
420 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 3, MARCH 1997

Stable Scheduling Policies for Flexible
Manufacturing Systems

Kevin Burgess and Kevin M. Passino

Abstract—In this brief note we provide a new analysis of the transient
behavior of the clear-a-fraction policy of Perkins and Kumar. In addition,
we show that a new “clear-average-oldest-buffer” policy and a “random
part selection” policy (of which “frst-come-frst-served” is a special case)
are stable. Finally, we introduce a stable and effcient “stream modifer”
that can be used to obtain network level stability results.

Index Terms—Discrete-event systems, manufacturing systems, schedul-
ing, stability.

I. INTRODUCTION

The fexible manufacturing systems (FMS’s) considered here are
of the type described in [1] where there are networks of machines,
each of which has the capability to process N different part types
i 2 P , where P = f1; 2; � � � ; Ng. Parts which arrive at a machine
and are awaiting servicing are held in buffers, and the buffer levels
are denoted by xi(k); i 2 P . Each machine can only process at
some bounded rate one type of part at a time, and, in general, a
machine incurs a “setup time” si (a bounded delay) when changing
over to produce a new part type i 2 P . The time during which
a single part is being produced is called a “production run.” We
require the part fow to be composed of discrete parts because this
is the case in most practical FMS’s. In approaching the analysis
and design of FMS’s, the critical elements are the part production
schedules, or scheduling policies, for the component machines. In [1],
the authors study machines both in isolation and when interconnected
in a nonacyclic fashion (i.e., when parts can revisit the same machine
for processing) and analyze the stability of various scheduling policies
(i.e., whether policies can keep the number of parts in the buffers
bounded), including the clear-a-fraction (CAF) policy (which picks a
buffer to process that has more than a fraction of the average number
of parts in all the buffers). Related work is in [2].

In this paper we focus on isolated machines and specifc network
elements, not a network of machines (although our results can be
useful for network level scheduling). In particular, in Section II, we
present a stability analysis of the CAF policy of [1], which offers
new insights into the transient behavior of the policy. In addition, we
introduce the “time-based” clear-the-average-oldest-buffer (CAOB)
policy and the random part selection (RPS) policy (of which the
well known frst-come frst-serve (FCFS) policy is a special case)
and perform stability analysis for these. The results for the FCFS,
while conservative, do provide stability conditions for networks of
FCFS machines (with setup times) when used with the regulator in
[3] (certain FCFS networks have been shown to be unstable in [4]). In
Section III, we introduce our stream modifer that is a generalization
of the (˙; ˆ) regulator of [5], which has been exploited in [3] and [6]

Manuscript received April 26, 1995; revised February 13, 1996 and
May 13, 1996. This work was supported in part by the National Science
Foundation under Grant IRI-9210332.

The authors are with the Department of Electrical Engineering,
The Ohio State University, Columbus, OH 43210-1272 USA (e-mail:
passino@ee.eng.ohio-state.edu).

Publisher Item Identifer S 0018-9286(97)00499-6.

to yield network level stability results. Our treatment of the stream
modifer is important because we specify a realizable policy for the
stream modifer which results in effcient stream modifer behavior
(i.e., the policy maintains the smallest stream modifer buffer for all
time).

k

II. MACHINE MODEL AND STREAM CONSTRAINTS

Let W = f0; 1; 2; � � �g, and let tk; k 2 W be the real time
corresponding to discrete-time k. We will call the fxed length of
real time between discrete-times k and k + 1 one period. As is the
case with any discrete-time model, the choice of period is important
here. The single condition on the length of the period is that when in
the midst of a production run, the machine must produce at least one
part per period. Because such a period can be chosen for any realistic
machine (by choosing the period suffciently large), the condition
is not restrictive. While this assumption simplifes the notational
logistics of the entire analysis, only in the case of the RPS policy
does the analysis rely on this assumption in a substantial manner. If
parts arrive at the machine at real times other than the tk; k 2 W ,
then our analysis is valid at the real time points tk; k 2 W , if we
consider all parts which arrive at or depart from the machine in any
real time interval [tk; tk+1); k 2W , to have done so at real time tk .
Let xk = [x1(k); x2(k); � � � ; xN (k)] t (“t” denotes transpose), where
k 2 W . Let Z be any set of times such that Z ˆ W and for all k1;
2 2 Z, if k1 � k0

� k2, then k0
2 Z, and there is some i 2 P

such that xi(k0
) > 0. For all of the analysis that follows, choose any

such Z, and without loss of generality, assume that min Z = 0. Let
Ai(k) be the (integer) number of parts of type i 2 P to arrive at
the machine at time k 2 Z, and let Di(k) be the (integer) number
of parts of type i 2 P to depart from the machine at time k 2 Z.
At time k 2 Z, the number of parts in buffer i 2 P is xi(k), and
xi(k+1) = xi(k)+ Ai(k) �Di(k). A part is considered to remain
in its buffer until it exits the machine.

