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Abstract— This article introduces a nonlinear ordinary dif-
ferential equation model of mood dynamics for disorders on 
the bipolar spectrum. Motivated by biopsychosocial findings, 
the model characterizes mood as a 2-D state corresponding to 
manic and depressive features, enabling the representation of 
most diagnoses of bipolar and depressive disorders. We perform 
a mathematical analysis of conditions for the mood to stabilize 
to euthymia and discuss its psychotherapeutic implications. Fur-
thermore, a computational analysis applied to pharmacotherapy 
depicts a mechanism that results in a switch from depres-
sion to mania when the bipolar disorder was misdiagnosed as 
major depressive disorder, and an antidepressant is administered 
without a mood stabilizer. This work innovates by offering 
a concise representation of most features of mood disorders 
in existing mathematical models, providing a framework for 
studying dynamics in the bipolar spectrum. 

Index Terms— Bipolar spectrum, dynamical systems, mood 
disorders, psychology, stability. 

I. INTRODUCTION 

B IPOLAR disorders are prevalent and disabling men-
tal disorders that have received significant attention 

from clinical (e.g., psycho/pharmacotherapy), scientific (e.g., 
genetic or neurotransmitters), and technological [e.g., electro-
convulsive therapy (ECT) or repetitive transcranial magnetic 
stimulation (rTMS)] perspectives [1], [2]. Foundational to this 
work is mathematics (e.g., statistics or electromagnetic theory 
for the axon) and engineering (e.g., electrical engineering for 
rTMS/ECT devices). Here, we use a mathematical (nonlinear) 
dynamical system model to integrate scientific findings of 
bipolar disorders, characterize time trajectories of mood via 
nonlinear and computational analyses, and connect these to 
psychotherapeutic practice. Psychodynamic processes have 
been analyzed from the dynamical systems perspective, par-
ticularly the mood “swings” in bipolar disorders or recurrent 
depression, as will be detailed in the following. Our approach 
is a qualitative synthesis of multiple existing experimental 
studies in a dynamical systems-level representation. We build 
on, then move past, the reductionistic paradigm. 

The mathematical and computational modeling and analysis 
of mood have been studied using different approaches. In [3], 
the bipolarity of mood is characterized using a thermody-
namics perspective, and fixed, periodic, and chaotic attractors 
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are discussed. While no mathematical models were used, 
such dynamics are partially supported by the self-report data 
from bipolar patients analyzed in [4], which shows that mood 
swings are not truly cyclic, but chaotic. Studies that employed 
specifically designed experiments to validate their models are 
mostly limited to drift-diffusion models on binary choice 
(“Flanker task”), studying the role of rumination, attention, 
and executive functions in mood disorders [5], [6]. How-
ever, these studies are constrained to only specific features 
of mood. On the other hand, nonlinear stochastic models 
have been constructed to represent several dynamic features 
of mood disorders, with different levels of connection to 
neurobiological and psychological determinants. The effects 
of noise on bifurcations and episode sensitization in mood 
disorders have been described with linear oscillator models 
[7], [8]. In [9] and [10], bipolarity is envisioned as arising 
from two possible types of regulation of a bistable system 
that results in mood oscillations characterized by two vari-
ables, depression and mania, with some connections to mood 
disorder determinants and therapy. Analysis in [11] consid-
ered a nonlinear limit cycle model of mood variations based 
on biochemical reaction equations. In [12], a model of the 
behavioral activation system (BAS), linked to bipolar disorder 
episodes, is constructed via a nonlinear stochastic model. The 
work studies monostability and bistability of mood oscillations 
by comparing simulations with empirical and observational 
data. Mood regulation is analyzed in [13] with an inverted 
pendulum model, and therapy interventions are represented 
as feedback controllers. The mixed state is accounted for 
in the oscillator model in [14]. While these studies focus 
on a particular subset of depressive disorder determinants 
using up to two state variables, integrative dynamical models 
accounting for biological and psychological determinants of 
depressive disorder were proposed in [15], with an emphasis 
on psychosocial states and, in [16], with an emphasis on 
neurobiological factors. Additional models considering depres-
sion are in [17] where a finite-state machine is used and in 
[18] with a stochastic model of random aspects of mood. 
Also, other general computational/mathematical models are 
used in psychiatry and psychology (e.g., see [5], [19], and 
[20]) relevant to the abovementioned models. However, all 
the abovementioned studies are limited in terms of experi-
mental model validation and computational and mathematical 
analysis. 

