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Distributed and Cooperative Task Processing: 
Cournot Oligopolies on a Graph 
Theodore P. Pavlic, Member, IEEE, and Kevin M. Passino, Fellow, IEEE 

Abstract—This paper introduces a novel framework for the de-
sign of distributed agents that must complete externally generated 
tasks but also can volunteer to process tasks encountered by other 
agents. To reduce the computational and communication burden 
of coordination between agents to perfectly balance load around 
the network, the agents adjust their volunteering propensity 
asynchronously within a fictitious trading economy. This economy 
provides incentives for nontrivial levels of volunteering for remote 
tasks, and thus load is shared. Moreover, the combined effects 
of diminishing marginal returns and network topology lead 
to competitive equilibria that have task reallocations that are 
qualitatively similar to what is expected in a load-balancing 
system with explicit coordination between nodes. In the paper, 
topological and algorithmic conditions are given that ensure the 
existence and uniqueness of a competitive equilibrium. Addi-
tionally, a decentralized distributed gradient-ascent algorithm is 
given that is guaranteed to converge to this equilibrium while not 
causing any node to over-volunteer beyond its maximum task-
processing rate. The framework is applied to an autonomous-air-
vehicle example, and connections are drawn to classic studies of 
the evolution of cooperation in nature. 

Index Terms—Agents and autonomous systems, distributed 
control, game theory, load balancing, network analysis and 
control, parallel algorithms. 

I. Introduction 

WE CONSIDER the problem of designing strategies to 
dynamically route externally generated tasks around 

a network to efficiently share the processing load of those 
tasks. In many cases, an optimal solution can be found 
either with centralized methods or methods that synchronize 
computation between networked nodes. To reduce the commu-
nication burden, we propose a totally asynchronous strategy 
that can achieve an adequate, if not optimal, task allocation 
that requires significantly less coordination between nodes. 
The load balancing that emerges in this case is a product 
of incentives built into a cooperation-trading economy as 
well as topological feedbacks. Thus, this paper shows how 
cooperation can be stabilized on networks of selfish agents 
that continuously climb local utility gradients. 
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In particular, we consider a network of autonomous agents 
with some agents being responsible for processing tasks from 
one or more external sources. When a task arrives at one of 
these agents, the agent may advertise the task to other agents 
connected to it. If none of the connected agents volunteer to 
process the task, it must be processed by the advertising agent; 
otherwise,the task is processed by one of the volunteering 
agents. Agents that volunteer for tasks may themselves be 
connected to incoming task flows for which they can advertise 
task encounters. In general, an agent in the network may adver-
tise task encounters to others, volunteer to process advertised 
tasks from others, or do both. Our challenge is to define a 
distributed asynchronous algorithm for automatically tuning 
how often agents volunteer to process advertised tasks so that 
the collection of volunteering tendencies across the network 
converges to a nontrivial Nash (i.e., competitive) equilibrium 
with desirable load-balancing features. In the rest of this 
section, we will review the existing cooperative processing 
works and discuss why those approaches are not adequate for 
solving the problem formulated here. 

Grid computing [1] is one existing approach for achieving 
cooperative task processing across a group of networked task-
processing agents. System designers work under the assump-
tion of heterogeneous agents with conflicting priorities. They 
borrow from the economic theories of mechanism design 
[2, Chapter 23] and implementation theory [3, Chapter 10] 
to design mechanisms (e.g., brokering agents) and protocols 
that either encourage resource sharing [4]–[7] or discourage 
exploitation [8], [9] among groups of agents. The common 
element of these different methods of distributed algorithmic 
mechanism design (DAMD) [10] is that the designer has no 
direct control over individual agents; instead, she controls the 
structure of the interactions between given agents on a given 
network. Hence, DAMD is not appropriate for the design of 
the task-processing networks themselves. 

Methods exist for the design of networks of interconnected 
task-processing agents that have desirable task flow charac-
teristics. For example, a flexible manufacturing system (FMS) 
includes several machines that switch their current processing 
to one of several input task flows and then produce output task 
flows for other machines in the system. Reference [11] shows 
that distributed scheduling policies exist that guarantee such 
systems will have finite upper bounds on all buffers of tasks. 
Similarly, Cruz [12] shows how special network elements can 
be combined to form queueing systems with output traffic 
flows that are guaranteed to have finite burstiness constraints 
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so long as the input flows also satisfy similar constraints. 
These methods are not intended to describe how agents can 
dynamically adjust task flow to exploit unused processing 
ability on idle connected agents. 

Because an optimal task flow configuration may be un-
known, inaccessible, or changing over time, task-processing 
agents may need to use feedback to acquire and stabilize 
the optimal task-handling behavior. For example, a set of au-
tonomous air vehicles (AAV) deployed for distributed search, 
surveillance, or task processing can coordinate their actions in 
order to converge on a holistically optimal behavior [13]–[15]. 
However, the coordination required between agents can be 
prohibitive. Additionally, the single optimality criterion being 
maximized ignores fatigue on individual agents. For example, 
in a smart power grid [16], it may be desirable for distributed 
power stations to share load; however, a single overloaded sta-
tion should not result in a cascade of self-sacrificing failures. 
Here, noncooperative game theory is used to develop totally 
asynchronous distributed algorithms for task-processing agents 
that both respect local processing priorities while also sharing 
the processing burden of loaded neighbors. 

Noncooperative game theory has been traditionally used to 
design optimal control strategies [17]; however, it can also 
be used to design simple selfish strategies that nonetheless 
assist neighbors. Several such techniques already exist for de-
signing policies on nodes in ad hoc multihop communication 
networks [18]–[20]. In these cases, nodes can forward packets 
from other nodes in order to reduce network congestion or 
improve communication diversity, but nodes resist using all 
local resources for assisting other nodes. A salient feature of 
these forwarding networks is that packets can be duplicated or 
dropped at any time. Hence, these networks are ill-equipped 
to model task-processing scenarios where tasks that enter the 
network must be assigned and processed by exactly one agent. 
Instead, our approach passes volunteering requests around 
a network and uses an economics-inspired task-processing 
network game to determine how best to respond to these 
requests. The resulting volunteering policy is sensitive to both 
local processing requests and the presence of other agents on 
the network that can volunteer as well. 

