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a b s t r a c t  

In contrast to the wide array of research that uses swarm intelligence to solve optimization problems, a 
few approaches have recently been taken a feedback control perspective as we do here. To employ a 
feedback control approach, this paper shows that an algorithmic model of how honeybees forage can be 
used for control of smart lights. We show that only slight modifications to this model are needed to 
control multiple lights and to provide uniform illumination across the floor of an experimental testbed. 
The most challenging case is when there are no walls between lighting zones since then there are a 
significant inter-zone couplings, and the approach here performs especially well under these conditions. 
Performance of this method is compared with a variety of testbed conditions where we assume inter-
zone coupling as overlapping sources. Experimental results supported by parametric statistical tests 
suggest that the method here is better when significant overlapping is addressed. 

& 2015 Elsevier Ltd. All rights reserved. 
1. Introduction 

Smart light systems attempt to guarantee an efficient use of 
energy, i.e., to reduce energy consumption and to prevent energy 
waste (Ciabattoni et al., 2013; Suzdalenko et al., 2012; Martirano, 2011; 
Husen et al., 2011; Bhardwaj et al., 2011; Miki et al., 2004). However, 
the energy waste  due to cross-illumination (also called over illumi-
nation) is not addressed. Cross-illumination occurs due to multiple 
artificial lights in the ceiling and/or daylight penetrating the room. In a 
shared-space office, a light bulb illuminates not only the cubicle under 
it but also the rest of the nearby cubicles. Thus, the cross-illumination 
effect in an area is the light level received for the contribution of lights 
from bulb lights surrounding this (Koroglu and Passino, 2014). Similar 
to Schultz (2009), Koroglu and Passino (2014), and  Velasquez and 
Passino (2015), we view cross-illumination effects as ones that provide 
an opportunity to reduce energy consumption and prevent energy 
waste. We use the smart lights experimental testbed designed and 
developed by Schultz (2009) where the cross-illumination effects 
depend on the experimental environment setup. Thereby, if the 
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experimental environment is using a full partition setup the cross-
illumination effects will be minimized, but when all the walls are 
removed we confront the most challenging cross-illumination effects. 
This particular smart lights experimental testbed allows a number of 
interesting control challenges starting with the non-uniform illumi-
nation of the different zones; it is clear that different zones will elicit 
different responses from the same control law (Schultz, 2009). How-
ever, each zone of the testbed seems to act like a first order system 
with a delay and saturation, but a significant and unpredictable cou-
pling between the zones, since each bulb illuminates multiple 
neighboring zones. These features turn the smart lights experimental 
testbed into a complex system where distributed control algorithms 
can be evaluated mainly. 

Schultz (2009) developed a distributed proportional-integral (PI) 
controller which has been successful achieving uniform lighting across 
the testbed but not for the case where the cross illumination effects 
are maximized between the light sensors; the author also evaluated 
an algorithm based on the study of flight guidance in honeybee 
swarms solving a distributed agreement problem to nest-site selection 
with similar results; however, its unsuccessful performance proves 
how crucial the cross-illumination effects are. Later, other  distributed
control strategies have been implemented in the testbed which 
achieved uniform lighting across all room partition settings. These 
strategies include the so-called illumination balancing algorithm (IBA), 
inspired by load balancing in processor networks with communica-
tion between neighboring zones, being combined with an integral 
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controller to achieve the uniform lighting for all cases (Koroglu and 
Passino, 2014) and the fuzzy fault tolerant controller (Velasquez and 
Passino, 2015) one that shows that without communication it is still 
able to adapt itself to uncertainties such as disturbances and light and 
sensor failures. 

Here, we use  the smart  lights  experimental  testbed of  Schultz 
(2009) with eight inputs and eight outputs to implement a bio-
inspired feedback controller based on honeybee social foraging. Due to 
the complexities in the testbed, it has not been possible to develop an 
accurate mathematical model for the experiment, and hence not 
possible to use classical “model-based control” methods (Velasquez 
and Passino, 2015). On the other hand, when a bio-inspired feedback 
controller is implemented, some analogies between the swarm 
behavior and the control goal might be enough to take the place of the 
lack of mathematical model from any experimental system based 
mainly on adaptive resource allocation as it has been shown by 
Marulanda et al. (2013), Quijano and Passino (2010), Quijano et al. 
(2006), and  Passino (2002). Since a mathematical model is not avail-
able, a bio-inspired algorithm based on honey bee social foraging 
presented by Passino and Seeley (2015) is selected and implemented 
as a candidate control strategy, something that has not been con-
sidered in the literature on smart lights. Similar to Quijano and Passino 
(2010), we assume that there are a fixed number of bees involved in 
the foraging process where each bee corresponds to a quanta of 
energy and the foraging landscape is composed of eight forage sites 
which represent the zones in the experimental testbed. Also, the error 
(i.e.,  the  difference between  the desired  value and  the amount  of
brightness in the zone) is considered as the profitability on the forage 
site. Then, we show that an algorithmic model of social foraging of 
honey bees with slight modifications can be used for reference 
tracking and can achieve uniform lighting across the entire floor of the 
experimental testbed even when the cross-illumination is maximized 
between neighboring zones. We refer to this modified algorithm as 
the Honeybee Social Foraging Algorithm (HSFA). 

We face the cross-illumination effects on the experimental testbed 
as the bees get the profitability from combined flower fields: on a 
natural landscape each patch of flower has similar profitability (Seeley, 
1986), but its distribution in this field is not necessarily well defined 
(i.e., it could be combined with others). The bees take the nectar or 
load from multiple flowers around their current position on the 
flower fields. Although the honey bees in the hive had correctly been 
informed about the forage patch quality, these can arrive to combined 
flower fields because of imprecision during the waggle dance run 
(Weidenmüller and Seeley, 1999; de Vries and Biesmeijer, 1998). The 
whole profitability in the landscape will be reduced as the bees are 
draining the nectar either in an isolated patch or in a combined one. 
But, in combined flower fields, the bees get different portions of each 
patch as a combined profitability while in isolated flower fields, the 
bees only get the profitability from a particular patch. In HSFA, we 
assume a landscape with eight different forage patches which will be 
combined in three configurations: without overlapping, slight over-
lapping, and significant overlapping. Besides this, we have made four 
observations: 

1. The bees evenly allocate their foraging workforce from the 
combined patches in the hive to allow us to determine how 
each patch is being deteriorated. 

2. The bees from combined patches are transmitting the mean 
profitability information. 

3. A particular storage comb in the hive is necessary to separately 
deposit the loads of each patch which provides information 
about the amount nectar gathered. 

4. On the smart light experimental testbed this amount of nectar 
gathered will be associated with the amount or intensity of light 
in each zone. 
Thus, we assume that these combined flower fields are compar-
able to the cross illumination effects in the smart light experimental 
testbed since the loaded profitability portion for each bee has to be 
distributed. Our approach seeks to illustrate how the performance in 
the testbed can be improved when the cross illumination effects are 
treated as combined flower fields, where the bees in the hive skillfully 
choose “good” spots among these patches, resulting in combined 
profitability rather than show the behavior when each parameter in 
HSFA is changed. 

This paper presents an application of swarm intelligence for 
illumination tracking via feedback control of a smart lights system. 
The implemented HSFA has been able to accurately achieve uni-
form lighting across the entire floor of the experimental testbed 
under different testbed settings and particularly for the no-
partition case when cross-illumination is maximized. Here, we 
have proposed the use of swarm intelligence on a real physical 
experiment instead of other engineering applications of swarm 
intelligence that are mainly focused on simulations. Despite the 
honey bees’ social foraging behavior in the hive being a decen-
tralized system because it does not need a centralized entity for 
both the decision-making and forage allocation process (Seeley, 
1996), our approach needs a global information about the error 
signal and the number of waggle dance runs to avoid a kind of 
over-exploitation of sites or overshoot in control, and to maintain 
an available work force when new sources are found or old ones 
have improved their profitability. 

Therefore, a centralized control approach where the control 
effort is centrally computed and then applied throughout the 
eight independent zones (unlike of Koroglu and Passino, 2014; 
Velasquez and Passino, 2015) is proposed. This eliminates the need 
for implementing eight separate controllers on each zone. Fur-
thermore, we do not need to extensively tune the controllers (as in 
Koroglu and Passino, 2014; Velasquez and Passino, 2015) to obtain 
good overall system performance. The advantages of our approach 
are the following: first, a good transient response and smaller 
overshoots or undershoots when present, and second, improved 
uniform lighting under the no-partition case, something that the 
decentralized integral control failed to do and for which Koroglu 
and Passino (2014) showed poor tracking performance. 

This paper is organized as follows. Section 2 presents back-
ground about smart lighting systems and feedback control with 
swarm intelligence. In Section 3, a detailed description of the 
experimental smart lights testbed is given. Section 4 presents the 
model of a honeybee colony foraging for nectar proposed by 
Passino and Seeley (2015). In  Section 5, the HSFA is explained, 
including the decision-making process, the proposed modifica-
tions to do reference tracking as a feedback control problem, and 
the parameters. In Section 6, implementation results are presented 
which include results from achieving uniform illumination track-
ing for three different reference inputs as well as the effect of 
changing the “radius of sites” in the emulated testbed landscape. 
In Section 7, the conclusions are provided. 
2. Background 

2.1. Smart lighting systems 

Smart lighting systems seek the optimal use of lighting to save 
energy, decrease cost, reduce environmental impact (reduction of CO2 

and SO2 emissions), and give maximum comfort to users. Lighting is 
one of the largest electrical end-uses after electric motor-driven sys-
tems. It requires as much electricity as is produced by all gas-fired 
generation and 15% more than produced by either hydro or nuclear 
power; until 2009, lighting has been responsible for about 19% of 
worldwide electricity consumption and it is estimated that the global 
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demand for artificial light represents an average annual growth rate of 
2.4% (Waide and Tanishima, 2006; Waide and Brunner, 2011). Studies 
performed by the U.S. Energy Information Administration have 
demonstrated that the amount of energy used for lighting by the 
residential and commercial sectors was about 12% of the total U.S. 
electricity consumption in 2011 (EIA, 2013). While residential lighting 
consumption was around 13% of all electricity consumption, the 
commercial sector, which includes commercial and institutional 
buildings and public street and highway lighting, consumed around 
21% (EIA, 2013). Mainly, the work on smart lighting focuses on finding 
mechanisms to counterbalancing the energy consumption using 
occupancy and light sensors (Ciabattoni et al., 2013), developing novel 
control systems to use light sources (Miki et al., 2004; Martirano, 
2011; Husen et al., 2011), and aiming to increase the overall user 
satisfaction, productivity, and comfort while reducing energy con-
sumption (Bhardwaj et al., 2011). 