In this article, unlike the past research mentioned earlier, 
the mathematical model represents a broader range of features: 
1) euthymia, mania, depression, the mixed state, anhedonia, 
hedonia, and flat or blunted affect, all on a continuum of 
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numeric values that represent the extent to which someone 
possesses a mood characteristic or its “severity level”; 2) mood 
dynamics for smooth variations between mood states, e.g., 
mania to euthymia to depression, and back, and severity levels 
for these as mood changes continuously; and 3) “attractors” 
that mood can fall in to and get stuck (e.g., in a severely 
depressed state), parameterized in terms of a person’s diagno-
sis (e.g., BD-I or MDD), and other characteristics of a person 
(defined below); some justification for such attractors approach 
is given in [21] where such basins were found experimentally 
for a group of depressed of patients. A computational analysis 
of mood attractors is given for multiple cases on the bipolar 
spectrum (e.g., for BD-I, BD-II, cyclothymia, and MDD with 
attractors for euthymia, depression, mania, and the mixed 
state). This shows how the characterization of mood disorders 
here can be related to a “dimensional diagnosis,” i.e., when 
mood stays in certain regions or visits a region for some length 
of time, a specific type of disorder is indicated. Also, unlike the 
abovementioned work, our mathematical model and analysis 
provide conditions for when a person will return to euthymia 
no matter how their mood is perturbed, i.e., when euthymia is 
a “global” mood attractor. It is explained how these conditions 
have clinical implications, in psycho and pharmacotherapy, 
to stabilize a person to euthymia. Also, our analysis provides 
a novel explanation of the mechanism underlying the mood 
stabilizer [e.g., lithium carbonate (Li2CO3)], which illustrates 
how it changes from being an antimanic to antidepressant 
agent, and also how it operates in the mixed state, serving 
simultaneously as an antimanic and antidepressant agent. 
These results resolve the statement where researchers identify 
the “…paradoxical effects of Lithium as both an antidepressant 
and antimanic agent” [1]. Next, via simulations, it is shown 
that, for some persons with bipolar disorder under a depression 
episode, antidepressants’ administration could result in a mood 
trajectory that moves to the fully manic state. 

To the limit scope of our work, we ignore: 1) details of 
emotion regulation and “fast” dynamics of emotions that occur 
on a time scale of less than 2–5 s [22] (but do consider 
the longer term influence of emotions on mood as in [23]); 
2) effects of stress (e.g., see [24]); 3) mood-congruent attention 
(see [1], [23], and [25]); 4) positive/negative rumination and 
interepisode features (e.g., [26] and [27]); 5) BAS/behavioral 
inhibition system (BIS) sensitivity (e.g., [28] and [29]); 6) goal 
pursuit (e.g., [30]) and goal dysregulation [31]; and 7) “slow” 
dynamics that occur on a time scale of multiple years (e.g., 
seasonal influences [1], [32]). We broadly exclude the neural 
level, but the model nonlinearities are informed by it via 
referenced scientific studies. 

This work aims to uncover principles of mood dynamics 
common across the spectrum. We include features via how 
they influence mood, not via an explicit model of their 
dynamics (e.g., a dynamical model of emotion regulation 
dysfunction or the coupling between mania and sleep). Our 
ability to consider cross-spectrum issues arises due to the use 
of a “dimensional approach,” as opposed to the “categori-
cal” one in [33], since a comparative analysis of these two 
approaches for modeling work is beyond the scope of this 
article. 

II. METHODS 

A. Mood States, Trajectories, and Regions 

The mood is represented in two dimensions here; however, 
consider briefly the 1-D case where the mood state is sim-
ply a scalar. Let Dt × 0 and  Mt × 0 represent  the  
severity of depression (respectively, mania) at time t × 0 
(these are “diagnosis-level” variables, not specific symptoms). 
Consider Fig. 1(a) (see caption first), but ignore everything 
except the red/blue vertical line. Place both Dt and Mt 
on this line (one dimension). Thinking of depression and 
mania as opposites, assume that Dt is measured on the 
blue vertical axis and Mt on the red vertical axis. “” 
represents normal/euthymic. If Dt starts at normal and its 
severity increases, mood decreases in the downward direction 
along the blue line (toward a bottom “pole”). If Mt starts at 
normal and its severity increases, the mood point increases in 
the upward direction along the red line (toward the other pole). 
Representing mood in this manner allows for the colloquial 
manner of discussing “mood swings” going “up and down” 
that ignores the mixed state. 

