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A B S T R A C T 

Suppose you have an inexpensive plant (process) that you have many copies of, and where each requires 
feedback control to achieve good closed-loop performance. There is then a feedback controller design challenge 
for each plant. The traditional approach to such a design is to use linear or nonlinear methods for one copy of 
the plant and implement the designed controller on each copy of the plant. The hope is that the original design 
is robust so it performs well on all copies. Here, we assume that the plants can be connected on the internet 
of things and introduce a novel strategy to design, in a distributed fashion, controllers for each plant where 
the design of the controller for each plant is informed by the success of the designs of all other controllers. We 
show that a type of robust controller can be designed over the internet of things. Our methods hold promise 
in practical commercial applications. 

1. Introduction 

The ‘‘internet of things’’ (IoT) is the interaction between devices 
to sense the environment, interpret the information, and react to real-
world events autonomously with or without human intervention over 
a network (Vermesan and Friess, 2011). It promotes the idea that an 
increasing number of devices are being connected to the internet which 
allows more efficient monitoring and control of these devices (Anzelmo 
et al., 2011). Furthermore, smart systems, like the smart lights studied 
here, are some of the building blocks for the IoT (Kortuem and Kawsar, 
2010). With mobile TCP/IP communication in hand, mobile devices 
such as those in control systems of automobiles, aircraft, and trains can 
be connected to the IoT to improve various aspects of travel (Ernst and 
Uehara, 2002). Automobiles can be connected over the IoT to receive 
updates to controllers such as ones for climate control or cruise con-
trol for optimal performance over all connected vehicles. Also, home 
appliances, such as refrigerators, ovens, and washing machines, will be 
able to communicate with each other to reach optimum performance 
in each home connected to the IoT. 

There is a vast list of possible applications which will benefit from 
the IoT, and, with the growing number of devices connected, a more 
robust controller of these devices can be designed through a distributed 
non-gradient optimization method. The growing number of devices 
connected to the IoT translates to a growing number of controllers 
connected to the IoT. It is expected that the non-gradient algorithms 
provide near optimal design for large sets of controllers, such as those 
prevalent in the IoT. If this expectation is confirmed, it is hoped that 
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the non-gradient algorithms tested here can be adapted to design many 
feedback control systems in the IoT more complex than the control 
system tested in this article. 

Distributing control systems over a network allows for them to 
be monitored, accessed, and changed in real-time. In this article, a 
distributed non-gradient optimization algorithm is operated over a 
network to tune a large set of feedback controllers in a relatively large 
scale laboratory experiment of 40 lighting control systems through 
a centralized algorithm. A centralized algorithm is required to share 
and compare information from all controllers to determine the optimal 
design of the entire set of controllers and communicate the design to 
the other controllers for verification and improvements. A localized 
alternative would cause gaps in communicating optimal designs to 
other controllers. In the centralized algorithm tested in this article, it is 
shown that a ‘‘robust controller’’ emerges, one that performs well in all 
of the feedback control systems. By utilizing non-gradient optimization 
methods, this experimental approach to designing a controller removes 
the difficulties in modeling of complicated non-linear systems, and, 
thus, permits minimal system understanding to obtain a good solution 
with no need to consider manufacturing variances in system devices. 
Essentially, the information that is exploited in design is from a large 
set of operating control systems. 

Due to the lighting control systems being non-linear and stochastic 
and including significant delay, an analytical gradient cannot be de-
termined. Therefore, two standard non-gradient optimization methods, 
the genetic algorithm (GA) and the set-based stochastic (SBS) optimiza-
tion method, are tested in this experiment. Based on Darwin’s natural 
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selection theory, the GA is a non-gradient stochastic search method 
which allows multiple simultaneous search points to reach near a global 
optimum point. The SBS optimization method creates a set of search 
points centered about the best point of the previous generation to find 
a solution near the global optimum point (Passino, 2004). Although 
doubts about performance assurance surfaced in the past, these algo-
rithms have now reached a stage of maturity to solve complex and 
conflicting problems which used to be considered ‘‘deadlocked’’ (Man 
et al., 1996). The GA is now being successfully implemented in a variety 
of engineering applications from the classic inverted pendulum problem 
to complicated VLSI circuit design problems (Lee and Takagi, 1993; 
Dasgupta, 1997). Both of these algorithms have been shown to be 
appropriate methods for feedback control system design, resulting in 
stable optimal designs (Fleming and Purshouse, 2002). 