This paper is organized as follows. In Section II, the task-
processing network (TPN) framework is defined and example 
TPNs are described. The optimization game is presented 
in Section III, and an asynchronous distributed computation 
method that ensures convergence to the game’s Nash equilib-
rium is given in Section IV. In Section V, example results 
from an example task-processing network of autonomous air 
vehicles are presented. The resulting cooperation policy is ana-
lyzed for its ability to balance load around the vehicle network, 
and the price of anarchy (i.e., independent competition) is 
discussed. Conclusions and future areas of research are given 
in Section VI. 

II. Task-Processing Network 

In the following, we use real numbers R, natural numbers 
N  {1, 2, . . . }, whole numbers W  {0, 1, 2, . . . }, and 
derived symbols like the nonnegative real numbers R≥0. 

Take a finite set A ⊂ N of task-processing agents. For each 
agent i ∈ A, there exists a finite and possibly empty set Yi ⊂ N 
of task types that arrive at the agent, and for each k ∈ Yi, tasks 
of type k arrive at agent i from an external source at average 
rate λk 

i ∈ R>0. Each external source of tasks is assumed to 
be independent of all other sources. Each agent i ∈ A has a 
maximum processing rate Ri ∈ R>0, and it is assumed that 
Ri ≥ 

 
k∈Yi 

λk
i . 

When a task arrives at an agent, the agent can convey 
the arrival to several connected agents that may volunteer to 
process the task. In particular, task arrivals are communicated 
along the directed edges in set P ⊆ {(i, j) ∈ A2 : i = j}. 
For each agent i ∈ A, set Vi  {j ∈ A : (j, i) ∈ P}
is the collection of conveyors that advertise task arrivals 
to agent i, and set Ci  {j ∈ A : (i, j) ∈ P} is the 
collection of cooperators that agent i can advertise arrivals 
to. Furthermore, V  {j ∈ A : Cj = ∅} = 

 
i∈A Vi and 

C  {i ∈ A : Vi = ∅} = 
 

j∈A Cj are respectively the sets 
of all conveyors and cooperators in the network. Assume that: 

1) for each conveyor j ∈ V , there exists task type k ∈ 
Yj with πk 

j = 0 where πk 
j ∈ [0, 1] is the probability 

that conveyor j advertises an incoming k-type task to its 
connected cooperators Cj . If  j ∈ V does not advertise 
the task, it will be processed by agent j; 

2) for each cooperator i ∈ C, γi ∈ [0, 1] is the probability 
that agent i will volunteer for an advertised task from 
one of its connected conveyors Vi. Any task arriving at 
conveyor j ∈ V that is advertised to cooperators Cj will 
be processed with uniform probability by exactly one of 
the volunteers; if no cooperators volunteer for the task, 
then it is processed by conveyor j. 

The graph G  (A,P), rates, and probabilities defined above 
characterize a TPN. In principle, each cooperator could have 
an independent volunteering probability for each type of task 
advertised to it. However, the convergence results later in this 
paper are greatly simplified in the case where each node has 
a single scalar decision variable. Thus, the more general case 
is left as a future direction. 

The simple TPN shown in Fig. 1 represents an FMS similar 
to the systems described by [11]. Tasks of types 1, 2, and 3 
arrive according to independent Poisson processes. Type-1 and 
type-2 tasks arrive at agent 1, and all three types of tasks 
arrive at agent 2. For tasks of type k ∈ Y1 = {1, 2}, agent 1 
advertises task arrivals to agents 3 and 4 with probability 
πk 

1. Likewise, agent 2 advertises arrivals of tasks of type 
k ∈ Y2 = {1, 2, 3} to agents 4 and 5 with probability πk 

2. 
The advertising probabilities for each task type can be chosen 
based on the specialized abilities of each agent. Each agent 
i ∈ {3, 4, 5} volunteers for an advertised task with probability 
γi independent of task type. Hence, in this TPN, agents 1 and 2 
are conveyors and agents 3, 4, and 5 are cooperators. In an 
FMS more like the ones described by , tasks enter at one node 
and are processed in an ordered sequence by a set of nodes. 
In these cases, the upstream nodes are not conveyors and the 
downstream nodes are not cooperators. Instead, the upstream 
nodes are the external task generators for the downstream 
conveyors. Thus, the TPN described in this paper represents 
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Fig. 1. Simple flexible manufacturing system example. 

Fig. 2. Task-processing network formed by three autonomous air vehi-
cles (AAVs). (a) AAVs-patrolled territories (b) Corresponding task-processing 
network. 

how nodes of equal rank in the pipeline would share load 
generated by upstream nodes in the pipeline. 

In the FMS example above, the set of conveyors and the 
set of cooperators are disjoint. In a general TPN, an agent 
can be both a cooperator and a conveyor. For example, the 
fully connected TPN shown in Fig. 2(b) models an AAV patrol 
scenario shown in Fig. 2(a) that is similar to others in resource-
allocation literature [13]–[15]. Each AAV i ∈ {1, 2, 3} contin-
uously searches its territory for tasks (e.g., targets) to process, 
and these tasks are found at rate λi 

i > 0. When a task is 
found, the AAV advertises the task to both of its neighbors. If 
neither neighbor volunteers for processing, the AAV processes 
the task itself. In this fully connected topology, all agents are 
both cooperators and conveyors. Although this network has 

several cycles, tasks do not move around the network—if a 
volunteering cooperator is given a task for processing, it cannot 
readvertise that task to its own neighboring cooperators; it 
must process the task itself. 

TPNs describe a broad range of applications. The AAV 
example also models groups of networked processors [21] 
or mobile software agents [22]–[26] that patrol for tasks to 
process. Additionally, by converting encounter rates to ener-
getic rates (i.e., power demand), TPNs can model the behavior 
of smart power grids [16] made up of stations that request 
assistance from neighbors. Thus, cooperator stations adjust 
additional supply provided in response to demand requests 
from remote conveyor stations. 

