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Abstract—The endocrine differentiation of pancreatic ductal 
epithelial cells is dependent upon their transition from a two-
dimensional monolayer to three-dimensional islet-like clus-
ters. Although clustering of these cells is commonly observed 
in vitro, it is not yet known whether clustering results from 
long-range signaling (e.g., chemotaxis) or short-range inter-
actions (e.g., differential adhesion). To determine the 
mechanism behind clustering, we used experimental and 
computational modeling to determine the individual contri-
butions of long-range and short-range interactions. Ex-
perimentally, the migration of PANC-1 cells on tissue 
culture treated plastic was tracked by time-lapse microscopy 
with or without a central cluster of cells that could act as a 
concentrated source of some long-range signal. Cell migra-
tion data was analyzed in terms of distance, number of steps, 
and migration rate in each direction, as well as migration rate 
as a function of distance from the cluster. Results did not 
indicate directed migration toward a central cluster 
(p > 0.05). Computationally, an agent-based model was used 
to demonstrate the plausibility of clustering by short-range 
interactions only. In the presence of random cell migration, 
this model showed that a high, but not maximal, cell–cell 
adhesion probability and minimal cell–substrate adhesion 
probability supported the greatest islet-like cluster forma-
tion. 

Keywords—Diabetes, Islet cells, Differential adhesion, 
Agent-based modeling, Time-lapse microscopy. 

INTRODUCTION 

Type I diabetes mellitus, also called insulin-depen-
dent and juvenile diabetes, is an autoimmune disease 
characterized by the destruction of insulin-secreting 
beta cells of the pancreas. This disease afflicts ap-
proximately one million individuals in the U.S.13 and is 
increasing in incidence worldwide at an annual rate of 
3–5%.19 Type I diabetes is traditionally managed by 
exogenous insulin therapy, but this method has limited 
ability to tightly regulate blood glucose levels and often 
results in long-term complications. Alternative treat-
ments that may improve long-term outcomes include 
whole pancreas or pancreatic islet cell transplantation, 
but the annual supply of donor organs is severely limited 
and therefore reserved only for severe cases.18,21,33 To 
fill the unmet need for insulin producing cells and im-
prove long-term efficacy of treatment, researchers have 
explored alternative sources of insulin-secreting cells 
that include the self-replication of beta cells, differen-
tiation of progenitor or stem cells, and transdifferen-
tiation of related cell types toward a pancreatic 
endocrine phenotype. 2,5,12,27,30 The upregulation of islet 
cell hormone genes (e.g., insulin, glucagon, c-peptide, 
and somatostatin) and their secretion are associated 
with clustering and the transition from a two-dimen-
sional monolayer to three-dimensional islet-like struc-
tures in vitro.5–7,24,37 Further supporting the importance 
of the 3D structure is the observation that the secretory 
responsiveness of cells in 3D clusters was lost upon 
dispersal of the cells and established again after 3D islet-
like structures were reformed.24 

Of the various cell types explored as a source of new 
beta cells, pancreatic ductal epithelial cells (PDEC) are 
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attractive candidates.4–6 During the normal develop-
ment of the pancreas, islet precursor cells initially bud 
off of the ductal structures with evidence of transdif-
ferentiation of these PDEC to endocrine cells. 29,31 

PANC-1 cells are human epithelial-like adenocarcino-
ma cells that have been used as a model system for 
PDECs because of this pancreatic ductal origin.14 This 
cell line clusters when plated on culture dishes and 
exposed to serum-free medium (SFM), and later shows 
signs of endocrine differentiation by secreting C-pep-
tide, insulin, and glucagon.17 

Little is known about how PANC-1 cells form mul-
ticellular clusters. Possible mechanisms can be broadly 
categorized into those relying on long-range or short-
range interactions. Cell clustering by long-range inter-
actions involves some signal for mutual attraction fol-
lowed by directed migration of cells toward one 
another. Perhaps the best-studied example of a long-
range signal mediating cell clustering is chemotaxis by 
Dictyostelium discoideum.35 These single-cell organisms 
release cAMP, collectively forming cAMP gradients, 
then aggregate by migrating in the direction of in-
creasing cAMP concentration. Chemotaxis is not a be-
havior unique to D. discoideum, but has also been 
suggested as a mechanism for directed migration for 
Escherichia coli16,38 and in mammalian cell culture.22,26 