The “mood state” [1] is represented here via two inde-
pendent variables at time t × 0, depressive mood Dt, and  
manic mood Mt. Numerical values and scales could result 
from standard instruments for measuring depression (e.g., 
BDI or HAM-D; see [34]), mania (e.g., YMRS; see [1]), or the 
mixed state (e.g., see [35] and [36]). Here, we assume that the 
numeric results from such instruments are aggregated or scaled 
so that they take on values between zero and one. Then, 
the variables Dt and Mt can be represented on a standard 
Cartesian plane (2-D plot), with the horizontal being Dt and 
the vertical Mt. Then, all combinations of severity levels for 
depression and mania can be represented via Dt and Mt, 
with values between zero and one (i.e., Dt  0 1 and 
Mt  0 1) representing, in general, the mixed state when 
the two variables are nonzero (i.e., Dt > 0 and  Mt > 0). 
In Fig. 1, we rotate the standard 2-D axis by 45 to obtain a 
“mood plane.” There are three advantages to this rotation: 1) 
the resulting mood plane generally corresponds to traditional 
descriptions of mood disorders, such as BD-I, where mania 
corresponds to “up” and depression corresponds to “down”; 
2) the mood plane highlights not only “bipolarity” of BD-
I but also the mixed state and flat affect poles; and 3) it 
conceptualizes euthymia as a type of mixed state where there 
is a normal mix of emotions that create that state. 

Next, consider the mood plane in Fig. 1(a). Different mood 
states are represented with black dots. Mood change directions 
are represented by the arrows (vectors). For example, if the 
mood state represents low depression and hypomania (dot, 
upper left), the vector represents that depression stays constant, 
but mania increases. The black dot (again, upper left plot) in 
the center/bottom represents that someone is in a mixed state 
with more depression than mania, and the vector pointing 
up means that depression is decreasing at the same rate 
as mania is increasing. In Fig. 1(b), the mood state is in 
a euthymic region (black circle centered at the green dot), 
with “normal” defined for a person or population (refer the 
following). A “mood trajectory” is a time-sequence of mood 
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Fig. 1. For each figure, we rotate the standard 2-D axis by 45 to obtain a “mood plane.” (a) 1-D and 2-D representations of mood. (b) Mood state is in a 
euthymic region (black circle centered at the green dot). (c) Mood trajectory example with mood starting in a manic/mixed state and decreasing to euthymia 
with mood lability. (d) Regions on the mood plane of maximal mood variations for each of the bipolar spectrum disorders [1], [33]. 

states. Fig. 1(c) shows a mood trajectory example, with mood 
starting in a manic/mixed state (upper right) and decreasing to 
euthymia, but with mood lability (see [37] for a discussion on 
this case); many other mood trajectories will be considered in 
the following. 

Fig. 1(d) shows regions on the mood plane of maximal 
mood variations for each of the bipolar spectrum disorders 
[1], [33]. The general description of disorders on the mood 
spectrum as vertical lines representing mood variations has, 
e.g., a longer vertical line for BD-I than, e.g., cyclothymia, 
such as mood swings over a wider range for BD-I (e.g., see [1, 
pp. 22 and 23, Fig. 1-1]). When considering the mood plane, 
the mood variation region for one disorder (e.g., cyclothymia) 
is a subset of another disorder (BD-I), but this is only in 
terms of mood variation. An “ordering” of the disorders on 
the spectrum analogous to the one in [1] holds but now in 
terms of subsets. The dimensional characterization of mood 
disorders in Fig. 1(d) is related to the one used in [38, p. 145, 
Fig. 8.1]. 

Let the fixed constants nd  0 1 and nm  0 1 represent 
a point in the mood plane. Referencing this point, other mood 
features can be added to the mood plane cases in Fig. 1: 

1) Euthymia: For nd  0 1 and nm  0 1, we assume 
that, if Dt  nd and Mt  nm , this describes 

“normal” or “euthymic” mood [1], [34]. The values 
of nd and nm could be specified for an individual 
via assessment or a population by averaging individual 
assessments. As an example, in Fig. 1, nd  nm  0(1 
is used to represent the center of an euthymic region. 