Smart lighting solutions have been an important topic in energy 
conservation with the potential of reducing energy costs by 50% in 
existing buildings (Rubinstein et al., 1993). Smart lighting has been 
successfully tested to reach desired light values through an illumination 
balancing algorithm (IBA) while being influenced by cross-illumination 
effects and ambient light sources (Koroglu and Passino, 2014). Further-
more, sensory nodes communicate illumination levels to the controller 
through a network to provide real-time changes over a large set of 
lighting systems. Due to the importance, experimental simplicity, and 
fast response times, smart light experiments provide an ideal system to 
test the use of distributed optimization algorithms for controller design 
over a network. 

2. Experiment: Distributed networked light control systems 

A proportional–integral (PI) controller sets the LED voltage, 𝑉𝑖𝑛 = 
𝑢(𝑡), in order to achieve the desired sensor voltage, 𝑉𝑜𝑢𝑡 = 𝑦(𝑡), in 
Fig. 1. Unlike the IBA experiments (Koroglu and Passino, 2014), cross-
illumination effects and ambient light sources are minimized by barri-
ers between each light source. Each light controller, 𝑗 = 1, 2, … , 𝑆 , has 
two gains, 𝐾𝑗 

𝑃 and 𝐾𝑗 
𝐼 , which are used to pick 𝑢𝑗 (𝑡) via 

𝑢𝑗 (𝑡) = 𝐾 𝑗 𝑃 𝑒
𝑗 (𝑡) + 𝐾 𝑗 𝐼 ∫

𝑡 

0 
𝑒𝑗 (𝜏 )𝑑𝜏 (1) 

where 

𝑒𝑗 (𝑡) = 𝑟 − 𝑦 𝑗 (𝑡), (2) 

where 𝑒𝑗 is the error input to the controller, 𝑟 is the reference input, 
and 𝑦𝑗 is the output of the plant. It is practical to choose a con-
stant illumination reference for all controllers as was done in the IBA 
experiments (Koroglu and Passino, 2014). Also, via extensive exper-
imentation, including system identification, we determined that the 
system is basically ‘‘type 0’’ so that adding an integrator and gain 
via PI control would result in zero steady state tracking error, and 
a fast response after tuning the proportional gain. In our adjustment 
algorithms below, we keep the PI gains positive so this is the case. 

In order to effectively use the distributed optimization algorithm 
to improve (tune/design) the feedback gains, a large population of 
control systems are necessary for the best results as this will provide 
for the evaluation of many alternative designs. Therefore, a control 
network was created with eight light control systems on each of five 
computers to achieve 𝑆 = 40 controllers reporting their performance 
calculations to the central computer as shown in Fig. 2 (it is generally 
difficult, in a university setting, to get many more control systems 
implemented simultaneously). Hence, it is the responsibility of each 
of the 5 computers to implement 5 feedback control systems, one for 
each light/sensor pair, and also perform control system performance 
evaluation as the feedback control system operates. Via TCP/IP another 
computer: (i) gathers performance information for the 5 computers, 
and (ii) computes the next design iteration. Then, it passes, via TCP/IP 
the new controller designs to the 5 computers. That is, using Mat-
lab, the central computer runs the optimization algorithm based on 

the performance of each controller and returns a new set of gains 
to the population of feedback controllers through real-time Simulink 
models using transmission control protocol/internet protocol (TCP/IP) 
communication methods. Other IoT implementation are possible using 
this overall design approach; the focus here is not on the particular 
implementation details (as these will change with the introduction of 
new technologies), but on the experimental approach to control design 
over a network, something that is novel as a control system design 
methodology. 