Based on observations that PANC-1 cells in a Boyden 
chamber migrated toward a source of fibroblast growth 
factor two (FGF2) and that interfering with FGF2 
signaling blocked aggregation, Hardikar et al. asserted 
that PANC-1 cells use FGF2 as a paracrine chemoat-
tractant to mediate clustering.17 In addition to this type 
of chemical signaling, mechanical cues may direct long-
range cell clustering as well. Cells on or in an extracel-
lular matrix can mechanically remodel the surrounding 
matrix.10,36 The resulting anisotropic changes in matrix 
density, matrix mechanics, and the alignment of fibrous 
proteins25 have all been proposed as mechanisms by 
which cells can direct their migration toward other cells 
via haptotaxis, mechanosensing, or contact guid-
ance.25,36,40 In contrast to long-range interactions, cell 
clustering could also result from short-range interac-
tions whereby cells migrate randomly, incidentally col-
lide, and intercellular adhesions form causing cells to 
stick together. Boretti and Gooch suggested that short-
range mechanical interactions regulate the clustering of 
primary human pancreatic epithelial cells based on their 
observation that the relative strength of cell–cell vs. cell– 
substrate adhesion was a primary regulator of cluster-
ing.5 This concept is akin to the ‘‘differential adhesion 
hypothesis’’ that explains cell migration and sorting 
during tissue morphogenesis.34 

In the present study, we investigate whether clus-
tering of PANC-1 cells in vitro shows evidence long-
range signaling and whether differential adhesion 

alone can support the formation of cell clusters in 
computational models. We seek to understand the 
mechanisms behind pancreatic cell clustering. This 
understanding will facilitate informed decisions about 
how to control clustering of pancreatic cells, improving 
differentiation toward a secretory endocrine pheno-
type, and likely have implications for various other cell 
types whose functions are dependent upon multicellu-
lar aggregation such as hepatocytes15,23 and embryonic 
stem cells. 1,8,20,28 

MATERIALS AND METHODS 

Cell Culture and Clustering 

PANC-1 cells (American Type Culture Collection, 
Manassas, VA) were cultured in serum-containing 
medium (SCM) consisting of low-glucose Dulbecco’s-
modified Eagle medium (DMEM) with 10% fetal bovine 
serum (FBS, Gibco/Invitrogen, Carlsbad, CA). Cell 
clustering was induced by changing medium to SFM 
consisting of a 1:1 mixture of DMEM and F12 supple-
mented with 1% (v/v) insulin transferrin selenium solu-
tion (ITS, Gibco/Invitrogen, Carlsbad, CA) and 1% (w/ 
v) bovine serum albumin (MP Biomedicals, Solon, OH). 

Hanging-Drop Method for Forming PANC-1 Cell 
Clusters 

The hanging drop method was used to create pre-
formed clusters for experiments requiring initial cell 
aggregates. When PANC-1 cells were initially seeded in 
SCM, 45 aliquots (4 lL each) of cell-containing SFM 
were pipetted onto the lid of a 100 mm tissue culture 
treated plastic (TCTP) Petri dish (Fisher Scientific, 
Pittsburgh, PA). Each 4 lL drop contained ap-
proximately ~40 cells for cultures at 10% confluence, 
and ~20 cells for cultures at 5% confluence. The dish 
was then inverted and incubated for 16–20 h. Imme-
diately before time-lapse imaging, cell clusters that 
formed in the hanging drops were washed off the lid 
with 1 mL SFM and added to the 35 mm Petri dish 
containing PANC-1 cells at 10 or 5% confluence. 