In general, lighting control systems seek to reduce energy 
consumption and to prevent energy waste (Ciabattoni et al., 2013), 
which provide energy saving. Energy saving actions follow two 
basic directions: efficiency and effectiveness (Martirano, 2011). 
The efficiency can be achieved using more efficient lighting tech-
nologies (e.g., LED lights), while the effectiveness can be achieved 
using intelligent lighting control solutions. The latter has recently 
received more attention and several control strategies have been 
proposed for building management systems. From a general per-
spective, a control strategy based on “response service” is pre-
sented by Husen et al. (2011), where the load shedding flexibility is 
the amount of load that can instantaneously be shed while satis-
fying all minimum illumination requirements. Husen et al. (2011) 
put into action two strategies: uniform and proportional dimming, 
where the dimming level is determined to save energy without 
reducing performance and user comfort. The energy savings are 
achieved in Martirano (2011) by including factors such as sche-
duling, daylight, occupiers, or special conditions. For specific 
locations, some work has been presented in Miki et al. (2004), 
Bhardwaj et al. (2011), Suzdalenko et al. (2012), and Ciabattoni 
et al. (2013) related to building management systems. Miki et al. 
(2004) propose a distributed control system where the illumina-
tion of each location is controlled by having each light perform a 
learning operation. This is achieved by an autonomous distributed 
algorithm based on a stochastic hill-climbing method, the 
brightness of each luminary changes until a cost function is 
minimized, although actuators never know where the sensors are 
located. Bhardwaj et al. (2011) propose a centralized control 
approach (i.e., the knowledge processor) which provides energy 
saving and user satisfaction through cooperation between indivi-
dual nodes. The knowledge processor functions are based on an 
illumination model, where the angle of light distribution, the 
luminous intensity, and the distance to the light source have to be 
known. Bhardwaj et al. (2011) consider a set of rules to maintain 
an illumination range for user context (e.g., reading and watching 
TV) and user preferences. A control strategy based on functions is 
presented by Suzdalenko et al. (2012), where a comparative study 
of concentrated, localized, and distributed control approaches is 
evaluated. The implementation uses parameters previously cal-
culated and a mobile sensor to capture the amount of light. Lastly, 
Ciabattoni et al. (2013) present a hardware implementation to 
reduce energy consumption by including motion, photo-diode, 
and thermal sensors on a fuzzy system as an event detector and a 
proportional-integral-derivative (PID) controller for dimming the 
amount of light considering the daylight as an external light 
source. 
2.2. Social foraging for feedback control 

Social foraging takes its inspiration from animals like honey 
bees, ants, termites, bacteria, and fish schools, where the solutions 
are the result of an emergent collective intelligence (Bonabeau 
et al., 1999; Passino, 2002). This collective intelligence is also 
known as “swarm intelligence,” which is a branch of computa-
tional intelligence. The social foraging is known for its ability to 
provide solutions to large-scale distributed optimization and 
feedback control problems with, sometimes, more effectiveness 
and robustness than traditional approaches (Bonabeau et al., 1999; 
Quijano and Passino, 2010); several algorithms have been devel-
oped to solve optimization and feedback control problems like 
particle swarm optimization (Kennedy, 1995), ant colony optimi-
zation (Dorigo et al., 1991), bacterial foraging optimization 
(Passino, 2002), and the artificial bee colony (Karaboga, 2005). 
Some feedback control implementations are formulated as opti-
mization problems by setting up the parameters in adaptive con-
trollers (Passino, 2002), modeling the system behavior, or doing 
system identification. Another approach introduces solutions 
inspired by natural foraging behavior (Passino, 2005; Quijano 
et al., 2006). This last approach was successfully implemented by 
Passino (2002), Quijano et al. (2006), Quijano and Passino (2010), 
and Marulanda et al. (2013), where a typical feedback control uses 
a swarm in a controller. The controller is based on the idea of 
“foraging for error” presented by Passino (2002, 2005), where a 
bio-inspired distributed decision-making system is used to control 
a complex dynamical system (Quijano et al., 2006). In this type of 
setting, the error signals are considered as food sources, and based 
on the feedback control problem, the collective decision-making 
by the swarm is put into action to achieve a specific purpose. 
Typically, in feedback control, the number of agents is proportional 
to the control effort; then, the collective decision-making is in 
charge of removing, relocating, or assigning agents to provide the 
survival of the swarm. This approach represents an intelligent 
control solution that can be implemented via a lighting distributed 
strategy, where the amount of brightness applied (i.e., the amount 
of agents) generates a uniform and controlled level of light per-
ceived by the sensors. 

To the best of our knowledge, the use of feedback control with 
swarm intelligence is generally not well developed, especially invol-
ving social foraging of honey bees. Most of the algorithms inspired by 
bees behavior have been designed to solve optimization problems (Li 
et al., 2015; Manuel and Elias, 2013; Maia et al., 2012; Liu et al., 2012; 
Zhang et al., 2011). A survey of such optimization algorithms can be 
found in Li et al. (2010), Karaboga and Akay (Jun. 2009), and  Bayka-
soǧlu et al. (2007). Some implementations on experimental platforms 
using bee foraging have been explored recently. For instance, Quijano 
and Passino (2010) solve a tracking control problem using a previous 
honeybee social foraging work described by Seeley (1996), for  a  multi-
zone temperature control problem. Also, Marulanda et al. (2013) use a 
bee algorithm based on the individual-oriented model (de Vries and 
Biesmeijer, 1998) for tracking several simple simulated multi-process 
systems where an adaptive resource allocation is implemented. 
3. Experimental testbed 

3.1. Testbed layout 

The experimental testbed is built from a box of 22:5  33  12 cm. 
The floor plan of the testbed is divided into eight zones that are not 
evenly distributed across the entire floor area as illustrated in Fig. 1. 
The layout is the following: zones 1 and 2 are 11:25  10 cm, zones 
3 and  4  are  11:25  6:5 cm, zones 5 and 6 are 11:25  7:5 cm, and 
zones 7 and 8 are 11:25  9 cm. Also, notice from Fig. 1 that the light 



Fig. 1. Smart lights experimental testbed floor plan (measured in centimeters). 

Fig. 2. Cross section view “AA” of zone 2 detailing the light bulb and sensor 
location (measured in centimeters). 

Fig. 3. Smart lights experimental testbed: (a) driving circuitry and (b) acquisition 
circuitry. 
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sensors are not placed in the middle of each zone resulting in an 
uneven cross-illumination effect across the entire testbed floor. This 
characteristic was selected in the original design to create a more 
challenging and interesting control problem (Schultz, 2009). 

The “partitions” between zones are represented by bold lines 
separating neighboring zones which in the experimental testbed are 
given by cardboard “walls” that can be put between zones to simulate 
different  settings in an office building (i.e., cubicle partition heights). 
The testbed has three main room partition settings: full height, half 
height, and no partition. Full height partitions represent the case 
where there are eight independent rooms (i.e., eight independent 
light bulb and light sensor pairs), half height partitions provides the 
case where some cross-illumination effects appear between neigh-
boring rooms (i.e., like in a typical office building), and the case of no 
partitions generates maximized cross-illumination effects throughout 
the entire testbed floor (i.e., the scenario of large open areas in a 
room). In this paper, to avoid presenting a large number of experi-
mental result plots, we will focus on the no-partition case because it 
provides the most challenging lighting control problem as described 
in Schultz (2009), Koroglu and Passino (2014), and  Velasquez and 
Passino (2015). 

The detailed location of both the light bulb and the light 
sensor is given by the cross section view “AA” of zone 2 (see 
Fig. 1) and is illustrated in Fig. 2. Clearly, the light bulb is placed 
right above the light sensor for improved light sensing. The light 
bulb is a miniature incandescent bulb (base #1847) of 0.25 W 
operating at 6.3 V with a length of 3 cm. The light sensor is a 
Cadmium-Sulfide (CdS) photocell (RadioShack Part #276-1657) 
featuring visible light response, synthesized construction, and 
low cost (Silonex, 2012). 

3.2. Driving and acquisition circuitry 

The smart lights experiment testbed has both driving and acqui-
sition circuitry to interface the digital and analog systems. These two 
main circuitries are interfaced via the dSPACE DS1104 R&D controller 
board which features a real-time interface (RTI) which can be gra-
phically programmed in Simulink from MATLAB and updates a gra-
phical user interface (GUI) developed in “ControlDesk” from dSPACE. 
The DS1104 R&D controller board is equipped with eight analog to 
digital converter (ADC) channels to interface the output of the light 
sensors (an analog signal) with the controller coded in the digital 
computer and eight digital to analog converter (DAC) channels to 
interface the controller output to the light bulbs as an analog signal. 
Additionally, the DS1104 R&D controller board is equipped with the 
MLIB/MTRACE library allowing the user to run MATLAB m-files for 
completely automatic capture sequences. The MLIB/MTRACE library 
provides features such as on-line controller optimization, real-time 
data capture, and long-term and large-scale data logging. 

