
774 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 6, JUNE 2014

Distributed and Cooperative Task Processing:
Cournot Oligopolies on a Graph
Theodore P. Pavlic, Member, IEEE, and Kevin M. Passino, Fellow, IEEE

Abstract—This paper introduces a novel framework for the de-
sign of distributed agents that must complete externally generated
tasks but also can volunteer to process tasks encountered by other
agents. To reduce the computational and communication burden
of coordination between agents to perfectly balance load around
the network, the agents adjust their volunteering propensity
asynchronously within a fictitious trading economy. This economy
provides incentives for nontrivial levels of volunteering for remote
tasks, and thus load is shared. Moreover, the combined effects
of diminishing marginal returns and network topology lead
to competitive equilibria that have task reallocations that are
qualitatively similar to what is expected in a load-balancing
system with explicit coordination between nodes. In the paper,
topological and algorithmic conditions are given that ensure the
existence and uniqueness of a competitive equilibrium. Addi-
tionally, a decentralized distributed gradient-ascent algorithm is
given that is guaranteed to converge to this equilibrium while not
causing any node to over-volunteer beyond its maximum task-
processing rate. The framework is applied to an autonomous-air-
vehicle example, and connections are drawn to classic studies of
the evolution of cooperation in nature.

Index Terms—Agents and autonomous systems, distributed
control, game theory, load balancing, network analysis and
control, parallel algorithms.

I. Introduction

WE CONSIDER the problem of designing strategies to
dynamically route externally generated tasks around

a network to efficiently share the processing load of those
tasks. In many cases, an optimal solution can be found
either with centralized methods or methods that synchronize
computation between networked nodes. To reduce the commu-
nication burden, we propose a totally asynchronous strategy
that can achieve an adequate, if not optimal, task allocation
that requires significantly less coordination between nodes.
The load balancing that emerges in this case is a product
of incentives built into a cooperation-trading economy as
well as topological feedbacks. Thus, this paper shows how
cooperation can be stabilized on networks of selfish agents
that continuously climb local utility gradients.

Manuscript received July 13, 2012; revised January 18, 2013; accepted
June 21, 2013. Date of publication July 16, 2013; date of current version May
13, 2014. This work was supported by the National Science Foundation under
Grant EECS-0931669 and Grant CCF-1012029. Recommended by Associate
Editor T. Vasilakos.

T. P. Pavlic is with the School of Life Sciences, Arizona State University,
Tempe, AZ 85287 USA (e-mail: tpavlic@asu.edu).

K. M. Passino is with the Department of Electrical and Computer En-
gineering, The Ohio State University, Columbus, OH 43210 USA (e-mail:
passino.1@osu.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2013.2271776

In particular, we consider a network of autonomous agents
with some agents being responsible for processing tasks from
one or more external sources. When a task arrives at one of
these agents, the agent may advertise the task to other agents
connected to it. If none of the connected agents volunteer to
process the task, it must be processed by the advertising agent;
otherwise,the task is processed by one of the volunteering
agents. Agents that volunteer for tasks may themselves be
connected to incoming task flows for which they can advertise
task encounters. In general, an agent in the network may adver-
tise task encounters to others, volunteer to process advertised
tasks from others, or do both. Our challenge is to define a
distributed asynchronous algorithm for automatically tuning
how often agents volunteer to process advertised tasks so that
the collection of volunteering tendencies across the network
converges to a nontrivial Nash (i.e., competitive) equilibrium
with desirable load-balancing features. In the rest of this
section, we will review the existing cooperative processing
works and discuss why those approaches are not adequate for
solving the problem formulated here.

Grid computing [1] is one existing approach for achieving
cooperative task processing across a group of networked task-
processing agents. System designers work under the assump-
tion of heterogeneous agents with conflicting priorities. They
borrow from the economic theories of mechanism design
[2, Chapter 23] and implementation theory [3, Chapter 10]
to design mechanisms (e.g., brokering agents) and protocols
that either encourage resource sharing [4]–[7] or discourage
exploitation [8], [9] among groups of agents. The common
element of these different methods of distributed algorithmic
mechanism design (DAMD) [10] is that the designer has no
direct control over individual agents; instead, she controls the
structure of the interactions between given agents on a given
network. Hence, DAMD is not appropriate for the design of
the task-processing networks themselves.

Methods exist for the design of networks of interconnected
task-processing agents that have desirable task flow charac-
teristics. For example, a flexible manufacturing system (FMS)
includes several machines that switch their current processing
to one of several input task flows and then produce output task
flows for other machines in the system. Reference [11] shows
that distributed scheduling policies exist that guarantee such
systems will have finite upper bounds on all buffers of tasks.
Similarly, Cruz [12] shows how special network elements can
be combined to form queueing systems with output traffic
flows that are guaranteed to have finite burstiness constraints

2168-2267 c  2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

http://www.ieee.org/publications
http://ieeexplore.ieee.org
mailto:passino.1@osu.edu
mailto:tpavlic@asu.edu

PAVLIC AND PASSINO: DISTRIBUTED AND COOPERATIVE TASK PROCESSING: COURNOT OLIGOPOLIES ON A GRAPH 775

so long as the input flows also satisfy similar constraints.
These methods are not intended to describe how agents can
dynamically adjust task flow to exploit unused processing
ability on idle connected agents.

Because an optimal task flow configuration may be un-
known, inaccessible, or changing over time, task-processing
agents may need to use feedback to acquire and stabilize
the optimal task-handling behavior. For example, a set of au-
tonomous air vehicles (AAV) deployed for distributed search,
surveillance, or task processing can coordinate their actions in
order to converge on a holistically optimal behavior [13]–[15].
However, the coordination required between agents can be
prohibitive. Additionally, the single optimality criterion being
maximized ignores fatigue on individual agents. For example,
in a smart power grid [16], it may be desirable for distributed
power stations to share load; however, a single overloaded sta-
tion should not result in a cascade of self-sacrificing failures.
Here, noncooperative game theory is used to develop totally
asynchronous distributed algorithms for task-processing agents
that both respect local processing priorities while also sharing
the processing burden of loaded neighbors.

Noncooperative game theory has been traditionally used to
design optimal control strategies [17]; however, it can also
be used to design simple selfish strategies that nonetheless
assist neighbors. Several such techniques already exist for de-
signing policies on nodes in ad hoc multihop communication
networks [18]–[20]. In these cases, nodes can forward packets
from other nodes in order to reduce network congestion or
improve communication diversity, but nodes resist using all
local resources for assisting other nodes. A salient feature of
these forwarding networks is that packets can be duplicated or
dropped at any time. Hence, these networks are ill-equipped
to model task-processing scenarios where tasks that enter the
network must be assigned and processed by exactly one agent.
Instead, our approach passes volunteering requests around
a network and uses an economics-inspired task-processing
network game to determine how best to respond to these
requests. The resulting volunteering policy is sensitive to both
local processing requests and the presence of other agents on
the network that can volunteer as well.

This paper is organized as follows. In Section II, the task-
processing network (TPN) framework is defined and example
TPNs are described. The optimization game is presented
in Section III, and an asynchronous distributed computation
method that ensures convergence to the game’s Nash equilib-
rium is given in Section IV. In Section V, example results
from an example task-processing network of autonomous air
vehicles are presented. The resulting cooperation policy is ana-
lyzed for its ability to balance load around the vehicle network,
and the price of anarchy (i.e., independent competition) is
discussed. Conclusions and future areas of research are given
in Section VI.