Time-Lapse Microcopy and Image Analysis 

Cells were seeded onto 35 mm TCTP petri dishes 
(MatTek, Ashland, MA) in SCM at ~10% confluence 
(75,000 cells/dish) or ~5% confluence (37,500 cells/ 
dish) and cultured for 16–20 h. After this culture 
period, culture medium was changed to SFM to allow 
for cell clustering and 1 mL of SFM containing 
PANC-1 cell clusters was added. Although the hang-
ing-drop method could potentially produce up to 45 
clusters, fewer than 10 clusters were typically observed 
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after their transfer to the Petri dish. If the experiment 
contained clusters, a field of view was chosen such that: 
(1) contained a cluster of the intended size (i.e., ~20 or 
~40 cells), (2) there were no other clusters within 
~5000 lm, and (3) the local confluence of PANC-1 
cells was representative of the desired confluence (i.e., 
~5 or  ~10%). All images were taken of a single field of 
view using differential interference contrast mi-
croscopy with an Axiovert 200 M inverted microscope 
(Zeiss, Thuringia, Germany) equipped with a 910 
objective. The cells and microscope were housed in a 
Marianas microscope enclosure that was maintained at 
37 C and 5% CO2 and rested on a vibration isolation 
table. Images were taken every five min for 25 h and 
captured using SlideBook software (3i Intelligent 
Imaging Innovations, Denver, CO). 

Analysis of Pancreatic Cell Migration 

The Manual Tracking plug-in (Fabrice P. Corde-
liè res, Institut Curie, Orsay, France) for ImageJ (W. 
Rasband, NIH) was used to identify the coordinates of 
the center of the cluster and surrounding cells every 
five min. All data were recorded by the same person. 
Cells were temporarily not tracked if they migrated 
outside the field of view. Data from cells that appeared 
to undergo apoptosis during the recorded time frame 
were discarded. Small clusters, comprised of more than 
two cells, made up less than 3% of cell tracks. Data 
from the movement of these small clusters was ex-
cluded from analyzes because they were not as motile 
single or joined pairs of cells. Individual cell tracks 
were then imported into MATLAB (MathWorks, 
Natick, MA) and analyzed using original code found 
in the Supporting Material. This code allowed for the 
full data set to be analyzed, or subsets of data de-
marcated by one of a variety of parameters including 
the number of cells (e.g., single cells, pairs of attached 
cells, etc.), cell fate, and the selection of a specific time 
step. For a given time step, MATLAB determined H, 
the direction of cell migration relative to the cluster 
(Fig. 1e), as well as L, the distance migrated during a 
single time step. The path length for a single cell was 
calculated as the sum of all distances traveled each time 
step. Data for distances traveled and steps were sorted 
into bins, each bin representing movement in a par-
ticular direction in relation to the cluster. A step rep-
resents all movement in any direction for a single cell 
during a single time step. This is distinct from a time 
step, the length of time between data points. The bin-
ned data was then used to generate rose diagrams. 
Migration rate within each bin was calculated by di-
viding the total distance traveled by cells in that di-
rection by the number of steps taken in that direction. 
Cell migration data were combined from three inde-

pendent experiments (n = 3) for each condition: 10% 
confluence with a cluster (171 cell tracks), 10% con-
fluence without a cluster (232 cell tracks), and 5% 
confluence with a cluster (165 cell tracks). 

Agent-Based Simulations 

A more complete description of the rules of the 
agent-based model, conditions simulated, and analysis 
of simulation results can be found in the Supporting 
Material. Briefly, agent-based modeling conducted in 
NetLogo39 was used to simulate the in vitro clustering 
of cells on a 2D substrate and explore the feasibility of 
cell clustering in the absence of long-range interac-
tions. The in silico world in which this model exists 
consists of a 50 9 50 9 7 arrangement of patches, 
each of which is a unit cube with dimensions equaling 
the diameter of a cell (20 lm), and wraps in the XY 
plane. Substrate was only modeled on the base layer. 
Cells were represented as individual spherical agents, 
each centered in a unit cell, and possessed a limited 
number of available actions regulated by strictly de-
fined rules. These actions included binding to other 
cells, breaking bonds with other cells and moving 
within the 3D tetragonal simulation space. Cells could 
form up to six bonds, one at each of its four in-plane 
sides and one at each of its two out-of-plane sides. 