+We defne a function “ceil” such that ceil(y): < ! W and
+ceil(y) = minfk 2 W : k � yg, for all y 2 < . We defne a

+function “foor” such that foor: < ! W and foor(y) = maxfk 2

W : k � yg, for all y 2 < + . Let F (k0
) be the number of production

runs that have ended on or before time k0 .
We will call any fow of parts into a machine an input stream

and any fow of parts from a machine an output stream. We require
that the input and output streams of the machine obey the following
constraints.

1) For all k ; k 2 Z; k � k ; i 2 P1 2 1 2

k
in in

0 � Ai(k) � ceil ai (k2 � k1 + 1) + bi (1)
k=k

in in(i.e., ai is the maximum allowed rate, and bi is the maximum
allowed burstiness).

2) For all k1; k2 2 Z such that k1 and k2 lie in the same
production run

foor(�j (k2 � k1 + 1))
k

� Dj (k) � ceil(dj (k2 � k1 + 1)) (2)
k=k

where 1 � �j � dj and j is the part type being produced.
The foor and ceil functions in constraints 1) and 2) above are

innecessary because ai ; �i, and di for i 2 P may be noninteger

0018–9286/97$10.00 © 1997 IEEE

https://0018�9286/97$10.00
mailto:passino@ee.eng.ohio-state.edu

421 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 3, MARCH 1997

in(e.g., if a1 = 1:5, we would like for three parts to be able to
arrive at buffer 1 every two periods; however, if we remove
the ceil function from constraint 1), only one part can arrive
at buffer 1 each period).

in
Let wi =

a
and w = wi, where wi is the ratio of maximum

� i2P

input rate and minimum output rate of buffer i 2 P . It is intuitive
that to have any chance of maintaining bounded buffer levels, we
must have w < 1 (this is often referred to as the capacity condition).

bin
In addition, for convenience let ui = and u = ui.� i2P

III. STABILITY ANALYSIS OF THE CAF POLICY

The CAF policy requires that once a production run is begun, it will
be continued until the buffer being processed is empty, then it chooses
part type j 2 fi 2 P : xi(k) � �

N
xm(k)g, where � 2 (0; 1]

m=1 N

to process. For notational simplicity let ˜ := minif˜ig and ̃� :=
maxif˜ig for any variable ̃ i which is defned for all i 2 P .

Theorem 1: When the CAF part servicing policy is used to control
the above machine (with w < 1), it has buffer levels that are bounded
for all k 2 W by

xi(0) � F (k)�xi(k) � � �
�i 1�

i2P i2P

� N
+ + �sw + u+ (3)
1� �

where

�� 1� w
= max 1� (0 < < 1) (4)

i �i 1� wi

w � wi
� = max (ui + si + 1)

i 1� wi

1
+(u� ui) + : (5)

�j
j2P;j 6=i

x (k)Proof: Choose V (xk) = . Because the following
i2P �

analysis is valid for any Z, the bounds obtained are valid for all
k 2 W (the only k which are in the set W but not in any set Z
are such that xi(k) = 0 for all i 2 P). We defne the set of times
R = fk0; k1; k2; � � �g ˆ Z; kp < kq if p < q, to include every time
0 0 00k such that k is the greatest time no longer than time k which

00immediately follows the end of any production run for some k 2 Z.
�Notice that k0 = 0. Let j (kp) 2 P; kp 2 R denote the part type that

is being setup for and processed by the machine between times kp
and kp+1. We defne kp+1 �kp �p. In order to bound �p, we use
an approach similar to that in [1] and after some manipulations obtain

in
x (k) b +1

+ + sj (k) + 1
�p � : (6)

1� wj (k)

� �

We now bound V (xk) in terms of V (xk). Notice that
in xj (k)(kp+1) = 0 and xi(kp+1) � xi(kp) � ceil(ai �p +

in �bi) for all i 2 P; i =6 j (kp). From this it follows that

xi(kp+1) xi(kp) xj (k)(kp)
� �

�i �i �j (k)
i2P i2P

in in ai �p + bi + 1
+ : (7)

�i
i2P;i6 (k=j)

After some manipulations, we see that

xj (k)(kp) 1� w
V (xk) � V (xk)�

�j (k) 1� wj (k)

w � wj (k)
+ uj (k) + sj (k) + 1 �

1� wj (k)

1
+ u� uj (k) + : (8)

�i
i2P;i6 (k=j)