2) Extreme Mood States: Dt  1 or  Mt  1 represents  
maximally severe depression (respectively, mania), and 
if Dt  Mt  1, this represents a maximally severe 
mixed state [33]. 

3) Mixed States: Intermediate values of Dt and Mt 
represent mixed mood states. If nd  nm  0(1, mixed 
state examples include the following. 

a) Dt  0(75 and Mt  0(1 representing very 
depressed but no mania compared with normal 
(e.g., an MDD state). 

b) Dt  0(2 and  Mt  0(1 representing light 
depression but no mania compared with normal 
(e.g., a dysphoric state). 

c) Dt  0(25 and Mt  0(25 representing 
moderate depression compared with normal and 
moderate mania compared with normal (e.g., as in 
a mixed state in cyclothymia). 

d) Dt  0(1 and  Mt  0(4 representing no 
depression compared with normal but hypomania 
(e.g., as in BD-II). 
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e) Dt   0(75 and M t   0(75 representing a 
mixed state (e.g., in BD-I). 

4) Absence of Depression and/or Mania: Dt   0 
(M t   0) represents the total absence of depression 
(respectively, mania), and if Dt   M t   0, this 
represents “flat affect” [33]. Dt  × 0 with M t   0 
represents “anhedonia.” Dt   0 with M t  × 0 
represents “hedonia” [1]. 

B. Mood Dynamics and Equilibria 

The time units adopted in this work are days. We are 
considering adults who do not experience full-range mood 
swings within 24 h [1]. Even though mood can vary with 
time, for simplicity, we frequently drop the notation for time 
dependence and use D and M (similarly, for other variables). 

Mood dynamics are represented by the differential equations 

d D  

dt  
 Sd D M ud  

d M  

dt  
 Sm D M um  (1) 

with nonlinear functions Sd D M ud  and Sm D M um  
specifying the rates of change of mood (derivatives, d D)dt 
and d M)dt), where ud t  and um t  are the internal/external 
inputs to the depressive and manic dynamics, respectively, e.g., 
from stimuli psychophysiological response systems. 

Consider the “unforced” mania mood dynamics, that is, 
without the influence of depressive mood or other external 
inputs and outputs so that  M  d M)dt  Sm 0 M 0. 
Define 

M  bm 
am M  nm  cm 

2 

am M  nm  cm 2  1 

 dm 
fm M  nm  gm 

2 

fm M  nm  gm 2  1 
 hm M  nm ( (2) 

In the depressive case,  D  Sd D 0 0 is defined in an 
analogous manner. Solutions to these differential equations 
exist and are unique since Sm and Sd are continuous and satisfy 
the Lipschitz conditions. The double-sigmoid concept has been 
employed to model systems with multiple equilibria, of which 
possibly the most representative and relevant to our work is the 
Wilson–Cowan model of the interaction between populations 
of excitatory and inhibitory neurons [39]. To illustrate why 
the shape of the nonlinear function Sm 0 M 0 represents 
key features of mood dynamics, consider an example. Let 
nm  0(5, bm  0(07, dm  bm , cm  0(34, gm  cm , 
am  29, fm  am , and  hm  0(19. Fig. 2(a) shows the 
linear decay line (blue, diagonal, see the third term in (2) 
versus M ), the sum of the rational functions that compose 
the double-sigmoid (red, see first two terms in (2)) versus 
M ), and  M  Sm 0 M 0 versus M [magenta, right-hand 
side of (2))]. For the linear decay (blue) plot, for a given 
value of M × nm (M < nm ) on the horizontal axis, there is 
a negative (positive) value moving mood down (respectively, 
up); that is, hm M  nm  tries to stabilize mood to normal. 
The first two terms in (2) versus M , the red line, have: 1) 
no influence at M  nm ; 2) an increasing positive (negative) 

Fig. 2. (a) Unforced manic mood dynamics functions. (b) Basins of 
attraction for equilibria via integration of Sm 0 M 0 and interpretation of 
each attractor. 