II. Task-Processing Network

In the following, we use real numbers R, natural numbers
N  {1, 2, . . . }, whole numbers W  {0, 1, 2, . . . }, and
derived symbols like the nonnegative real numbers R≥0.

Take a finite set A ⊂ N of task-processing agents. For each
agent i ∈ A, there exists a finite and possibly empty set Yi ⊂ N
of task types that arrive at the agent, and for each k ∈ Yi, tasks
of type k arrive at agent i from an external source at average
rate λk

i ∈ R>0. Each external source of tasks is assumed to
be independent of all other sources. Each agent i ∈ A has a
maximum processing rate Ri ∈ R>0, and it is assumed that
Ri ≥


k∈Yi

λk
i .

When a task arrives at an agent, the agent can convey
the arrival to several connected agents that may volunteer to
process the task. In particular, task arrivals are communicated
along the directed edges in set P ⊆ {(i, j) ∈ A2 : i = j}.
For each agent i ∈ A, set Vi  {j ∈ A : (j, i) ∈ P}
is the collection of conveyors that advertise task arrivals
to agent i, and set Ci  {j ∈ A : (i, j) ∈ P} is the
collection of cooperators that agent i can advertise arrivals
to. Furthermore, V  {j ∈ A : Cj = ∅} =


i∈A Vi and

C  {i ∈ A : Vi = ∅} =


j∈A Cj are respectively the sets
of all conveyors and cooperators in the network. Assume that:

1) for each conveyor j ∈ V , there exists task type k ∈
Yj with πk

j = 0 where πk
j ∈ [0, 1] is the probability

that conveyor j advertises an incoming k-type task to its
connected cooperators Cj . If j ∈ V does not advertise
the task, it will be processed by agent j;

2) for each cooperator i ∈ C, γi ∈ [0, 1] is the probability
that agent i will volunteer for an advertised task from
one of its connected conveyors Vi. Any task arriving at
conveyor j ∈ V that is advertised to cooperators Cj will
be processed with uniform probability by exactly one of
the volunteers; if no cooperators volunteer for the task,
then it is processed by conveyor j.

The graph G  (A,P), rates, and probabilities defined above
characterize a TPN. In principle, each cooperator could have
an independent volunteering probability for each type of task
advertised to it. However, the convergence results later in this
paper are greatly simplified in the case where each node has
a single scalar decision variable. Thus, the more general case
is left as a future direction.

The simple TPN shown in Fig. 1 represents an FMS similar
to the systems described by [11]. Tasks of types 1, 2, and 3
arrive according to independent Poisson processes. Type-1 and
type-2 tasks arrive at agent 1, and all three types of tasks
arrive at agent 2. For tasks of type k ∈ Y1 = {1, 2}, agent 1
advertises task arrivals to agents 3 and 4 with probability
πk

1. Likewise, agent 2 advertises arrivals of tasks of type
k ∈ Y2 = {1, 2, 3} to agents 4 and 5 with probability πk

2.
The advertising probabilities for each task type can be chosen
based on the specialized abilities of each agent. Each agent
i ∈ {3, 4, 5} volunteers for an advertised task with probability
γi independent of task type. Hence, in this TPN, agents 1 and 2
are conveyors and agents 3, 4, and 5 are cooperators. In an
FMS more like the ones described by , tasks enter at one node
and are processed in an ordered sequence by a set of nodes.
In these cases, the upstream nodes are not conveyors and the
downstream nodes are not cooperators. Instead, the upstream
nodes are the external task generators for the downstream
conveyors. Thus, the TPN described in this paper represents

776 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 6, JUNE 2014

Fig. 1. Simple flexible manufacturing system example.

Fig. 2. Task-processing network formed by three autonomous air vehi-
cles (AAVs). (a) AAVs-patrolled territories (b) Corresponding task-processing
network.

how nodes of equal rank in the pipeline would share load
generated by upstream nodes in the pipeline.

In the FMS example above, the set of conveyors and the
set of cooperators are disjoint. In a general TPN, an agent
can be both a cooperator and a conveyor. For example, the
fully connected TPN shown in Fig. 2(b) models an AAV patrol
scenario shown in Fig. 2(a) that is similar to others in resource-
allocation literature [13]–[15]. Each AAV i ∈ {1, 2, 3} contin-
uously searches its territory for tasks (e.g., targets) to process,
and these tasks are found at rate λi

i > 0. When a task is
found, the AAV advertises the task to both of its neighbors. If
neither neighbor volunteers for processing, the AAV processes
the task itself. In this fully connected topology, all agents are
both cooperators and conveyors. Although this network has

several cycles, tasks do not move around the network—if a
volunteering cooperator is given a task for processing, it cannot
readvertise that task to its own neighboring cooperators; it
must process the task itself.

TPNs describe a broad range of applications. The AAV
example also models groups of networked processors [21]
or mobile software agents [22]–[26] that patrol for tasks to
process. Additionally, by converting encounter rates to ener-
getic rates (i.e., power demand), TPNs can model the behavior
of smart power grids [16] made up of stations that request
assistance from neighbors. Thus, cooperator stations adjust
additional supply provided in response to demand requests
from remote conveyor stations.

III. Cooperation Game Among Selfish Agents

In a TPN, the cooperation willingness is the probability
γi ∈ [0, 1] that cooperator i ∈ C will volunteer for an
advertised task from its connected conveyors. Here, to simplify
the analysis later, this decision variable is independent of task
type. Assuming that it is impractical for agents to coordinate
to maximize global utility, each cooperator adjusts its coop-
eration willingness in a distributed fashion. So each agent
independently chooses a cooperation policy that maximizes its
individual utility (i.e., agents are selfish). Hence, optimality is
given in terms of the Nash equilibrium [27, Section 3.5.1].

To inform each cooperator how to choose this policy, cost
and rewards are assigned to agent operations in a common
currency (e.g., proportional to dollars of net profit) that is
called points here. In particular:

1) conveyor i ∈ V pays no cost for a locally generated task
of type k ∈ Yi if it is processed by a Ci cooperator;
otherwise, the task is processed locally and i pays
cost ck

i ;
2) if cooperator j ∈ Ci volunteers and is selected to process

a task of type k ∈ Yi from conveyor i ∈ Vj , then
cooperator j pays cost ck

ij to process that task.

The cost described in 2 is only paid if the cooperator volun-
teers and is selected to process a task. Given that cooperator
i ∈ C volunteers to process a task from conveyor j ∈ Vi, the
probability of being selected to process that task is

Ps(j |i) 
|C j |−1

s=0

1

1 + s



B⊆C j \{i}
|B|=s

⎛
⎜⎜⎝



k∈B

γk

⎛
⎜⎜⎝

k∈C j \B
k =i

(1 − γk)

⎞

⎟⎟⎠

⎞
⎟⎟⎠ ,

PAVLIC AND PASSINO: DISTRIBUTED AND COOPERATIVE TASK PROCESSING: COURNOT OLIGOPOLIES ON A GRAPH 777

and so cooperation willingness from other cooperators in Cj

reduces the chances that cooperator i ∈ Cj will be selected
and have to pay the processing cost.

