 0. Term 
κ ij exp(−(1/2β2

ij)xi(t)− x j(t)2 
)(xi(t) − x j(t)) corresponds 

to the component of the force that makes individual i be 
repelled by individual j, where κ ij is the repulsion strength and 
exp(−(1/2β2

ij)xi(t)− x j(t)2 
) defines the radius of action of 

the repulsion. We also have the force component −ζ ivi(t), 
ζ i > 0, which points toward the opposite direction of the 
velocity vector vi . This term produces a reduction in the 
velocity of the individual. 
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A key aspect in human group processes is that the attraction 
patterns among the group members and their commitment to 
solving a task are not static but dynamic and develop over 
time [3]. In our model, we characterize the dynamics of the 
attraction and performance strengths defined in (4) and (5) 
based on the observations that: 1) individuals tend to be more 
attracted to those group members that are performing better 
during the task-solving process [3] and 2) group dynamics 
tend to reach a consensus among members to move toward 
some goal [6]. We first describe the dynamics of the attraction 
strengths using a growth model that makes the individuals be 
more attracted to those that have better relative performance 
in solving the given task as follows: 

ẇij(t) = αw wij(t) − Cl 
w 

 
Cu 

w − wij(t) 
 
f ij(t) (7) 

where αw > 0 is the growth rate, and f ij(t) = (f (xi(t)) − 
f (x j(t)))/ 

 
k∈Ni 

f (xk(t)) is the scaled difference between the 
performance function of individuals i and j. The strength of 
attraction of i toward j increases when f (xi) >  f (x j), i.e., when 
individual j is performing better than i, and decreases when 
f (xi) <  f (x j). Recall that lower values of f correspond to 
better performance of the individual. Note that Cl 

w and Cu 
w are 

equilibrium points of the system (7), where 0 ≥ Cl 
w ≥ Cu 

w, and 
ẇij(t) >  0 when f ij(t) >  0 and ẇij(t) <  0 when f ij(t) <  0, 
for all wij(t) ∈ (Cl 

w, C
u 
w). This means that the trajectories of 

wij are bounded below by Cl 
w and above by Cu 

w for all t ≥ 0 if  
wij(0) ∈ [Cl 

w, C
u 
w], and their rate of change and direction are 

affected by αwf ij(t). The strength of the force component 
associated with performance optimization has dynamics given 
by the growth model 

η̇ i(t) = αηη i(t)(Cη − η i(t)) 
⎛ 

⎝Bη − 
1 

|Ni| 
 

j∈Ni 

 x j(t) − x i(t)
 2 

⎞ 

⎠ (8) 

where αη > 0 is the growth rate, and Bη > 0 is a  
threshold parameter that determines the sign of the growth 
rate. The strength of the performance optimization compo-
nent of the motion’s force of individual i decreases when 
|Ni|−1  

j∈Ni 
x j − xi2 is larger than Bη, that is, when the 

group is not cohesive. This dynamical model allows force ui 

in (3) to be more influenced by the attraction between the 
members of the group than the commitment to solve the task 
when the group is not cohesive enough. The trajectories of ηi 

are bounded below by zero and above by Cη when ηi(0) ≥ 0. 
In Section IV, we show that (7) and (8) play a fundamental 

role in modeling dynamics that are consistent with the obser-
vations in human groups during a task-solving process in terms 
of cohesion and performance. 

B. Optimization Point of View for the Model 

We can analyze the role of each one of the components 
of the driving force ui from an optimization point of view. 
The dynamics characterized by the model in (2) and (3) can 
be viewed as the result of minimizing a set of cost functions 
that are involved in the task-solving process by the group. 
Let L j 

a(xi(t), vi(t)) ∈ R be a function of xi(t) and vi(t) that 

measures how far individual i is to individual j ∈ Ni in position 
and velocity defined as 

L j 
a 

 
x i(t), v i(t) 

 = 
1 

2 
wij(t)

 
x i(t) − x j(t)


 2 

+ 
1 

2 
bwij(t)

 v i(t) − v j(t)
 2 
. (9) 

This function can be seen as a weighted squared error between 
the velocity and position of j with respect to a given i. Let  
L j

r(xi(t)) ∈ R be a function of xi(t) defined as 

L j r 

 
x i(t) 

 = 
1 

2 
κ̂ ij exp 

 

− 
1 

2β 2 
ij 

 x i(t) − x j(t)
 2 

 

. (10) 

This is a Gaussian function of xi(t) centered at x j(t), with 
amplitude and width controlled by κ̂ ij ≥ 0 and βij. It has its 
highest value at xi(t) = x j(t), and decreases as xi(t) moves 
away from x j(t). Let  

qv 
 
v i(t) 

 = 
1 

2 

 v i(t)
 2 

(11) 

be a function of vi(t) with a unique minimum at vi(t) = 0. 
Using (9)–(11) we define the cost function 

L 
 
x i(t), v i(t) 

 = η if 
 
x i(t) 

 + 
1 

|Ni| 
 

j∈Ni 

L j 
a 

 
x i(t), v i(t) 

 

+ 
1 

|Ni| 
 

j∈Ni 

L j r 

 
x i(t) 

 + ζiqv 
 
v i(t) 

 
. (12) 

Let ∇x and ∇v denote the gradient operator with respect to the 
position and velocity vectors. The gradient of L with respect 
to xi(t) and vi(t) is given by 

∇xL 
 
x i(t) 