The schematic layout for the driving and acquisition circuits of the 
Nth zone of the testbed is presented in Fig. 3(a) and (b) respectively. 
The driving circuitry is required to provide an enough current for the 
light bulbs in each corresponding zone by a power transistor in the 
common-collector amplifier configuration (i.e., a voltage buffer). Each 
one of the eight zones has its independent driving  circuit to  protect  
the analog outputs of the DS1104 R&D controller board. The acquisi-
tion circuitry is necessary to provide a voltage signal to each of the 
analog to digital converter channels within the appropriate voltage 
range. The acquisition circuitry functionality is a voltage divider, as the 
illumination on the light dependent resistor (LDR) increases (i.e., 
equivalent resistance decreases) the output will be as much as the 
source voltage (i.e., Vcc ¼ 13:4 V) and as the illumination on the LDR 
decreases (i.e., equivalent resistance increases) the output will be a 
smaller voltage (i.e., tending to zero). 



Fig. 4. Smart lights experimental testbed overall control diagram. 

Table 1 
Main model notation in Source, Hive, and Bee classes. 

Class Object Variable 

Source Flower patch center Sj 
Radii of all the sites ϵf 
Forage profitability landscape Jf 
Profitability of forage site j without bees Nj

f 

Noise parameter on forage sites σf 
Number of foragers at site j at step k bj k ð Þ

Hive Number of foragers B 
Parameters of abandonment function αi ; ϕ 
Dance strength parameter β 
Nectar influx threshold F̂ t 

Standard deviation in pe k ð Þ σex 
Transmitted site variance σ2 R
Parameter of becoming an observer γ 
Lower threshold on site profitability ϵt 
Probability of becoming an observer pm 
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3.3. High level overall control loop 

The overall control system used to put into action the HSFA within 
the DS1104 R&D controller board architecture is depicted in Fig. 4. This  
overall control system has four main functionalities: ADC acquisition, 
sensor calibration, control algorithm, and DAC output. Each function-
ality of the control loop plays a key role in our smart lights system and 
both the ADC acquisition and the DAC output provide the interfacing 
between the digital and analog world. Both the sensor calibration and 
the control algorithm are coded into the digital computer using MLIB/ 
MTRACE library which gives direct access from a MATLAB script file to 
the variables located in the memory of the DS1104 R&D controller 
board running the application and data logging in real-time. Here, the 
sensor calibration proposed by Koroglu and Passino (2014) and 
improved by Velasquez and Passino (2015) is used. Finally, the HSFA 
runs on PC processor and sends its control decisions interfacing with 
the control algorithm block. 
 

Probability bee is waggle dancer pw 

Probability of death on expedition pd 
Converts total nectar influx to wait time ψ 
Converts wait time to nectar influx est. δ 

Bee Position in the landscape θi k ð Þ
Unemployed Foragers BU k ð Þ
Observer Foragers BO k ð Þ
Resting Foragers BR k ð Þ
Explorer Foragers BE k ð Þ
Employed Foragers BF k ð Þ
Quality of nectar gathered Fi k ð Þ
Var. of amount gathered (wf magnit.) wi

f k ð Þ
Wait time to be unloaded Wi k ð Þ
Noise on wait time (ww magnit.) wi

w k ð Þ
Nectar influx threshold F̂

i 
t k ð Þ

Dance strength Li k ð Þ
Probability of abandonment pia k ð Þ
Probability of becoming an explorer pe k ð Þ
Probability recruited pir k ð Þ
Parameter for controlling waggle runs β i 
4. Model of honeybee colony foraging for nectar 

The model presented by Passino and Seeley (2015) integrates 
what is known about genetic differences among worker bees and 
about their individual level sensing, decision-making, and com-
munication abilities. It also represents the reality that the profit-
ability of a nectar source declines as additional bees exploit the 
source. Through close coupling between the dynamics of nectar 
source profitability and the colony's allocation of foragers among 
the nectar sources, the model shows how from a colony emerges 
an ideal free distribution of foragers where it exploits good nectar 
sources and ignores ones with inferior profitability. 

This model is significantly different from previous models since 
it firmly builds on experimental results, based mainly in Seeley's 
experiments, including incorporation of a wide range of parameter 
variations (see Table 1) defining the dance determination and 
patch abandonment rules (Passino and Seeley, 2015). This section 
briefly shows this model and Section 5 presents the slightly 
modifications to use it for lighting control. 

Initially, we assume a colony with B ¼1000 bee foragers, which 
are indexed by i, i ¼ 1; 2; …; B. Each bee i is represented by θi AR2 , 
its position in the landscape. The model simulates one day for 14 h 
being each hour a foraging expedition indexed by k. Then k ¼0 no
expeditions have occurred and no sites have been discovered. 

4.1. The profitability landscape 

Out of the hive, Jf θ 
   

represents the profitability of nectar 
foraging at each location θAR2 . The model uses a qualitative 
representation of forage site profitability, since so far no studies 
have fully quantified all the features (e.g., weather-depend, time 
and energy cost, nectar-gathering flights, and maintain the forager 
allocation) which also affect its profitability. 

Then it in particular assumes Jf θ 
   

A 0; 1½  proportional to the 
profitability nectar at θAR2 , where Jf θ 

   ¼ 1 represents a location 
with the highest possible profitability, Jf θ 

 ¼ 0 one with no 
profitability, and 0o Jf θ 

   
o1 those ones with intermediate prof-

itability. The location θ ¼ θ1; θ2 
  T is for convenience scaled to 

1; 1½ . The experiments developed to prove this model assume 
four forage sites, indexed by j ¼ 1; 2; 3; 4, represented as 
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cylinders with radii ϵf ¼ 0:2 centered at 0:5; 0:7½ T , 0:7; 0:5½ T , 
0:7; 0:3½ T , 0:5; 0:5½ T respectively. This model also assumes 
the profitability being represented with a suitability function 
(Fretwell and Lucas, 1969) to represent how the site profitability 
gets degraded with the visit of each additional bee. So, let bj k ð Þ be 
the number of bees visiting forage site j at step k, the suitability 
function is 

Nj
f exp  

1 
2 

bj kð Þ  
σf

 !2 
0 

@ 

1 

A ð1Þ 

where Nj 
f A 0; 1½  is the profitability site j when there are no bees 

visiting it and σf ¼ 200 is the standard deviation from the profit-
ability sites into a normal distribution. This value controls how fast 
a source is degraded. 

4.2. Bee roles and expeditions 

The Passino and Seeley (2015)'s model basically considers three 
main bee roles in the foraging process which are unemployed 
foragers BU k ð Þ, explorer foragers BE k ð Þ, and employed foragers 
BF k ð Þ. Unemployed foragers are defined by BU k ð Þ ¼ BO k ð Þ [ BR k ð Þ
where BO k ð Þ represents the foragers that will be observing the 
dances of employed foragers and BR(k) constitutes the foragers 
that will be staying inactive in the hive at expedition k. 

The exploration process is not fully understood yet but there is 
some evidence that foragers decide to explore for new food 
sources rather than get recruited to exploit one source (Passino 
and Seeley, 2015). In this model, the BE k ð Þ explorer foragers will 
become either an employed one BF k ð Þ if its position is within any 
site j with acceptable profitability or unemployed BU k ð Þ otherwise. 
Additionally, explorer foragers just have one opportunity to find a 
good source location and their main objective is to do an expe-
dition of the foraging landscape for new food source sites. The BE 

k ð Þ explorer foragers are placed randomly on the foraging land-
scape with a uniform distribution U 1; 1ð ÞAR2 . Also, they do not 
go back to the precise spot in the forage site that they visited 
during the last expedition. Then if the employed forager was at 
θi k ð Þ for expedition k, its next expedition will be 

θi kþ1ð Þ≔θ i kð Þþ e1; e2½  T where e1; e2 N 0; σEð Þ: ð2Þ 
Here, e1 and e2 are zero mean Gaussian random variables with 
variance σ2E. In the hive, the explorer and employed foragers with 
acceptable profitability will go to the dance floor to transmit their 
discoveries. The distribution of BO k ð Þ observer bees will depend on 
the dance strength by waggle-dancing bees to persuade other bees 
to follow their source site. A way to generate this distribution is 
based on a “roulette selection process” (Mitchell, 1998; Passino, 
2005) where all dances can be followed. 

Next, if the îth observer bee is recruited by the ith waggle-
dancing bee to find the dance-indicated forage location a com-
munication mistake is frequently made (Passino and Seeley, 2015). 
Thus, a way to emulate it in the algorithm is to use a Gaussian 
random distribution N 0; σRð Þ (i.e., a zero mean with variance σ2R). 
Hence, for the position θ

^ i k þ1ð Þ in the next expedition, the îth 
recruited forager is assigned as 

θî kþ1ð Þ≔θ i kð Þþ r1; r2½  where r1; r2 N 0; σRð Þ ð3Þ 
In the model, σ2 

E ¼ 0:001 and σ2 
R ¼ 0:002 represent a relatively 

good transmitted position close to original site, but even better for 
the recruiter to go back. However, when the transmitted position 
is near the border of a cylinder site, the recruited bee could arrive 
to other places in the landscape like other food sources or a zero 
profitability zone. 
Out of the hive, the forager or explorer bee i obtains a sample of 
nectar profitability as defined by 

Fi kð Þ ¼  

1 if Ji F kð ÞZ1 

Ji F kð Þ  if 14 Ji F kð Þ4ϵt 
0 if Ji F kð Þrϵt 

8 >>< 

>>: 
ð4Þ 

where 

JiF kð Þ ¼ Jf θ
i kð Þ  

  
þwi 

f kð Þ  ð5Þ 

Here, Fi kð Þ is the nectar profitability at expedition k where the 
quality of nectar gathered at a more profitable site is higher than 
the quality at a low profitability site (Passino and Seeley, 2015). A 
noise w i f kð Þ is assumed to represent variations on the profitability 
assessment made by a forager using a uniform random distribu-
tion on wf ; wf 

  
with wf ¼ 0:1. The threshold ϵt is the lower 

bound value below which a bee considers itself to be an unsuc-
cessful forager. This means that a bee i with Ji F kð Þ lower than the 
threshold will become an unemployed bee. Let Fi kð Þ ¼ 0 for all 
unemployed foragers. 