However, these costs and benefits alone do not provide co-
operators with any incentive to volunteer to process conveyor
tasks, and so a payment mechanism is required. Consider
conveyor j ∈ V and task type k ∈ Yj . If one or more
cooperators in Cj volunteer frequently to process requests
from agent j, the other cooperators in the set should conserve
resources by volunteering infrequently. To ensure this quali-
tative behavior, each cooperator i ∈ Cj receives volunteering
payment q k

ij p k
j (Q j) from conveyor j ∈ Vi where

1) Qj 


k∈Cj
γk is the total quantity of cooperation

willingness available to conveyor j.
2) pk

j(Qj) is a decreasing payment function that represents
the price that conveyor j pays to its connected coopera-
tors each time they volunteer for a task of type k ∈ Yj .

3) qk
ij ∈ R>0 is a value factor that scales payment pk

j(Qj)
from conveyor j into the currency of cooperator i ∈ Cj

(i.e., i perceives qk
ijp

k
j(Qj) value from the contribution

pk
j(Qj) from j).

So if any cooperator i ∈ Cj increases its cooperation will-
ingness γi, it increases how often it receives payment pk

j(Qj)
while also decreasing the payment itself. For each cooperator
i ∈ Cj , these two pressures encourage cooperation (i.e.,
equilibrium γ∗

i > 0) and resource conservation (i.e., γ∗
i < 1).

To maximize net points earned over a long run time,
each agent chooses a policy that maximizes its own ex-
pected rate of point accumulation. So for a given vector
γ = [γc1 , γc2 , . . . , γc|C|] ∈ [0, 1]|C| of cooperation policies
(where unique ck ∈ C for all k ∈ {1, . . . , |C|}), the utility (i.e.,
long-term rate of point gain) returned to cooperator i ∈ C is

Ui(γ)  −ci

j∈Ci

(1 − γ j)

  
Conveyor costs

+ γi



j∈Vi


pij(Qj) − P s(j|i)c ij



  
Cooperator part – γi and Qj vary with γi

(1a)

where

ci 


k∈Yi

λ k
i π k

i c
k
i , (1b)

pi(Qi) 


k∈Yi

λ k
i π

k
i p

k
i (Qi) (1c)

are the costs and benefits of local processing on i ∈ V , and

c ij 


k∈Yj

λ k
j π k

j c k
ij, (1d)

pij(Qj) 


k∈Yj

λ k
j π k

jq k
ijp k

j(Qj) (1e)

are the costs and benefits to i ∈ C for volunteering for tasks
exported from j ∈ Vi.

Consider a cooperator i ∈ C that volunteers to process a task
advertised from conveyor j ∈ Vi. In the cooperator’s utility
function Ui, the conditional selection probability Ps(j|i) scales
the cost of processing the advertised task, and so for j ∈ Vi,
the impact of cost rate cij decreases as other cooperators
from Cj increase their own cooperation willingness. So for

a conveyor j ∈ V , its connected cooperators Cj form a
Cournot oligopoly [28] (i.e., a set of independent agents that
provide a service for a demand-driven price) with a positive
externality [29] (i.e., the cost of processing decreases as more
cooperators enter the market). The underbraced cooperator
part of (1a) shows that cooperator i must set its cooperation
willingness γi (i.e., its quantity of supplied cooperation) based
on the summed returns from several such markets.

IV. Distributed Computation of the Nash
Equilibrium

Let n  |C| be the number of cooperators that individually
adjust cooperation willingness to maximize local utility. To
ensure that each cooperator i ∈ C is operating below its max-
imum processing rate Ri, the cooperation level γi ∈ [0, γmax

i]
where

γ max
i  max



0, min



1,
Ri −


k∈Yi

λk
i

j∈Vi


k∈Y j

λ k
j



is the cooperation level that would bring the processing
rate on i to Rmax if no other cooperators volunteered for
tasks. So, because there is no coordination between play-
ers, the n-dimensional play space is the Cartesian product
X 


i∈C [0, γmax

i] where X ⊆ [0, 1]n , and the collection
of cooperation policies across all cooperators is the vector
γ  [γc1 , γc2 , . . . , γcn

] ∈ X (where unique ck ∈ C for all
k ∈ {1, 2, . . . , n}). For each i ∈ C, it is assumed that the utility
function Ui : X → R is twice continuously differentiable, and
so, by Weirstrass’ theorem, Ui is bounded above and below
and achieves its extrema. Following [27], Proposition 5.7
from Chapter 3, the Nash equilibria of the cooperation game
can be found by solving n separate 1-D variational inequality
problems. In particular, γ∗ ∈ X is a Nash equilibria of the
cooperation game if and only if, for all i ∈ C

(γi − γ ∗
i)∇iUi(γ ∗) ≤ 0 for all γi ∈ X (2)

where the block gradient (i.e., the i th row of the gradient)

∇iUi(γ) =


j∈Vi

⎛

⎜⎜⎜⎝

∂
∂γi

(γipij(Qj))   
pij(Qj) + γipij(Qj) − Ps(j|i)cij

⎞

⎟⎟⎟⎠ .

So in a local neighborhood of the Nash equilibrium γ∗ ∈ X ,
any unilateral perturbation of a coordinate of γ∗ will result in
equal or reduced utility.

The solution to the n simultaneous nonlinear equations
in (2) is not guaranteed to exist in general and may be
difficult to find analytically even when it does exist. However,
variational inequalities over product spaces are well suited for
parallel and asynchronous computation [27]. Under special
conditions on each utility function, a unique Nash equilibrium
is guaranteed to exist, and each of its coordinates in (2) can be
computed independently in the distributed and asynchronous
fashion described by Definition 1.

Definition 1 (Totally asynchronous distributed iteration):
Take {c1, c2, . . . , cn} to be the set C of the n

778 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 6, JUNE 2014

distinct cooperators. Let T  W to be the
indices of a sequence of physical times, and let
(γ(t))t∈T  ([γc1 (t), γc2 (t), . . . , γcn

(t)])t∈T be a sequence of
iterated calculations in the X play space. For each i ∈ C,
subset T i ⊆ T corresponds to the times when coordinate γi(t)
is computed. Additionally, for each i, j ∈ C and each t ∈ T ,
there is an index τi

j(t) ∈ T of the least-outdated version of
coordinate γj available for the computation of coordinate γi

with transition mapping Ti : X → [0, γmax
i] at time t such

that 0 ≤ τi
j(t) ≤ t. That is, an outdated state estimate

γ i(t)  [γ i c1
(t), γi

c2
(t), . . . , γi

cn
(t)]

 [γ c1 (τ i c1
(t)), γc2 (τ i c2

(t)), . . . , γc n (τ i cn
(t))]

is available for the computation γi(t + 1) = Ti(γi(t)) for each
t ∈ T and i ∈ C. It is assumed that:

1) set T i is countably infinite (i.e., |T i| = |T | = |N|) for
all i ∈ C;

2) if subsequence (tk) of T i is such that limk→∞ tk = ∞,
then limk→∞ τ

i
j(k) = ∞ for all i, j ∈ {1, 2, . . . , n}. That

is, lim inf t→∞ τ
i
j(t) = ∞ for all i, j ∈ {1, 2, . . . , m}.