From the defnition of the CAF policy, we see that xj (k)(kp) �

��V (xk). Up to this point, this proof is similar to the CAF stability
proof in [1], except that in this proof, bounded input stream rate
and burstiness constraints are allowed. If we defne and � as in
the statement of the theorem, we see from (8) that V (xk) �

V (xk) + � for all kp 2 R (notice that by defnition, 0 < ��
�

< 1

for all i 2 P and 0 < < 1). This is simply a difference inequality
which when solved yields

V (xk) � V (x0)�
� p

+
�

G(x0; p): (9)
1� 1�

Thus, we have bounded V (xk) for all k 2 R. Consider now the set of
times Sp such that if k 2 Z and k 2 (kp; kp+1), then k 2 Sp. In (9),
we have found a bound G(x0 ; p) for V (xk), for k = kp, and kp+1.
We now wish to bound V (xk) for all k 2 Sp [fkp; kp+1g. Clearly,
the maximum of V over Sp [fkp; kp+1g must occur at one of the
following times: kp; kp+1, or at beginning of the production run that
began before kp+1 which we denote by b(kp+1). We can bound the
increase in V that occurs between times kp and b(kp+1) as

in in a si + b + 1
V xb(k) � V (xk) �

i i

�i
i2P

N
� sw� + u+ : (10)

�

Hence, for all k 2 Sp [fkp; kp+1g; V (xk) � G(x0; p) + �sw+

u + N
�

, and so for any k 2 Z

N
V (xk) � G(x0; F (k)) + �sw + u+

�

� � NF (k)
= V (x0)� + + �sw + u+ :

1� 1� �

(11)

Therefore, a bound on the buffer levels for all k 2 Z, and, hence,
for all k 2 W , is

1 xi(k) xi(0) � F (k)
xi(k) � � ��� �i �i 1�

i2P i2P i2P

� N
+ + �sw + u+

1� �

which completes the proof.
Notice that from (3), a useful property of the machine buffer

x (0)dynamics is apparent. If > � , then the right side
i2P � 1�

of (3) must asymptotically decrease to ��(
1�

� + �sw+ u) as k !1

so that the sum of the buffer levels will get no larger than the bound
x (0) �at time k = 0. If < , then the right side of (3) must

i2P � 1�

asymptotically increase to ��(
1�

� + �sw + u) as k !1. Hence, (3)
helps to characterize both the transient and steady-state behavior of
the machine. Notice that our proof is for a more general class of
stream constraints for the parts arriving at and departing from the
machine than in [1] and (3) provides a more detailed characterization
of the transient behavior of the machine. It is also possible to defne
a generalized CAF (GCAF) in which only a fxed fraction of the

422 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 3, MARCH 1997

parts in a buffer at the beginning of a production run are cleared
during that production run. Similar results hold for the GCAF policy.
Finally, recall that the buffer bound established above is only valid at
real times tk. However, if the “inter-sample” input and output stream
functions are known or can be bounded, then the above bound can

+be modifed so that it is valid for all t 2 < . If we know nothing
of the “inter-sample” input and output stream functions, we can add
di for all i 2 P to the buffer bounds so that the bounds are valid

+for all t 2 < .

IV. STABILITY ANALYSIS OF THE CAOB POLICY

We now introduce what we call the “clear-the-average-oldest
buffer” (CAOB) policy. For all i 2 P and for all k 2 W ,
let Ti(k) be the maximum number of periods that any part in
buffer i has been waiting for service at time k and let T (k) =

[T1(k); T2(k); � � � ; TN (k)]
t . Let the CAOB policy choose at time k

a part j 2 fi 2 P : Ti(k) � �
N

(k)g to process where
m=1 Tm

1� 2 (0;].
N

Theorem 2: If the CAOB part servicing policy is used to control
1the above machine and if wi < N for all i 2 P , then it has buffer

levels that are bounded for all k 2 W by

in F (k�1)+1 �
xi(k) � a� 1 � + ��

1 �
i2P

in
+ xi(0) + b + 1 (12)i

i2P

where

in(N � 1)ai
= max 1 � � 1 � (0 < < 1) (13)

i �i(1 � wi)

inN � 1 2bi + 1
� = max + si + 1 (14)

i 1 � wi �i

in in
�i = max k 2W : ceil a (k + 1) + bi i

� foor(�i(k + 1 � si)) > 0 : (15)

Proof: Choose V (T (k)) =
i2P

Ti(k). Beginning in a similar
way to the proof of Theorem 1 we know that (6) holds for CAOB. No-
tice that Tj (k)(kp+1) = 0; Ti(kp+1) � Ti(kp) � �p for all i 2

in inP; i =6 j�(kp), and xi(k) � ai (Ti(k)) + bi +1 for all i 2 P; k 2

Z. From this and from the defnition of the CAOB policy, we see that
Ti(kp+1) � Ti(kp)�Tj (k (kp)+(N �1)�p. Hence)i2P i2P

V (T (kp+1))

in(N � 1)aj (k)
� V (T (kp)) � �V (T (kp)) 1 �

�j (k)(1 � wj (k))

in2b + 1
+ + sj (k) + 1

1 � wj (k) �j (k)