3. Closed-loop control system performance evaluation 

A population of controllers 

𝑃 (𝑘) = {𝜃 𝑗 (𝑘) ∶ 𝑗 = 1, 2, … , 𝑆 } (3) 

where 𝑆 is the number of controllers in the population and 

𝜃 𝑗 (𝑘) = 
[ 
𝐾 𝑗 𝑃 , 𝐾 𝑗 𝐼 

] 
. (4) 

At 𝑡 = 0, each ‘‘step’’ (run of the control system) initializes the LED 
voltage at 0 V and sets the feedback control gains per Eq. (4). Each 
feedback control loop generates a response with a 1 ms sampling time. 
This sampling time is sufficient for the illumination experiment while 
allowing the computer to process the values in real-time. The control 
system runs for only 1 s because any light controller that reaches the 
desired light level after 1 s is not a practical illumination source. Once 
step 𝑘 has completed, each local computer calculates the performance 
of its closed-loop system. The performance evaluation for each control 
system is 

𝐽 𝑗 (𝑘) = 𝑤 𝑠 𝐽 𝑗 𝑠 (𝑘) + 𝑤𝑜𝑠 𝐽 𝑗 𝑜𝑠 (𝑘) + 𝑤 𝑠𝑡 𝐽 𝑗 𝑠𝑡 (𝑘) + 𝑤𝑟𝑡 𝐽 𝑗 𝑟𝑡 (𝑘) (5) 

which is a combination of steady state Eq. (6), overshoot Eq. (7), rise 
time Eq. (8), and settling time Eq. (9) values according to 

𝐽 𝑗 𝑠 (𝑘) = 
|

|

|

| 

𝑠𝑗 − 𝑟 
𝑟 

|

|

|

| 
, 𝑠 𝑗 = 

1 
𝐿 

𝑡 𝑓
∑ 

𝑡=0.8𝑡 𝑓 

𝑦 𝑗 (𝑡) (6) 

𝐽 𝑗 𝑜𝑠 (𝑘) = 
max𝑡 {𝑦𝑗 (𝑡)} − 𝑠𝑗 

𝑠𝑗 
(7) 

𝐽 𝑗 𝑟𝑡 (𝑘) = 
𝑡 𝑗 𝑟 
𝑡𝑓 

(8) 

𝐽 𝑗 𝑠𝑡 (𝑘) = 
𝑡 𝑗 𝑠 

𝑡 𝑓 
(9) 

Here, 𝐿 is the number of steps in the last 20% of the signal 𝑦𝑗 (𝑡), 𝑡𝑗𝑟 
is the 10%–90% rise time, 𝑡𝑗𝑠 is the 2% settling time, and 𝑡𝑓 is the total 
test time of 1 s. The performance evaluation parameters were designed 
to be a percentage of a total. Therefore, the weights of this function 
(𝑤𝑠 , 𝑤𝑜𝑠 , 𝑤𝑠𝑡 , 𝑤𝑟𝑡 ) were each set to 100 to describe the percentage as 
can be seen later in the results. These weights may be adapted to place 
more emphasis on specific performance attributes, but this functionality 
in the performance calculation is not tested here. 

4. Non-gradient optimization methods 

4.1. Genetic algorithm optimization method 

Following a standard genetic algorithm (GA) optimization 
approach, the performance value for each controller is gathered and 
used to form a new generation of controllers. Each controller has an 
opportunity to exchange its PI gain values to the next generation of 
controllers through a process in which controllers are paired based on 

𝑝 𝑗 (𝑘) = 1 − 
𝐽 𝑗 (𝑘)

∑𝑆 
𝑖=1 𝐽 𝑖 (𝑘) 

. 
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Fig. 1. (a) Light sensor circuit design of feedback control system (right side) and light driver (left side). The voltage 𝑉𝑖𝑛 is applied to the LED by the controller and 𝑉𝑜𝑢𝑡 is the 
voltage from the sensor that is proportional to the light level. (b) Feedback control of light level. 