All simulations were run at 40% confluence, a value 
chosen to help distinguish conditions that support clus-
tering and those that do not (see Supporting Material for 
detailed explanation of parameter choice). The prob-
ability a cell would form a bond with a neighboring cell 
was equal to the cell–cell adhesion probability (%). The 
probability a cell would unbind was equal to 100% mi-
nus the cell–cell adhesion probability. Therefore, both 
the probability of binding and unbinding add to 100%. 
cell–substrate adhesion probability (%) was another 
variable in the model. Similar to cell–cell adhesion, cell 
substrate adhesion and de-adhesion probabilities sum to 
100%. Cells adhered to the substrate were restricted 
from climbing from the base level to the second level. 
Although cell–substrate adhesion probability may in 
reality affect other cell behaviors such as migration, this 
coupling was not included in the model. Cell–cell adhe-
sion probability was explored at seven levels (0, 10, 30, 
50, 70, 90, and 99%) and cell–substrate adhesion prob-
ability at seven levels (0, 10, 30, 50, 70, 90, and 100%) for 
a total of 49 unique combinations. Ten independent 
simulations were run for each combination. A cell–cell 
adhesion probability of 100% was not evaluated as the 
cells would have rapidly bound together and been unable 
to unbind or move thereafter. The probability of 
movement had a moderate influence on cluster size and 
density, but was not explored systematically for these 
experiments and was set arbitrarily at 50%. 
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All models were run for 15,000 iterations, a suffi-
cient duration for all conditions to reach equilibrium. 
One iteration represents the application of all relevant 
rules to all cells. Equilibrium was chosen as the end-
point because different simulations approached equi-
librium at different rates. By ensuring all simulations 
had reached equilibrium, relative differences between 
results would not be simulation time dependent. All 
rules in our model were probabilistic, and the order of 
the cells to which the rules were applied each iteration 
was random. Therefore, even simulations with identi-
cal initial conditions almost certainly had different 
outcomes. Three approaches were used to quantify the 
degree of clustering: (1) average cluster size 
(cells/cluster), (2) average height, and (3) compactness. 
Average height provides a measure of three-dimen-
sionality and was calculated by dividing the total 
number of cells in a cluster by its footprint (i.e., area in 
patches a cluster occupies on the base level). Com-
pactness describes how efficiently the cells are packed 
and is defined in detail in the Supporting Material. 
Even for simulations at equilibrium, measured average 
height and compactness varied moderately with time, 
and therefore the average values for the final 1000-
iteration range (i.e., iteration 14,001–15,000) were 
recorded. Average cluster size was more stable with 
time and was calculated after the final iteration. Only 
data from simulations that had reached equilibrium 
are reported here, the criteria for which is described in 
detail in the Supporting Material. 

Statistics 

Statistical analysis was performed using SPSS v. 22 
(SPSS, Chicago, IL). Significance was determined us-
ing a one-sample t test. Bonferroni correction was used 
to adjust the p value for multiple comparisons. Error 
bars shown represent the standard deviation or 95% 
confidence interval. Rose diagrams were generated in 
MATLAB and mean resultant vectors were calculated 
using the circular statistics (directional statistics) 
toolbox.3 The mean resultant vector is the sum of a 
collection of vectors, each with a magnitude and di-
rection. The magnitude of the mean resultant vector is 
presented as a percentage of the sum of the magnitudes 
of its constituent vectors. 

RESULTS AND DISCUSSION 

PANC-1 Cells Do Not Exhibit Preferential Migration 
Toward Cell Clusters 

Consistent with previous observations, 5–7,12,24,37 

PANC-1 cells at and near confluence formed 3D 

multicellular clusters when cultured in SFM (Supple-
mentary Movie S1). In an attempt to explain the six-
fold increase in migration rate and subsequent 
clustering of pancreatic cells upon the removal of ser-
um, Hardikar et al. suggested that serum could contain 
‘‘inhibitory factors’’ that restrict cell migration.17 

Though not directly inhibitory, serum contains pro-
teins (e.g., albumin and fibronectin) that can adsorb 
onto TCTP and alter the adhesiveness of the surface.9 