N � 1 j (k)

in(N � 1)aj (k)
= V (T (kp)) 1 � � 1 �

�j (k)(1 � wj (k))

in2b + 1
+ + sj (k) + 1 : (16)

1 � wj (k) �j (k)

N � 1 j (k)

If we defne and � as in the statement of Theorem 2 we see from
(16) that V (T (kp+1)) � V (T (kp)) + �, for all kp 2 R. Notice

that by assumption, 0 < < 1. Hence, we have V (T (kp)) �
(1 � p)

1�

� G(p) (note that V (T (k0)) = 0) and so we have
bounded V (T (k)) for all k 2 R.

Consider now the set of times Sp such that if k 2 Z and
k 2 (kp; kp+1), then k 2 Sp. We have found a bound G(p) for
V (T (k)), for k = kp, and kp+1. We now wish to bound V (T (k))
for all k 2 Sp [fkp; kp+1g. To do this, we frst must bound
Tj (k)(k

0) � Tj (k)(kp) for all k0 2 Sp. Consider the following
expression:

k �T (k)+k

Aj (k) (k) �Dj (k) k + Tj (k)(kp) (17)
k=k �T (k)

for all kp + k0 2 Sp. Expression (17) is the sum of all parts which
arrived at buffer j�(kp) at any time k 2W; kp �Tj (k) (kp) � k �

kp � Tj (k) (kp)+ k0 minus the sum of all parts which leave buffer
j�(kp) at any time k 2 Sp; kp � k � kp + k0 . If expression (17) is
positive for a given k0 2W , then more parts arrived at buffer j�(kp)

in the k0 +1 periods beginning at time kp �Tj (k)(kp) than have left
buffer j�(kp) in the k0 +1 periods beginning at time kp. Hence, there
is at least one part which arrived at buffer j�(kp) on or before time
kp �Tj (k)(kp)+k0 which remains in the buffer at time kp +k0 +1

so that Tj (k)(kp + k
0) > Tj (k)(kp). By the same reasoning, if

(17) is not positive, then Tj (k)(kp + k
0) � Tj (k)(kp). It is clear

that Tj (k) (kp + k
0) � Tj (k)(kp) � k0 . We can bound expression

(17) by specifying that parts in buffer j�(kp) be serviced as slowly
as possible so that

k �T (k)+k

Aj (k)(k) �Dj (k) k + Tj (k) (kp) (18)
k=k �T (k)

in 0 in
� ceil aj (k)(k + 1) + bj (k)

� foor �j (k) k
0
+ 1 � sj (k) (19)

for all kp + k0 2 Sp. For all i 2 P , let �i be defned as given
in �in the statement of Theorem 2. Notice that because ai � N for

inall i 2 P and because we are inherently assuming that bi < 1

for all i 2 P; �i < 1 for all i 2 P . Then, for all kp + k0 2 Sp;

Tj (k)(kp+k
0)�Tj (k)(kp) � �j (k) . Hence, for all kp+k0 2 Sp,

V (T (kp +k0)) � G(p+1)+�j (k). Notice in the above bound that
G(p+1) appears rather than G(p). This is due to the fact that for all
i 2 P; i 6= j�(kp); Ti(kp+1) > Ti(kp + k0); for all kp + k0 2 Sp.
Hence

�F (k�1)+1
V (T (k)) � 1 � + �� (20)

1 �

for all k 2 Z; k > 0, and, hence, for all k 2 W; k > 0. Because
in in xi(k) � xi(0) + ai Ti(k) + bi for all k 2W and for all i 2 P , it

in inis clear that xi(k) � (xi(0) + a Ti(k) + b + 1) �i ii2P i2P

in in a� V (T (k)) +
i2P

(xi(0) + bi + 1) which with (20) gives the
fnal result for all k 2W; k > 0.

Notice that in bounding V (T (k)) in (20), that the bound increases
from �� to � + �� as k ! 1 so that we also characterize the

1�

transient properties of CAOB. A clear-the-oldest buffer (COB) policy
is a special case of the CAOB policy; hence, the bounds above hold
for this policy also. The COB policy is sometimes called the “frst-
come frst-clear” (FCFC) policy since it will service the buffer which
contains the part that arrived before all other parts in any of the other
buffers. If parts tend to arrive at the machine such that a group of
parts arriving at one buffer is followed by a group of parts arriving

423 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 3, MARCH 1997

at another buffer and so on (at a low enough frequency), then the
CAOB policy will tend to behave like an FCFS policy.