For all t ∈ T , sequence (γ(t)) is generated by the totally
asynchronous distributed iteration (TADI)

γi(t + 1) 


Ti(γ i(t)), if t ∈ T i ,

γi(t), if t /∈ T i
(3)

where γ(t)  [γc1 (t), γc2 (t), . . . , γcn
(t)] . For each i ∈ C, the

transition mapping Ti : X → [0, γmax
i] in (3) is defined by

Ti(γ)  min{γ max
i , max{0, γi + σi∇iUi(γ)}}

where σi ∈ R>0 is a step-size parameter that scales movement
along the utility gradient ∇iUi.

A. Conditions for Distributed Convergence

The TADI-generated (γ(t)) sequence represents the collec-
tive motion of n self-interested agents that each climb their
respective utility gradient in order to maximize their expected
rate of point return. That is, (3) may be viewed as a dynamical
system model of coupled agents that each take independent
actions. In particular, the conditional probability Ps(j|i) is
bounded away from zero, and so assuming that cij > 0 and
payment pij ≡ 0 for all i, j ∈ A, the response of the system
reaches γ(T) = 0 in some finite time T ∈ W. That is, the
intrinsic agent behavior is not to cooperate. For each i ∈ C,
it is desirable to find a control law, which is implemented
through the choice of payment function, to destabilize the
no-cooperation equilibrium and provide feedback to stabilize
the Nash equilibrium. It will be shown that Definition 2
gives sufficient characteristics for such stabilizing payment
functions. Moreover, Proposition 1 provides a simpler criterion
to test for such functions.

Definition 2 (Stabilizing payment function): For k ∈ N, a
stabilizing payment function (SPF) p : [0, k] → R is a twice-
continuously differentiable function such that:

1) it is strictly decreasing. In particular, p (Q) 
∂p(Q)/∂Q < 0 for all Q ∈ [0, k];

2) it is convex. In particular, p (Q)  ∂2p(Q)/∂Q2 ≥ 0
for all Q ∈ [0, k];

3) its convexity is eventually dominated by its slope. In
particular,

γp (Q) ≤ −p (Q),

for all Q ∈ [γ, k − (1 − γ)] with γ ∈ [0, γ max
i].

Proposition 1 (Sufficient conditions for stabilization):
Take k ∈ N and function p : [0, k] → R. If
0 ≤ p (Q) < −p (Q) for all Q ∈ [0, k], then p is a
stabilizing payment function.

The set of SPFs is closed under conical combinations. So
for i ∈ C, if pij is an SPF for all j ∈ Vi, then the sum 

j∈Vi
pij(Qj) is itself an SPF. Additionally, by the definition

of pij(Qj) in (1e), if pk
j(Qj) is an SPF for all j ∈ V and

k ∈ Yj , then pij(Qj) will also be an SPF for all i ∈ C and
j ∈ Vi.

Four example SPFs are shown in Fig. 3. Each payment
function meets the conditions of Proposition 1; however, by
the weaker condition 3 of Definition 2, the ph function in (d)
can also have ε ≥ κ and still be an SPF.

Convergence to the Nash equilibrium depends not only on
the structure of the payment functions but also on the structure
of the TPN graph itself. Sufficient convergence conditions
for a TPN network and its payment functions are given in
Theorem 1, which uses Definition 3 to describe the topological
constraints on the TPN graph.

Definition 3 (k-conveyor): Conveyor i ∈ V is a k-conveyor
if it has exactly k ∈ N outgoing connections to cooperators
(i.e., if k = |Ci|);

Theorem 1 (Convergence of cooperation): Assume that:

1) for all i ∈ C and j ∈ Vi, pij is a stabilizing payment
function;

2) for all j ∈ V , |Cj| ≤ 3 (i.e., no conveyor can have more
than 3 outgoing links to cooperators);

3) for i ∈ C and j ∈ Vi, if j is a 3-conveyor, then there
must be some k ∈ Vi that is a 2-conveyor.

Also define iteration mapping T : X → X by T (γ) 
[T1(γ), T2(γ), . . . , Tn(γ)] where, for each i ∈ C

Ti(γ)  min{1, max{0, γi + σi∇iUi(γ)}}, (4a)

where

1

σi
≥ 2|Vi| max

k∈Vi

|pik(0)| (4b)

for all γ ∈ X . If

min
j∈Vi

|pij

 |Cj|
 | >



|Vi| −
1

2



max
j∈Vi

|cij|, for all i ∈ C, (5)

then the TADI sequence (γ(t)) generated with mapping T
and the outdated estimate sequence (γi(t)) for all i ∈ C each
converge to the unique Nash equilibrium of the cooperation
game.

PAVLIC AND PASSINO: DISTRIBUTED AND COOPERATIVE TASK PROCESSING: COURNOT OLIGOPOLIES ON A GRAPH 779

Fig. 3. Sample stabilizing payment (i.e., inverse-demand) functions. (a) p (Q)  b − mQ. (b) pe (Q)  A exp(−Q/τ). (c) pp(Q)  A(1 − Q/q0)p .
(d) ph(Q)  Aεκ /(ε + Q)κ .

Proof of Theorem 1: By assumption 1 (i.e., all payment
functions are stabilizing), for any γ ∈ X and i ∈ C

∇2
ii Ui(γ) =



j∈Vi


2pij (Qj) + γi pij (Qj)



=


j∈Vi

<0   
pij (Qj) +



j∈Vi

⎛

⎜⎝

≤0   
pij (Qj) + γi pij (Qj)

⎞

⎟⎠ < 0

and

∇2
ii Ui(γ) =



j∈Vi

⎛

⎜⎝

<0   
2pij (Qj) +

≥0   
γipij (Qj)

⎞

⎟⎠ ≥ −2


j∈Vi

|pij (Qj)|

≥ −2


j∈Vi

max
k∈Vi

|pik (0)| = −2|Vi| max
k∈Vi

|pik (0)|

≥ −2|Vi| max
k∈Vi

|pik (0)|. (6)

So by the assumed limits on step size σi given in (4b), 0 >
∇2

iiUi(γ) ≥ −1/σi for all i ∈ C.
Next, we bound the cross terms ∇2

iUi of the utility Hessian.
Take γ ∈ X and cooperator i ∈ C connected to conveyor
j ∈ Vi. For another cooperator ∈ C \ {i}, if / ∈ Cj (i.e.,

is not an outgoing cooperator for j), then ∂Qj /∂γ = 0
and ∂Ps(j|i)/∂γ = 0. So the only other cooperators that
contribute to the cross terms of the Hessian are those that
share a conveyor with cooerpator i. Hence

0 ≤


∈C =i

|∇ 2
i Ui(γ)|

=


∈C =i




j∈Vi

[∈ Cj]

⎛

⎝
pij (Qj) + γipij (Qj)

−cij
∂Ps(j|i)

∂γ

⎞

⎠


where [·] is the Iverson bracket (i.e., [S] = 1 or [S] = 0
when statement S is true or false). However, the series of
sums of mixed binomial products in Ps can be converted into a
simpler alternating series of sums of monomial products which
is more amenable to differentiation [30, Proposition C.11].
Furthermore

∂Ps(j|i)
∂γ

= −
|Cj |−2

s=0

(−1)s
1

2 + s



B⊆Cj \{i, }
|B|=s



k∈B

γk , (7)

which, with the use of the binomial theorem [31], can be
shown to be negative and bounded below by −1/2 [30].