influence on mood change as M moves to intermediate values 
above (below) M  nm representing destabilizing effects 
on mood (e.g., making  M positive when M > nm so it 
increases further); and 3) a lower positive (negative) influence 
on mood change as M moves above the peaks in the red line, 
representing destabilizing effects on mood that are weaker 
for high values of M . The   M  Sm 0 M 0 versus M case, 
the magenta line, is the sum of all three right-hand side terms 
in (2), which are the red line and the negative of the blue line. 
Notice that, by plotting the linear decay versus M , we can see 
the intersection points in Fig. 2(a), which are the five points 
on the magenta line that cross zero. These zero points identify 
M values where  M  Sm 0 M 0  0, that is, where there 
is no change in mood, up or down (these are “equilibria”). 
For instance, at M  nm ,  M  Sm 0 M 0  0, so that 
when the person is at normal, and there are no influences from 
depression or internal/external inputs, and then, the mood will 
stay at normal. 

C. Basins of Attraction for Mood 

To visualize the dynamics in the vicinity of the five equilib-
ria, imagine drawing arrows on the horizontal axis of Fig. 2(a), 
with the directions indicating how M will change, as specified 
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by the sign of  M , for each value of M  0 1. For example, 
for M values just above (below) nm  0(5, the arrow will 
point to the left (right) since  M  Sm 0 M 0 <  0 (  M  
Sm 0 M 0 >  0, respectively), and this shows graphically 
that nm  0(5 is an asymptotically stable equilibrium point. 
Since such arrows will move away from the point to the right 
of nm  0(5 where the bottom of the valley exists, it is called 
an unstable equilibrium point (if the M value is to the left of 
the bottom of that valley, M will decrease toward nm , but,  if  it  
is to the right of the bottom of the valley, M will increase, 
moving away from the valley bottom). Similar analyses work 
for the other three cases where Sm 0 M 0  0. 

For another way to view the dynamics and equilibria, 
consider (1) and (2), and taking a continuous-time gradient 
optimization perspective on the mania dynamics, we let, for 
any M 0  0 1 and all t × 0 

d Mt 

dt  
  

 J M  

M 

    
MMt 

 Sm 0 M t  0 

where  >  0 is a constant “step size” and J M  is the 
(“potential”) function to be minimized; one that must be 
chosen so that the dynamics specified by (1) are matched by 
this equation. Independent of time t × 0, for any M  0 1, 
integrating the two right-hand side terms of this equation, 
we get 

J M   
 M 

0 

 J  

  
d    

1 

 

 M 

0 
Sm 0   0d( 

For   1, the plot of J M  is  shown in Fig.  2  where there  
are “basins of attraction” (valleys) for euthymia, anhedonia, 
and euphoria (in the depression case, there are basins for 
euthymia, hedonia, and dysphoria, with some justification for 
this in [21]). The gradient optimization perspective says that, 
if mood is perturbed from the bottom of one of these basins, 
it will move to go “down hill” until it reaches the bottom 
of the basin. Hence, the bottoms of these basins “attract” the 
mood trajectory M t  if it is in its vicinity. The peaks on the 
two hills represent “unstable” points where, if M is perturbed 
even slightly to the left or right, the mood will tend to move 
to the left or right more, and hence, M will move away from 
the peak—the tendency is always to move down the J M  
function if it is not at a peak. 

Mood shifts between basins in Fig. 2 has been linked to 
external and internal stimuli, such as stressors, sleep, and 
seasonal patterns, and the response to these stimuli by other 
internal processes, such as physiological arousal or BAS/BIS. 
For instance, in Fig. 2, if mood M starts at euthymia, it is 
important to know if other variables (e.g., stress and sleep 
deficits) can move it out of the euthymia basin, to the right, 
over the hill, and then down/farther to the right to end up at 
euphoria. Alternatively, in the analogous diagram to Fig. 2 for 
depression, if mood M starts at dysphoria, it is important to 
know if other variables (e.g., an antidepressant) can influence 
it to move it out of the dysphoria basin, to the right, over 
the hill, and then down/farther to the right to end up at 
euthymia. In [40], two main processes are identified in the 
dynamics of depression: neurobiological processes responsible 
for mood-congruent cognitive biases in attention, processing, 
rumination, self-referential schemes, and attenuated cognitive 