V. STABILITY ANALYSIS OF THE RPS POLICY

We now introduce what we call the RPS policy. Under this policy,
the machine is free to choose any nonempty buffer to service at any
time just so long as it never sits idle (i.e., it is either setting up for
or processing a part at every instant).

in 1Theorem 3: If ai � for all i 2 P , and the RPS
N(�s+1)

part servicing policy is used to control the above machine, then
N

xi(k) � b + N + 1 +
N

xi(0), for all k 2 W , where
i=1 i=1

N inb = b .i

N
i=1

Proof: Let A(k) be defned so that A(k) =
i=1

Ai(k), for
all k 2 W . In the worst case in which the machine produces only a
single part from any buffer before switching production to a different
buffer, it is clear that it can take no longer than s� + 1 periods to
produce one part. If we let D(k) = maxfDi(k) : i 2 Pg, we see

k k �k +1that D(k) � foor(), for all k ; k2 2 Z; k � k2.
k=k s�+1 1 1

inFrom this, the defnition of A(k), and the assumption on ai ; i 2 P ,
in the statement of the theorem, it is apparent that

k

[A(k) � D(k)]

k=0

N

k0 k0 + 1 in + 1
� + bi + 1 � foor (21)

N(�s+ 1) s�+ 1
i=1

k0 k0 + 1 + 1
= + b+ N � foor (22)

s�+ 1 s�+ 1

� b+ N + 1 (23)

k N Nand that [A(k)� D(k)] = xi(k
0
+1)� xi(0), for

k=0 i=1 i=1
Nall k0; k0 + 1 2 Z. Clearly, then,
i=1

xi(k
0
+ 1) � b + N + 1 +

N

i=1
xi(0), for all k0; k0 + 1 2 W .

Notice that unlike the conditions on stability of the CAF policy,
the condition for stability of the RPS policy does not depend on
the processing speed of the machine (of course, we have required
previously that the period length be chosen so that 1 � �i � di for
all i 2 P). Rather, the condition simply limits the rates of the input
streams of the machine. Intuitively, the RPS policy is stable because
it is persistent in that if there are parts in any machine buffer, it
will always be either processing parts or setting up to process parts.
Under the conditions of Theorem 2, several commonly used policies
are special cases of the RPS policy and hence are stable because
they are persistent: 1) the frst-come frst-serve (FCFS) policy; (b)
the priority policy (buffers are serviced in a fxed order, but empty
buffers are skipped as in [7]), and fxed time policy (nonempty buffers
are serviced for a fxed amount of time). Moreover, policies studied
in [8], such as the “earliest due date” policy, are special cases of
RPS. It is interesting to note that in [4] the author was able to show
that FCFS is unstable for certain FMS topologies where there are no
setup times. The key to obtaining stability here is that unlike in [4]
we constrain the rates at which parts may be input to machines (so
that if applied to a network of machines our results would require a
stream modifer like in the next section to achieve stable operation).

The stability conditions for the RPS policy in Theorem 3 are
somewhat dissatisfying because we cannot affect the input stream
rate constraints by speeding up the machine, and this is contrary to
our intuition. In light of this, we now reformulate the problem by
altering the way that we look at part arrivals and departures. First of
all, it is necessary to redefne the period for this analysis. We choose

in0 the new period and constants ai so that for every i 2 P there are

in0 at least ai periods for each part that arrives at buffer i that is not
attributable to the input stream burstiness. Similarly, choose �i

0 so
that when the machine is producing parts of type i it outputs parts no
slower than one part every �i

0 periods. As before, let si be the number
of periods needed to set up for production on buffer i 2 P . Assume

in0 that for all i 2 P; ai and �i
0 are integers (this assumption is not

limiting since we can choose the period to be as small as desired).
Theorem 4: If the RPS part servicing policy is used to control the

above machine, and

10
maxf�i + sig 0 � 1
i inai2P i

then N
xi(k) � b+ N + 1+

N
xi(0), for all k 2 W , where

i=1 i=1

N inb = b .ii=1

Proof: Let A(k) = Ai(k) and D(k) = Di(k) for
i2P i2P

all k 2 W so that

k

k2 � k1 + 1 in
Ai(k) � foor + 1 + b

in i

a ik=k

k2 � k1 + 1 in
� + 1 + bi (24)

ain
i

k

1 in
A(k) � (k2 � k1 + 1) + N + b (25)

ain i

ik=k i2P i2P

k k �k +1 k �k +1and D(k) � foor � � 1, for all
k=k max f� +s g max f� +s g

k1; k2 2 W; k1 � k2. Notice that as in the previous analysis of the
RPS policy, we have identifed the maximum number of periods per
part serviced (i.e., as long as there are parts in any machine buffer, the
machine must output at least one part every maxif�i