Hence, 

∈C =i

∇ 2
i Ui(γ)



≤


∈C =i



j∈Vi

[∈ Cj]

⎛

⎜⎝|pij (Qj) + γipij (Qj)  
≤0

| +
1

2
|cij |

⎞

⎟⎠

=


j∈Vi

  pij (Qj) + γipij (Qj)
  +

1

2
|c ij |

 

∈C =i

[∈ C j]

=


j∈Vi

  pij (Qj) + γipij (Qj)
 +

1

2
|cij |

 Cj

 − 1

.

However, by assumption 2, each conveyor j ∈ V has no more
than three outgoing connections to cooperators (i.e., |Cj | ≤ 3).
Additionally, by assumption 3, if j ∈ Vi is a 3-conveyor (i.e.,
it has 3 outgoing cooperator connections), then there must be
some other conveyor m ∈ Vi \ {j} that is a 2-conveyor. So
letting m ∈ Vi be the 2-conveyor that is guaranteed to exist



∈C =i

∇ 2
i Ui(γ)

 ≤

Doubled contribution to sum from
other cooperators connected to
assumed 3-conveyors in Vi \ {m}  

2


j∈Vi\{m}

⎛

⎜⎝|pij (Qj) + γipij (Qj)  
≤0

| +
1

2
|cij |

⎞

⎟⎠

+ |pim (Qm) + γipim(Qm)  
≤0

| +
1

2
| cim|.

  
Contribution to sum from

other cooperator of 2-conveyor m ∈ Vi

By Definition 2 of an SPF 

∈C =i

∇ 2
i Ui(γ)

  ≤ −


j∈Vi\{m}


2pij (Qj) + γipij (Qj)



−

pim(Qm) + γipim(Qm)



+

⎛

⎝|
m∈Vi  

Vi \ {m}| +
1

2

⎞

⎠ max
j∈Vi

|cij |

= −


j∈Vi\{m}


2pij (Qj) + γipij (Qj)



−

pim(Qm) + γi pim (Qm)



+



|Vi| −
1

2



max
j∈Vi

|cij |.

780 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 6, JUNE 2014

or, equivalently 
∈C =i

 ∇ 2
i Ui (γ)

  ≤ −


j ∈Vi


2p ij (Q j) + γ i p ij (Qj)



+

2pim (Q m) + γi pim (Q m)



−

pim (Q m) + γi pim (Q m)



+
 |Vi| − 1

2


max j ∈Vi |c ij |.

Thus


∈C =i

 ∇ 2
i Ui(γ)

  ≤ −

∇2
iiUi (γ)   

j ∈Vi


2p ij (Q j) + γ i p ij (Qj)


+

<0   
pim (Q m)

+



|Vi| −
1

2



max
j ∈Vi

|c ij |.

So 

∈C =i

 ∇2
i Ui (γ)

 
≤ −∇2

ii Ui (γ)

−



min
j ∈Vi

|p ij (Qj)| −



|Vi | −
1

2



max
j ∈Vi

|c ij |


  
> 0 by (5)

where, by the assumption in (5), the underbraced expression
is strictly positive. The desired result follows from this in-
equality and (6). In particular, as shown by [27], Chapter 3
for the special case of iterative mappings with scalar block
components, T is a maximum-norm contraction mapping
[27, Proposition 1.11]. Consequently, it has a unique fixed
point γ ∗ [27, Proposition 1.1] that is the Nash equilibrium [27,
Proposition 5.1] of the cooperation game. Futhermore, the
TADI sequence (γ (t))t ∈T generated by T converges to γ ∗

[27, Proposition 2.1 from Chapter 6].

B. Interpretations

The proof of Theorem 1 makes use of a kind of diagonal
dominance of ∇2

iiU i for cooperator i ∈ C over the combined
contribution of off-diagonal terms ∇i U i for each ∈ C \ {i }.
For each conveyor j ∈ Vi connected to i , there are two p ij
terms contributed to the diagonal. However, if a conveyor is
a 3-conveyor, it also contributes two p ij terms to the off-
diagonals. Consequently, if all conveyors connected to a co-
operator are 3-conveyors, diagonal dominance is not possible
because the terms exactly cancel. In essence, a unique Nash
equilibrium is not guaranteed to exist in this case because
cooperator choices become decoupled when the probability of
actually having to pay a cost for volunteering is sufficiently
low (i.e., such cooperators always cooperate regardless of the
decision of other cooperators). When one of the 3-conveyors
is replaced by a 2-conveyor, the two cooperators connected to
the 2-conveyor are sufficiently coupled to restore a single Nash
equilibrium. In other words, diagonal dominance is restored
because the 2-conveyor only contributes a single p ij term
to the off-diagonals, and so the two diagonal p ij terms can
dominate it. So 2-conveyors are themselves stabilizers that

Fig. 4. Many-agent task-processing network with stable topology.

allow a cooperator i ∈ C to focus its decision making on the
conveyors in Vi for which there is only one other cooperator
competing for payment. For example, in the complex TPN in
Fig. 4, the 3-conveyors in the network (e.g., 2, 4, 7, and 10)
could destabilize the gradient ascent if the 2-conveyors (e.g.,
1, 5, 6, 8, 9, and 11) were not also present.

It may be possible to weaken Theorem 1 to allow for
conveyors with n > 3 outgoing connections to cooperators so
long as the slopes of the n -conveyor payment functions can
be dominated by those of other 1-conveyors. That is, although
n -conveyors with n ≥ 2 contribute to both diagonal ∇2

iiU i
and off-diagonal ∇2

iU i terms, 1-conveyors contribute only to
the diagonal. Consequently, if the p ij from the 1-conveyor
is large enough, it can dominate uncanceled terms from the
off-diagonals. In other words, a cooperator connected to an n -
conveyor with n > 3 would normally be decoupled from other
cooperator decisions because the chance of actually having
to process an advertised task would be negligible. However,
if such cooperator also faced a 1-conveyor whose payment
function was sufficiently steep, then the loss of payment from
the 1-conveyor for being overly cooperative would restore a
nontrivial cooperation willingness.

The restriction in (5) is similar to the network generalization
of Hamilton’s rule [32] discussed by Ohtsuki et al. [33]
and [34]. In their case, the graph consists of individuals
at graph nodes that have relationships modeled by graph
links. Each individual is either a cooperator, which pays a
cost to deliver a benefit to a neighbor, or a defector, which
pays no cost and delivers no benefit. Behavioral strategies
spread by way of birth–death processes, and they show that
a sufficient condition for cooperation to spread is that the
benefit-to-cost ratio is greater than the average degree (i.e.,
number of neighbors connected to each node) of the network.
Here, the task-processing network is not a substrate for birth–
death processes; however, the rule in (5) plays a similar
role relating payment, cost, and cooperator degree. Moreover,
it is a sufficient condition for individual gradient ascent to
converge upon a stable cooperation policy. Hence, just as
Hamilton’s rule allows scientists to reason about cooperation
in natural networks, it also ensures that automata will find
stable cooperation strategies in artificial networks.

