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Stable Scheduling Policies for Flexible 
Manufacturing Systems 

Kevin Burgess and Kevin M. Passino 

Abstract—In this brief note we provide a new analysis of the transient 
behavior of the clear-a-fraction policy of Perkins and Kumar. In addition, 
we show that a new “clear-average-oldest-buffer” policy and a “random 
part selection” policy (of which “frst-come-frst-served” is a special case) 
are stable. Finally, we introduce a stable and effcient “stream modifer” 
that can be used to obtain network level stability results. 

Index Terms—Discrete-event systems, manufacturing systems, schedul-
ing, stability. 

I. INTRODUCTION 

The fexible manufacturing systems (FMS’s) considered here are 
of the type described in [1] where there are networks of machines, 
each of which has the capability to process N different part types 
i 2 P , where P = f1; 2; � � � ; Ng. Parts which arrive at a machine 
and are awaiting servicing are held in buffers, and the buffer levels 
are denoted by xi(k); i  2  P . Each machine can only process at 
some bounded rate one type of part at a time, and, in general, a 
machine incurs a “setup time” si (a bounded delay) when changing 
over to produce a new part type i 2 P . The time during which 
a single part is being produced is called a “production run.” We 
require the part fow to be composed of discrete parts because this 
is the case in most practical FMS’s. In approaching the analysis 
and design of FMS’s, the critical elements are the part production 
schedules, or scheduling policies, for the component machines. In [1], 
the authors study machines both in isolation and when interconnected 
in a nonacyclic fashion (i.e., when parts can revisit the same machine 
for processing) and analyze the stability of various scheduling policies 
(i.e., whether policies can keep the number of parts in the buffers 
bounded), including the clear-a-fraction (CAF) policy (which picks a 
buffer to process that has more than a fraction of the average number 
of parts in all the buffers). Related work is in [2]. 

In this paper we focus on isolated machines and specifc network 
elements, not a network of machines (although our results can be 
useful for network level scheduling). In particular, in Section II, we 
present a stability analysis of the CAF policy of [1], which offers 
new insights into the transient behavior of the policy. In addition, we 
introduce the “time-based” clear-the-average-oldest-buffer (CAOB) 
policy and the random part selection (RPS) policy (of which the 
well known frst-come frst-serve (FCFS) policy is a special case) 
and perform stability analysis for these. The results for the FCFS, 
while conservative, do provide stability conditions for networks of 
FCFS machines (with setup times) when used with the regulator in 
[3] (certain FCFS networks have been shown to be unstable in [4]). In 
Section III, we introduce our stream modifer that is a generalization 
of the (˙; ˆ) regulator of [5], which has been exploited in [3] and [6] 
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to yield network level stability results. Our treatment of the stream 
modifer is important because we specify a realizable policy for the 
stream modifer which results in effcient stream modifer behavior 
(i.e., the policy maintains the smallest stream modifer buffer for all 
time). 

k

II. MACHINE MODEL AND STREAM CONSTRAINTS 

Let W = f0; 1; 2; � � �g, and let tk; k  2  W  be the real time 
corresponding to discrete-time k. We will call the fxed length of 
real time between discrete-times k and k + 1  one period. As is the 
case with any discrete-time model, the choice of period is important 
here. The single condition on the length of the period is that when in 
the midst of a production run, the machine must produce at least one 
part per period. Because such a period can be chosen for any realistic 
machine (by choosing the period suffciently large), the condition 
is not restrictive. While this assumption simplifes the notational 
logistics of the entire analysis, only in the case of the RPS policy 
does the analysis rely on this assumption in a substantial manner. If 
parts arrive at the machine at real times other than the tk; k  2  W ,  
then our analysis is valid at the real time points tk; k  2  W , if we  
consider all parts which arrive at or depart from the machine in any 
real time interval [tk; tk+1); k 2W , to have done so at real time tk . 
Let xk = [x1(k); x2(k); � � � ; xN  (k)] t (“t” denotes transpose), where 
k 2 W . Let Z be any set of times such that Z ˆ W and for all k1; 
2 2 Z, if  k1  �  k0  

�  k2, then k0 
2 Z, and there is some i 2 P 

such that xi(k0 
) > 0. For all of the analysis that follows, choose any 

such Z, and without loss of generality, assume that min Z = 0. Let 
Ai(k) be the (integer) number of parts of type i 2 P to arrive at 
the machine at time k 2 Z, and let Di(k) be the (integer) number 
of parts of type i 2 P to depart from the machine at time k 2 Z. 
At time k 2 Z, the number of parts in buffer i 2 P is xi(k), and 
xi(k+1)  =  xi(k)+  Ai(k)  �Di(k). A part is considered to remain 
in its buffer until it exits the machine. 

+We defne a function “ceil” such that ceil(y): < ! W and 
+ceil(y) = minfk 2 W : k � yg, for all y 2 <  . We defne a 

+function “foor” such that foor: < ! W and foor(y) =  maxfk 2  

W :  k � yg, for all y 2 <  +  . Let F (k0 
) be the number of production 

runs that have ended on or before time k0 . 
We will call any fow of parts into a machine an input stream 

and any fow of parts from a machine an output stream. We require 
that the input and output streams of the machine obey the following 
constraints. 

1) For all k ; k  2  Z; k � k ; i  2  P1 2 1 2 

k 
in in 

0 � Ai(k) � ceil ai (k2 � k1 + 1)  +  bi (1) 
k=k 

in in(i.e., ai is the maximum allowed rate, and bi is the maximum 
allowed burstiness). 