0
+ sig periods).

kClearly, [A(k)� D(k)] = (xi(k
0
+1)� xi(0)) � (k

0
+

k=0 i2P
1 1

1) � +N+b+1, for all k0 2 W . Now, by
i2P in max f� +s g

a

the assumption in the theorem we see that
i2P (xi(k+1)�xi(0)) �

N+b+1 or, equivalently xi(k+1) � b+N+1+ xi(0),i2P i2P

for all k 2 W .
Notice that while the RPS stability condition in Theorem 4 is more

fexible than the condition in Theorem 3 (in terms of our ability to
design a machine that can achieve stability by speeding it up), the
input stream rate constraints are still limited by the maximum machine
setup time, regardless of how fast the machine is. This appears to be

ina fundamental property of RPS policies. Notice also that if a i and
�i
0 are considered to be inverse rate constraints, the stability condition

of Theorem 4 can be thought of as reducing to the capacity condition
as si ! 0 for all i 2 P .

VI. STREAM MODIFIER

The “stream modifer” is a network element which consists of a
buffer and a part fow policy which selectively queues incoming parts
in the buffer or passes them directly through to the output stream
(we use the term “stream modifer” rather than “regulator” simply to
emphasize that the two are different). In addition, the policy must
decide when to release queued parts into the output stream. The
purpose of the stream modifer is to alter the maximum rate and
maximum burstiness of its input stream. Note that the stream modifer
is an important element for FMS’s since it can be used to modify
the streams of parts between machines so that an entire FMS can be
made stable [3].

At time k 2 W , let the number of parts in the stream modifer
buffer be x(k), the number of parts arriving at the stream modifer

424 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 3, MARCH 1997

be A(k), and the number of parts leaving the stream modifer be
in in outD(k). In addition, let a , b ; a ; and bout be real, nonnegative

constants which are used to describe the input and output streams of
the stream modifer. In order to clarify the following analysis, assume

outthat a in and a are integers. We specify the behavior of the input
and output streams of the stream modifer with respect to constants
in in out out a ; b ; a ; and b as follows.

1) For all k1; k2 2 W; k1 � k2 ;
k

k=k A(k) � ceil(a in(k2 �

in k out outk1 +1)+b); D(k) � ceil(a (k2 �k1 +1)+b).
k=k

0 k in2) For all k 2 W;
k=0

[A(k) � D(k)] � maxf(a �
out in out a)(k0 + 1) + b � b + 1; �x(0)g.

Item 1) simply specifes the input stream constraint for the stream
modifer and how we would like the output stream of the stream
modifer to behave. Item 2) is included as a constraint on stream
modifer behavior to ensure that its buffer is bounded. In fact, because

k
x(k+1) = x(k)+A(k)�D(k) and because [A(k)�D(k)] =

k=0

x(k0 + 1) � x(0), for all k0 2 W , we see from item 2) that
in out in out x(k0 +1) � maxf(x(0)+(a �a)(k0 +1)+b �b +1); 0g,

out infor all k0 2 W . If we choose a = a , then for all k 2 W;
in out x(k) � x(0) + b � b + 1, and the stream modifer buffer is

out in outbounded. Notice also that if a = a , then we can choose b = 0
so that the burstiness is completely removed from the output stream.
In this case, if the input stream operates at its maximum rate, then the
output stream can operate at its maximum rate and the extra bursts
of parts on the input stream, that by defnition will never total more

inthan b , will be stored in the stream modifer buffer. Notice that if
out in a < a , then either bout is infnite or we cannot bound x(k) for

in out andall k 2 W . It is also clear that if a or bin is infnite and a
bout are fnite, no bound exists for x(k) for all k 2 W .

We now specify a practical policy for the stream modifer which
we will show satisfes items 1) and 2) by releasing the maximum
number of parts allowable without violating the second inequality
at every time k in item 2). For every time k 2 W , let Ek =
fEk

0; Ek
1; � � � ; Ek

k g, where Ek
k is the maximum allowable value of

D(k) such that

k
out out

D(l) = ceil(a (k � k
0
+ 1) + b): (26)

l=k

Because the stream modifer cannot violate (26) for any k0 ; k0 � k;
let its policy choose

D(k) = min (Ek [fA(k) + x(k)g) (27)

(this policy is not implementable because as k ! 1 jEkj ! 1;
below we will show how to modify it so that it is an implementable
policy). We now must ask whether our policy will satisfy items 1)
and 2). Because our policy in (27) guarantees that (26) will not
be violated for any k0 ; k 2 W; k0 � k, it is clear that it satisfes
the second inequality in item 1) because (26) is more strict than
the second inequality in item 1). Next consider item 2). Choose
any time k0 2 W . If D(k0) = minfEk [fA(k