III. Cooperation Game Among Selfish Agents 

In a TPN, the cooperation willingness is the probability 
γi ∈ [0, 1] that cooperator i ∈ C will volunteer for an 
advertised task from its connected conveyors. Here, to simplify 
the analysis later, this decision variable is independent of task 
type. Assuming that it is impractical for agents to coordinate 
to maximize global utility, each cooperator adjusts its coop-
eration willingness in a distributed fashion. So each agent 
independently chooses a cooperation policy that maximizes its 
individual utility (i.e., agents are selfish). Hence, optimality is 
given in terms of the Nash equilibrium [27, Section 3.5.1]. 

To inform each cooperator how to choose this policy, cost 
and rewards are assigned to agent operations in a common 
currency (e.g., proportional to dollars of net profit) that is 
called points here. In particular: 

1) conveyor i ∈ V pays no cost for a locally generated task 
of type k ∈ Yi if it is processed by a Ci cooperator; 
otherwise, the task is processed locally and i pays 
cost ck 

i ; 
2) if cooperator j ∈ Ci volunteers and is selected to process 

a task of type k ∈ Yi from conveyor i ∈ Vj , then 
cooperator j pays cost ck 

ij to process that task. 

The cost described in 2 is only paid if the cooperator volun-
teers and is selected to process a task. Given that cooperator 
i ∈ C volunteers to process a task from conveyor j ∈ Vi, the 
probability of being selected to process that task is 

Ps(j |i)  
|C j |−1 

s=0 

1 

1 + s 

 

B⊆C j \{i}
|B|=s 

⎛
⎜⎜⎝ 

 

k∈B 

γk 

⎛
⎜⎜⎝ 

k∈C j \B 
k =i 

(1 − γk ) 

⎞ 

⎟⎟⎠ 

⎞
⎟⎟⎠ , 
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and so cooperation willingness from other cooperators in Cj 

reduces the chances that cooperator i ∈ Cj will be selected 
and have to pay the processing cost. 

However, these costs and benefits alone do not provide co-
operators with any incentive to volunteer to process conveyor 
tasks, and so a payment mechanism is required. Consider 
conveyor j ∈ V and task type k ∈ Yj . If one or more 
cooperators in Cj volunteer frequently to process requests 
from agent j, the other cooperators in the set should conserve 
resources by volunteering infrequently. To ensure this quali-
tative behavior, each cooperator i ∈ Cj receives volunteering 
payment q k 

ij p k 
j ( Q j ) from conveyor j ∈ Vi where

1) Qj  
 

k∈Cj 
γk is the total quantity of cooperation 

willingness available to conveyor j. 
2) pk

j(Qj) is a decreasing payment function that represents 
the price that conveyor j pays to its connected coopera-
tors each time they volunteer for a task of type k ∈ Yj . 

3) qk 
ij ∈ R>0 is a value factor that scales payment pk

j(Qj) 
from conveyor j into the currency of cooperator i ∈ Cj 

(i.e., i perceives qk
ijp

k
j(Qj) value from the contribution 

pk
j(Qj) from j). 

So if any cooperator i ∈ Cj increases its cooperation will-
ingness γi, it increases how often it receives payment pk

j(Qj) 
while also decreasing the payment itself. For each cooperator 
i ∈ Cj , these two pressures encourage cooperation (i.e., 
equilibrium γ∗ 

i > 0) and resource conservation (i.e., γ∗ 
i < 1). 

To maximize net points earned over a long run time, 
each agent chooses a policy that maximizes its own ex-
pected rate of point accumulation. So for a given vector 
γ = [γc1 , γc2 , . . .  , γc|C| ] ∈ [0, 1]|C| of cooperation policies 
(where unique ck ∈ C for all k ∈ {1, . . . , |C|}), the utility (i.e., 
long-term rate of point gain) returned to cooperator i ∈ C is 

Ui(γ)  −ci 

j∈Ci 

(1 − γ j) 

   
Conveyor costs 

+ γi 

 

j∈Vi 

 
pij(Qj) − P s(j|i)c ij 

 

   
Cooperator part – γi and Qj vary with γi 

(1a) 

where 

ci  
 

k∈Yi 

λ k 
i π k 

i c
k 
i , (1b) 

pi(Qi)  
 

k∈Yi 

λ k 
i π

k 
i p

k 
i (Qi) (1c) 

are the costs and benefits of local processing on i ∈ V , and 

c ij  
 

k∈Yj 

λ k 
j π k 

j c k 
ij, (1d)

pij(Qj)  
 

k∈Yj 

λ k 
j π k 

jq k 
ijp k 

j(Qj) (1e) 

are the costs and benefits to i ∈ C for volunteering for tasks 
exported from j ∈ Vi. 

Consider a cooperator i ∈ C that volunteers to process a task 
advertised from conveyor j ∈ Vi. In the cooperator’s utility 
function Ui, the conditional selection probability Ps(j|i) scales 
the cost of processing the advertised task, and so for j ∈ Vi, 
the impact of cost rate cij decreases as other cooperators 
from Cj increase their own cooperation willingness. So for 

a conveyor j ∈ V , its connected cooperators Cj form a 
Cournot oligopoly [28] (i.e., a set of independent agents that 
provide a service for a demand-driven price) with a positive 
externality [29] (i.e., the cost of processing decreases as more 
cooperators enter the market). The underbraced cooperator 
part of (1a) shows that cooperator i must set its cooperation 
willingness γi (i.e., its quantity of supplied cooperation) based 
on the summed returns from several such markets. 