Fig. 2. Distributed feedback control systems over a network. Each set of plants has eight controllerly controlled light systems, which include eight LED–photocell pairs. A single 
computer’s eight physical plants are displayed in the image. The central computer algorithm provides each plant with next generation controllers. The controllers are tested and 
return their performance calculations to the central algorithm. 

98 



J.J. Zakelj and K.M. Passino Engineering Applications of Artificial Intelligence 82 (2019) 96–101 

Once two controllers have been paired, an exchange of gains may 
only occur at a crossover probability, 𝑝𝑐 . Once a pair of controllers is 
selected and 𝑝𝑐 allows for crossover to occur, the algorithm selects a 
single gain to be exchanged. Once a gain is selected, a specific digit of 
a gain is selected to be transferred from one controller to the other. All 
of the subsequent digits in that gain also transfer to the other controller 
to complete the process. 

The example in Fig. 3 shows the transfer of digits of a gain between 
two controllers, 𝜃5(𝑘) = [001.045, 010.012] and 𝜃9(𝑘) = [005.984, 026.973]. 
Notice that each gain always includes six digits with the decimal place 
between the third and fourth digit. The decimal location cannot be 
moved, and is therefore not considered in the exchange process. In this 
example, the crossover occurs at the fourth digit in the first gain to 
form the first controller of the next generation, 𝜃1(𝑘 + 1). Random pairs 
of controllers exchange gains 𝑆 times based on their 𝑝𝑗 (𝑘) probabilities 
to form a new generation of 𝑆 controllers. 

Once the crossover stage is complete, a new generation of con-
trollers, 𝑃 (𝑘 + 1), is ready to be tested on the physical plants. However, 
in order to allow for a more complete search for an optimal solution, 
a stochastic selection stage is included in the GA optimization method. 
For some low probability, 𝑝𝑚 , a controller’s gains are randomly rese-
lected to be tested in the next generation of controllers. This probability 
remains constant for all generations. 

4.2. Set-based stochastic optimization method 

The SBS optimization method also uses a population of controllers 
as described earlier in Eqs. (3) and (4); gathering the performance 
values of each controller defined in Eqs. (5)–(9) determines the next 
generation of controllers. However, this non-gradient algorithm selects 
the best designed controller, 𝑗 ∗ , from the previous generation, via 

𝑗 ∗ = arg min 
𝑗 

𝐽 𝑗 (𝑘) 

and creates a ‘‘cloud’’ of new controllers around the best controller by 
selecting the next generation of controllers via 

𝜃 𝑗 (𝑘 + 1) = 𝜃 𝑗 
∗ 
(𝑘) + 𝛽 𝑟 𝑗 (𝑘) 

where 𝑟𝑗 (𝑘) is a random number from a normal distribution with zero 
mean and unit variance and 𝛽 is a scaling factor. 

In this way, a cloud of controllers centered about the best controller 
is created as the next generation. However, since the best controller of 
the previous generation may not be the best solution for all controllers, 
a stochastic selection probability is again added to allow the algorithm 
to search randomly. Given the stochastic selection probability, 𝑝𝑚 , a 
random controller from the previous generation is selected for the next 
generation by 

𝜃 𝑗 (𝑘 + 1) = 𝜃 𝑗 (𝑘), 𝑗 ≠ 𝑗 ∗ 

However, instead of using a constant stochastic selection probability 
as done in the GA optimization method, this method adapts 𝑝𝑚 as the 
performance changes according to 

𝑝 𝑚 (𝑘) = 
1
10 

𝑆
∑ 

𝑗=1 

𝐽 𝑗 (𝑘) 

Here, 𝑝𝑚 is defined as 10% of the total performance of the previous 
generation. Due to the narrow search space of the SBS optimization 
method governed by 𝛽 , a varying stochastic selection probability is 
necessary to move the search away from local minima in early genera-
tions but decrease the probability in later generations when the cost is 
converging on an optimal point for all control systems. 