0) + x(k0)gg =
A(k0) + x(k0), then because x(k0 + 1) = 0 (the stream modifer
buffer is cleared by the policy’s choice of D(k0)), it is clearly the
case that k

k=0 (A(k)�D(k)) = �x(0) so that item 2) holds. If, on
the other hand, D(k0) = minfEk [fA(k

0)+x(k0)gg = min(Ek),
then from the defnitions of E0 in (26) and the stream modifer policy k

� k0 kin (27), there is some k1 2 W; k1 , such that
k=k D(k) =

out outceil(a (k0 �k1 +1)+b). Below we defne a recursive procedure

TABLE I
Ek

TABLE II
Ek+1

whose goal is to defne a time k
�
2 W which we use later in the

analysis. Upon initially entering the procedure, let i = 0.

1) If i = 0, let ni = k0; otherwise, let ni = mi�1 � 1.
2) If D(ni) = min(En), then fnd the smallest q 2 W such that

n
out out

D(k) = ceil(a (ni � q + 1) + b) (28)
k=q

and let mi = q.
3) If mi = 0, then let k

�
= 0 and stop.

4) If D(mi � 1) < min(Em �1), then let k
�
= mi � 1 and stop;

otherwise, let i = i + 1 and return to step 1.

Notice that the above procedure will always terminate. If k
�
=

00, then the entire range of times [0; k] is composed of adjacent
0subranges of times [mi ; ni]; i = 0; 1; 2; � � � ; Q, where n0 = k ;

mQ = 0; ni = mi�1 � 1 for all i = 1; 2; � � � ; Q, and

n
out out

D(k) = ceil(a (ni �mi + 1) + b) (29)
k=m

for all i = 0; 1; 2; � � � ; Q. Hence, we see that
k

k
=0 D(k) =

Q out out
i=0 ceil(a (ni �mi +1)+b) and (because ceil(a)+ceil(b) �

k out 0 outceil(a + b)) that D(k) � ceil(a (k + 1) + (Q+ 1)b).
k=0

Because we have established that our policy obeys item 1), we
k see that either Q or bout must equal zero so that
k=0 D(k) =

out 0 out kceil(a (k + 1) + b). Therefore,
k=0

(A(k) � D(k)) �
in 0 in out 0 out in out 0ceil(a (k +1)+b)�ceil(a (k +1)+b) � (a �a)(k +
in out 01) + b � b + 1, so that for D(k) = min(Ek) and k

�
= 0,

our policy satisfes item 2).
0If k

�
> 0, then the entire range of times [k

�
+ 1; k] is composed

of adjoining subranges of times [mi ; ni]; i = 0; 1; 2; � � � ; Q, where
0 n0 = k ; mQ = k

�
+ 1; ni = mi�1 � 1 for all i = 1; 2; � � � ; Q,

and (29) holds for all i = 0; 1; 2; � � � ; Q. Similar to before, it
k out 0 outfollows that D(k) = ceil(a (k � k

�
) + b). Because

k=k +1
k
k=0

(A(k) � D(k)) � 0, we see that

k k

(A(k) �D(k)) = (A(k) �D(k))
k=0 k=0

k

+ (A(k) �D(k)) (30)
k=k +1

k

� (A(k) �D(k)) (31)
k=k +1

425 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 42, NO. 3, MARCH 1997

in in
� ceil(a (k

0
� k

�
) + b)

out out
� ceil(a (k

0

� k
�
) + b) (32)

in out in out
� (a � a)(k

0

� k
�
) + b � b + 1

(33)
in out in out

� (a � a)(k
0

+ 1) + b � b + 1 (34)

so that for D(k0) = min(Ek) and k
�
> 0, our policy satisfes item

2). Hence, items 1) and 2) are satisfed by our policy.
We now show how to recursively calculate Ek for all k 2 W . From

(26), we can form Tables I and II. From the form of the expressions

k

in Tables I and II, notice that Ek = Ek + a out �D(k) for all k0;
0 � k, so that min(Ek+1 � fEk+1 g) = min(Ek) + a out � D(k).

k+1 k

k+1

It is clear, then, that if we defne the set

E� k = fmin(E� k�1) + a
out

�D(k � 1)g

out out
[fceil(a + b)g (35)

Comments on “A New Controller Design
for a Flexible One Link Manipulator”