control to correct these biases. Along those lines, we argue 
that a basin’s size is mostly affected by the degree of biased 
processing of relevant stimuli. For example, increased process-
ing of negative stimuli by limbic structures in major depressive 
disorder, which contributes to a reduced stressor tolerance and 
a reduced threshold for mood switching, is represented by a 
narrow normal equilibrium basin and wide basin for dysphoria, 
in the depressive mood case. Also, a basin’s depth could be 
correlated with the reinforcing elements of mood disorders that 
maintain mood in the basin, increasing abnormal episodes’ 
duration. In this case, biased self-reference schemas, mood-
congruent attention, and maladaptive strategies, such as rumi-
nation, could increase the abnormal equilibria’s basin’s depth. 

Decreasing the parameters am and fm has a larger effect 
in increasing the depth ratio between the abnormal and 
the normal basins’ depth. Therefore, low values of these 
parameters indicate a higher effect of mood-congruency on the 
cognitive biases, in the abnormal basins. This could increase 
the duration of episodes of abnormal mood compared with 
the duration in normal levels. Decreasing cm and gm has a 
greater effect in displacing the unstable equilibria, decreasing 
the euthymic basin’s size. Thus, low values of cm and gm 

reflect biased processing and low switching thresholds to 
abnormal mood. An increase in bm and dm increases both the 
abnormal basins’ depth and size. Thus, high values in these 
parameters represent high severity of the cognitive biases and 
self-referential schemas that attract mood to the abnormal 
equilibria, leading to the long duration or even chronic 
episodes due to the difficulty of escaping the basin. Low hm 

can be associated with attenuated regulatory processes in the 
prefrontal cortex that regulate mood [40]. 

III. RESULTS 

A. Stabilization to Euthymia 

Here, we provide a narrative on the main theoretical result 
of this work. 

Theorem 1 Equivalence of Qualitative Properties: Consider 
the unforced and coupled mood dynamics given by 

D  bd 
ad D  nd  cd 

2 

ad M  nd  cd 2  1 
 dd 

fd D  nd  gd 
2 

fd D  nd  gd 2  1 
 hd D  nd   qd M  nm  

M  bm 
am M  nm  cm 

2 

am M  nm  cm 2  1 

 dm 
fm M  nm  gm 

2 

fm M  nm  gm 2  1 
 hm M  nm   qm D  nd ( (3) 

and assume that the mood profile is symmetric as in Fig. 2(a), 
with bi  di , fi  ai , and  gi  ci , with fi > 0 and  gi  0 
for i  d m. Then, the point nd  nm  at euthymia is globally 
asymptotically stable if 

 

hd  
dd 

gd 

 

hm  
dm 

gm 

 

> qd qm ( (4) 

Proof: We begin by showing that the point in euthymia is 
an equilibrium of the system. At nd  nm , the rate of change 
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of the unforced mood dynamics in (3) is 

D  bd 
adc 2 

d 

adc 2 
d  1 

 dd 
fd g2 

d 

fd g2 
d  1 

M  bm 
amc2 

m 

amc2 
m  1 

 dm 
fm g2 

m 

fm g2 
m  1

( 

When bi  di , fi  ai , and  gi  ci for i  d m, then  
 D   M  0, and nd  nm is an equilibrium point. To analyze 

the stability of this equilibrium point, we propose the change 
of variables xd  D  nd and xm  M  nm , obtaining 

xd  zdxd  qd xm 

xm  zmxm  qm xd (5) 

where 

zi xi   

 

hi  
4 di fi gi 

pi xi  

 

xi 

and 

pi xi    fi xi  gi 2  1 fi xi  gi
2  1 

for i  d m. We will proceed in two steps to prove global 
asymptotic stability of euthymia. First, we will find a Lya-
punov function for the uncoupled case when qd  qm  0, 
and in a second step, we will prove stability of the coupled 
system using the M-matrix results from [41]. Note that when 
qi  0, then, by the assumption in (4), we have that hi > di )gi 

for i  d m. Furthermore, we have that pi xi  × 1, and it 
is a polynomial of degree four, implying that the vector field 
in (5) is continuously differentiable everywhere. Furthermore, 
using the fact that minxi R pi xi  4 fi g2 

i > 0, we have for 
i  d m  

hi  
4 di fi gi 

pi xi  

 

× 

 

hi  
4 di fi gi 

minxi R pixi  

 