 = η i(t)∇xf (x(t)) + 
1 

|Ni| 
 

j∈Ni 

∇xL j 
a 

 
x i(t) 

 

+ 
1 

|Ni| 
 

j∈Ni 

∇xL j r 

 
x i(t) 

 
(13) 

∇vL 
 
v i(t) 

 = 
1 

|Ni| 
 

j∈Ni 

∇vL j 
a 

 
v i(t) 

 + ζi∇vqv 
 
v i(t) 

 
. (14) 

Using (13) and (14), we can rewrite force ui(t) in (3) as  

u i(t) = −∇xL 
 
x i(t) 

 − ∇vL 
 
v i(t) 

 
. (15) 

This expression shows us that the force ui(t) points to the 
opposite direction of the gradient of the cost function L, that 
is, the motion of individual i tends to minimize L with respect 
to the position and velocity. According to this, we have that 
the attraction term in (5) can be rewritten as 

ai(t) = −  
1 

|Ni| 
 

j∈Ni 

 ∇xL j 
a 

 
x i(t) 

 + ∇vL j 
a 

 
v i(t) 

 

which is the vector that points to the direction that minimizes 
the error in position and velocity between i and j. Also, the 
repulsion term in (6) can be rewritten as the vector that points 
to the direction that minimizes the Gaussian function L j

r , for  
every j ∈ Ni as follows: 

ri(t) = −  
1 

|Ni| 
 

j∈Ni 

∇xL j r 

 
x i(t) 

 
. 
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The velocity damping term in ui(t) corresponds to the vec-
tor −ζi∇vqv(vi(t)), which points to the direction in which the 
velocity is minimized. 

Equation (15) shows that the dynamics of each member of 
the group can be seen as the result of a continual optimiza-
tion process with respect to his or her position and velocity, 
where the objective function changes over time and is inter-
connected with those of the other members of the group. Note 
that depending on the selection of the parameters of the cost 
function L, the descent direction will be biased toward the 
minimization of those components with higher magnitude. In 
Section IV, we will show that the cost function changes over 
time such that there is an interaction between the performance 
optimization component f and attraction component L j 

a that 
allows the minimization process to achieve a solution that 
involves a tradeoff between them. 

III. CONDITIONS FOR COHESIVE BEHAVIOR 

OF THE GROUP 

In a cohesive group, each individual behaves in a way 
that its position and velocity during the task-solving process 
ultimately are close to those of the other members of the 
group. Here, we analyze the conditions that allow the group 
to exhibit cohesive behaviors while solving a task and under 
an assumed communication network topology. Without loss 
of generality, we assume that Mi = 1, ζ i = ζ , ζ >  0, for 
i = 1, . . . ,N. Also, to facilitate the notation in this analy-
sis, we do w̃ij(t) = wij(t)/|Ni| for every i = 1, . . . ,N and 
j ∈ Ni. We define the error in position and velocity between 
individuals i and j 

eij 
x = x i − x j 

eij 
v = v i − v j . 

In a cohesive group, the error in position and velocity reaches 
a point where every two members of the group are considered 
close to each other. To analyze the cohesion of the group we 
study the dynamics of the error in position and velocity of the 
individuals in the group. The error dynamics are given by 

ėij 
x = ẋ i − ẋ j = eij 

v 

ėij 
v = v̇ i − v̇ j 

= −  
 

k∈Ni 

w̃ ik(t)e ik 
x − 

 

k∈Ni 

bw̃ik(t)+ ζ e ik 
v + gij + δij + φij 

where 

φij = 
 

l∈Nj 

w̃jl(t) ejl 
x + bejl 

v (16) 

gij = −η i(t)∇f 
 
x i(t) 

 + η j(t)∇f 
 
x j(t) 

 
(17) 

δij = 
1 

|Ni| 
 

k∈Ni 
κ ik 

exp 

 

− 
1 

2β 2 
ik 

 

 x i(t)− x k(t) 


 
 

2 
 

x i(t)− x k(t) 

− 
1 

|Nj| 
 

l∈Nj 
κ jl 

exp 

 

− 
1 

2β 2 
jl 

   x j(t)− x l(t) 

  

2 
 

x j(t)− x l(t) . (18) 

Let Eij = [eij
x , eij

v ] . The system can be written in matrix 
form as 

Ėij = 
 

j∈Ni 

Aij(t) 
 

0p Ip 

−w̃ij(t)Ip − 
 
b ̃wij(t)+ ζ 

 
Ip 

 

Eij 

+ 

B 
 
0p 

Ip 

  
gij + δij + φij (19) 

where Ip and 0p are the p × p identity and zero matri-
ces. Note that Aij(t) in (19) is a time-varying matrix 
that has eigenvalues given by the roots of the polyno-

mial (λ2 + (bw̃ij(t) + ζ )λ  + w̃ij(t))p . Since we assume that 
w̃ij(t) >  0 for all t ≥ 0, then the eigenvalues of Aij(t) have 
negative real part for all t ≥ 0. The following theorem speci-
fies conditions that are sufficient for the group to reach a state 
in which the group is considered cohesive. 