Susy Thomas and B. Bandyopadhyay

Abstract—In the above-mentioned paper1 a variable structure sliding
mode controller (VSSMC) design for the tip position control of a fexible
one-link manipulator has been presented, where a switching line con-
structed from the tip position and its derivative was employed for the
design. The claim was that if the slope of this line is chosen positive and
the system variables are made to stay on this line, they will converge to
zero exponentially, thus yielding a stable system in sliding mode (SM). The
purpose of this comment is to show that the choice of a positive constant
as the slope for this switching line will not guarantee the stability of the
system in SM because, in view of the functional relationship of the tip
position with the generalized coordinates of the system through the mode
shape functions, what is presented as a switching line is in fact a switching
hypersurface. Hence, the stability of the system in SM is guaranteed only
if the motion on this hypersurface is asymptotically stable. A positive
value for the slope of the switching line employed by Qian and Ma will
not guarantee this stability because variations in the mode shape functions
due to varying payload conditions or other disturbances at the tip will

� out out lead to a varying switching surface. These variations can be such that the E0 = fceil(a + bfor all k 2 W; k = 0 and if we let 6)g,
resulting sliding motion becomes unstable. Also, the varying switching

then min(Ek) = min(E� k). Hence, we can defne our policy for all surface implies that the controller will fail to maintain sliding mode
k 2 W as D(k) = minfE� k [fA(k) + x(k)gg. motion.

VII. CONCLUDING REMARKS

We have presented a new stability analysis of the CAF policy
focusing on its transient behavior, shown that the CAOB and RPS
policies are stable, and provided a stable implementation for a stream
modifer. We have considered only the deterministic case throughout
the paper. It would be interesting to study a stochastic version of the
problem, for example for the case of failure-prone machines. Also, it
is an important open question whether the policies proposed in this
paper (and others) can help improve the performance of an FMS.

REFERENCES

[1] J. R. Perkins and P. Kumar, “Stable, distributed, real-time scheduling
of fexible manufacturing/assembly/disassembly systems,” IEEE Trans.
Automat. Contr., vol. 34, pp. 139–148, Feb. 1989.

[2] S. Lou, S. Sethi, and G. Sorger, “Analysis of a class of real-time
multiproduct lot scheduling policies,” IEEE Trans. Automat. Contr., vol.
36, pp. 243–248, Feb. 1991.

[3] C. Humes, Jr., “A regulator stabilization technique: Kumar–Seidman
revisited,” IEEE Trans. Automat. Contr., vol. 39, pp. 191–196, Jan. 1994.

[4] T. I. Seidman, “ ‘First Come, First Served’ Can Be Unstable!” IEEE
Trans. Automat. Contr., pp. 2166–2177, Oct. 1994.

[5] R. L. Cruz, “A calculus for network delay—Part I: Network elements in
isolation,” IEEE Trans. Inform. Theory, vol. 37, pp. 114–131, Jan. 1991.

[6] J. R. Perkins, C. J. Humes, Jr., and P. Kumar, “Distributed scheduling
of fexible manufacturing systems: Stability and performance,” IEEE
Trans. Robotics Automation, vol. 10, pp. 133–141, Apr. 1994.

[7] K. M. Passino, K. Burgess, and A. N. Michel, “Lagrange stability and
boundedness of discrete event systems,” J. Discrete Event Dynamic
Syst.: Theory Appl., vol. 5, pp. 383–403, 1995.

[8] S. H. Lu and P. Kumar, “Distributed scheduling based on due dates and
buffer priorities,” IEEE Trans. Automat. Contr., vol. 36, pp. 1406–1416,
Dec. 1991.

Index Terms— Flexible manipulator, sliding mode, variable structure
control.

I. INTRODUCTION

From (12) of the above-mentioned paper,1 the functional rela-
tionship between the tip position and the generalized coordinates
considering only the frst two vibratory modes is

yTP = Lq0 + ° 1(L)q1 + ° 2(L)q2 (1)

where qi denotes the generalized coordinates and ° i(L) the mode
shape functions of the fexible arm.

In the paper,1 Qian and Ma defne the tip position error x1 as
the difference between the current tip position yTP and the set point
xST . Without loss of generality it was assumed that

xST = 0: (2)

Hence

x1 = yTP (3)

and x2 was defned as

x2 = _x1 = _yTP : (4)

The switching line was constructed as

S = x2 (t) + Cx1(t) = 0: (5)

Manuscript received April 4, 1995; revised November 15, 1995.
S. Thomas is with the Department of Electrical Engineering, IIT Bombay,

Bombay 400076 India. She is on deputation from Calicut Regional Engineer-
ing College, Calicut, Kerala 673601, India.

B. Bandyopadhyay is with the Lehrstuhl fur¨ Elektrische Steuerung und
Regelung, Ruhr-Universität Bochum, Bochum 44780 Germany.

Publisher Item Identifer S 0018-9286(97)01331-7.
1W. T. Qian and C. C. H. Ma, IEEE Trans. Automat. Contr., vol. 37, pp.

132–137, 1992.

0018–9286/97$10.00 © 1997 IEEE

https://0018�9286/97$10.00