In addition, this model uses the probability that a forager or an 
explorer will die during each expedition pd. To be consistent with 
experiments in bees (Dukas and Visscher, 1994; Seeley, 1996), 

pd ¼ 1 0:9ð Þ1=14 ð6Þ 
which means that about 10% of bees going on hour-long expedi-
tions over the 14-h day will die. In the model these bees will be 
replaced by a novice forager with F i k ð Þ ¼ 0 without affecting the 
average allocation to forage sites. 

4.3. Dance strength and abandonment choice 

Experimental results have demonstrated an increased non-
linear wait time W i k ð Þ during the unloading respect the total 
nectar influx evoked by successful foragers, i.e., an increment of 
successful foragers will increase the waiting time (Seeley, 1986, 
1989; Seeley and Tovey, 1994). The Passino and Seeley (2015)'s 
model takes these experiments and defines an equation to 
approximate this behavior which is consistent with the analysis of 
Anderson and Ratnieks (1999), 

Wi kð Þ ¼max ψ jBf kð Þj þw i w kð Þ;0 
n o 

r20 s ð7Þ 

where ψ 40 is a scale factor and wi 
wAU ww; wwð Þ (uniformly 

distributed) represents variations in the waiting times which 
based on experiments leads to ww ¼ 5 to  get  75 s. Here, BF k ð Þ is 
the set of the employed foragers with load and the mathematical 
notation j  j defines the cardinality or size of the set. Since jBF k ð Þ
j A 0; B½  represents the number of successful foragers with load in 
the expedition k and knowing the maximum value of the waiting 
time, we get ψ ¼ 15=1000 for a beehive with 1000 successful 
foragers. 

To provide an indication of how many successful foragers there 
are waiting to be unloaded, the model uses the “nectar influx 

threshold” value ^ F
i 
t k ð Þ which is obtained from the waiting time 

into a scaled version of the total nectar influx, 

F̂
i 
t kð Þ ¼ δWi kð Þ  ð8Þ 

where δ ¼ 1=20 since Wi kð Þr20 s to get F̂
i 
t kð ÞA 0; 1½ . 

The decision-making mechanism in bees mainly depends on 
the variable Fi k ð Þ which determines the nectar profitability per 
each forage location. This value will drive the decisions which can 
be one of the following: to abandon the site, to stay at the site 
without transmitting its current source location, or to stay com-
mitted to the site transmitting its current source location. Also, 
Fi k ð Þ regulates the probability to make a dance by the bee i when 
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F i k ð Þ4 ^ F
i 
t k ð Þ. Here, ^ F i 

t k ð Þ gets the forager to exploit the sources 
without having the opportunity to transmit its current source 
location until this threshold is exceeded. Therefore, a forager with 
low Fi k ð Þ can take the opportunity to transmit its source location 
but its probability would be as low as F i k ð Þ is. Similarly, if Fi k ð Þ is 
high then the probability will also be high. This behavior is sum-
marized by the dance strength Li k ð Þ of the ith bee at expedition k, 

Li kð Þ ¼max βi F i kð Þ F̂
i 
t kð Þ  

  
;0 

n o 
ð9Þ 

where βi A U 0; β 
  

, β40. The Passino and Seeley (2015)'s model 
assumes that due to genetic differences there are two types of 
foragers: those that dance and those that do not (Arnold et al., 
2002). To model this, let pw A U 0; 1½  be the probability that a bee is 
a waggle-dancer in the hive; therefore, if pw ¼ 0:5 then the total 
percentage of foragers in the hive with βi ¼ 0 is about 50% and for 
the remaining foragers the parameter βi will depend on the dis-
tribution. The parameter βi determines the number of waggle runs 
that a waggle-dancer bee could execute. High values of β means 
high dance strength, but still with poor site profitability. In the 
model, βi is uniformly distributed on 0; 150½  at the beginning of a 
simulation (i.e., bees with poor site profitability have the chance to 
transmit their site locations). Although, this parameter results in 
new visitors that will probably abandon these sites. 

Fig. 5 shows a depiction of (9). The  right part of  the  y-axis repre-
sents a “dance decision function” motivated via nectar influx as it is 
given in Passino and Seeley (2015). This dance decision function 
represents the way the number of waggle dance is increased if it has 

F i k ð Þ above the dance threshold ^ F
i 
t k ð Þ. Therefore, foragers are tem-

porally becoming dancing bees via nectar influx but all dancing and 
non-waggle-dancing foragers are always returning to the site that 

they previously visited. On the other hand, the foragers with Fi k ð Þo 

F̂ 
i 
t k ð Þ could be ready to abandon their sites. The probability of aban-

donment pi a k ð Þ for bee i at expedition k is 

pi a kð Þ ¼min max  
1 
ϕ 

Fi kð Þ F̂ 
i 
t kð Þþαi 

  
;0 

 

;1 
 

ð10Þ 

where αi A U 0; α½ , α40, modulates the abandonment function by 
trying to maintain foragers on their sites with poor or deteriorated 
nectar influence. Also, ϕ defines the abandonment influence, where 
pia k ð Þ for the ith forager will be lower when the ϕ value is higher and 
vice  versa.  The left side of  the  Fig. 5 shows a depiction of (10). Hence,  
the dance threshold shifts the combined pi a k ð Þ and Li k ð Þ functions. 

4.4. Explorer allocation and forager recruitment 

In the hive, the unemployed foragers will start to rest and other 
will pursue getting involved in the foraging process. Here, a 
Fig. 5. Dance decision function. The nectar influx Fi k ð Þ affects the decision-making 
mechanism of a forager to: abandon the site, or stay in the site with or without 
transmitting its source location. 
recruitment behavior for each expedition k is started to define the 
number of foragers to become in observer foragers (BO k ð Þ). To 
define this, let pm A 0; 1½  denote the probability that an unem-
ployed forager or currently resting bee will become an observer 
forager. From the model, pm ¼ 0:35 is chosen, since it has been 
seen experimentally (Seeley, 1983) when all bees are unemployed, 
that about 35% will explore, i.e., all observer foragers will become 
in explorer foragers. However, the experiments also show that 
when there are many sites being harvested in portion of explorer 
foragers can be as few as 5%. 

To represent the exploration behavior, each of the observer 
bees BO k ð Þ is turned into an explorer bee with probability, 

pe kð Þ ¼ exp  
1 
2 

Lt kð Þ  
σex 

2
 ! 

ð11Þ 

where Lt kð Þ ¼  
P 

i A BF kð ÞL
i kð Þ is the total number of waggle runs on 

the dance floor or dance strength. In the model, σex ¼ 1000 is 
chosen since it produces patterns of foraging behavior for the 
experiments in Passino and Seeley (2015). Once the source sites 
are found, the exploration behavior becomes less important 
although it cannot be omitted because some sites could be aban-
doned completely by the foragers during an experiment. However, 
these foragers will eventually come back due to the exploration 
process when the forage site becomes profitable again. For 
instance, if Lt ðkÞ ¼ 0 then there is no dancing so pe k ð Þ ¼ 1 which 
means that all observer foragers will explore. 

The reader should notice that observer bees are recruited to 
forage sites with probability given by 1peðkÞ. The probability that 
an observer forager will follow the dance of bee i is the weighted 
probability from each dancer bringing a bee to its site given by 

pi r kð Þ ¼  
Li kð Þ  
Lt kð Þ  

ð12Þ 
5. HSFA for lighting control 

The model developed by Passino and Seeley (2015) was sim-
plified to run the honeybee social foraging algorithm (HSFA) fast 
enough under the dSPACE DS1104 R&D controller board archi-
tecture. This is required to guarantee a stable operation of the 
smart lights due to the fast transient response that characterizes 
each independent light bulb and light sensor pair. This algorithm 
is implemented in a MATLAB m-file that takes advantage of the 
MLIB/MTRACE libraries for real time data logging from the dSPACE 
DS1104 R&D controller board. The HSFA is coded to achieve an 
overall average sampling period of approximately 42 ms for 1000 
bees (agents). Generally speaking, the overall sampling period 
varies between runs around 75 ms and increases quickly as the 
number of agents is increased. 

Based on foraging for error (Passino, 2002, 2005), the input and 
output signals in the controller must be tuning such as the 
behavior into the algorithm can control the smart lights experi-
mental testbed. Here, a control scheme is shown which helps us to 
define the “foraging profitability landscape” Jf θ 

 
and the control 

effort to be executed for the algorithm. After, we present the slight 
modifications to Passino and Seeley (2015)'s model to create HSFA. 
Finally, a brief explanation about how the HSFA parameters are 
configured to implement feedback control of smart light is dis-
cussed and the HSFA algorithm is presented using a flowchart. 

5.1. Control scheme for smart lights 

To emulate HSFA and use it as a smart lights controller, a 
control loop architecture depicted in Fig. 6 is implemented in 
MATLAB/Simulink. A GUI is developed in dSPACE ControlDesk for 



Fig. 6. HSFA control loop for smart lights. 

Fig. 7. Comparison of calibrated sensor data. 
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the user to select the desired light reference level. The main 
variables set is explained next to understand how the overall 
system works. Let 

Cj kð Þ ¼  ij Jθi kð ÞSj J oϵf 
n o 

; ð13Þ 

Di kð Þ ¼  jj iACj kð Þ  
n o 

; ð14Þ 

and 

bj kð Þ ¼ jCj kð Þj  
XB 
i ¼ 1 

1 
1 

jDi kð Þj  

" # 

ð15Þ 

Here, Cj k ð Þ is the set of foragers at site j where Sj A R2 in the two-
dimensional space represents the coordinates of site center j and 
Di k ð Þ is the set of the site indices j per each bee i. In HSFA we 
assume that these patches of flowers are sharing the same field 
based on the radii of all the sites ϵf, therefore a bee could have 
profitability distributed portions of them. While Cj k ð Þ gets the set 
of bees for each site j, Di k ð Þ gets the set of sites for each bee i. Thus, 
bjðkÞ is the amount of bees in forage site j which is estimated as the 
amount of bees per forage site j given by (13) minus the dis-
tributed portions to other sites for any Di k ð Þa∅ given by (14). 
These equations are defined for i ¼ 1; 2; …; B where B is the total 
number of foragers within the HSFA and j ¼ 1; 2; …; 8 where 8 is 
the total number of sites on the experimental testbed. In Eqs. (13) 
and (15), the mathematical notation ‖  ‖ represents the Euclidean 
distance and j  j defines the cardinality of a set. 