Theorem 1: Consider the group whose dynamics are char-
acterized by the model in (2)–(8). Assume that Cl 

w < wij(0) <  
Cu 

w, for all i = 1, . . . ,N, j ∈ Ni. Also, assume that the dif-
ference in performance between two members of the group 
in (7) and the component of the force ui in (3) that seeks 
to optimize the performance of the individuals in the group 
are bounded during the task-solving process, i.e., there exist 
constants ψ ≥ 0 and ψg ≥ 0 such that 

 f ij(t) 
  ≤ ψ, ∀t ≥ 0 (20) 

∇f (x) ≤ ψg (21) 

for all x ∈ R
p , i = 1, . . . ,N, and j ∈ Ni. Let the parameters 

of the model be such that, for all t ≥ 0 

c ij 1 > 0 (22) 

and 

c ij 3 |Nj| +  
 

l∈βi 
c li 3 

2(1 − θij) 
< c ij 1 (23) 

for some θ ij ∈ (0, 1), i = 1, . . . ,N, j ∈ Ni, where βi is the 
set of members of the group that has i as a neighbor in the 
communication network, and 

c ij 1 = max 
w̃ij∈ C l w|Ni| , 

Cu 
w|Ni| 
 2w̃ij − 

 

b + 
ζ 
 
1 + 2w̃ij

 + b(w̃ij)2 

 
ζ + bw̃ij 

2 

 

αw(|Ni|w̃ij − Cl 
w) 
 
Cu 

w − |Ni|w̃ij  ψ 

(24) 

c ij 3 = max 
w̃ij∈ Cl 

w |Ni| , 
Cu 

w|Ni| 
 

⎡ 

⎢ 
⎢ 
⎣ 

 
ζ + bw̃ij

2 + 
 
w̃ij + 1 

2 

ζ + bw̃ij 

+ 

    
2 

 
w̃ij 
2 + 

 
ζ + bw̃ij 

2 + 

 
w̃ij 
2 − 1 

2 

 
ζ + bw̃ij 

2 

⎤ 

⎥ ⎥ 
⎦ 

× 
√ 

1 + b. (25) 

Then, the trajectories of the error system in (19) for every 
i = 1, . . . ,N and j ∈ Ni are uniformly ultimately bounded. 

Furthermore, if the topology of the communication network 
in the group is strongly connected, i.e., there is a directed path 
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between every two nodes, then the trajectories of the error 
between every pair of individuals in the group are uniformly 
ultimately bounded. 

Proof: The Lyapunov function chosen to do the cohesive-
ness analysis of the system in (19) is  

V(t, E) = 
N 

i=1 

 

j∈Ni 

Vij(t, E) (26) 

where E is the vector containing all the errors Eij. The  
functions Vij(E) are given by 

Vij(t, E) = Eij Pij(t)E
ij 

where Pij(t) is a 2p×2p time-varying matrix such that Pij(t) = 
Pij(t) > 0 for all t ≥ 0. The derivative of Vij(t, E) along the 
trajectories of the system in (19) is given  by  

V̇ij(t, E) = Eij Ṗij(t)E
ij 

+ Eij A ij Pij(t) + Pij(t)Aij Eij 

+ 
 
B 
 
gij + δij + φij Pij(t)E

ij 

+ Eij Pij(t)B 
 
gij + δij + φij . (27) 

From [32, Th. 4.6] and [33], given a matrix Qij(t) >  0 and 
a matrix  Aij(t) that has all its eigenvalues with negative real 
part for all t ≥ 0, we can find Pij(t) such that −Qij(t) = 
Pij(t)Aij(t) + Aij(t) Pij(t), for all t ≥ 0. Using this result, we 
can rewrite (27) as  

V̇ ij(t, E) = Eij  Ṗij(t) − Qij(t) 
 
Eij 

+ 
 
B 
 
gij + δij + φij Pij(t)E

ij 

+ Eij Pij(t)B 
 
gij + δij + φij . (28) 

If we choose Qij(t) = 2w̃ij(t)I2p, the matrix Pij(t) that satisfies 
the above relation is 

Pij(t) = 

⎡ 

⎣ 
(b ̃wij(t)+ζ) 2 +w̃ij(t)(1+w̃ij(t)) 

bw̃ij(t)+ζ Ip Ip 

Ip 
(1+w̃ij(t)) 
bw̃ij(t)+ζ Ip 

⎤ 

⎦ . 

Its maximum eigenvalue satisfies λmax 
 
Pij(t) 

 ≤ cij
3 |Ni|/ 

(2Cu 
w

√ 
1 + b2) for all t ≥ 0, where cij 

3 is defined in (25). 
Matrix Pij(t) is a time-varying matrix whose entries depend 
on w̃ij(t), where its derivative with respect to t is 

Ṗij = ˙̃w 
ij ∂Pij 

∂w̃ij 

= ˙̃wij 

⎡ 

⎢ 
⎣ 

b + ζ (1+2 ̃wij(t))+b ̃wij(t) 
2 

(ζ +b ̃wij(t))
2 

 

Ip 0p 

0p 
ζ −b 

(ζ +b ̃wij(t))
2 Ip 

⎤ 

⎥ 
⎦ 

where ˙̃wij 
is defined in (7). The maximum eigenvalue of the 

matrix Ṗij(t) − Qij(t) satisfies λmax[Ṗij(t) − Qij(t)] ≤ −cij 
1, 

for all t ≥ 0, where cij 
1 is defined in (24). This information 

will be useful to obtain an upper bound for V̇ij(t, E) in (28). 