IV. Distributed Computation of the Nash 
Equilibrium 

Let n  |C| be the number of cooperators that individually 
adjust cooperation willingness to maximize local utility. To 
ensure that each cooperator i ∈ C is operating below its max-
imum processing rate Ri, the cooperation level γi ∈ [0, γmax

i ] 
where 

γ max 
i  max 

 

0, min 

 

1, 
Ri − 


k∈Yi 

λk 
i 

j∈Vi 

 
k∈Y j 

λ k 
j 

 

is the cooperation level that would bring the processing 
rate on i to Rmax if no other cooperators volunteered for 
tasks. So, because there is no coordination between play-
ers, the n-dimensional play space is the Cartesian product 
X  

 
i∈C [0, γmax

i ] where X ⊆ [0, 1]n , and the collection 
of cooperation policies across all cooperators is the vector 
γ  [γc1 , γc2 , . . .  , γcn

] ∈ X (where unique ck ∈ C for all 
k ∈ {1, 2, . . . , n}). For each i ∈ C, it is assumed that the utility 
function Ui : X → R is twice continuously differentiable, and 
so, by Weirstrass’ theorem, Ui is bounded above and below 
and achieves its extrema. Following [27], Proposition 5.7 
from Chapter 3, the Nash equilibria of the cooperation game 
can be found by solving n separate 1-D variational inequality 
problems. In particular, γ∗ ∈ X is a Nash equilibria of the 
cooperation game if and only if, for all i ∈ C 

(γi − γ ∗ 
i )∇iUi(γ ∗) ≤ 0 for all γi ∈ X (2) 

where the block gradient (i.e., the i th row of the gradient) 

∇iUi(γ) =  
 

j∈Vi 

⎛ 

⎜⎜⎜⎝ 

∂ 
∂γi 

(γipij(Qj))    
pij(Qj) +  γipij(Qj) − Ps(j|i)cij 

⎞ 

⎟⎟⎟⎠ . 

So in a local neighborhood of the Nash equilibrium γ∗ ∈ X , 
any unilateral perturbation of a coordinate of γ∗ will result in 
equal or reduced utility. 

The solution to the n simultaneous nonlinear equations 
in (2) is not guaranteed to exist in general and may be 
difficult to find analytically even when it does exist. However, 
variational inequalities over product spaces are well suited for 
parallel and asynchronous computation [27]. Under special 
conditions on each utility function, a unique Nash equilibrium 
is guaranteed to exist, and each of its coordinates in (2) can be 
computed independently in the distributed and asynchronous 
fashion described by Definition 1. 

Definition 1 (Totally asynchronous distributed iteration): 
Take {c1, c2, . . .  , cn} to be the set C of the n 
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distinct cooperators. Let T  W to be the 
indices of a sequence of physical times, and let 
(γ(t))t∈T  ([γc1 (t), γc2 (t), . . .  , γcn

(t)] )t∈T be a sequence of 
iterated calculations in the X play space. For each i ∈ C, 
subset T i ⊆ T corresponds to the times when coordinate γi(t) 
is computed. Additionally, for each i, j ∈ C and each t ∈ T , 
there is an index τi

j(t) ∈ T of the least-outdated version of 
coordinate γj available for the computation of coordinate γi 

with transition mapping Ti : X → [0, γmax
i ] at time t such 

that 0 ≤ τi
j(t) ≤ t. That is, an outdated state estimate 

γ i(t)  [γ i c1 
(t), γi 

c2 
(t), . . .  , γi 

cn
(t)] 

 [γ c1 (τ i c1 
(t)), γc2 (τ i c2 

(t)), . . .  , γc n (τ i cn
(t))] 

is available for the computation γi(t + 1)  =  Ti(γi(t)) for each 
t ∈ T and i ∈ C. It is assumed that: 

1) set T i is countably infinite (i.e., |T i| = |T | = |N|) for 
all i ∈ C; 

2) if subsequence (tk) of  T i is such that limk→∞ tk = ∞, 
then limk→∞ τ

i
j(k) =  ∞ for all i, j ∈ {1, 2, . . . , n}. That 

is, lim inf t→∞ τ
i
j(t) =  ∞ for all i, j ∈ {1, 2, . . . , m}. 

For all t ∈ T , sequence (γ(t)) is generated by the totally 
asynchronous distributed iteration (TADI) 

γi(t + 1)   

 
Ti(γ i(t)), if t ∈ T i , 

γi(t), if t /∈ T i 
(3) 

where γ(t)  [γc1 (t), γc2 (t), . . .  , γcn
(t)] . For each i ∈ C, the 

transition mapping Ti : X → [0, γmax
i ] in (3) is defined by 

Ti(γ)  min{γ max 
i , max{0, γi + σi∇iUi(γ)}} 

where σi ∈ R>0 is a step-size parameter that scales movement 
along the utility gradient ∇iUi. 

A. Conditions for Distributed Convergence 

The TADI-generated (γ(t)) sequence represents the collec-
tive motion of n self-interested agents that each climb their 
respective utility gradient in order to maximize their expected 
rate of point return. That is, (3) may be viewed as a dynamical 
system model of coupled agents that each take independent 
actions. In particular, the conditional probability Ps(j|i) is  
bounded away from zero, and so assuming that cij > 0 and 
payment pij ≡ 0 for all i, j ∈ A, the response of the system 
reaches γ(T ) = 0  in some finite time T ∈ W. That is, the 
intrinsic agent behavior is not to cooperate. For each i ∈ C, 
it is desirable to find a control law, which is implemented 
through the choice of payment function, to destabilize the 
no-cooperation equilibrium and provide feedback to stabilize 
the Nash equilibrium. It will be shown that Definition 2 
gives sufficient characteristics for such stabilizing payment 
functions. Moreover, Proposition 1 provides a simpler criterion 
to test for such functions. 

Definition 2 (Stabilizing payment function): For k ∈ N, a  
stabilizing payment function (SPF) p : [0, k] → R is a twice-
continuously differentiable function such that: 

1) it is strictly decreasing. In particular, p (Q)  
∂p(Q)/∂Q < 0 for all Q ∈ [0, k]; 

2) it is convex. In particular, p (Q)  ∂2p(Q)/∂Q2 ≥ 0 
for all Q ∈ [0, k]; 

3) its convexity is eventually dominated by its slope. In 
particular, 

γp (Q) ≤ −p (Q), 

for all Q ∈ [γ, k − (1 − γ)] with γ ∈ [0, γ  max 
i ]. 