Exchanging the SCM for SFM may alter the compo-
sition of adsorbed proteins and could reduce its ad-
hesiveness. A less adhesive surface might allow cells to 
migrate more freely, increasing the opportunity for 
cells to contact each other and form clusters. However, 
it is not known to what extent removal of serum alters 
the likelihood and stability of intercellular adhesions. 
The high cell densities used for Hardikar’s ex-
periments, however, are not practical for testing the 
hypothesis that clustering results from long-range 
mutual attraction between cells. This is because cells 
start out in close proximity to, and sometimes in 
contact with, several cells. Cell migration and the un-
known effect of cell–cell distance on long-range sig-
naling add further complexity. As a result, the 
direction in which a cell would be expected to move 
cannot be easily or adequately predicted based on the 
location of multiple migrating neighbors. To simplify 
this system: (1) the initial seeding density was reduced 
to ~10% confluence and (2) a preformed cluster of 
PANC-1 cells was added to act as a concentrated 
source of any long-range signal that might exist. If 
PANC-1 cells cluster by long-range signaling, indi-
vidual cells would be expected to migrate preferentially 
toward the preformed cluster. This same experimental 
design without a preformed cluster was used as a 
control. The positions of individual PANC-1 cells, 
pairs of joined cells, and the central cluster were then 
tracked in five min intervals for 25 h (Fig. 1). For ex-
periments without a central cluster, an arbitrary cen-
tral point was used as a reference point for the 
migration of cells. Movement was tracked in relation 
to the center of the central cluster at the time of 
measurement, not in relation to the edge of the cluster. 
Thus, data was not adjusted due changing size or shape 
as well as modest migration of the cluster. For each 
condition, the total distance all tracked cells migrated 
in different directions relative to the cluster was plotted 
as a rose diagram and used to calculate a mean resul-
tant vector (Figs. 2a and 2b). The magnitude and di-
rection of the mean resultant vector were used to assess 
whether cells exhibited preferential migration. 
Specifically, the projection of the mean resultant vector 
onto the unit vector toward the cluster, or dot product, 
represents the overall percentage of migration toward 
the cluster. Since there do not exist established criteria 
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for determining critical values for statistical sig-
nificance in directional data, we have chosen 1% 
overall migration toward a cluster. To clarify the re-
sults reported below, the magnitude of the mean re-
sultant vector is reported within parentheses, not the 
overall percentage of migration towards the cluster. 
For this initial experiment, the mean resultant vector 
did not indicate preferential migration toward the 
cluster and in fact showed that there was greater net 
migration away from the cluster (5.88%) than away 

from an arbitrary central point in the control ex-
periments (1.30%). One possibility for not detecting 
directed migration toward the cluster is that for a given 
cell, directional signals from nearby cells might mask 
the influence of the more distant cluster. To guard 
against this possibility and reduce the potential 
masking effect of nearby cells the seeding density was 
reduced further to ~ 5% confluence (Supplementary 
Movie S2). Still, at this reduced density, net migration 
toward the cluster was not detected (Fig. 2c). A similar 

FIGURE 1. Tracking PANC-1 cell migration. PANC-1 cells cultured at 10% confluence with a central cluster imaged at 0 h (a) and 
after 24 h (b). (c) The corresponding cell tracks throughout this time period. (d) The same cell tracks after applying a motility filter. 
(e) Illustrative example depicting how the chemotactic index is calculated. The straight solid black lines (L1–L4) represent the 
displacement recognized by the MATLAB code during each time step. D0 and Df represent the initial and final distance to the cell 
cluster, respectively. During the first time step the cell moves a straight-line distance L1 at an angle H1 with respect to the cluster. 
Subsequent steps are labeled L2–L4. The chemotactic index is calculated by dividing the change in distance to the cluster (Df–D0) 
by the path length traveled ( 

P
L1–4). 
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analysis was performed examining total number of 
steps (Figs. 2d–2f) and the average migration rate 
(Figs. 2g–2i) in different directions relative to the 
cluster. Average migration rate was calculated by di-
viding the distance traveled in a given direction by the 
total number of steps taken in that same direction. 
Only for average migration rate did the mean resultant 
vector point toward the cluster (Figs. 2h and 2i), yet 
the magnitude was small (<1%) and therefore not 
strongly suggestive of directed migration. 