 

 

hi  
4 di fi gi 

4 fi g2 
i 

 

 

 

hi  
di 

gi 

 

( 

Then, when qi  0, we obtain that xi zi xi  > 0, ±xi  0, 
and zi 0  0 for  i  d m. Consider the function Vi  R  R 

Vi xi   
 xi 

0 
zi ydy  

for i  d m. The function Vi xi  is continuously differen-
tiable, Vi 0  0 for  i  d m, and  xi      implies that 
Vi xi   . Furthermore, using the fact that xi zi xi  > 0 for  
all xi  0 and  

xi  0 min 
xi R 

zi xi  
 xi 

0 
zi ydy  

we obtain that Vi xi  >  0 for  all  xi  0, for i  d m. 
Therefore, Vi xi  is a Lyapunov function candidate for the 
corresponding subsystem in (5) when qi  0, for i  d m. 
Furthermore, the derivative of Vi xi  along the trajectories of 
the corresponding subsystem for i  d m is 

Vi xi   
Vi 

xi 
zi xi  z2 

i xi   

 

hi  
di 

gi 

2 

x2 
i < 0 

for all xi  R  0. Therefore, the point x  xd xm  0, 
which corresponds to the equilibrium at euthymia in nd nm, 

is globally asymptotically stable when qi  0 for  i  d m. 
The second step is to employ the later result to prove that 
x  0 is globally asymptotically stable when qi  0 for  i  
d m in (5). To achieve that, we will employ the result [41, 
Th. 9.2] for interconnected systems. We choose i xi   xi 
and obtain, for i  d m 

Vi 

xi 
zi xi  z2 

i xi   

 

hi  
di 

gi 

2 

xi 2  i  2 
i xi      

Vi 

xi 

     zi xi  

 

hi  
di 

gi 

 

xi   i ixi  

where we define 

i  

 

hi  
di 

gi 

2 

i  hi  
di 

gi 
( 

Furthermore 

qd xm  qdmxm  dd dxd  dmmxm 

qm xd   qmdxd  mmmxm  md dxd 

where 

dd  mm  0 dm  qd  md  qm( 
Therefore, the matrix S is given by 

S  

   d  ddd ddm 

mmd m  mmm 

    

 

       

 

hd  
dd 

gd 

2 

 

 

hd  
dd 

gd 

 

qd  

 

 

hm  
dm 

gm 

 

qm 
 

hm  
dm 

gm 

2 

       
( 

The point x  0 is globally asymptotically stable for the 
system in (5) if the determinant of matrix S is positive. Using 
the assumption in (4), we obtain 

detS  

 

hd  
dd 

gd 

2 

hm  
dm 

gm 

2 

 

 

hd  
dd 

gd 

 

qd 
 

hm  
dm 

gm 

 

qm > 0( 

 
Theorem 1 states that a sufficient condition for the stability 

of the equilibrium at euthymia of the unforced mood dynamics 
represented in (3) is that there exists a lower bound on the 
regulation rate hd and hm , given  by   

hd  
dd 

gd 

 

hm  
dm 

gm 

 

> qdqm (6) 

which is independent of fd and fm . The parameters qd and 
qm represent the strength of the coupling between manic and 
depressive mood. This result shows that the maximum slope 
of the sigmoids in the equilibrium corresponding to euthymia 
is given by di )gi for i  m d . Hence, this is analogous to 
saying that, when the mood regulation rate is large enough that 
it can regulate the cognitive biases, the multistability (e.g., 
equilibria at euphoria and anhedonia) disappears. Larger hi 

for i  d m can be obtained via psychotherapy that promotes 
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Fig. 3. Vector field diagrams along the depressive and mood axes of unforced dynamics in (2) for (a) BD-I, (b) BD-II, (c) Cyclothymia, (d) MDD, and (e) 
rapid cycling. Red arrows indicating the direction of mood change for different points in the mood plane. The blue lines represent trajectories with circles at 
their initial conditions and squares as their final state at time T  10 days. Squares correspond roughly to stable equilibria of the unforced dynamics, except 
for rapid cycling in case (e), where mood oscillates with periods of approximately six days. 

awareness of cognitive biases and tools to regulate emotions 
and mood, as well as pharmacotherapy that targets biological 
determinants of the prefrontal cortex activity, such as serotonin 
levels. The meaning and effects of these parameters are 
discussed more in [40], [42], [43]. 