Proposition 1 (Sufficient conditions for stabilization): 
Take k ∈ N and function p : [0, k] → R. If  
0 ≤ p (Q) < −p (Q) for all Q ∈ [0, k], then p is a 
stabilizing payment function. 

The set of SPFs is closed under conical combinations. So 
for i ∈ C, if  pij is an SPF for all j ∈ Vi, then the sum  

j∈Vi 
pij(Qj) is itself an SPF. Additionally, by the definition 

of pij(Qj) in (1e), if pk
j(Qj) is an SPF for all j ∈ V and 

k ∈ Yj , then pij(Qj) will also be an SPF for all i ∈ C and 
j ∈ Vi. 

Four example SPFs are shown in Fig. 3. Each payment 
function meets the conditions of Proposition 1; however, by 
the weaker condition 3 of Definition 2, the ph function in (d) 
can also have ε ≥ κ and still be an SPF. 

Convergence to the Nash equilibrium depends not only on 
the structure of the payment functions but also on the structure 
of the TPN graph itself. Sufficient convergence conditions 
for a TPN network and its payment functions are given in 
Theorem 1, which uses Definition 3 to describe the topological 
constraints on the TPN graph. 

Definition 3 (k-conveyor): Conveyor i ∈ V is a k-conveyor 
if it has exactly k ∈ N outgoing connections to cooperators 
(i.e., if k = |Ci|); 

Theorem 1 (Convergence of cooperation): Assume that: 

1) for all i ∈ C and j ∈ Vi, pij is a stabilizing payment 
function; 

2) for all j ∈ V , |Cj| ≤  3 (i.e., no conveyor can have more 
than 3 outgoing links to cooperators); 

3) for i ∈ C and j ∈ Vi, if  j is a 3-conveyor, then there 
must be some k ∈ Vi that is a 2-conveyor. 

Also define iteration mapping T : X → X by T (γ)  
[T1(γ), T2(γ), . . .  , Tn(γ)] where, for each i ∈ C 

Ti(γ)  min{1, max{0, γi + σi∇iUi(γ)}}, (4a) 

where 

1 

σi 
≥ 2|Vi| max 

k∈Vi 

|pik(0)| (4b) 

for all γ ∈ X . If  

min 
j∈Vi

|pij 

 |Cj| 
 | > 

 

|Vi| −  
1 

2 

 

max 
j∈Vi 

|cij|, for all i ∈ C, (5) 

then the TADI sequence (γ(t)) generated with mapping T 
and the outdated estimate sequence (γi(t)) for all i ∈ C each 
converge to the unique Nash equilibrium of the cooperation 
game. 
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Fig. 3. Sample stabilizing payment (i.e., inverse-demand) functions. (a) p (Q)  b − mQ. (b) pe (Q)  A exp(−Q/τ ). (c) pp(Q)  A(1 − Q/q0)p . 
(d) ph(Q)  Aεκ /(ε + Q)κ . 

Proof of Theorem 1: By assumption 1 (i.e., all payment 
functions are stabilizing), for any γ ∈ X and i ∈ C 

∇2 
ii Ui(γ) =  

 

j∈Vi 


2pij (Qj ) +  γi pij (Qj ) 



= 
 

j∈Vi 

<0    
pij (Qj) +  

 

j∈Vi 

⎛ 

⎜⎝ 

≤0    
pij (Qj ) +  γi pij (Qj ) 

⎞ 

⎟⎠ < 0 

and 

∇2 
ii Ui(γ) =  

 

j∈Vi 

⎛ 

⎜⎝ 

<0    
2pij (Qj ) +  

≥0    
γipij (Qj ) 

⎞ 

⎟⎠ ≥ −2 
 

j∈Vi 

|pij (Qj )| 

≥ −2 
 

j∈Vi 

max 
k∈Vi 

|pik (0)| = −2|Vi| max 
k∈Vi 

|pik (0)| 

≥ −2|Vi| max 
k∈Vi 

|pik (0)|. (6) 

So by the assumed limits on step size σi given in (4b), 0 > 
∇2

iiUi(γ ) ≥ −1/σi for all i ∈ C. 
Next, we bound the cross terms ∇2 

iUi of the utility Hessian. 
Take γ ∈ X and cooperator i ∈ C connected to conveyor 
j ∈ Vi. For another cooperator ∈ C \ {i}, if  / ∈ Cj (i.e., 

is not an outgoing cooperator for j), then ∂Qj /∂γ = 0  
and ∂Ps(j|i)/∂γ = 0. So the only other cooperators that 
contribute to the cross terms of the Hessian are those that 
share a conveyor with cooerpator i. Hence 

0 ≤ 
 

∈C =i 

|∇ 2 
i Ui(γ )| 

= 
 

∈C =i 

 
 

j∈Vi 

[ ∈ Cj ] 

⎛ 

⎝ 
pij (Qj ) +  γipij (Qj ) 

−cij 
∂Ps(j|i) 

∂γ 

⎞ 

⎠ 

 
where [·] is the Iverson bracket (i.e., [S ] = 1  or  [S ] = 0  
when statement S is true or false). However, the series of 
sums of mixed binomial products in Ps can be converted into a 
simpler alternating series of sums of monomial products which 
is more amenable to differentiation [30, Proposition C.11]. 
Furthermore 

∂Ps(j|i) 
∂γ 

= − 
|Cj |−2 

s=0 

(−1)s 
1 

2 + s 

 

B⊆Cj \{i, }
|B|=s 

 

k∈B 

γk , (7) 

which, with the use of the binomial theorem [31], can be 
shown to be negative and bounded below by −1/2 [30]. 

Hence,  

∈C =i 

∇ 2 
i Ui(γ ) 

 

≤ 
 

∈C =i 

 

j∈Vi 

[ ∈ Cj ] 

⎛ 

⎜⎝|pij (Qj ) +  γipij (Qj )   
≤0 

| + 
1 

2 
|cij | 

⎞ 

⎟⎠ 

= 
 

j∈Vi 

  pij (Qj ) +  γipij (Qj )
  + 

1 

2 
|c ij | 

  

∈C =i 

[ ∈ C j] 

= 
 

j∈Vi 

  pij (Qj ) +  γipij (Qj ) 
 + 

1 

2 
|cij | 

 Cj 

 − 1 
 
. 