4.3. Time complexity 

The time complexity of the approaches are low enough to: (i) be 
implemented on current technology, and (ii) will scale well for other 
problems. Note that to compute the controls, first we need to compute 
the individual PI controller outputs for each of the low-level control 
systems. To do this, we need to implement the integrator, which in the 
computer is simply a summing operation. Next, we have to multiply 
the PI gains by that sum, and the error. These operations, however, 
are not done for all the feedback loops on one computer, they are 
done on the individual computers that implement the controllers for 
each case in a standard distributed computing fashion. Next, the control 
system performance evaluation must be done to compute 𝐽 𝑗 (𝑘) for each 
𝑘 ≥ 0. But, these calculations are simple as they involve standard 
low-demand operations (sums/differences, multiplies/divides, and a 
maximum), and most importantly these calculations are done for each 
lower-level control system, so that time-complexity is divided among 
the low-level control (computer) system implementations. Finally, we 
have to combine the results and use them in the genetic algorithm or 
non-gradient optimization method. First, note that we use a standard 
genetic algorithm; however, we do not iterate it between time steps. 
We force a time-step to correspond to a genetic algorithm optimization 
step. In this way, the time complexity is quite low, requiring standard 
genetic algorithm operations (survival of the fittest, cross-over, and 
mutation) only once per time step. Second, the case for the set-based 
stochastic optimization method has an even lower time complexity than 
the genetic algorithm; all that is need is computation of a maximum, 
and random number generation. Overall, the time complexity of this 
approach is low, making it scalable to application to other problems. 

5. Experimental results 

Since each system has unique circuit devices and construction, 
variances in individual control gain choices are expected to be found in 
this real-life system experiment. Therefore, the distributed optimization 
algorithms were tested on the light control systems repeatedly to 
represent a Monte Carlo method and to enable statistical analyses of 
the results. 

Here, one set of generations is considered a test, and a set of tests is 
one experiment. A test number is denoted by 𝑛, and the total number 
of tests is 𝑁 . Each controller initiates the test with a random pair of 
initial gain values on the set [0, 100]. Once a test completes the fixed 
amount of generations, the performance and gains are stored for future 
analyses. As described in Eq. (10), matrix 𝑀𝑛 

𝐽 stores the performance 
values for each controller in each generation. When the experiment is 
complete, each test matrix is averaged via Eq. (11) to acquire statistical 
data for each generation. Similarly, the gain matrices are created and 
averaged to form ̄ 𝐾𝑃 and ̄ 𝐾𝐼 in Eqs. (12)–(15), 

𝑀 𝑛 
𝐽 = 

[

𝐽 𝑗 (1), 𝐽 𝑗 (2), … , 𝐽 𝑗 (𝑘)
] 

𝑗 = 1, 2, … , 𝑆 (10) 

𝐽 = 
1
𝑁 

𝑁
∑ 

𝑛=1 

𝑀 𝑛 
𝐽 (11) 

𝑀 𝑛 
𝑃 = 

[ 
𝐾 𝑗 𝑃 (1), 𝐾 𝑗 𝑃 (2), … , 𝐾 𝑗 𝑃 (𝑘) 

] 
𝑗 = 1, 2, … , 𝑆 (12) 

𝐾̄ 𝑃 = 
1
𝑁 

𝑁
∑ 

𝑛=1 

𝑀 𝑛 
𝑃 (13) 

𝑀 𝑛 
𝐼 = 

[ 
𝐾 𝑗 𝐼 (1), 𝐾 𝑗 𝐼 (2), … , 𝐾 𝑗 𝐼 (𝑘) 

] 
𝑗 = 1, 2, … , 𝑆 (14) 

𝐾̄ 𝐼 = 
1
𝑁 

𝑁
∑ 

𝑛=1 

𝑀 𝑛 
𝐼 (15) 
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Fig. 3. GA crossover example. The fourth digit is randomly selected for crossover along with all subsequent digits to produce 𝜃1(𝑘 + 1) for the next generation of controllers. 