B. Mood Trajectories for Various Mood Disorders 

The differential equation model is flexible enough to rep-
resent several of the most important mood disorders in the 
DSM-5. Fig. 3 shows the vector field diagram of the unforced 
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TABLE I 

PARAMETER VALUES IN FIG. 3  

dynamics in (2) for BD-I, BD-II, cyclothymia, and MDD, 
with red arrows indicating the direction of mood change for 
different points in the mood plane. The blue lines represent 
trajectories with circles at their initial conditions and squares 
as their final state at time T  10 days. By altering the size 
and depth of the basins of attraction for the equilibria, for both 
the depressive and manic dimensions (as in Fig. 2), we can 
create equilibria at asymmetric locations in the mood plane. 
The model parameters employed for each diagnosis can be 
found in Table I. For BD-I in Fig. 3(a), there are four stable 
equilibria marked with squares, namely, normal/euthymia at 
nm  nd  0(5, depression, mania, and mixed states where the 
trajectories may converge. Note that the rate of convergence 
matches the onset times given in the literature, which are, 
on average, three days for mania and seven days for depression 
[1]. The vector field diagram of BD-II features an equilibrium 
at hypomania and major depression and is generated by 
reducing the severity of mania, i.e., increasing the value of 
the difference hm  dm )gm , while the cyclothymia vector 
field depicts equilibria at hypomania, and mild depression, 
as well as in the mixed state, but with increased basin depths 
to reflect the extended episodic durations in these disorders. 
MDD features only two equilibria in the normal and major 
depressive episodes, generated by eliminating the abnormal 
equilibria along with mania. 

The coupling parameters qd  R and qm  R provide the 
existence of a mixed state, as well as a way to model the 
cyclic nature of bipolar disorders. Simulations revealed that, 
by setting opposite signs and increasing the magnitude of 
the coupling parameters, the reinforcement effect introduces 
oscillations analogous to what is seen in rapid cycling. The 
vector field diagram in Fig. 3(e) was obtained based on the 
BD-I parameters but increasing the coupling parameter three 
times, i.e., qd  qm  1(05. 

C. Pharmacotherapy and Triggering Mania 

The effects of pharmacotherapy are modeled as an external 
input ut   ud t  um t  in (1). For example, the effect 
of a mood stabilizer, such as lithium, can be modeled as an 
additive term in (2) with ud t   K d Dt   nd  and um t   

Fig. 4. (a) Trajectory (blue) in the BD-I mood plane. (b) Mood episode shift 
from depression to mania after treatment with antidepressant. 

K m M t   nm . Simulation results presented in Fig. 4 show 
the effects of administering antidepressants to a BD-I patient, 
misdiagnosed with MDD during a depressive episode. Fig. 4(a) 
shows the mood trajectory in the mood plane, while Fig. 4(b) 
shows the time trajectories for depressive mood in blue and 
manic mood in red. The initial mood state corresponds to 
the depression episode equilibrium, and on the second day, 
an antidepressant is administered for two days, modeled here 
as an additive, constant negative input in depressive mood and 
a smaller, additive positive input in manic mood in (2). Even 
after stopping the medication, manic and depressive mood 
are attracted to the equilibrium representing mania, which, 
according to the DSM-5, constitutes sufficient evidence for 
a BD-I diagnosis. 

IV. CONCLUSION 

We introduced a general ODE model for disorders on 
the bipolar spectrum. Via the Lyapunov stability analysis, 
we show conditions by which mood is guaranteed to return 
to euthymia if perturbed off this mood state. We discussed 
the stability result from the perspective of psychodynamics 
and psychotherapy. Via computational analysis, we simulated 
the mood switch from depression to mania when bipolar 
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disorder is misdiagnosed as major depressive disorder, and an 
antidepressant is administered without a mood stabilizer. The 
most critical and challenging direction is to expand the model 
and validate it against experimental data. Parameter estimation 
can be performed on more tractable approximations of the 
model presented here, including piecewise linear affine or the 
Markov jump linear systems. To estimate these models, inten-
sive longitudinal data on bipolar disorder symptoms, e.g., 
from ecological momentary assessments or daily logs, can be 
employed [44], [45]. 
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