However, by assumption 2, each conveyor j ∈ V has no more 
than three outgoing connections to cooperators (i.e., |Cj | ≤ 3). 
Additionally, by assumption 3, if j ∈ Vi is a 3-conveyor (i.e., 
it has 3 outgoing cooperator connections), then there must be 
some other conveyor m ∈ Vi \ {j} that is a 2-conveyor. So 
letting m ∈ Vi be the 2-conveyor that is guaranteed to exist 

 

∈C =i 

∇ 2 
i Ui(γ ) 

 ≤ 

Doubled contribution to sum from 
other cooperators connected to 
assumed 3-conveyors in Vi \ {m}   

2 
 

j∈Vi\{m} 

⎛ 

⎜⎝|pij (Qj ) +  γipij (Qj )   
≤0 

| + 
1 

2 
|cij | 

⎞ 

⎟⎠ 

+ |pim (Qm) +  γipim(Qm)   
≤0 

| + 
1 

2 
| cim|. 

   
Contribution to sum from 

other cooperator of 2-conveyor m ∈ Vi 

By Definition 2 of an SPF  

∈C =i 

∇ 2 
i Ui(γ)

  ≤ −  
 

j∈Vi\{m} 

 
2pij (Qj ) +  γipij (Qj ) 

 

− 
 
pim(Qm) +  γipim(Qm) 

 

+ 

⎛ 

⎝| 
m∈Vi   

Vi \ {m}| + 
1 

2 

⎞ 

⎠ max 
j∈Vi 

|cij | 

= − 
 

j∈Vi\{m} 

 
2pij (Qj ) +  γipij (Qj ) 

 

− 
 
pim(Qm) +  γi pim (Qm) 

 

+ 

 

|Vi| −  
1 

2 

 

max 
j∈Vi 

|cij |. 
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or, equivalently 
∈C =i 

 ∇ 2 
i Ui (γ )

  ≤ −  
 

j ∈Vi 

 
2p ij (Q j ) +  γ i p ij (Qj ) 

 

+ 
 
2pim (Q m ) +  γi pim (Q m )

 

− 
 
pim (Q m) +  γi pim (Q m) 

 

+ 
 |Vi| −  1 

2 

 
max j ∈Vi |c ij |. 

Thus 


∈C =i 

 ∇ 2 
i Ui(γ)

  ≤ −  

∇2 
iiUi (γ )   

j ∈Vi 

 
2p ij (Q j ) +  γ i p ij (Qj ) 

 
+ 

<0    
pim (Q m) 

+ 

 

|Vi| −  
1 

2 

 

max 
j ∈Vi 

|c ij |. 

So  

∈C =i 

 ∇2 
i Ui (γ )

  
≤ −∇2 

ii Ui (γ ) 

− 

 

min 
j ∈Vi 

|p ij (Qj )| −  

 

|Vi | −  
1 

2 

 

max 
j ∈Vi 

|c ij | 
 

   
> 0 by (5) 

where, by the assumption in (5), the underbraced expression 
is strictly positive. The desired result follows from this in-
equality and (6). In particular, as shown by [27], Chapter 3 
for the special case of iterative mappings with scalar block 
components, T is a maximum-norm contraction mapping 
[27, Proposition 1.11]. Consequently, it has a unique fixed 
point γ ∗ [27, Proposition 1.1] that is the Nash equilibrium [27, 
Proposition 5.1] of the cooperation game. Futhermore, the 
TADI sequence (γ (t ))t ∈T generated by T converges to γ ∗

[27, Proposition 2.1 from Chapter 6]. 

B. Interpretations 

The proof of Theorem 1 makes use of a kind of diagonal 
dominance of ∇2

iiU i for cooperator i ∈ C over the combined 
contribution of off-diagonal terms ∇i U i for each ∈ C \ {i }. 
For each conveyor j ∈ Vi connected to i , there are two p ij 
terms contributed to the diagonal. However, if a conveyor is 
a 3-conveyor, it also contributes two p ij terms to the off-
diagonals. Consequently, if all conveyors connected to a co-
operator are 3-conveyors, diagonal dominance is not possible 
because the terms exactly cancel. In essence, a unique Nash 
equilibrium is not guaranteed to exist in this case because 
cooperator choices become decoupled when the probability of 
actually having to pay a cost for volunteering is sufficiently 
low (i.e., such cooperators always cooperate regardless of the 
decision of other cooperators). When one of the 3-conveyors 
is replaced by a 2-conveyor, the two cooperators connected to 
the 2-conveyor are sufficiently coupled to restore a single Nash 
equilibrium. In other words, diagonal dominance is restored 
because the 2-conveyor only contributes a single p ij term 
to the off-diagonals, and so the two diagonal p ij terms can 
dominate it. So 2-conveyors are themselves stabilizers that 

Fig. 4. Many-agent task-processing network with stable topology. 

allow a cooperator i ∈ C to focus its decision making on the 
conveyors in Vi for which there is only one other cooperator 
competing for payment. For example, in the complex TPN in 
Fig. 4, the 3-conveyors in the network (e.g., 2, 4, 7, and 10) 
could destabilize the gradient ascent if the 2-conveyors (e.g., 
1, 5, 6, 8, 9, and 11) were not also present. 

It may be possible to weaken Theorem 1 to allow for 
conveyors with n >  3 outgoing connections to cooperators so 
long as the slopes of the n -conveyor payment functions can 
be dominated by those of other 1-conveyors. That is, although 
n -conveyors with n ≥ 2 contribute to both diagonal ∇2

iiU i 
and off-diagonal ∇2 

iU i terms, 1-conveyors contribute only to 
the diagonal. Consequently, if the p ij from the 1-conveyor 
is large enough, it can dominate uncanceled terms from the 
off-diagonals. In other words, a cooperator connected to an n -
conveyor with n >  3 would normally be decoupled from other 
cooperator decisions because the chance of actually having 
to process an advertised task would be negligible. However, 
if such cooperator also faced a 1-conveyor whose payment 
function was sufficiently steep, then the loss of payment from 
the 1-conveyor for being overly cooperative would restore a 
nontrivial cooperation willingness. 