Now, we study the remaining elements in (28). It can be shown 
that exp(−1/2)β is the unique maximum value of the function 
h(y) = exp(−1/2β2y2)y, for all y ∈ R

p . Using this in (18), 
we obtain 

δij ≤ exp(−1/2)

⎛ 

⎝ 1 

|Ni| 
 

k∈Ni 

κ ijβij + 
1 

|Nj| 
 

l∈Nj 

κ jlβjl 

⎞ 

⎠ 

= δ̄ij . (29) 

From (16), we have 

φij ≤  
 

l∈Nj 

w̃jl(t) 
 

1 + b2 
   Ejl 

  , j ∈ Ni 

≤ Cu 
w 

 
1 + b2 

 

l∈Nj 

 
  Ejl 

 
  (30) 

where we used the fact that w̃jl < Cu 
w/|Nj|, and |Nj| ≥  1. 

From  the assumption in (21), and since we know from (8) 
that ηi ≥ Cη, we obtain 

gij ≤ 2Cηψg. (31) 

Assume that (22) is satisfied. Then, putting (29)–(31) together 
in (28), and since PijB ≤ λmax[Pij] ≤ cij

3 |Ni|/(2Cu 
w

√
1 + b2) 

and 

Eij  Ṗij(t) − Qij(t) 
 
Eij ≤ λmax 

 
Ṗij(t) − Qij(t) 

  Eij
 2 

≤ −cij 
1 

 Eij
 2 

we obtain 

V̇ij(E) ≤ −c ij 1 

 Eij
 2 + c ij 2 

 Eij
  + c ij 3 

 Eij
  
 

l∈Nj 

   Ejl 
   (32) 

where cij 
2 = [cij

3 |Ni|/(Cu 
w 

√
1 + b2)](δ̄ij + 2Cηψg). Note that, 

for any 0 < θ  ij < 1, (32) can be written as 

−cij 
1 

 
Eij


 2 + cij 

2 

 
Eij

 
 ≤ −(1 − θ ij)cij 

1 

 
Eij


 2 

∀ 
 
Eij

 
 > rij = −σ ij

 
Eij


 2 

(33) 

where rij = cij
2 /(c

ij
1θ 

ij) and σ ij = (1 − θ ij)cij 
1 > 0. This indi-

cates that the first two terms of the right-hand side of (32) are  
negative when Eij > rij . 

To find the conditions that make ˙ V < 0 in (26), we define 
the sets ζ i O and ζ i I 

ζi 
O = 

 
j : 
 Eij

  ≥ rij , j ∈ Ni 
 

ζi 
I = 

 
j : 
 Eij

 
 < rij , j ∈ Ni 

 
. 

The sets ζi 
O and ζi 

I contain the indices of the neighbors of i 
whose error Eij at a given time satisfy Eij ≥ rij and Eij < 
rij , respectively. The size of the sets is Ni 

O = |ζi
O| and Ni 

I = 
|ζi 

I | . We first analyze the case when 1 ≤ Ni 
O ≤ |Ni|, and later 

we discuss the case when Ni 
O = 0. In the first case, since Ni = 

ζi 
O ∪ ζi

I , we can set bounds on the components in V̇ij that 
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depend on the Eij with j ∈ ζi
I . Hence, from (26), (32), 

and (33), we obtain 

V̇ (E) = 
N 

i=1 

 

j∈Ni 

V̇ ij(E) 

≤
⎡ 

⎢ 
⎣ 

N  

i=1 

 

j∈ζ i O 

⎛ 

⎜ 
⎝ − σ ij

 Eij
 2 

+ c ij 3 

 Eij
  
 

l∈ζ j O 

   Ejl 
  

⎞

⎟
⎠

⎤ 

⎥ 
⎦ 

+ 

⎡ 

⎢ 
⎣ 

N  

i=1 

⎛ 

⎜ 
⎝ 
 

j∈ζ i O 

c ij 3 K ij 1 

 
Eij

 
 

⎞ 

⎟ 
⎠ 

+ 
N  

i=1 

⎛ 

⎜ 
⎝ Ki 

3 

 

k∈Ni 

 

l∈ζ k 
O 

c ik 
3 

   Ekl 
  

⎞

⎟
⎠

⎤ 

⎥ 
⎦ 

+ K2. (34) 

Here, we use the fact that for the Eij < rij with j ∈ ζi 
I and 

i = 1, . . . ,N, there exist positive constants Kij 
1 , K2, and Ki 

3
that satisfy [29, Th. 1] 

K ij 1 ≥ 
 

l∈ζ j I 

   Ejl 
  , j ∈ Ni 

K2 ≥ 
N 

i=1 

 

j∈ζ i I 

⎡ 

⎢ 
⎣ − cij 

1 

 Eij
 2 + cij 

2 

 Eij
  

+ c ij 3 

 Eij
  
 

l∈ζ j I 

   Ejl 
  

⎤ 

⎥ 
⎦ 

Ki 
3 ≥ 

 

j∈ζ i I 

 Eij
  . 

The first term in brackets on the right-hand side of (34) 
is a quadratic form of the variables Eij, i = 1, . . . ,N, 
j ∈ ζi 

O. Let  y be a column vector of dimension 
N 

i=1 |ζi
O| with 

entries given by all the Eij for i = 1, . . . ,N, j ∈ ζi 
O. The  

quadratic form can be written as y Sy, where S is a squared 
matrix whose diagonal elements are given by −σ ij , and the 
off-diagonal elements depend on the variables cij