From the control loop (see Fig. 6), the error signal is normalized 
using a gain to obtain the normalized error, ej NðkÞA 1 1½ , which is 
the profitability of site j at expedition k. This error is taken into 
account as part of the Jf ðθÞ that represents the profitability of 
nectar at each bee i, where θi A R2 represents the position of the 
ith bee in a two-dimensional space. Thus, the normalized error 
vector 

EN kð Þ ¼ e1 N kð Þ; e2 N kð Þ;…; e8 N kð Þ  
 T ð16Þ 

contains each value of the normalized error ej N k ð Þ at each site j. 
Furthermore, the amount of voltage applied by the foragers uj k ð Þ is 
the amount of foragers bj k ð Þ at the forage site j multiplied by a 
constant gain during expedition k. Thus, the amount of voltage is 

U kð Þ ¼ u 1 kð Þ;u 2 kð Þ;…;u8 kð Þ  
 T 

where uj kð Þ≔ 
2 
25 

bj kð Þ  ð17Þ 

In Eq. (17), the constant 2/25 represents an output scaling gain or a 
quantum of voltage in Fig. 6 which scales the vector U kð Þ. The 
output scaling gain is selected from the DS1104 board output 
voltage limitations. Each DAC channel output of the board is lim-
ited within the range of 0–10 V and the total voltage resource 
available is 80 V (i.e., 8 light bulbs fully lit). Based on the total 
voltage resource available (i.e., 80 V) and total number of foragers 
(i.e., B ¼1000) within the HSFA, the “quantum” of voltage applied 
per each forager is 2/25 V/Bee. Higher values of B achieve a less 
quantized output but require more processing time. Moreover, the 
input scaling gain (i.e., 1/10) in Fig. 6 is used to obtain the nor-
malized error vector EN k ð Þ. This input scaling gain is determined 
using as a reference the maximum value of all the sensor mea-
surements after calibration in Volts. This value is rounded up to 
the nearest integer which is 10 V. 

In general, the HSFA computes the light level error signal for 
each site (i.e., each zone of the testbed) and then executes an 
iteration assigning the bee's work force to each actuator of the 
smart lights experimental testbed. Finally, the sensor calibration 
block in Fig. 4 is taken and adapted from Koroglu and Passino 
(2014) and represents a linear mapping where a desirable linear 
region of operation is achieved for the sensor input–output 
response as illustrated in Fig. 7. Here, Y RAW k ð Þ is the sensor data 
vector before compensation and YLVL k ð Þ is the sensor data vector 
after compensation from the sensor calibration method. Notice 
from Fig. 7 that the light raw voltage Y RAW k ð Þ values of 4 and 7 V 
are compensated to return the same light level voltage YLVL k ð Þ
value in the output using off-line raw voltages from half-partition 
setting in the testbed (Velasquez and Passino, 2015). 

5.2. Modifications to model of honeybee colony foraging for nectar 

The slight modifications to Passino and Seeley (2015)'s model 
create the HSFA. Some procedures were removed from the model 
which include probability of death pd, the variations of amount 
gathered wi 

f k ð Þ, and the wait time process that also contains the 

noise on wait time and their parameters (i.e., W i k ð Þ, wi 
w k ð Þ, ψ, and 

δ). Furthermore, the following has been added: (i) the tendency to 
be an observer pm, that was a constant value, now depends on the 
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normalized error measurement and a new constant value (γ) that 
regulates the slope of pm, (ii) the magnitude of exploration prob-
ability pe is reduced to 0.20, and (iii) other parameters and vari-
ables are fixed to constant values such as the parameter of aban-
donment α ¼ 0:005, the nectar influx threshold ^ F t ¼ 0:005, and the 
parameter for controlling waggle runs β ¼ 2. Besides, the tendency 
to be an observer pm helps us to control the number of bees that 
are trying to observe the dancers in the hive and the magnitude of 
exploration probability pe is used within the HSFA in a lower 
proportion since the number of sites is fixed (i.e., always eight 
zones), and hence, only the exploration probability will be 
required when the control loop is initialized or for the case where 
a site is completely abandoned. 

The error treatment to define J θ 
   

and the modifications in the 
hive for recruitment and exploration behaviors are presented below. 

5.2.1. Landscape of foraging profitability 
On the experimental testbed, it is assumed for convenience that 

there is a region with eight patches of flowers normalized between 
1 and  1  where  every  flower patch center has a position given by 
Sj A R2, as shown  in  Fig. 8. The eight forage sites are represented by 
cylinders with radius ϵf centered at the following locations (relative to 
the actual light bulb locations): 0:90; 0:36½ T , 0:90; 0:36½ T , 
0:30; 0:36½ T , 0:30; 0:36½ T , 0:30; 0:36½ T , 0:30; 0:36½ T , 
0:90; 0:36½ T , and  0:90; 0:36½ T . The hive is located at 1:00; 1:00½ T 
where it is assumed to be sufficiently isolated from forage sites. The 
location of the forage sites and the hive as well as the overlapping area 
between sites for the case of ϵf ¼ 0:45 are shown in Fig. 8. 

From the HSFA control loop shown in Fig. 6, notice that ej N k ð Þ
are sent to the HSFA controller as the profitability of each site j at 
expedition k. The foraging profitability is connected to the number 
of sites where each forager could be part of, which means that a 
forager could be located in sites where two or more patches of 
flowers are sharing the same field. This particular case is asso-
ciated with “the radii of the site” ϵf as shown in Fig. 8. Hence, the 
amount of profitability gathered by a bee is computed as the mean 
value between the number of shared sites. For instance, if the site 
S1 has a profitability equal to 0.75 and the site S2 has a profitability 
equal to 0.25, then the amount of gathered profitability by a bee 
located in θi k ð Þ ¼ 0:9 0½ T (i.e., a location where patches are 
sharing the same field as it is shown in Fig. 8 in shadowed area) 
will be 0.50. In other words, each forager takes the portion as the 
mean value between all sites within the shared zone. Hence, the 
Fig. 8. Landscape of foraging profitability where the overlapping between sites is 
given by the dark-shaded areas. The landscape is presented for the radius case of 
ϵf ¼ 0:45. 
foraging profitability of site Sj is represented with the suitability 
function 

Jf θ
i kð Þ  

  
≔ 

1 

jDi kð Þj  

X 

j A Di kð Þ  

ejN kð Þ  ð18Þ 

Here, Jf θ
i k ð Þ

  
is assigned the mean value of nectar profitability in 

the position of the ith bee at the kth expedition. From (15) and (17) 
and the implementation of the HSFA control loop (i.e., Fig. 6), we 
were able to determine that the profitability is degraded with the 
visit of each additional bee and it should be zero for the ith bee 
outside of any forage site. Therefore, the hive's goal will be to 
obtain all the available profitability from the entire landscape by 
optimal distribution of foragers per site in every expedition. 

Even though the profitability is proportional to the number of 
patches sharing the same field, the delivered quantum of voltage is 
divided into equal proportion of foragers per site as it is shown in 
(17). For instance, suppose two forage sites each with profitability 
0 and 0.5; two foragers are located in the overlapping area of them 
in the expedition k; we obtain for both Jf θ

i k ð Þ
 

¼ 0:25 and 

b1 k ð Þ ¼ b2 k ð Þ ¼ 1 from  (15), i.e., a quantum of voltage will be applied 
to each site. This means that the foragers effort is recognized despite 
they gathered nectar from a completely impaired site. 

5.2.2. Forager recruitment and explorer allocation 
Let emax

N k ð Þ represent the maximum value of the vector EN k ð Þ in 
the kth expedition. Then, let 

pm kð Þ ¼min 
1 
γ 
max 0; emax 

N kð Þ ; PM 

 

ð19Þ 

where pm k ð Þ, which is calculated during each expedition k, is the 
probability that an unemployed forager becomes an observer 
when this value is compared with a random uniform distribution 
(Uð0; 1Þ) as decision-making per forager. The HSFA takes (19) to 
split BU k ð Þ between BO k ð Þ and BR k ð Þ for every new expedition. The 
purpose of (19) is to reduce the proportion of BO k ð Þ everywhere 
the magnitude of the normalized error becomes small. Also, notice 
that this discontinuous function has a lower limit at 0 and an 
upper limit at PM ¼ 0:10 as illustrated in Fig. 9. The probability pm 

k ð Þ helps us to control the number of bees visiting sites, avoids a 
kind of over-exploitation of sites or overshoot in control, and 
maintains an available work force when new sources are found or 
old sources are improving their profitability. 

As in the Passino and Seeley (2015)'s model, to represent the 
exploration behavior, each of the observer bee BO k ð Þ is turned into 
an explorer bee with probability pe k ð Þ, 

pe k ð Þ ¼  
1 
5 
exp  

1 
2 

Lt kð Þ  
σex 

2
 ! 

ð20Þ 
Fig. 9. Definition of pm k ð Þ in HSFA. 
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Here, σex ¼ 50 which is significantly less than the chosen value by 
Passino and Seeley (2015), helps us to control the number of visits 
to the landscape by explorer foragers by quickly reducing the 
probability of an observer becomes an explorer forager since the 
number of sites is constant during the control process on the 
testbed. 