The restriction in (5) is similar to the network generalization 
of Hamilton’s rule [32] discussed by Ohtsuki et al. [33] 
and [34]. In their case, the graph consists of individuals 
at graph nodes that have relationships modeled by graph 
links. Each individual is either a cooperator, which pays a 
cost to deliver a benefit to a neighbor, or a defector, which 
pays no cost and delivers no benefit. Behavioral strategies 
spread by way of birth–death processes, and they show that 
a sufficient condition for cooperation to spread is that the 
benefit-to-cost ratio is greater than the average degree (i.e., 
number of neighbors connected to each node) of the network. 
Here, the task-processing network is not a substrate for birth– 
death processes; however, the rule in (5) plays a similar 
role relating payment, cost, and cooperator degree. Moreover, 
it is a sufficient condition for individual gradient ascent to 
converge upon a stable cooperation policy. Hence, just as 
Hamilton’s rule allows scientists to reason about cooperation 
in natural networks, it also ensures that automata will find 
stable cooperation strategies in artificial networks. 
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Fig. 5. AAV optimal cooperation willingness as encounter rates vary. The solid, dashed, and dot-dashed lines represent the Nash-equilibrium cooperation 
levels for three fully connected AAVs that differ in their encounter rates. The encounter rate for AAV 2 is swept from zero to its maximum capacity while 
the encounter rates for the other two AAVs are held constant. Each AAV has a linear payment function whose slope is inversely proportional to the local 
encounter rate; otherwise, the AAVs are identical. AAV 3 begins to cooperate at point a but truncates the rise in cooperation due to capacity constraints 
at point c. Likewise, AAV 1 increases its cooperation until truncating at point b due to capacity constraints. At point d, the encounter rate at AAV 2 
becomes too high for it to sustain any further cooperation, and its cooperation decreases rapidly to zero when its encounter rate reaches its maximum 
capacity. 

V. Example Cooperative AAV Scenario 

Consider the AAV scenario shown in Fig. 2. Assume that 
πk 

i = 1,  cij = 0.1, qij = 1, and Ri = Rmax = 5 for all 
i ∈ A = {1, 2, 3}, j ∈ A \ {i} , k ∈ Yi, and ∈ Yj . Also 
assume that λ1 

1 = 0.6, λ3 
3 = 1.7, 0 < λ2 

2 ≤ Rmax, and the linear 
payment function pi

i(Qi )  1 − Qi/λ
i 
i for all i ∈ A. Hence, 

the three otherwise equivalent agents face different task-
encounter rates, and their payment functions have slopes that 
are inversely proportional to each encounter rate. So agents 
associated with higher encounter rates have a higher demand 
for cooperation and thus have inelastic payment functions (i.e., 
cooperation retains its high value even when a high quantity is 
available). 

A conservative choice of step size σ  
1/(4 maxi∈A,j∈Vi pij ([0, 0, 0] )) for all ∈ A yields a 
convergent TADI for this scenario, and so the equilibrium can 
be found by parallel numerical computation on autonomous 
vehicles in an asynchronous and decentralized fashion (i.e., 
the equilibrium need not be calculated in a central location 
and broadcasted continuously to the agents). simulation 
results of this parallel computation of the Nash equilibrium 
γ ∗ are summarized in Fig. 5 for the different combinations of 
encounter rates so as to show how the equilibrium depends 
on relative encounter rates. 

The Nash equilibrium has the desirable feature that λi 
i > λ

j 
j

implies that γ∗ 
i < γ∗ 

j for all i, j ∈ A. So agents that 
are locally busy are less willing to cooperate, and agents 
that are relatively idle are more willing to cooperate. In 
Fig. 5, as λ2

2 increases from a relatively low encounter rate 
to a relatively high encounter rate, payment function p2 to 
agents 1 and 3 becomes shallower and causes the optimal 
γ∗ 

1 and γ∗ 
3 to increase. However, as γ∗ 

1 (or γ∗
3 ) increases, 

payment p3(Q3) [or p1(Q1)] to agent 2 is depressed and 
γ∗ 

2 decreases. So even though the encounter rate λ2
2 does 

not appear in the gradient of U2, agent 2 still arrives at 
a Nash equilibrium where its own increased encounter rate 

corresponds to a decreased willingness to cooperate. Thus, this 
desirable effect is emergent and due to implicit coupling within 
the network. Even though each agent’s own encounter rate 
has no direct relationship to the gradient it climbs, the cyclic 
relationships on the network weigh the local encounter rate 
against the neighboring encounter rates and adjust cooperation 
accordingly. 

The cooperation game is meant to provide incentives to 
independent agents to cooperate without forcing the use of a 
rigid coordination protocol and the communication costs that 
come with it. Consequently, the balancing action of the coop-
eration game is destined to be worse than a true load-balancing 
strategy with explicit coordination or centralized control. For 
the case of particular AAV example described above, Fig. 6(a) 
shows the processing rates that correspond to the competitive 
equilibria for each encounter rate combination. The dotted line 
labeled Ropt represents the perfectly balanced solution. Clearly, 
the three processing rates, R1(γ∗

1 ), R2(γ∗
2 ), and R3(γ∗

3 ), are not 
perfectly balanced. However, the task allocation is preferable 
over the no-cooperation case shown in Fig. 6(b). In particular, 
in the no-cooperation case, the rates are nowhere balanced and 
AAV 2 reaches its maximum processing rate. However, in the 
competitive case, the rates are initially very close to optimal 
and all agents stay below their maximum processing rate. 
Furthermore, the competitive volunteering equilibrium has 
redirected the most tasks to AAV 1, which is the AAV with the 
smallest local encounter rate. So without explicit coordination, 
the cooperation game has achieved a weak balance of the load 
in the system. Additionally, as in virtual load balancing [35], 
the payment, costs, and currency scalars in (1a) can be 
adjusted to bias the system toward preferential task-allocation 
shapes. 