3 . We know 
that y Sy < 0 if and only if the eigenvalues of its symmetric 
part (S + S )/2 are negative. According to the Gershgorin 
circle theorem [34, Ch. 7], all its eigenvalues λ satisfy 

|λ+ σ ij| ≤  
1 

2 

⎛ 

⎝c ij 3 

  
 ζ j O 

  
 + 

 

l∈βi 

cli 
3 

⎞ 

⎠ (35) 

where βi = {j : j ∈ {1, . . . ,N}, i ∈ Nj}, that is, βi is the 
set of nodes that has node i as a neighbor. The right-hand 
side of (35) corresponds to the sum of the elements of the 
row of (S + S )/2 associated with the variable Eij, where 
cij

3 |ζ j 
O| and 

 
l∈βi 

cli 
3 are the sum of the elements of the ith 

row of S and S , respectively. Then, a sufficient condition for 
the quadratic form to be negative definite is 

− σ ij + 
1 

2 

⎛ 

⎝c ij 3 

  
 ζ j O 

  
 + 

 

l∈βi 

cli 
3 

⎞ 

⎠ < 0. (36) 

Note that this is satisfied if (22) and (23) are satisfied. Assume 
that these conditions are satisfied, and the first term in brackets 
on the right-hand side of (34) is negative. Then, λmax[(S + 
S )/2] < 0, and 

V̇ (E) ≤ 

⎡ 

⎢ 
⎣ λmax

 
S + S /2

 N  

i=1 

 

j∈ζ i O 

 Eij
 2 

⎤ 

⎥ 
⎦ 

+ 

⎡ 

⎢ 
⎣ 

N  

i=1 

 

j∈ζ i O 

c ij 3 K ij 1 

 
Eij

 
 

+ 
N  

i=1 

Ki 
3 

 

k∈Ni 

 

l∈ζ k 
O 

c ik 
3 

   Ekl 
  

⎤ 

⎥ 
⎦ + K2. (37) 

Then, from (37), when Eij, i = 1, . . . ,N, j ∈ ζi 
O, is  

sufficiently large, the term 

λmax[(S + S )/2] 
N  

i=1 

 

j∈ζ i O 

 Eij
 2 

determines the sign of V̇(E) and therefore, V̇(E) <  0. In the 
case when Ni 

O = 0, the trajectories satisfy Eij < rij , for all 
i = 1, . . . ,N, and j ∈ Ni. Therefore, we can take maxi,j rij as 
the ultimate bound. 

So far we have shown the conditions to achieve uniform 
ultimate boundedness for each Eij . This result shows that if 
the difference in position and velocity of between an indi-
vidual and his or her neighbors is sufficiently large, then the 
trajectories of position and velocity will behave such that this 
difference decreases until it reaches a boundary. To complete 
the proof, we have to show that the error in position and veloc-
ity between every two individuals in the group is bounded 
when Eij, for all i, j ∈ {1, . . . ,N}, is bounded. Assume 
that the uniform ultimate boundedness has been achieved in 
the trajectories of the error system (19), and Eij < r i 

for all i ∈ {1, . . . ,N} and j ∈ Ni. Let  i → j denote that 
individual i is a neighbor of j in the communication net-
work, that is, i ∈ Nj. Let  l1 → l2 →  · · ·  →  lM denote 
the directed path starting from l1 and ending in lM , where 
li ∈ {1, . . . ,N}. We know that for l1 → l2 and l2 → l3, 
it is true that El2l1  < rl2l1 and El3l2  < rl3l2 . Since the 
error term Eij is a weighted Euclidean distance in posi-
tion and velocity between individuals i and j, we have that 
El3l1  ≤ El2l1  + El3l2  < rl2l1 + rl3l2 . Applying sequen-
tially this relation to the directed path l1 → l2 → · · · → lM , 
we obtain 

 
  ElM l1 

 
 
 < 

M−1  

j=1 

r lj+1lj = r lM l1 . (38) 
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Therefore, from the assumption that there is a directed path 
between every two nodes, if the trajectories of the error sys-
tem (19) achieve uniform ultimate boundedness, then there 
exists a bound for Eij for every i, j ∈ {1, . . . ,N}. 

Remark 1: This result shows that, when the assumptions on 
the parameters of the model and the communication topology 
are satisfied, if the Eij are large enough, then the trajectories 
of the error system will achieve uniform ultimate boundedness. 
This means that if the individuals in the group are sufficiently 
separated in position and velocity from the other members, 
they will move closer to them in a way that the uniform 
ultimate bound for position and velocity is satisfied. 

Remark 2: This analysis provides information about condi-
tions that are sufficient to have cohesiveness in the group, but 
it does not state any condition on achieving local optimality 
of the performance function. 

Remark 3: The assumptions on the boundedness of the dif-
ference in performance and the gradient of the performance 
function in (20) and (21) are reasonable assumptions that can 
be satisfied by realistic performance functions such as a mix-
ture of Gaussian functions and a plane, and hence they do not 
represent a restrictive condition for our analysis. 

Remark 4: The assumption that the communication net-
work is represented by a strongly connected graph indicates 
that every individual in the group influences any other group 
member either by a direct connection, or indirectly by a “chain 
effect.” The latter means that, since there is a direct path in 
communication between every two members of the group, 
every individual can indirectly affect the dynamics of every 
other group member as (38) indicates. If this assumption is 
not satisfied, from the proof of Theorem 1, cohesiveness can 
only be guaranteed between an individual and his or her direct 
neighbors. 

Remark 5: Constant cij 
1 in (32) gives us information about 

the strength in attraction from individual i to j with respect to 
the influence of the other components that drive the dynamics 
of i. On the other hand, cij 

2 and cij
3 corresponds to the strength 

of the other components that influence the individual’s behav-
ior such as the task to optimize, and repulsions and attractions 
to other individuals. Then, (22) and (23) indicate that if the 
influence of the attraction from i to j represented in cij 

1 is 
stronger than the influence of the rest of the components of 
the behavior of individual i represented in cij 

3, then it is guaran-
teed that there is a bound of the error in position and velocity 
between i and j that will be satisfied at some finite time. 