When HSFA starts and there is no dancing pe kð Þ ¼ 1
5 which means 

that 20% of all observer foragers will explore. This fraction and the σex 
value avoid to use high control effort when the HSFA just starts. These 
were experimentally tuned on the testbed. We also notice that when 
they are reduced, the time to find a source site is long. On the other 
hand, if they are increased then the number of bees visiting and 
providing information about the same source site generates a high 
control effort and deteriorating sites that might introduce uncontrol-
lable oscillations at the beginning, in other words, the probability pe k ð Þ
is directly connected with the rise time of the transient response of 
the smart lights system output. In addition, these values had to get 
reduced since the dance strength Li k ð Þ was also hardly reduced 
through the parameter βi. In HSFA,  βi ¼ 2 is  fixed for all possible 
remaining foragers which are included in the probability pw to be 
waggle-dancers. These foragers recruit a low proportion of bees. Both 
pe k ð Þ and βi control the speed how the bees appear on the landscape. 
However, a high value of βi could introduce uncontrollable oscillations 
during the steady state. 

5.3. Issues in HSFA parameters 

Table 1provides a list of parameters for the Source, Hive, and Bee 
classes used in the Passino and Seeley (2015)'s model presented 
while Table 2 presents the initial values for each parameter in 
HSFA. The proposed notation is split into classes to differentiate 
between variables and constant values. While the Hive and Source 
classes represent constant values, the parameters of the Bee class 
are dependent on the step k except for β which only changes once 
before executing the HSFA. 

The implemented HSFA is used for reference tracking in illu-
mination control and has been designed to achieve uniform 
lighting across the entire floor of the experimental testbed espe-
cially for no-partition case where the cross-illumination effects are 
maximized. Hence, this algorithm requires to remove, add, and 
tune the values from parameters in the Passino and Seeley (2015)'s 
model to get a faithful response on the testbed. Some of these 
initial values were obtained by performing several experiments on 
the testbed to reduce output oscillations around the reference 
level (e.g., β, σex, and the fraction in pe k ð Þ). However, these given 
initial values were not tuned to improve the settling time, rise 
time, and overshoot. 
Table 2 
HSFA initialization for Source, Hive, and Bee classes. 

Class Variable Initial value 

Source ϵf 0.45 (default) 

Hive B 1000 
α 0.005 
β 2 

F̂ t 0.005 

ϕ 3 
σex 50 
σ2 R 0.02 
ϵt 0.30 
γ 10 
PM 0.10 

Bee β i 0 if  U ið0; 1opw 

β otherwise 

( 
Besides, the probability of death pd was removed to avoid little 
oscillations in steady state caused by abandonment procedure 
where recruited foragers are replaced by unemployed foragers, the 
variations on amount gathered wi 

f k ð Þ, the wait time W i k ð Þ, the 
noise on wait time wi 

w k ð Þ and their parameters ψ, δ, were removed 
to get a flatter response on steady state since these just introduce 
noise in the algorithm's response. Finally, σE which changes the 
position per each step k was also removed to avoid alterations in 
the control effort distributions by the foragers on the testbed. 

Based on the parameters presented in Table 2, we set up the 
value of B ¼1000 since we get a good quantum of voltage (i.e., 2/ 
25 V/Bee) which is almost imperceptible when a new forager adds 
its control effort on the testbed; notice that with B being smaller 
the quantum is greater which is worse due to the discrete behavior 
of the algorithm. An additional quantum of voltage could intro-
duce an unwanted oscillatory phenomenon called ringing around 
the reference level (i.e., just one could deteriorate a site but 
without it the desired level will be never obtained). On the other 
hand, a better quantum of voltage is obtained to increase the B 
value; however, the number of bees is directly related with the 
elapsed processing time. To increase the number of bees, the 
elapsed time also increases exponentially (e.g., with B ¼1020 the 
sampling time is around 55 ms). It would not be a problem if the 
HSFA were implemented on a faster processor or if the testbed ran 
well in slower sampling period; however, the testbed requires 
sampling periods to 50 ms at least, to get a faithful response. 
Currently the implemented HSFA with B ¼1000 runs to 4275 ms  
per each iteration or expedition k. 

Unlike the model, the parameter αi is the same for the whole 
beehive in HSFA. This parameter which modules the abandonment 
function to maintain foragers with deteriorated nectar influence 
was fixed to a constant value to avoid sites that are abandoned 
when the obtained level is near the desired reference level. When 
different values of αi drive the behavior of the bees, they could 
either stay long time on a site before to leave it or promptly leave a 
site before the desired reference level on the testbed is obtained. 
The same situation has the parameter ^ F t which depends on the 
waiting time, however in HSFA this is a constant value. Notice that 
α has the same value to allow each forager to decide via the 
probability of abandonment pi a k ð Þ if it wants to maintain its site 
even though is deteriorated; it is also regulated by the parameter 
ϕ which was increased (e.g., ϕ is set up to 0.25 in Passino and 
Seeley, 2015) to the recruited foragers remain involved much 
longer on the sites. Eq. (9) shows the dance strength where ^ F t 

plays a role to enable the recruitment of foragers to be part of any 
site via the waggle-runs. On the control loop these parameters 
reduce, restrict, and prevent oscillations (i.e., damping phenom-
enon) to minimize the overshoot and to decrease the settling time. 
Experimentally, we notice α also controls the steady state error – 
SSE. This means that a larger value of α gets a SSE over the 
reference level while a smaller one gets a SSE under the reference 
level. The value of these parameters was chosen experimentally to 
work on error band less than or equal to 2% when ϵf ¼ 0:35 and to 
get a SSE close to zero. 

The variance of the site location when a forager is recruited 
to follow a waggle-run was increased to σ2 

R ¼ 0:02, ten times 
more than the model. The imprecision in waggle dances serves 
to spread recruited foragers over certain areas on the landscape 
(Weidenmüller and Seeley, 1999). This new value increases 
the probability that the recruited foragers could be located 
where two or more patches of flowers are sharing the same 
field, since around 68% of recruited foragers could be located 
close to the dancer forager in a cylinder with radius σR which is 
equivalent to 16.3% of the area for ϵf ¼ 0:35. 

The HSFA strongly changes ϵt to negative value. This means that 
the nectar profitability Fi k ð Þ accepts to be on sites without 
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profitability. The HSFA assumes that this parameter allows that 
recruited foragers slowly abandon sites with deteriorated profit-
ability which will prolong the settling time after overshot in the 
control loop. Furthermore, decreasing ϵt avoids all together 
recruited foragers abandon a site when a negative step on control 
loop is required in which case a big undershot could happen; in 
other words, this parameter allows that the fall time depends on 
the probability of abandonment; experimentally, we found ϵt ¼ 
0:30 is enough to get a faster response avoiding abandoned sites 
completely. 

Finally, the HSFA redefines the probability pm that an unem-
ployed forager becomes an observer using (19) where two new 
parameters are defined: γ and PM. This equation requires the 
maximum value of the vector EN k ð Þwhich increases the probability 
to get more observer foragers in the hive when the maximum 
error is high and vice versa. The parameter γ controls the slope 
and PM is the upper limit of the pm function. Notice that the chosen 
values reduce steeply the natural behavior presented in Passino 
and Seeley (2015), Anderson and Ratnieks (1999), and Seeley 
(1983). However, these values avoid some unemployed to become 
observer foragers when few quantum of voltage are needed to 
Fig. 10. Flowchart of HS
achieve the desired reference level by keeping the number of 
foragers on the landscape when the control goals are successful. 

All parameters above are responsible for the transient response 
in the feedback control loop. We are interested to show the effects 
to change the radius of the sites ϵf where the overlapping between 
them exists. This parameter allows us to distribute the work force 
between the sites and shares common areas by getting a better 
steady state response. Other works such as Quijano and Passino 
(2010) and Marulanda et al. (2013) use the nearest site approach to 
distribute the work force to the actuators in their applications, 
while we distribute the work force based on the foragers spread 
and the common areas. This approach implemented in HSFA gives 
less quantum of voltages to divide the number of foragers between 
the sites sharing a common area which reduces both the ringing 
phenomenon and the steady state error. 
5.4. Overall framework for HSFA controller 

Flowchart in Fig. 10 shows the HSFA controller. Here, the input 
is the estimated profitability in the landscape, which defines the 
decision making of each forager through every module of HSFA, to 
FA controller block. 
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determine the necessary amount of work force in the output, and 
hence, to fully exploit each source. 
6. Experimental results 

To show the behavior of the foraging bees and the effects of 
changing the radius of the forage sites (ϵf) defined by the HSFA on 
the experimental testbed, three experiments have been performed 
where the radius ϵf was set to 0.30, 0.45 and 0.60. These radius 
values represent the following cases: without overlapping, slight 
overlapping, and significant overlapping between forage sites 
respectively. The cross-illumination effects between neighboring 
zones are emulated by the overlapping of forage sites in the HSFA. 
The illumination tracking problem is presented for three different 
reference input values: 5 V (low light – LL), 6 V (medium light – 
ML), and 7 V (bright – BL). The reader will notice that all the 
control effort (i.e., applied voltage to the light bulbs) plots present 
a dashed region which are the actuator dead zones. Within the 
dead zones, a control effort signal will not affect the system output 
and the experimental platform is on open-loop control which is 
equivalent to apply a control effort greater than 10 V. 

A total of 25 experiments were performed in the experimental 
testbed to consider the stochastic behavior of the experiment and 
the HSFA. This number of experiments was selected by deter-
mining the necessary number of trials in the testbed to achieve a 
constant mean and standard deviation of the relative error of the 
each zone's illumination. Also it helps us to define the amount of 
experiments to get a faithful statistical inference, we started with 
these 25 experiments as the sampling frame. First, we defined 
intervals where we assume steady state for each desired reference 
input value, these intervals are as follows: 15–30, 45–60, and 75– 
90, all in seconds; notice that all sequences of data have different 
length because of the stochastic procedure that is asynchronous 
despite all. Since all these data are obtained from different refer-
ence input values, we normalized them by dividing between their 
own reference input value to get steps with magnitude 1. After, we 
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joined all these data getting the variance σ2 ¼ 8:9051  10 6 . 
Finally, from the sample theory we get 

n¼ 
Z2σ2 

d2 
ð21Þ 

where n is the sample size, Z is the confidence interval, and d is the 
shifting error based on the sample and the ideal mean value. We 
found that n ¼ 23 (i.e., the sampling frame is enough) with a 
confidence interval of 100% (i.e., Z ¼4) and assuming d ¼0.0025 
which is pretty close to zero. 