PAVLIC AND PASSINO: DISTRIBUTED AND COOPERATIVE TASK PROCESSING: COURNOT OLIGOPOLIES ON A GRAPH 781

Fig. 5. AAV optimal cooperation willingness as encounter rates vary. The solid, dashed, and dot-dashed lines represent the Nash-equilibrium cooperation
levels for three fully connected AAVs that differ in their encounter rates. The encounter rate for AAV 2 is swept from zero to its maximum capacity while
the encounter rates for the other two AAVs are held constant. Each AAV has a linear payment function whose slope is inversely proportional to the local
encounter rate; otherwise, the AAVs are identical. AAV 3 begins to cooperate at point a but truncates the rise in cooperation due to capacity constraints
at point c. Likewise, AAV 1 increases its cooperation until truncating at point b due to capacity constraints. At point d, the encounter rate at AAV 2
becomes too high for it to sustain any further cooperation, and its cooperation decreases rapidly to zero when its encounter rate reaches its maximum
capacity.

V. Example Cooperative AAV Scenario

Consider the AAV scenario shown in Fig. 2. Assume that
πk

i = 1, cij = 0.1, qij = 1, and Ri = Rmax = 5 for all
i ∈ A = {1, 2, 3}, j ∈ A \ {i} , k ∈ Yi, and ∈ Yj . Also
assume that λ1

1 = 0.6, λ3
3 = 1.7, 0 < λ2

2 ≤ Rmax, and the linear
payment function pi

i(Qi)  1 − Qi/λ
i
i for all i ∈ A. Hence,

the three otherwise equivalent agents face different task-
encounter rates, and their payment functions have slopes that
are inversely proportional to each encounter rate. So agents
associated with higher encounter rates have a higher demand
for cooperation and thus have inelastic payment functions (i.e.,
cooperation retains its high value even when a high quantity is
available).

A conservative choice of step size σ 
1/(4 maxi∈A,j∈Vi pij ([0, 0, 0])) for all ∈ A yields a
convergent TADI for this scenario, and so the equilibrium can
be found by parallel numerical computation on autonomous
vehicles in an asynchronous and decentralized fashion (i.e.,
the equilibrium need not be calculated in a central location
and broadcasted continuously to the agents). simulation
results of this parallel computation of the Nash equilibrium
γ ∗ are summarized in Fig. 5 for the different combinations of
encounter rates so as to show how the equilibrium depends
on relative encounter rates.

The Nash equilibrium has the desirable feature that λi
i > λ

j
j

implies that γ∗
i < γ∗

j for all i, j ∈ A. So agents that
are locally busy are less willing to cooperate, and agents
that are relatively idle are more willing to cooperate. In
Fig. 5, as λ2

2 increases from a relatively low encounter rate
to a relatively high encounter rate, payment function p2 to
agents 1 and 3 becomes shallower and causes the optimal
γ∗

1 and γ∗
3 to increase. However, as γ∗

1 (or γ∗
3) increases,

payment p3(Q3) [or p1(Q1)] to agent 2 is depressed and
γ∗

2 decreases. So even though the encounter rate λ2
2 does

not appear in the gradient of U2, agent 2 still arrives at
a Nash equilibrium where its own increased encounter rate

corresponds to a decreased willingness to cooperate. Thus, this
desirable effect is emergent and due to implicit coupling within
the network. Even though each agent’s own encounter rate
has no direct relationship to the gradient it climbs, the cyclic
relationships on the network weigh the local encounter rate
against the neighboring encounter rates and adjust cooperation
accordingly.

The cooperation game is meant to provide incentives to
independent agents to cooperate without forcing the use of a
rigid coordination protocol and the communication costs that
come with it. Consequently, the balancing action of the coop-
eration game is destined to be worse than a true load-balancing
strategy with explicit coordination or centralized control. For
the case of particular AAV example described above, Fig. 6(a)
shows the processing rates that correspond to the competitive
equilibria for each encounter rate combination. The dotted line
labeled Ropt represents the perfectly balanced solution. Clearly,
the three processing rates, R1(γ∗

1), R2(γ∗
2), and R3(γ∗

3), are not
perfectly balanced. However, the task allocation is preferable
over the no-cooperation case shown in Fig. 6(b). In particular,
in the no-cooperation case, the rates are nowhere balanced and
AAV 2 reaches its maximum processing rate. However, in the
competitive case, the rates are initially very close to optimal
and all agents stay below their maximum processing rate.
Furthermore, the competitive volunteering equilibrium has
redirected the most tasks to AAV 1, which is the AAV with the
smallest local encounter rate. So without explicit coordination,
the cooperation game has achieved a weak balance of the load
in the system. Additionally, as in virtual load balancing [35],
the payment, costs, and currency scalars in (1a) can be
adjusted to bias the system toward preferential task-allocation
shapes.

For comparison, a summary of a Pareto-optimal policy
for this 3-AAV case is shown in Fig. 7. That is, (a)
shows the cooperation levels γ ∗ that maximize the simple
sum U1(γ) + U2(γ) + U3(γ) over the capacity-constrained

782 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 6, JUNE 2014

Fig. 6. AAV processing rates as encounter rates vary. The solid, dashed, and dot-dashed lines represent the processing rate for three fully connected AAVs
that differ in their encounter rates. The encounter rate for AAV 2 is swept from zero to its maximum capacity while the encounter rates for the other two AAVs
are held constant. In (a), the processing rates corresponding to the Nash-equilibrium cooperation levels are shown. In (b), the processing rates corresponding
to zero cooperation are shown. In either case, the processing rates sum to the oblique line labeled λ1

1 + λ2
2 + λ3

3 that represents the total encounter rate for the
3-AAV system. Likewise, the oblique line labeled Ropt represents the processing rate that each AAV would attain if the system load was perfectly balanced.
The horizontal dotted line labeled Rmax represents the maximum processing rate for each AAV. Although the Nash-equilibrium policy does not track Ropt, it
does spread the load across the three AAVs such that the AAV with the smallest local encounter rate processes the most remote load.

Fig. 7. Pareto-optimal AAV cooperation levels and processing rates. The solid, dashed, and dot-dashed lines represent the optimal cooperation levels [in (a)]
and corresponding processing rates [in (b)] for three fully connected AAVs that differ in their encounter rates. The encounter rate for AAV 2 is swept from
zero to its maximum capacity while the encounter rates for the other two AAVs are held constant. The cooperation levels are chosen to maximize the simple
sum of the three individual agent utility functions. In (b), the processing rates sum to the oblique line labeled λ1

1 + λ2
2 + λ3

3 that represents the total encounter
rate for the 3-AAV system. Likewise, the oblique line labeled Ropt represents the processing rate that each AAV would attain if the system load was perfectly
balanced. The horizontal dotted line labeled Rmax represents the maximum processing rate for each AAV. Like the Nash-equilibrium policy, the Pareto-optimal
policy does not track Ropt but it does spread the load across the three AAVs such that the AAV with the smallest local encounter rate processes the most
remote load. Thus, the Pareto-optimal policy may be viewed as an ideal case of the Nash-optimal policy. However, if global control was possible, a true
load-balancing solution would likely be used instead.

volunteering-policy space X , and (b) shows the corresponding
processing rates. Because the interests of the AAVs are aligned
in this case, it may make sense to remove the payment
functions that were added in the competitive case as an
incentive for cooperation among the selfish agents. However,
the resulting no-incentive optimization objective has a triv-
ial no-cooperation optimizer. That is, because the cost of
processing a remote task is no worse on the system than
the cost of processing it locally, there is no incentive for
increased cooperation. Consequently, payment is still needed
to induce nontrivial cooperation; however, like a cartel, the
team coordinates its actions to maximize the total payment
to the group. The resulting shapes of the cooperation and

processing-rate curves are similar to the Nash-optimal curves
in Figs. 5 and 6(a), and the apparent price of anarchy is low
for this case. However, the agent utility functions used in this
paper are only introduced to induce behavior with cooperative
features from inherently competitive agents. If agents are
synchronized or centrally controlled, a policy focused on true
load balancing would likely be used.