Fig. 4. Performance and gain statistics of the GA with 𝑝𝑐 = 80% and 𝑝𝑚 = 0.5%. This box 
plot contains the interquartile range from the first to the third quartile, the centerline 
of the box indicating the second quartile (median), the extended line representing the 
data set without the outliers, and the omission of any outliers for clarity. 

The plots in Fig. 4 show the result of a GA optimization method 

experiment, which consisted of 25 tests with 30 generations in each 

test. Fig. 4 shows the average performance matrix, ̄ 𝐽 , as well as the con-
vergence of the gain matrices, ̄ 𝐾𝑃 and ̄ 𝐾𝐼 . The algorithm converges to 

a high 𝐾𝐼 gain and a low 𝐾𝑃 gain for each controller. The performance 

converges to a low cost of less than 10% combined error, which mostly 

consists of a 18 ms rise time and a 71 ms settling time. Given that the 

photocell device specifications state a typical total rise time of 55 ms, 
the final performance of the population is near optimum based on the 

response of the system of a sample case shown in Fig. 5. Furthermore, 
the convergence to a thin interquartile range in Fig. 4 shows that the 

experiment was repeatable over the 25 tests. 
Using the same physical plant in Eqs. (1) and (2), population in 

Eqs. (3) and (4), performance function in Eqs. (5)–(9), and initial 
conditions as the GA optimization method experiment, a comparison 

can be made with the SBS optimization method. The plots in Fig. 6 rep-
resent the statistics of an experiment with 25 tests and 30 generations. 
Again, the experiment shows convergence to a low average ̄ 𝐽 as well 
as convergence to a desired set of gains. Also, the thin interquartile 

range for the performance and gains displays repeatability in all 25 

tests. In comparison to Figs. 4 and 6, similar but not identical results 

are obtained. 

Fig. 5. Response of a single control system with 𝐾 𝑃 = 0.767 and 𝐾𝐼 = 120.062. Response 
parameters: 𝐽 𝑟𝑡 = 0.018 s, 𝐽 𝑠𝑡 = 0.071 s, 𝐽 𝑜𝑠 = 4.922 × 10−4 , 𝐽 𝑠𝑠 = 4.842 × 10−4 , resulting 
in a total 𝐽 = 8.998. 

Fig. 6. Performance and gain statistics for the SBS optimization method with 𝛽 = 0.01. 
This box plot contains the interquartile range from the first to the third quartile, 
the centerline of the box indicating the second quartile (median), the extended line 
representing the data set without the outliers, and the omission of any outliers for 
clarity. 
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6. Conclusion 

Utilizing non-gradient optimization methods on light control sys-
tems over a distributed network, experiments were implemented on 
many feedback control systems and have shown convergence and ro-
bustness. It is important to understand that this distributed method 
using non-gradient algorithms does not guarantee robustness or optimal 
performance for more complex systems. This is a first step in distributed 
non-gradient control over the IoT. However, in this test of the non-
gradient algorithm, both non-gradient optimization methods selected 
desirable gains for the light control system even while inherent with 
noise, delays, and manufacturing differences. Moreover, all feedback 
control systems in the network had desirable responses, which shows 
a type of robustness. Finally, these non-gradient optimization methods 
allow control engineers to retrieve robust control designs without the 
need to model the system. 

The overall practical significance of this design method is that it 
sets a robust initial system while also being capable of maintaining 
robustness as the devices are sent out to the real world through con-
tinuous monitoring and adaption over the IoT. The ability to access, 
monitor, and change dispersed device controller designs in real time 
separates this design method from other conventional methods which 
design controllers then disperse the controllers without further design 
communication. It is hopeful that the distributed non-gradient opti-
mization methods discussed in this paper will be tested further and 
eventually used to improve the robustness of IoT applications through 
this centralized non-gradient design method. 
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