Remark 6: Note that from (22) and (23), the conditions for 
ultimate uniform boundedness do not depend on the parame-
ters of the component of the force ui in (3) that is associated 
with repulsion between individuals. However, from (33), we 
see that the parameters of the repulsion term do affect the size 
of the ultimate bound through the constant cij 

2. 
Remark 7: Note that when the repulsion and the optimiza-

tion of the performance function do not have any influence in 
the computation of the force ui in (3) (i.e., r(t) = p(t) = 0), 
from (33) we have that cij 

2 = 0, and ζi 
O = Ni. Then, if 

the condition (36) is satisfied  for all  t ≥ 0, the uniform ulti-
mate bound will be as tight as possible in this setting. If we 
additionally assume that the attraction weights wij and the 

performance optimization parameters ηi are constant, this par-
ticular case of our model is known as a “consensus algorithm” 
for double-integrator dynamics [25, Ch. 4]. 

IV. DYNAMICS OF THE GROUP IN COMPLEX 

TASK ENVIRONMENTS 

We explore the dynamics of the group when its members 
have to solve a given task, which is defined by f . Recall that 
N denotes the number of members in the group. We choose 
xi ∈ R

2 for all i = 1, . . . ,N, and f : R2 → R to be a con-
tinuously differentiable function. We consider two different 
complex task environments: first, we choose a function that 
has three local minima, three local maxima, one global min-
imum x∗ such that f (x∗ ) = 0, and flat regions. The equation 
of this function is 

f (x1, x2) = 3(1 − x1) 
2 exp


− x2 

1 − (x2 + 1)2
 

− 10 
x1 

5 
− x 3 

1 − x 5 
2 exp − x 2 

1 − x2 
2 

− 
1 

3 
exp

−(x1 + 1) 2 − x2 

2

 
+ 6.5511. 

Fig. 1 shows a contour plot of this function. This function 
allows us to study the behavior of the group when the task-
solving process can lead to different solutions. 

In the second scenario, we choose a function defined by a 
plane. This function allows us to study the dynamics of the 
group in terms of performance and cohesion when the task-
solving process is continual, and does not have a fixed solution 
point. To quantify the group cohesion and performance at a 
given time t, we define three measurements: group cohesion 
in position, defined as 

γ (t) = −  
1 

N(N − 1)/2 

 

i,j∈V 

 x i(t)− x j(t) 
 2 

(39) 

is the negative sum of the pairwise distances between the indi-
viduals at time t. This function allows us to quantify how close 
the group members are to each other at a given time. We have 
γ (t) = 0 when all the individuals are at the same position, and 
negative values of γ (t) indicate separation between the group 
members. Similarly, we have the group cohesion in velocity, 
defined as 

γv(t) = −  
1 

N(N − 1)/2 

 

i,j∈V 

 v i(t)− v j(t) 
 2 
. (40) 

In addition to cohesion measurements, we define Group 
performance as 

J(t) = −  
1 

N 

N  

i=1 

f 
 
x i(t) 

 
(41) 

which is the negative sum of the individual performance of 
each group member. This function allows us to measure how 
the group is performing in solving the task at time t. Below,  
we present the results of the simulations of the dynamics of the 
group under different scenarios in the topology of the com-
munication network, parameters of the model, and flow of 
information. 
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(a) (b) (c) 

Fig. 1. (a) Contour of the cost function f (x) and trajectory of the members of the group (black solid lines), where symbol “o” indicates the initial position, 
and the arrows represent the direction of their trajectory. (b) Contour of the performance function and communication network in the group, where the arrows 
indicate the flow of the information, the thickness of the line indicates the strength in attraction between members, and the symbol “o” marks the location of 
the individual at time step 150. (c) Cohesion γ (t) and performance J(t) of the group. 

A. Trajectories and Attraction Patterns in the Group 

To illustrate the group dynamics that can be generated using 
the proposed model, we first study the performance and cohe-
sion of the group and the trajectories of each individual given 
a set of initial conditions and parameters of the model and 
the performance function f that has multiple solutions. In this 
case, the group is composed of N = 6 individuals, whose 
initial position is randomly selected and initial velocities are 
set to 0. Also, wij(0) = 1/|Ni| for every i ∈ V and j ∈ Ni. 
The parameters of the model are chosen such that at t = 0 
the contribution of the term associated with the gradient of the 
function ∇f (xi(t)) in (3) is large compared to the one asso-
ciated with the attractions ai(t), and the short-range repulsion 
in position between individuals is very small. To facilitate the 
analysis of the attraction patterns of the group, in this sim-
ulation there is no attraction in velocity, that is, b = 0. The 
communication network between the group members follows 
a symmetric ring topology (each node has two neighbors). 
This means that each group member communicates with his 
or her contiguous group members via a bidirectional flow of 
information. The discretization of the differential equations 
is done using Euler’s approximation method with sampling 
time T = 0.1. Fig. 1 shows the behavior of the individuals 
at different time steps. From the trajectory of the agents in 
Fig. 1(a), we can observe that initially the individuals tend to 
go to their closest local minimum or saddle point. This is due 
to the fact that initially the force that drives each individual 
is more oriented toward solving the task than being attracted 
to the rest of the group. However, individuals start increasing 
their attraction to those that are connected to them and have a 
better relative performance as Fig. 1(b) illustrates. There is a 
point where the attraction weights become large enough that 
the force driving the individuals points toward those individu-
als with better relative performance, even if it implies moving 
in a direction that locally does not optimize its performance. 
Note that, since the agents are not fully interconnected, some 
individuals sequentially jump to minima until eventually they 
reach the global one. This behavior is evident in Fig. 1(c), 
where the group performance decreases at some points where 
group cohesion increases. 