VI. Conclusion and Future Work
A framework for cooperative task processing on a net-

work was presented. Using this framework, a totally asyn-
chronous cooperative control policy was shown to stabilize

PAVLIC AND PASSINO: DISTRIBUTED AND COOPERATIVE TASK PROCESSING: COURNOT OLIGOPOLIES ON A GRAPH 783

the Nash equilibrium of a cooperation game. By introducing a
cooperation-trading economy into the formulation, the agents
individually climbed their own local utility functions yet still
achieved an equilibrium where task processing was shared
among different agents; this balancing of incoming load was
achieved without central control or synchronized coordination
between nodes. Thus, the central contribution of this paper
was a dynamic task-processing framework that was able to
share network resources without explicit coordination between
members of the network.

In order to simplify the analysis, a result of [27], Propo-
sitions 1.11 from Chapter 3 was used that required that the
decision variable on each node be a scalar. Future work
should address the case where each agent associates a different
cooperation willingness to different types of tasks and to
different conveyors. Likewise, forwarding probabilities can
also be made into decision variables that could be adjusted on
each conveyor across the different task types being advertised
to the different cooperators connected to it. In particular, an
additional incentive scheme could be introduced to induce
nontrivial forwarding behavior on the conveyors. Furthermore,
if both forwarding and volunteering can be adjusted simulta-
neously, protocols based on fairness and reciprocity can be
developed that may not require explicit incentives introduced
with a fictitious trading economy. In general, future work
should allow for multiple decision variables per agent and a
multidimensional decision space which need not be a simple
Cartesian product.

This paper assumed that each agent had a maximum pro-
cessing rate, and the decision variables were conservatively
constrained to ensure that maximum rate was not violated.
Consequently, these capacity constraints have room to be re-
laxed in future work. For example, if an agent has independent
cooperation levels for two different task types, the constraint
on each cooperation level can be made to vary with the other
cooperation level. More importantly, the role of time can be
made more explicit. Processing and switching durations are
central motivations for the work of [11]. Effects like these can
be added to this model by making the average processing time
of each task explicit. In particular, the present work optimizes
the long-term rate of gain of each agent based on rewards
issued at the instant each task arrives. If each task type has an
average processing time associated with it, then an agent will
sometimes be able to increase its long-term rate of gain by
processing fewer items that have long processing times. That
is, the time spent processing a task is an implicit opportunity
cost due to the lost time available for encountering other tasks
that return higher profit. Because task arrivals are independent,
a utility function that captures the processing time of tasks may
be derived as an average reward rate of this Markov renewal–
reward process [36]. If analytically tractable, optimal coop-
eration willingness corresponding to such a time-aware utility
function can be derived using similar methods as in this paper.

References
[1] R. Buyya, “Economic-based distributed resource management and

scheduling for grid computing,” Ph.D. dissertation, Monash Univ.,
Melbourne, Australia, Apr. 2002.

[2] A. Mas-Colell, M. D. Whinston, and J. R. Green, Microeconomic
Theory. New York, NY, USA: Oxford Univ. Press, 1995.

[3] M. J. Osborne and A. Rubinstein, A Course in Game Theory. Cam-
bridge, MA, USA: MIT Press, 1994.

[4] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart, and W. S.
Stornetta, “Spawn: A distributed computational economy,” IEEE Trans.
Softw. Eng., vol. 18, no. 2, pp. 103–117, Feb. 1992.

[5] Y. Amir, B. Awerbuch, A. Barak, R. S. Borgstrom, and A. Keren, “An
opportunity cost approach for job assignment in a scalable computing
cluster,” IEEE Trans. Parallel Distrib. Syst., vol. 11, no. 7, pp. 760–768,
Jul. 2000.

[6] D. Grosu and A. T. Chronopoulos, “Algorithmic mechanism design for
load balancing in distributed systems,” IEEE Trans. Syst., Man, Cybern.
B, Cybern., vol. 34, no. 1, pp. 77–84, Feb. 2004.

[7] R. G. Smith, “The contract net protocol: High-level communication and
control in a distributed problem solver,” IEEE Trans. Comput., vol. 29,
no. 12, pp. 1104–1113, Dec. 1980.

[8] A. Oram, Ed., Peer-to-Peer: Harnessing the Power of Disruptive
Technologies. Sebastopol, CA, USA: O’Reilly, 2001.

[9] D. Qiu and R. Srikant, “Modeling and performance analysis of
BitTorrent-like peer-to-peer networks,” in Proc. ACM SIGCOMM Conf.
Appl., Technol., Architect., Protocols Comput. Commun., Portland, OR,
USA, Aug. 30–Sep. 3, 2004, pp. 367–378.

[10] J. Feigenbaum and S. Shenker, “Distributed algorithmic mechanism
design: Recent results and future directions,” in Proc. 6th Int. Workshop
Discrete Algorithms Methods Mobile Comput. Commun., Atlanta, GA,
USA, Sep. 28, 2002, pp. 1–13.

[11] J. R. Perkins and P. R. Kumar, “Stable, distributed, real-time scheduling
of flexible manufacturing/assembly/disassembly systems,” IEEE Trans.
Autom. Control., vol. 34, no. 2, pp. 139–148, Feb. 1989.

[12] R. L. Cruz, “A calculus for network delay, part II: Network anal-
ysis,” IEEE Trans. Inf. Theory, vol. 37, no. 1, pp. 132–141, Jan.
1991.

[13] J. Finke, K. M. Passino, and A. G. Sparks, “Stable task load balancing
strategies for cooperative control of networked autonomous air vehi-
cles,” IEEE Trans. Control. Syst. Technol., vol. 14, no. 5, pp. 789–803,
Sep. 2006.

[14] J. Finke and K. M. Passino, “Stable cooperative vehicle distributions
for surveillance,” J. Dyn. Syst., Meas., Control., vol. 129, no. 5, pp.
597–608, 2007.

[15] A. E. Gil, K. M. Passino, S. Ganapathy, and A. Sparks, “Cooperative
task scheduling for networked uninhabited air vehicles,” IEEE Trans.
Aerosp. Electron. Syst., vol. 44, no. 2, pp. 561–581, Apr. 2008.

[16] A. Ipakchi and F. Albuyeh, “Grid of the future,” IEEE Power Energy,
vol. 7, no. 2, pp. 52–62, Mar./Apr. 2009.

[17] T. Başar and G. J. Olsder, Dynamic Noncooperative Game The-
ory, 2nd ed., Classics in Applied Mathematics Series. Philadelphia,
PA, USA: Society for Industrial and Applied Mathematics, 1999,
no. 23.