For comparison, a summary of a Pareto-optimal policy 
for this 3-AAV case is shown in Fig. 7. That is, (a) 
shows the cooperation levels γ ∗ that maximize the simple 
sum U1(γ ) +  U2(γ ) +  U3(γ ) over the capacity-constrained 
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Fig. 6. AAV processing rates as encounter rates vary. The solid, dashed, and dot-dashed lines represent the processing rate for three fully connected AAVs 
that differ in their encounter rates. The encounter rate for AAV 2 is swept from zero to its maximum capacity while the encounter rates for the other two AAVs 
are held constant. In (a), the processing rates corresponding to the Nash-equilibrium cooperation levels are shown. In (b), the processing rates corresponding 
to zero cooperation are shown. In either case, the processing rates sum to the oblique line labeled λ1 

1 + λ2 
2 + λ3 

3 that represents the total encounter rate for the 
3-AAV system. Likewise, the oblique line labeled Ropt represents the processing rate that each AAV would attain if the system load was perfectly balanced. 
The horizontal dotted line labeled Rmax represents the maximum processing rate for each AAV. Although the Nash-equilibrium policy does not track Ropt, it  
does spread the load across the three AAVs such that the AAV with the smallest local encounter rate processes the most remote load. 

Fig. 7. Pareto-optimal AAV cooperation levels and processing rates. The solid, dashed, and dot-dashed lines represent the optimal cooperation levels [in (a)] 
and corresponding processing rates [in (b)] for three fully connected AAVs that differ in their encounter rates. The encounter rate for AAV 2 is swept from 
zero to its maximum capacity while the encounter rates for the other two AAVs are held constant. The cooperation levels are chosen to maximize the simple 
sum of the three individual agent utility functions. In (b), the processing rates sum to the oblique line labeled λ1 

1 + λ2 
2 + λ3 

3 that represents the total encounter 
rate for the 3-AAV system. Likewise, the oblique line labeled Ropt represents the processing rate that each AAV would attain if the system load was perfectly 
balanced. The horizontal dotted line labeled Rmax represents the maximum processing rate for each AAV. Like the Nash-equilibrium policy, the Pareto-optimal 
policy does not track Ropt but it does spread the load across the three AAVs such that the AAV with the smallest local encounter rate processes the most 
remote load. Thus, the Pareto-optimal policy may be viewed as an ideal case of the Nash-optimal policy. However, if global control was possible, a true 
load-balancing solution would likely be used instead. 

volunteering-policy space X , and (b) shows the corresponding 
processing rates. Because the interests of the AAVs are aligned 
in this case, it may make sense to remove the payment 
functions that were added in the competitive case as an 
incentive for cooperation among the selfish agents. However, 
the resulting no-incentive optimization objective has a triv-
ial no-cooperation optimizer. That is, because the cost of 
processing a remote task is no worse on the system than 
the cost of processing it locally, there is no incentive for 
increased cooperation. Consequently, payment is still needed 
to induce nontrivial cooperation; however, like a cartel, the 
team coordinates its actions to maximize the total payment 
to the group. The resulting shapes of the cooperation and 

processing-rate curves are similar to the Nash-optimal curves 
in Figs. 5 and 6(a), and the apparent price of anarchy is low 
for this case. However, the agent utility functions used in this 
paper are only introduced to induce behavior with cooperative 
features from inherently competitive agents. If agents are 
synchronized or centrally controlled, a policy focused on true 
load balancing would likely be used. 

VI. Conclusion and Future Work 
A framework for cooperative task processing on a net-

work was presented. Using this framework, a totally asyn-
chronous cooperative control policy was shown to stabilize 
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the Nash equilibrium of a cooperation game. By introducing a 
cooperation-trading economy into the formulation, the agents 
individually climbed their own local utility functions yet still 
achieved an equilibrium where task processing was shared 
among different agents; this balancing of incoming load was 
achieved without central control or synchronized coordination 
between nodes. Thus, the central contribution of this paper 
was a dynamic task-processing framework that was able to 
share network resources without explicit coordination between 
members of the network. 

In order to simplify the analysis, a result of [27], Propo-
sitions 1.11 from Chapter 3 was used that required that the 
decision variable on each node be a scalar. Future work 
should address the case where each agent associates a different 
cooperation willingness to different types of tasks and to 
different conveyors. Likewise, forwarding probabilities can 
also be made into decision variables that could be adjusted on 
each conveyor across the different task types being advertised 
to the different cooperators connected to it. In particular, an 
additional incentive scheme could be introduced to induce 
nontrivial forwarding behavior on the conveyors. Furthermore, 
if both forwarding and volunteering can be adjusted simulta-
neously, protocols based on fairness and reciprocity can be 
developed that may not require explicit incentives introduced 
with a fictitious trading economy. In general, future work 
should allow for multiple decision variables per agent and a 
multidimensional decision space which need not be a simple 
Cartesian product. 

This paper assumed that each agent had a maximum pro-
cessing rate, and the decision variables were conservatively 
constrained to ensure that maximum rate was not violated. 
Consequently, these capacity constraints have room to be re-
laxed in future work. For example, if an agent has independent 
cooperation levels for two different task types, the constraint 
on each cooperation level can be made to vary with the other 
cooperation level. More importantly, the role of time can be 
made more explicit. Processing and switching durations are 
central motivations for the work of [11]. Effects like these can 
be added to this model by making the average processing time 
of each task explicit. In particular, the present work optimizes 
the long-term rate of gain of each agent based on rewards 
issued at the instant each task arrives. If each task type has an 
average processing time associated with it, then an agent will 
sometimes be able to increase its long-term rate of gain by 
processing fewer items that have long processing times. That 
is, the time spent processing a task is an implicit opportunity 
cost due to the lost time available for encountering other tasks 
that return higher profit. Because task arrivals are independent, 
a utility function that captures the processing time of tasks may 
be derived as an average reward rate of this Markov renewal– 
reward process [36]. If analytically tractable, optimal coop-
eration willingness corresponding to such a time-aware utility 
function can be derived using similar methods as in this paper. 
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