A further interpretation of the mathematical model 
in (2)–(8) allows us to explain the attraction patterns in the 
dynamics observed in Section IV. Using simple algebraic 
operations, we can rewrite the component associated with the 
attraction in position and velocity in (5) as  

a i(t) = −w̄ i(t) 
 
x i(t)− x̄ i(t) 

 − bw̄i(t) 
 
v i(t)− v̄ i(t) 

 
(42) 

where w̄i(t) = 


j∈Ni 
wij(t) is the sum of the attraction in 

position strengths. We have that 

x̄ i(t) = w̄ i(t)−1 
 

j∈Ni 
wij(t)x j(t) 

corresponds to the weighted average of the position of the 
individuals in Ni. Here, x̄i(t) is located closer to those indi-
viduals in Ni with higher attraction strength. In a similar way, 
we can compute v̄i(t). During the process of solving the task, 
from (7), we have that an individual tends to be more attracted 
to the ones that are performing better than him or her, that is, 
have a higher contribution in the computation of the weight 
average w̄i(t). As some of the  wij increase, term w̄i(t) in (42) 
becomes larger and the influence of the attraction component 
in force ui(t) becomes significantly larger than the component 
associated with performance optimization. In Fig. 1, we can 
observe that group members that initially move to local min-
ima or saddle points later move toward those individuals that 
have better performance. For example, individual 2 moves to a 
saddle point, but later it gets attracted to 1, who is performing 
better. Also, individual 3 reaches a local minimum, but it later 
climbs up the valley because it gets attracted to individual 2 
who is performing better (because 2 is being attracted to 1). 
These dynamics allow the group to eventually reach the global 
minimum and remain cohesive. 

B. Topology of the Communication Network 

In the next set of simulations, we explore the behav-
ior of the cohesion and performance of the group to solve 
the given task under different communication topologies. We 
estimate group cohesion γ (t) and group performance J(t) 
in (39) and (41) using the Monte Carlo simulation method 
by repeating the simulations 1000 times with different initial 
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Fig. 2. Mean (solid line) and standard deviation (shaded region) of group cohesion γ (t) and group performance J(t) estimated using Monte Carlo simulations 
for a group with ten members under (a), (d), (g) wheel, (b), (e), (h) ring, and (c), (f), (i) line communication networks. Simulations are performed in three 
different scenarios: (a)–(c) dynamics on the attraction and performance weights, (d)–(f) constant and equal attraction weights, where the attraction term has 
a predominance in the behavior of the individuals, and (g)–(i) constant and equal attraction weights, where both the attraction term and gradient of the cost 
function affect the behavior of the individuals. 

conditions each time. This number of repetitions allows us to 
obtain a good estimate of the means and standard deviations 
of γ (t) and J(t). We create a group with N = 10 members, 
whose initial conditions in position are randomly selected, and 
initial velocities are set to zero. The performance function is 
the one that has several local minima. The discretization of 
the differential equations is done using Euler’s approximation 
method with sampling time T = 0.01. 

We simulate the model under different topologies of the 
network that define how the members of the group commu-
nicate between each other. First, we compute group cohesion 
and performance under three topologies: a wheel, in which 
most of the members of the group communicate with only 
one individual. A ring, in which every individual communi-
cates with only two other group members. And a line, in which 
is similar to the ring topology but two of the group members 
communicate with only one individual. For each topology, 
the parameters of the model are chosen under three differ-
ent scenarios: 1) as in the simulation in Fig. 1, where the 
performance optimization component of force ui is initially 

stronger than the attraction ones; 2) dynamics for the attraction 
weights and performance optimization strength (i.e., αw = 0 
and αη = 0), in which the attraction strength is significantly 
larger than that of performance optimization; and 3) again no 
dynamics for the attraction weights and performance optimiza-
tion strength (i.e., αw = 0 and αη = 0), but in this case 
the attraction and performance optimization strengths have a 
similar influence on the force ui . 

Fig. 2(a)–(i) show the results for each case. In the first sce-
nario, where the dynamics of the attraction weights and the 
strength in performance optimization is given by (7) and (8), 
we can observe that the average group cohesion γ (t) and aver-
age group performance J(t) reach a value close to zero, which 
means that all the members of the group reach almost the 
same position, and they achieve the global optimum. However, 
depending on the topology, there are significant differences in 
the trajectories that the group follows. It can be observed that 
the group in a wheel-type communication network [Fig. 2(a)], 
compared to the other two network topologies, takes longer 
to reach a state in which the group can be considered as 
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cohesive and has larger variability in the trajectories of γ (t) 
and J(t) for different initial conditions. The communication 
network that with better performance is the one with a ring-
type topology [Fig. 2(b)]. The time the group takes to achieve 
a steady state and the variability for different initial condi-
tions in performance and cohesion is considerably shorter than 
the other two topologies. These results are consistent with 
observations of human groups solving complex tasks [3], [13]. 
It has been reported that groups tend to perform better in 
decentralized communication networks (ring) than centralized 
ones (wheel). 