The most straightforward interpretation of these 
data is that long-range signals are not involved. 
However, the mean resultant vector is only one metric 
for this rich set of data and not adequately rigorous to 
support broad conclusions about the presence/absence 
of preferential migration. One potentially important 
parameter ignored by the mean resultant vector 
method is the effect of a cell’s distance from the cluster, 
a potential source of chemoattractant. For example, if 
a cell were too close to a source of chemoattractant the 
cell’s receptors could become saturated and the cell 
would lose its ability to sense the gradient.16,38 Alter-
natively, if a cell were too far from the cluster the 
concentration of the chemoattractant could be too low 
for the cell to detect. To visualize the effect of distance 
from the cluster on cellular migration rate toward the 
cluster, we broke down each cell track into its indi-
vidual steps, then segregated these steps by the cell’s 
distance from the cluster at the beginning of the step 
(Fig. 3). These segregated steps were binned in 50 lm 
intervals up to the edge of our field of view, 600 lm 
from the center of the cluster. Since clusters were 
roughly 100 lm in diameter, cells could not be tracked 
within 50 lm from the center of clusters. When ac-
counting for multiple comparisons using Bonferroni 
correction, none of the results achieved statistical sig-
nificance (p > 0.05). However, because Bonferroni 
correction is highly conservative and due to the high 
number of comparisons (i.e., 21), correcting for mul-
tiple comparisons might hide truly significant results. 
Therefore, we have also chosen to present the data 
without correcting for multiple comparisons. In six 

cases average migration rate was away from the central 
cluster (p < 0.05). Interestingly, four of these six cases 
were for cells at 10% confluence between 100 and 
300 lm from the central cluster. For only one condi-
tion, 5% confluence with a central cluster, and for cells 
between 350 and 400 lm away from the cluster, was 
average migration rate toward the cluster significant 
(p = 0.013). 

We then analyzed our data by calculating the 
chemotactic index, also referred to as the McCutcheon 
index, a measurement that has been used previously to 
reveal collective cell migration toward a chemotactic 
source.22,26,35 This index was calculated for an indi-
vidual cell by dividing the cell’s change in distance 
from the cluster by its path length (Fig. 1e). The result 
is a value between +1 and 1, where +1 signifies all 
movement was directly toward the cluster, 1 signifies 
all movement was directly away from the cluster, and 0 
signifies that though the cell may have moved, it ended 
up the same distance from the cluster as when tracking 
was started. Values for the chemotactic index of indi-
vidual cells (Fig. 4) conformed to a bell-shaped dis-
tribution. In all cases, collective migration with respect 
to the cluster was not significant (p > 0.05) (Table 1). 

Next, we carefully dissected our methods to assess 
aspects that might influence the quality of our data and 
potentially impact our findings. Empirical testing of 
the reproducibility of manually tracking cells suggested 
that variability in the assignment of cell position could 
be up to several microns. Considering the actual dis-
tance and direction of cell migration as the signal, this 
variability would represent noise that could impact the 
measured distance and direction of cell migration. This 
noise would be especially pronounced if the distance 
moved by a cell during an interval was small and could 
mask preferential migration toward a cluster. To in-
crease the signal-to-noise ratio, two strategies were 
used: (1) applying a threshold to remove cell migration 
below 10 lm in a 60 min period and (2) using longer, 
30 min intervals. Applying this threshold removed 
~60% of cells steps; however, it appeared to preserve 
most of the steps in which cells migrated (Figs. 1c and  

TABLE 1. Mean chemotactic index values. 

Analysis Experiment Mean ± SD p value 

All Data 10% confluence 0.036 ± 0.337 0.172 

10% confluenceNo cluster 0.006 ± 0.276 0.753 

5% confluence 0.028 ± 0.310 0.245 

Motility Filter 10% confluence 0.045 ± 0.479 0.149 

10% confluenceNo cluster 0.020 ± 0.441 0.428 

5% confluence 0.034 ± 0.485 0.277 

30 Min Intervals 10% confluence 0.067 ± 0.429 0.052 

10% confluenceNo cluster 0.006 ± 0.374 0.806 

5% confluence 0.030 ± 0.397 0.330 
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1d). Mean chemotactic indices were calculated after 
applying both of these strategies and did not reveal the 
presence of preferential migration (Table 1). Rose 
diagrams corresponding to this data are available in 
the Supporting Material (Fig. S1). 