This section shows general statistical results to describe a set of 
solutions obtained in each case, a t-test to show how keeping the 
steady state error close to zero is achieved for each case, and the 
analysis of variance to determine the effects of changing the forage 
site radius for each illumination level. The latter affect both steady 
state error and transient response. All the experiments were car-
ried out under maximized cross-illumination effects (i.e., no-
partition case). Finally, a general discussion about the other HSFA 
parameters is presented. 

6.1. General performance 

With ϵf changing, we get an overlapping effect where the for-
agers share common areas and the control effort has to be dis-
tributed between each bulb. Here, we consider three different 
cases from fully separated forage site to significantly overlapping 
one. Although, in all cases the control goal is achieved, we find 
some differences during the transient response. The worst 
experiment is shown for each given forage site radius ϵf to illus-
trate the output performance of the proposed HFSA. Later, the 
behavior of general error over all the sequential data (the last 15 s) 
from 25 experiments split by reference input values and ϵf values 
using box plots is considered to show the overlapping effect. 

6.1.1. Experiments with ϵf ¼ 0:30 
These experiments were performed to observe the behavior of 

the HFSA where it is assumed that the forage sites are fully 
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separated from one another. Experimental results are shown in 
Figs. 11 and 12. Notice from Fig. 11 that the HFSA is able to achieve 
a good transient response which includes an average settling time 
of 3.51 s, no overshoots in zones 1, 3, and 5, the worst overshoot 
was around 32.46% in zone 8, and SSEo1% in all zones for all 
illumination reference inputs. At the beginning, the distribution of 
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foragers in all zones is generated by a uniform random distribution 
which changes between experiments. This means that higher 
control efforts in one or more zones will occur before the decision-
making mechanism begins to operate as illustrated in zone 8 of 
Fig. 12 (i.e., significant overshoot). This situation is observed in 
every single experiment including for the cases of ϵf ¼ 0:45 and 
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ϵf ¼ 0:60. The cross-illumination effects are present in zones 1, 2, 
5, and 6 where the control effort signals are lower than the other 
remaining zones as given in Fig. 12. 

6.1.2. Experiments with ϵf ¼ 0:45 
When the radius of each site is slightly increased from 0.30 to 

0.45, shared zones appear between foraging sites where the con-
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tribution of foragers to the control effort will also be shared. The 
given radius in the following experiments takes a small portion 
between neighboring sites where the sites at the middle (i.e., 
zones 3, 4, 5, and 6) share up to three common areas of the 
landscape with their corresponding neighbors. To verify the HFSA 
response for the over-lapping between sites, the results for a single 
experiment are illustrated in Figs. 13 and 14. Recalling the 
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experiments with ϵf ¼ 0:30, the cross-illumination effects have an 
incidence at zones 1, 2, 5 and 6. However, when shared regions are 
created between neighboring sites, the effect of the cross-
illumination can be evenly distributed among them. Therefore, if 
a forager is located on a shared region then its control contribution 
is also distributed among the corresponding zones (i.e., zones with 
shared regions) which considerably reduces the energy usage 
when the HFSA is started. Notice from Fig. 13 that the control 
algorithm is able to achieve a good transient response which 
includes no overshoots in zone 4, the worst overshoot of around 
32.91% (i.e., 0.45% greater than for ϵf ¼ 0:30 case) in zone 8, and 
SSEo1% in all zones again. 

6.1.3. Experiments with ϵf ¼ 0:60 
The following experiments represent the case where the 

overlapping between neighboring zones is significantly increased 
from 0.30 to 0.60. Here, the zones share a greater region with 
neighboring sites where the sites at the middle share up to 
5 common areas of the landscape with their corresponding 
neighbors. The experimental results are showed in Figs. 15 and 16 
where the testbed output and input for a single experiment is 
given to verify the tracking performance. If these experiments are 
compared with the two previous cases (i.e., ϵf ¼ 0:30 and 
ϵf ¼ 0:45), the reader will notice how the cross-illumination effect 
is reduced while the tracking speed is increased. Notice from 
Fig. 15 that the HFSA is able to achieve a good transient response 
which includes no overshoots in zones 2 and 3, the worst over-
shoot of around 11.4% (i.e., 21.51% less than for ϵf ¼ 0:45 case) in 
zone 6, and SSEo1% is still obtained. For this case, the probability 
that a forager is located on a shared zone is higher and its dis-
tributed control effort is also reduced per site which means that 
the amount of control effort per site is less compared to the con-
figuration with smaller shared zones as shown in Fig. 16. Generally 
speaking, the HFSA performance seems to be better when the radii 
of the sites are increased, however, this is not always the case 
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because zones 7 and 8 present more fluctuations when compared 
to the case with radius ϵf ¼ 0:30. 

6.1.4. General error performance levels 
This experiment presents the median error for the whole 

experimental testbed divided by illumination levels and forage 
sites radius (ϵf). Here, the median error is the median of the 
average of the last 15 s during steady state error and the input 
illumination level considered data from 25 experiments. This 
procedure is repeated for three different forage site radius and for 
three different input reference values. To highlight the differences 
when ϵf is changed (i.e., 0.30, 0.40, and 0.60), we evaluated the 
relative error performance for each input illumination level. Then, 
a data pool is obtained to join the results from each zone, keeping 
the above procedure. Box plots are used to show the results pre-
sented in Fig. 17. Therefore, the box plots show the box neck or 
central mark, which is the median; the lower edge, corresponding 
to the 25th percentile; the upper edge, corresponding to the 75th 
percentile; and the whiskers, which are the most extreme data 
points. 

From the results presented in Fig. 17, we noticed that a better 
performance is obtained when the forage site radius ϵf is 
increased, as it is shown in the statistical results (medians, per-
centiles and extreme data) offered by the box plots. These results 
hold for all illuminations levels. The worst performance is 
obtained in the “medium light” level for the ϵf ¼ 0:60 case, where 
the relative error performance is worse than the other cases, since 
the variance between the data pool is greater. Also, we noticed 
that the significant overlapping (ϵf ¼ 0:60) case remains the best 
performance to be closer to zero. Then, we have found that the 
advantage of our overlapping approach improves the distribution 
of control effort (based on previous experiments for different ϵf 
values) while the relative error performance is highly rewarded, 
each time ϵf is increased. 
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Table 3 
p-values using Student's t distribution. 

z ϵf ¼ 0:30 ϵf ¼ 0:45 ϵf ¼ 0:60 

LL ML BL LL ML BL LL ML BL 

1 0.85 0.87 0.85 0.88 0.90 0.89 0.94 0.94 0.92 
2 0.89 0.90 0.85 0.90 0.93 0.89 0.97 1.00 0.92 
3 0.86 0.85 0.78 0.90 0.85 0.78 0.92 0.85 0.80 
4 0.88 0.85 0.79 0.89 0.87 0.79 0.89 0.85 0.81 
5 0.81 0.90 0.87 0.88 0.95 0.92 1.00 0.93 0.92 
6 0.85 0.89 0.91 0.90 0.93 0.98 0.96 0.94 0.89 
7 0.80 0.81 0.81 0.88 0.83 0.83 0.84 0.83 0.83 
8 0.83 0.82 0.82 0.88 0.84 0.83 0.87 0.85 0.82 
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6.2. Steady state error analysis 

Here, we use one-sample t-test to show the desired SSE is near 
zero. We assume that the null and alternative hypothesis are 

H0 : μ ¼ 0 
H1 : μa0 ð22Þ 

Again, we use the average for each sequential data during the last 
15 s (notice that the number of samples can be different for each 
experiment since it is a stochastic procedure) to get the sample for 
each experiment; however, the estimate standard deviation S is cal-
culated using the sequential values obtained to join all zones with the 
same features, i.e., the result to join the same illumination level and ϵf 
in each zone. Typical standard deviation is not considered since the 
differences between samples are close to zero and these values do not 
save information about the damping phenomenon. The t-values with 
degrees of freedom v ¼ n  1, are obtained using: 

t ijk ¼ 
X ijk  μ 
S ijk = 

ffiffiffi 
n

p ; ð23Þ 

where tijk represent the t-values for ith forage site radius, jth illumi-
nation level, and kth illumination zone; X ijk is  the sample mean from  
25 averaged samples; S is the estimate standard deviation. From these 
results we obtained the p-values to verify the null hypothesis which 
are shown in Table 3. We put in bold the p-values smaller founded to 
contrast with the statistical significance value τ. 

If we choose τ ¼ 0:05 the results for each zone show that the null 
hypothesis is not rejected (i.e., τo p-value) or the feedback control 
using HSFA is getting a good balance of illumination to follow each 
reference input value where the cross-illumination effects have been 
neutralized, since p-values are far away of τ value. 

6.3. Effects of overlapping in HSFA 

Finally, we show the analysis of variance (ANOVA) between several 
results to verify the effect of change the forage radius. We use the 
average values of samples for experiments and solve Tukey's honesty 
significant difference (hsd) criterion post hoc ANOVA. Previously, we 
assumed forage site radius  ϵf (r) and illumination levels (l) as factors  
while the zones (z) are considered as blocking. Here, factors and 
blocking are the terminology for design of experiments. Blocking 
reduces the variability between each zone, allows precision in the 
estimation of the source of variation, and avoids the interactions 
between each factor and this. ANOVA provides information about the 
influence per factor and the interaction (r  l). From ANOVA we get a 
23 factorial experimental design, 

ϵijkn f ¼ μþ ri þ lj þ zk þ r  lð Þij þ e ijkn ð24Þ 

which is indexed by i, j, k, and  n, with  i¼ 1,2,3, for ϵf value, j ¼1,2,3, for 
illumination level, k ¼ 1; …; 8, for the zones, and n ¼ 1; …; 25; to 
represent the index of each experiment. The e value refers to the 
random variable whose value differs the expected ϵf. 