In the second scenario, the parameters in attraction and 
performance optimization have no dynamics, and the con-
tribution of the attraction term to the force that drives the 
members of the group is higher than the contribution of the 
performance optimization. In this case, the group reaches 
an agreement. However, the position that the group agrees 
at has a large variability, and on average, it does not cor-
respond to the global minimum. In the third scenario, the 
attraction and performance optimization parameters have no 
dynamics, but in this case they have equal contribution to the 
force ui . In this case, on average, neither γ (t) nor J(t) are 
maximized. 

C. Density of the Communication Network 

To observe the effect of the density of the topology on the 
cohesion and performance of the group, we used the Monte 
Carlo simulation method with 1000 repetitions to estimate 
group cohesion and group performance in a group with N = 50 
members. The parameters are chosen as in the simulations in 
Section IV-A. The selected performance function is the one 
that has several local minima. The density of a network topol-
ogy is defined as the number of connections divided by the 
total possible number of connections between the members of 
the group. A density of 1 corresponds to a fully connected 
network. Fig. 3 shows the results of the simulation for a net-
work with a ring topology, where each node has 25 neighbors, 
and a network that is fully connected. This corresponds to net-
works that have densities 0.4898 and 1, respectively. In Fig. 3, 
we can observe that as the number of neighbors increases, 
the time it takes to the members of the group to be consid-
ered cohesive increases, and the performance of the whole 
group decreases. This behavior can be noted from (5) and (6). 
Here, the attraction, repulsion, and performance optimization 
terms are scaled by |Ni|−1 . When the number of neighbors 
increases, then the force that directs the motion of the indi-
viduals is mostly influenced by the term −ζ ivi , i = 1, . . . ,N, 
which makes the velocities of the individuals decrease. This 
behavior has been observed in human groups [3], [10]. It has 
been shown that the size of the group significantly affects both 
cohesion between members and the performance during the 
task-solving process. In the model, term |Ni|−1 in the social 
force components accounts for this effect. When the number of 
neighbors increases, then the social influence on the dynamics 
of the individual decreases. As the cohesive behavior of the 
group decreases, the overall performance of the group also is 
affected. 

Fig. 3. Mean (solid line) and standard deviation (shaded region) of group 
cohesion γ (t) and group performance J(t) estimated using Monte Carlo sim-
ulations for communication networks in groups with 50 members. (a) With 
a ring-type topology where each node has 25 neighbors. (b) Fully connected 
topology. 

D. Group Dynamics in Task Environment Represented 
by Plane 

A task environment f given by a plane with respect to the 
position of the individuals in the group allows the group to 
have a continual optimization process of its performance dur-
ing the selected time interval of analysis. In this case, the 
component of the force ui associated with the performance 
optimization is constant and different from zero. In this set of 
simulations we measure the cohesion of the group in position 
and velocity and its performance for the wheel, ring, and line 
communication network topologies used in the previous set of 
simulations (see Fig. 2). The communication network has a 
ring topology, and the parameters are chosen such that there 
is an interaction between the attraction and performance com-
ponents of the force that drive the motion of the group as in 
Section IV-A. However, in this case the attraction term depends 
not only on position but also in velocity. To study the behavior 
of cohesion and performance in the group, we used the Monte 
Carlo simulation method with 1000 repetitions, and estimated 
the mean and standard deviation of the group cohesion in posi-
tion and velocity, and group performance, measured y γ (t), 
γv(t), and J(t), respectively. Fig. 4 shows these measurements 
for different communication network topologies. Note that the 
group in a wheel topology reaches significantly faster cohe-
siveness in position than the ring and line topologies. However, 
there is a larger variability in the initial behavior of the veloc-
ity vector and in the performance of the group. The groups 
working in ring and line topologies take longer to reach a 
state considered as cohesive, but their performance has less 
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Fig. 4. Mean and standard deviation of group cohesion in (a) position and 
(b) velocity, and (c) performance of the group for different communication 
topologies and when the performance function is characterized by a plane. 
The solid line and the shaded region correspond to the mean and standard 
deviation estimated using Monte Carlo simulations. 

variability and increases faster than the one obtained by the 
groups working in a wheel topology. 

V. CONCLUSION 

We developed a model of a group of individuals that interact 
according to a communication network, and whose dynam-
ics are driven by a component that seeks to optimize a task 
and the influence of the interactions of the group members. 
The key aspect in our model, which is the main difference 
with other models of group dynamics and consensus, is that 
the strength of the social influence and the commitment to 
solve the task are not static but dynamic, and depend on 
the relation between cohesion and performance of the group. 
Simulation results show that the relation between cohesion 
and performance, described in (7) and (8), allows the model to 
characterize dynamics that are qualitatively consistent with the 
results observed in human groups. It is shown that, in average, 
decentralized communication network topologies outperform 

the centralized ones when solving a complex task, and a larger 
number of connections between individuals decreases cohesion 
and task performance. Also, a theoretical analysis of the model 
shows that, under the appropriate conditions on the parameters 
and topology of the network, the group reaches a point where 
it is considered as cohesive. 

This model represents a tool for the analysis and design 
of communication networks of task-solving groups. It enables 
the social scientist to understand human groups as a dynam-
ical system, to explore the group behaviors under differ-
ent conditions in the parameters and network topology, 
and to design new methodologies for the development of 
experiments in real-human groups whose aim is to solve 
complex tasks. 
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