Some analyzes revealed statistically significant mi-
gration away from the cluster. These findings have a 
few possible explanations. First, over the course of 
experiments clusters gradually flattened (Figs. 1a and  
b) and some cells separated then migrated away 
(Supplementary Movie S3). The tracking of these cells 
was no different from other cells, although these cells 
were few. Second, for cells that do not bind to the 
cluster, the cluster might obstruct the migration of 
cells, thus biasing subsequent migration away from the 
cluster. This might explain migration away from the 
cluster for cells at 5% confluence between 50 and 
100 lm from the cluster (Fig. 3). Third, migration 

away from a cluster may indicate a rarely observed 
phenomenon termed fugetaxis. Instead of producing 
chemoattractant, cells in a formed cluster may produce 
chemorepellant, perhaps for the purpose of limiting 
cluster size. An additional concern is the presence of 
spontaneously formed small clusters that might act as 
additional sources of some long-range signal and in-
fluence the migration of nearby cells. However, be-
cause the number of these small clusters is few (<3%) 
and their size small relative to the central cluster we 
would not expect their presence to prevent the detec-
tion of directed migration. 

Agent-Based Modeling Suggests Cell Clustering Might 
Result from Short-Range Interactions 

The balance between cell–substrate and cell–cell 
adhesiveness, or differential adhesion, was proposed as 

FIGURE 2. Polar histograms of cell migration data. Data was analyzed by total distance migrated (a–c), total number of steps (d– 
f), or average migration rate (g–i) in relation to the central cluster or in relation to an arbitrary central point if there was no cluster. 
The direction toward the central cluster (solid arrow) and mean resultant vector (dashed arrow) are overlain on each figure. For 
experiments without a central cluster, the solid arrow points to an arbitrary central point. The magnitude of the mean resultant 
vector is included in each panel (range 0–100%). 
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a potential regulator of cell clustering. We developed 
an agent-based computational model to assess this 
idea. In the model, simulated cells could migrate, bind 
to the substrate, and bind to each other. Importantly, 
in this model there is no mechanism for long-range 
cell–cell communication. Cell–cell and cell–substrate 

adhesion strengths were modeled as probabilities and 
were the primary independent variables in the model. 
Clustering was quantified with three measurements: (1) 
average cluster size, (2) average height (3-dimension-
ality), and (3) compactness (packing efficiency). Three 
measurements were necessary because just one does 
not adequately characterize the state of the system. For 
example, a cluster that is large could be tall and 
compact, short and spread, or a patchy monolayer of 
cells. Average height and compactness are metrics that 
serve to differentiate between these different manifes-
tations of clusters. 

To help describe the predominant effects of cell– 
substrate and cell–cell adhesion probabilities and 
demonstrate the diversity of observed results, a few 
selected examples will be discussed. At 0% cell–sub-
strate probability, the least degree of clustering oc-
curred at 0% cell–cell adhesion probability (Fig. 5b). 
Increasing cell–cell adhesion probability to 50% only 
modestly increased average cluster size, height, and 
compactness (Fig. 5c). Values for average height and 
compactness peaked at 90% cell–cell adhesion prob-
ability (Fig. 5d) then declined as cell–cell adhesion 
probability approached 99% (Fig. 5e). However, av-
erage cluster size continued to increase up to the 

FIGURE 4. Chemotactic index values. Chemotactic index values for all cell tracks as a function of distance from the cluster. The 
histogram represents the number of points within each 0.2 chemotactic index range. 

FIGURE 3. Average migration rate. Average migration rates 
toward (positive values) or away from (negative values) the 
cluster as a function of distance from the cluster. Error bars 
represent the 95% confidence interval. 
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maximum value for cell–cell adhesion probability. 
Regardless of cell–cell adhesion probability, as cell– 
substrate adhesion probability was increased cells were 
increasingly inhibited from climbing. This resulted in 
the formation of clusters that were flatter and less 
compact, but larger as clusters merged together 
(Fig. 5f). 