[18] E. Altman, A. Kumar, D. Kumar, and R. Venkatesh, “Cooperative and
non-cooperative control in IEEE 802.11 WLANs,” in Proc. 19th Int.
Teletraffic Congr., Beijing, Aug. 29–Sep. 2, 2005, pp. 1663–1672.

[19] L. Butty´ an and J.-P. Hubaux, “Stimulating cooperation in self-
organizing mobile ad hoc networks,” Mob. Netw. Appl., vol. 8, no.
5, pp. 579–592, Oct. 2003.

[20] E. Altman, A. A. Kherani, P. Michiardi, and R. Molva, “Non-
cooperative forwarding in ad-hoc networks,” in Proc. Networking,
(LNCS), vol. 3462, 2005, pp. 486–498.

[21] A. E. Gil and K. M. Passino, “Stability analysis of network-based
cooperative resource allocation strategies,” Automatica, vol. 42, no. 2,
pp. 245–250, 2005.

[22] D. B. Lange and M. Oshima, “Seven good reasons for mobile agents,”
Commun. ACM, vol. 42, no. 3, pp. 88–89, Mar. 1999.

[23] D. B. Lange, “Mobile objects and mobile agents: The future of
distributed computing?” in Proc. ECOOP, Brussels, Belgium, Jul. 20–
24, 1998, pp. 1–12.

[24] R. T. Maheswaran, O. Ç . Imer, and T. Başar, “Agent mobility under
price incentives,” in Proc. 38th IEEE Conf. Decision Control, vol. 4,
Phoenix, AZ, USA, Dec. 7–10, 1999, pp. 4020–4025.

[25] J. E. White, “Telescript technology: Mobile agents,” in Mobility:
Processes, Computers, and Agents, D. Milojiˇ ci´ c, F. Douglis, and
R. Wheeler, Eds. New York, NY, USA: ACM Press, 1999, pp.
460–493.

[26] D. Reed, I. Pratt, P. Menage, S. Early, and N. Stratford, “Xenoservers:
Accountable execution of untrusted programs,” in Proc. 7th Workshop
Hot Topics Oper. Syst., Rio Rico, AZ, USA, Mar. 28–30, 1999, pp.
136–141.

784 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 6, JUNE 2014

[27] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Com-
putation: Numerical Methods. Belmont, MA, USA: Athena Scientific,
1997.

[28] W. Nicholson, Microeconomic Theory: Basic Principles and Exten-
sions, 5th ed. Fort Worth, TX, USA: Dryden Press, 1992.

[29] M. Bacharach, Economics and the Theory of Games. London, U.K.:
Macmillan, 1976.

[30] T. P. Pavlic and K. M. Passino, “Cooperative task-processing networks:
Parallel computation of non-trivial volunteering equilibria,” The Ohio
State Univ., Tech. Rep. OSU-CISRC-3/11-TR05, 2011 [Online]. Avail-
able: ftp://ftp.cse.ohio-state.edu/pub/tech-report/2011/TR05.pdf

[31] R. D. Gustafson, P. D. Frisk, and J. Hughes, College Algebra, 10th ed.
Belmont, CA, USA: Brooks/Cole Publishing, Dec. 2008.

[32] W. D. Hamilton, “The genetical evolution of social behavior. I.” J.
Theor. Biol., vol. 7, no. 1, pp. 1–16, 1964.

[33] H. Ohtsuki, C. Hauert, E. Lieberman, and M. A. Nowak, “A simple
rule for the evolution of cooperation on graphs,” Nature, vol. 441, no.
7092, pp. 502–505, 2006.

[34] M. A. Nowak, “Five rules for the evolution of cooperation,” Science,
vol. 314, no. 5805, pp. 1560–1563, Dec. 2006.

[35] K. L. Burgess and K. M. Passino, “Stability analysis of load balancing
systems,” Int. J. Control., vol. 61, no. 2, pp. 357–393, 1995.

[36] M. V. Johns and R. G. Miller, Jr., “Average renewal loss rates,” Ann.
Math. Stat., vol. 34, no. 2, pp. 396–401, Jun. 1963.

Theodore P. Pavlic (S’02–M’10) received the Ph.D.
degree in electrical and computer engineering from
The Ohio State University (OSU), Columbus, USA,
in 2010. From 2010 to 2012, he was a Post-Doctoral
Researcher in computer science and engineering
at OSU, studying the use of software-verification
formal methods for autonomous urban vehicle de-
velopment. He is currently a Post-Doctoral Scholar
in the School of Life Sciences at Arizona State
University (ASU), Tempe, AZ, USA.

He is currently associated with a social-insect lab-
oratory where he studies ants, like Temnothorax rugatulus and Aphaenogaster
cockerelli, that serve as experimental model systems for distributed decen-
tralized decision making. Target applications of interest include distributed
power generation, building lighting and HVAC control, and coordination
problems in multirobot systems. He has also held engineering positions in
software and hardware research and development at IBM Network Storage,
Research Triangle Park, NC, USA, and National Instruments, Austin, TX,
USA, as well as a number of small telecommunications companies. In 2000,
his load-balancing work with the then-nascent Linux Virtual Server project
was referenced in a Wired magazine article on global collaboration in open-
source-software development. His current research interests include multiagent
systems, bio-inspiration and bio-mimicry, distributed problem solving, and
ecological rationality. In general, he is interested in complex adaptive systems
with applications in control systems engineering and behavioral ecology.

Kevin M. Passino (S’79–M’90–SM’96–F’04) re-
ceived the Ph.D. degree in electrical engineering
from the University of Notre Dame, Notre Dame,
IN, USA, in 1989.

He is currently a Professor of electrical and
computer engineering at The Ohio State Univer-
sity (OSU), Columbus, USA, and was the Director
of the OSU Collaborative Center of Control Science
that was funded by AFOSR and AFRL/VA. He is
the co-editor (with P. J. Antsaklis) of the book An
Introduction to Intelligent and Autonomous Control

(Kluwer Academic, 1993), co-author (with S. Yurkovich) of the book Fuzzy
Control (Addison Wesley Longman, 1998), co-author (with K. L. Burgess) of
the book Stability Analysis of Discrete Event Systems (Wiley, 1998), co-author
(with V. Gazi, M. L. Moore, W. Shackleford, F. Proctor, and J. S. Albus) of
the book The RCS Handbook: Tools for Real Time Control Systems Software
Development (Wiley, 2001), co-author (with J. T. Spooner, M. Maggiore, and
R. Ordonez) of the book Stable Adaptive Control and Estimation for Nonlinear
Systems: Neural and Fuzzy Approximator Techniques (Wiley, 2002), author
of the book Biomimicry for Optimization, Control, and Automation (Springer-
Verlag, 2005), and co-author (with V. Gazi) of the book Swarm Stability and
Optimization (Springer-Verlag, 2011).

Dr. Passino has served as the Vice President of Technical Activities of the
IEEE Control Systems Society (CSS), and was an Elected Member of the
IEEE CSS Board of Governors. He was also the Program Chair of the 2001
IEEE Conference on Decision and Control, and is currently a Distinguished
Lecturer for the IEEE CSS.

ftp://ftp.cse.ohio-state.edu/pub/tech-report/2011/TR05.pdf