6.3.1. Steady state error 
First, we want to verify the effect of changing ϵf on steady state 

error (SSE).  Here, we use  the same time intervals  from  previous
experiments (i.e., 15–30, 45–60, and 75–90) to get each SSE mean. The 
obtained results are shown in Table 4. These results allow us to omit 
the interaction term since the hypothesis is not rejected (p-value 4τ), 
i.e., the interaction effect is null. We get a simplified ANOVA where the 
blocking component z is used to remove the residual influence of the 
zones in (24). 

Later, we use Tukey's hsd-criterion to compare the means of 
9 groups and test the hypothesis that they are all the same. The pair-
wise are classified by each ϵf and illumination level. Fig. 18 shows the 
results obtained from the experiments with confidence interval at 95% 
where each dot represents the mean value per group and the straight 
line is twice the standard error (stderr ¼ 9:4104  10 5); the dashed 
lines show the limits where the null hypothesis cannot be rejected 
(i.e., the behavior is similar inside the set of groups A, B, and C). These 



Table 4 
Analysis of variance including interaction r  l for SSE. 

Source Sum. Sq. d.f. Mean Sq. F p-val. 

r 4:49  104 2 2:25  104 70.6 0 

l 7:15  105 2 3:58  105 11.2 0 

z 9:28  104 7 1:33  104 41.7 0 

r  l 2:92  105 4 7:31  106 2.3 0.057 

error 0.00567 1784 3:18  106 

Total 0.00715 1799 

1 1.5 2 2.5 3 
x 10 −3 

Means pairwise values using Tukey’s pos−hoc ANOVA 

Normalized Error Value 

r=0.60, l=BL 

r=0.45, l=BL 

r=0.30, l=BL 

r=0.60, l=ML 

r=0.45, l=ML 

r=0.30, l=ML 

r=0.60, l=LL 

r=0.45, l=LL 

r=0.30, l=LL 

A B C 

Fig. 18. Groups of SSE means using Tukey's hsd-criterion. Set A gets similarities for 
ϵf ¼ 0:60 for both ML and BL levels, while sets B and C additionally get similarities 
with the next larger radius for LL case. The worst performance was getting for 
ϵf ¼ 0:30 in the LL illumination level. 

Table 5 
Analysis of variance for ITAE criterion. 

Source Sum. Sq. d.f. Mean Sq. F p-val. 

r 2.50 2 1.25 20.3 0 
l 106.62 2 53.31 866.3 0 
z 1.47 7 0.21 3.4 0.001 
r  l 3.02 4 0.75 12.3 0 
error 109.78 1784 0.06 
Total 223.38 1799 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 

Means pairwise values using Tukey’s pos−hoc ANOVA 

ITAE Value 

r=0.60, l=BL 

r=0.45, l=BL 

r=0.30, l=BL 

r=0.60, l=ML 

r=0.45, l=ML 

r=0.30, l=ML 

r=0.60, l=LL 

r=0.45, l=LL 

r=0.30, l=LL 

D 

Fig. 19. Groups of SSE means using Tukey's hsd-criterion. Set D gets similarities for 
all ϵf in both LL and BL levels; however, ML level is completely different in the 
analysis. The worst performance was getting for ϵf ¼ 0:30 in the ML 
illumination level. 
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results show that feedback control effects depend on the configura-
tion of ϵf for ML and BL illumination levels; however, we also noticed 
differences between these results and those obtained for LL which are 
shifted to be compared with the next forage site radius. When illu-
mination reference value is lower the behavior in the algorithm by ϵf 
tends to worsen; however, a better performance is still achieved when 
ϵf is larger. 

6.3.2. Transient response 
To estimate the effect of change ϵf on the transient response, we 

used the well-known Integral of Time-multiplied Absolute-value of 
Error (ITAE) criterion: 

ITAE ¼ 
Z 

t eN tð Þ  
 ∂t ð25Þ 

where eN t ð Þ is the normalized error at instant t. The  defined time 
intervals are 0–15, 30–45, and 60–75, all in seconds. These intervals 
correspond to the transient response in the experiments. To get the 
ITAE value for each zone/level/radius, we use Simpson's 1/3 rule 
assuming each step level starting at 0 s. The results are shown in 
Table 5. Here, all hypotheses are rejected, therefore the effects are 
not null. 

This result forces us to define the group or groups which reject the 
hypothesis. Again, we use Tukey's hsd-criterion to compare the means 
of 9 groups and test the hypothesis that they are all the same. Fig. 19 
shows the results obtained from the experiments with confidence 
interval at 95% and stderr ¼ 0.0175; the dashed lines show the limits 
where the null hypothesis cannot be rejected (e.g., similar behavior is 
obtained for the groups in the set D). However, the groups of ML level 
are completely different. Notice that all experiments started with the 
ML level before others; therefore, the distribution of foragers at the 
beginning causes higher control efforts due to not knowing the test-
bed behavior by the HSFA. Assuming the behavior from LL and BL 
levels, we conclude that the transient response performance is not 
affected by changing the ϵf radius, i.e., once the HSFA knows the 
problem, the effects in the transient response due to ϵf will be null. 
6.4. Discussion 

In general, the effects of increasing the site radius ϵf are positive 
but this also implicates an increase in the computational complexity of 
the algorithm due to the need of recalculating both the control effort 
contribution  by  forager  on each site  and  the obtained profitability by 
foragers between all shared regions between neighboring sites. But 
the steady state is quickly achieved and the overshoot is reduced 
through this approach. The overshoot results cannot be graphically 
presented for every single case because the zone that has overshoot is 
always different. However, the worst overshoots when the HFSA starts 
were as follows: 43.90% for ϵf ¼ 0:30, 35.57% for ϵf ¼ 0:45, and 27.25% 
for ϵf ¼ 0:60. 

Due to the stochastic procedure executed in each experiment, 
the number of foragers on each site is not the same between 
experiments. Foragers spread is also undetermined which allows 
us to determine that multiple solutions can achieve a good per-
formance. Based on presented experiments, initial conditions 
determine the foragers spread on the landscape to allocate quan-
tum of voltage to each bulb until the illumination level tracking is 
reached. The implemented approach, where the distribution of 
foragers is based on the overlapping forage sites, gets new forage 
sites which is interpreted as better profitability location to be 
exploited (i.e., groups of foragers mainly located in shared than 
isolated zones). Despite forage site center was defined as the place 
with major profitability, the cross-illumination effects directly 
impact on the foragers and their spread to get good tracking 
performance levels. However, the approach has to keep the forage 
site locations predefined to allocate the quantum of voltage in 
which the desired illumination levels on the testbed are achieved. 

On the other hand, forager spread on the landscape also 
changes the transient response in the experiments. We noticed 
that the overshoot, rise time, fall time, settling time, and others 
change between zones since it is related with the individual and 
collective decision-making mechanism. While a group of foragers 
which abandon from a shared zone can reduce the illumination 
level on the experimental testbed slowly, other group of them 
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which abandon from an isolated zone will reduce the illumination 
level quickly; however, foragers from shared zones also increase 
the damping phenomenon since these involve more than one 
actuator. Same case is presented in the exploitation behavior 
where the illumination levels in two bulbs or more neither it is 
weighted (i.e., once the group of foragers are located on a shared 
zone) or it is unweighted which impacts the speed of rise time and 
the overshoot being faster and bigger respectively for the last case. 
However, all combined effects in the transient response do not 
generate substantial changes on it. Statistical results show that the 
effects of changing ϵf are not reflected in the transient response, 
e.g., by increasing ϵf low overshoots are obtained and settling 
times are generally increased. 
7. Conclusions 

A honeybee social foraging algorithm is used to solve a smart lights 
feedback control problem by emulating the nectar searching and 
collection process of honeybees on a experimental testbed. This 
foraging algorithm replaces the controller from a typical control loop 
where the errors in zones are represented by the profitability in the 
forage sites and the control efforts are obtained by the number of bees 
per forage site, which means that once a forager visits a site, a portion 
of its control effort contribution is applied to the given forage site. 
Based on the honeybee foraging model by Passino and Seeley (2015), 
the HSFA takes in each expedition the error signal from control loop 
and automatically starts a decision-making process where the amount 
of foragers on each site represents the control effort. 

On the other hand, the smart lights experimental testbed has the 
following features: first, it is a highly coupled system with delay, and 
second, there is the lack of a mathematical model. In addition, this 
experimental testbed presents fast transient responses which create 
extra challenges for the controller implementation on a standard data 
acquisition board. These features offer the opportunity to use swarm 
intelligence approaches to create solutions for this real world appli-
cation. In addition, the cross-illumination effect between zones in the 
testbed (different illumination levels obtained by zones that are not 
evenly distributed) is considered based on the radius of each forage 
site: as the radius is increased, the foragers are better distributed on 
the landscape. In general, the way that we model the interference 
between near food sources shows that as the radius of each site is 
increased then the tracking speed is also increased and the steady 
state error and overshoot are reduced. Nonetheless, the experimental 
results also show that some zones present a degraded performance 
which implies that a better set of tuned parameters can be obtained if 
a different radius of sites is selected. 

Finally, the experiments show the versatility of the algorithm 
based on swarm intelligence to admit multiple control effort solutions, 
each of which is considered acceptable and equivalent since these 
satisfy the control goal. However, these multiple solutions are also 
difficult to compare one with another one, since these are highly 
correlated with the decision-making mechanisms in honeybees for 
each experiment. This means that the best solution is subjective or we 
can just guarantee a good solution but not the best one. 
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