Simulation results reveal that both cell–cell and cell– 
substrate adhesion probabilities influence the presence 
and extent of cell clustering (Fig. 5). Consistent with 
the explanation provided by differential adhesion, in-
creased clustering occurs at higher cell–cell adhesion 
probabilities. At these higher cell–cell adhesion prob-
abilities, low cell–substrate adhesion favors the devel-

FIGURE 5. Agent-based model simulation results. (a–f) Unbound cells possess no cell–cell bonds, are labeled red, and may move 
within the simulation space to unoccupied neighboring sites. Cells that possess at least one cell–cell bond are color-coded 
depending upon the level they occupy from dark blue on the base level to pink at the uppermost level. Cells on successive levels 
are offset 0.5 patches in the X and Y directions. (a) As examples, cell one has no neighbors and therefore its movement is 
unrestricted. Cell two may move freely within its current plane up, right and down. Depending on the cell–substrate adhesion 
probability, cell two may also move left by climbing to one of two potential locations (arrows). Since there is no substrate above the 
base layer, to climb, these locations must be supported by four cells and be unoccupied. Four cells support both leftward 
locations, but one of these locations is occupied by cell three leaving just one location that cell two may climb to. Cell three is an 
unbound cell on level two with no neighbors. If cell three moves down, it will remain on level 2. If cell three were to move right it 
would no longer be supported by four cells and would fall to level 1. (b–f) Images from a selection of simulations after reaching 
equilibrium that demonstrate the diversity of observed results. Cell–cell adhesion probability (C–C) and cell–substrate adhesion 
probability (C–S) are labeled on each panel. Clustering was quantified using three measurements: cluster size (G), compactness 
(H), and average height (I). Data are presented as topographic plots and labeled to highlight the data corresponding to panels (b–f). 
For scale, cell diameters are 20 lm. 
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opment of clusters that are thick (in the z direction) 
and compact (few void spaces), while high cell–sub-
strate adhesion favors large interconnected patches of 
cells in a monolayer (Figs. 5g–5i). 

Though most combinations of cell–cell and cell– 
substrate adhesion probability did not support the 
formation of clusters, the optimal 3D clusters formed 
with the minimum value for the cell–substrate adhe-
sion probability and a cell–cell adhesion probability 
between 70 and 99% (Supplementary Movie S4). 
Clustering was more pronounced (i.e., larger, thicker 
clusters) at these same conditions when confluence was 
increased to 75% (Supplementary Movie S5). These 
results suggest that that differential adhesion is a 
plausible mechanism by which PANC-1 cells might 
cluster in the absence of other influences. 

CONCLUSION 

This study may be the first study to track single 
PANC-1 cell migration during conditions that support 
clustering. In our analyzes, we did not observe directed 
migration in any of our experiments. Instead, our results 
are consistent with previous examples of cells moving in 
persistent random walks.32 Additionally, our agent-
based model based on differential adhesion demon-
strated that clustering can occur in the absence of long-
range interactions and identified certain conditions that 
are more favorable toward the generation of three-di-
mensional clusters. A low cell–substrate adhesion 
probability and high cell–cell adhesion probability al-
lowed clusters to form that were of moderate size, 
round, and 3D. Although these in vitro experiments did 
not identify a mechanism for PANC-1 clustering, the 
computational experiments give credence to alternate 
possibilities such as differential adhesion. 

Together, our experimental and computational re-
sults can provide some suggestions for researchers 
trying to facilitate the clustering of cells in vitro. 
Though a moderately adhesive surface is known to 
support the greatest rates of cell migration,11 conse-
quently increasing the frequency of cell–cell collisions, 
an overly adhesive surface will inhibit the formation of 
3D clusters by not allowing cells to detach. Therefore, 
the choice of substrate and cell culture media should be 
carefully considered for their impact on cell–substrate 
adhesion. In addition, our computational results sug-
gest that the relative strength of cell–cell and cell– 
substrates influenced not just the size of the cluster but 
its compactness and average height, which could po-
tentially modulate differentiation toward endocrine 
phenotype. The cumulative knowledge learned from 
this and other PANC-1 cell models will likely extend to 
therapeutic cell lines and could potentially increase 

pancreatic endocrine differentiation and the produc-
tion of hormones by these cells for the treatment of 
type I diabetes. 
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