2) For all k1; k2  2  Z  such that k1 and k2 lie in the same 
production run 

foor(�j (k2 � k1 + 1)) 
k 

� Dj (k) � ceil(dj (k2 � k1 + 1)) (2) 
k=k 

where 1 � �j � dj and j is the part type being produced. 
The foor and ceil functions in constraints 1) and 2) above are 

innecessary because ai ; �i, and di for i 2 P may be noninteger 
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in(e.g., if a1 = 1:5, we would like for three parts to be able to 
arrive at buffer 1 every two periods; however, if we remove 
the ceil function from constraint 1), only one part can arrive 
at buffer 1 each period). 

in 
Let wi = 

a 
and w = wi, where wi is the ratio of maximum 

� i2P 

input rate and minimum output rate of buffer i 2 P . It is intuitive 
that to have any chance of maintaining bounded buffer levels, we 
must have w < 1 (this is often referred to as the capacity condition). 

bin 
In addition, for convenience let ui = and u = ui.� i2P 

III. STABILITY ANALYSIS OF THE CAF POLICY 

The CAF policy requires that once a production run is begun, it will 
be continued until the buffer being processed is empty, then it chooses 
part type j 2 fi 2 P  : xi(k) � �  

N  
xm(k)g, where � 2 (0; 1 ]

m=1 N 

to process. For notational simplicity let ˜ := minif˜ig and ̃� := 
maxif˜ig for any variable ̃ i which is defned for all i 2 P . 

Theorem 1: When the CAF part servicing policy is used to control 
the above machine (with w < 1), it has buffer levels that are bounded 
for all k 2 W by 

xi(0) � F (k)�xi(k) � � � 
�i 1� 

i2P i2P 

� N 
+ + �sw + u+ (3)
1� � 

where 

�� 1� w 
= max 1� (0 < < 1) (4) 

i �i 1� wi 

w � wi 
� = max (ui + si + 1)  

i 1� wi 

1 
+(u� ui) +  : (5)

�j
j2P;j 6=i 

x (k)Proof: Choose V (xk) =  . Because the following
i2P � 

analysis is valid for any Z, the bounds obtained are valid for all 
k 2 W (the only k which are in the set W but not in any set Z 
are such that xi(k) = 0  for all i 2 P ). We defne the set of times 
R = fk0; k1; k2; � � �g ˆ Z; kp < kq  if p < q, to include every time 
0 0 00k such that k is the greatest time no longer than time k which 

00immediately follows the end of any production run for some k 2 Z. 
�Notice that k0 = 0. Let j (kp) 2 P; kp 2 R denote the part type that 

is being setup for and processed by the machine between times kp 
and kp+1. We defne kp+1 �kp �p. In order to bound �p, we use 
an approach similar to that in [1] and after some manipulations obtain 

in 
x (k ) b +1 

+ + sj (k ) + 1  
�p � : (6)

1� wj (k ) 

� � 

We now bound V (xk ) in terms of V (xk ). Notice that 
in xj (k )(kp+1) = 0  and xi(kp+1) � xi(kp) � ceil(ai �p + 

in �bi ) for all i 2 P; i =6  j (kp). From this it follows that 

xi(kp+1) xi(kp) xj (k )(kp) 
� � 

�i �i �j (k )
i2P i2P 

in in ai �p + bi + 1  
+ : (7)

�i 
i2P;i6  (k=j ) 

After some manipulations, we see that 

xj (k )(kp) 1� w 
V (xk ) � V (xk )� 

�j (k ) 1� wj (k ) 

w � wj (k ) 
+ uj (k ) + sj (k ) + 1  �  

1� wj  (k  )  

1 
+ u� uj (k ) + : (8)

�i 
i2P;i6  (k=j ) 

From the defnition of the CAF policy, we see that xj (k )(kp) � 

��V (xk ). Up to this point, this proof is similar to the CAF stability 
proof in [1], except that in this proof, bounded input stream rate 
and burstiness constraints are allowed. If we defne and � as in 
the statement of the theorem, we see from (8) that V (xk ) � 

V (xk ) + �  for all kp 2 R (notice that by defnition, 0 < ��
� 

< 1 

for all i 2 P and 0 < < 1). This is simply a difference inequality 
which when solved yields 

V (xk ) � V (x0)� 
� p 

+ 
�

G(x0; p):  (9)
1� 1� 

Thus, we have bounded V (xk) for all k 2 R. Consider now the set of 
times Sp such that if k 2 Z and k 2 (kp; kp+1), then k 2 Sp. In (9), 
we have found a bound G(x0 ; p) for V (xk), for k = kp, and kp+1. 
We now wish to bound V (xk) for all k 2 Sp [ fkp; kp+1g. Clearly, 
the maximum of V over Sp [ fkp; kp+1g must occur at one of the 
following times: kp; kp+1, or at beginning of the production run that 
began before kp+1 which we denote by b(kp+1). We can bound the 
increase in V that occurs between times kp and b(kp+1) as 

in in a si + b + 1  
V xb(k ) � V (xk ) � 

i i 

�i 
i2P 

N 
� sw� + u+ : (10)

� 

Hence, for all k 2 Sp [ fkp; kp+1g; V (xk)  �  G(x0; p) + �sw+ 

u + N
� 

, and so for any k 2 Z 

N 
V (xk) � G(x0; F (k)) + �sw + u+ 

� 

� � NF (k)
= V (x0)� + + �sw + u+ : 

1� 1� � 

(11) 

Therefore, a bound on the buffer levels for all k 2 Z, and, hence, 
for all k 2 W , is  

1  xi(k)  xi(0) � F (k)
xi(k) � � ��� �i �i 1� 

i2P i2P i2P 

� N 
+ + �sw + u+ 

1� � 

which completes the proof. 
Notice that from (3), a useful property of the machine buffer 

x (0)dynamics is apparent. If > � , then the right side
i2P � 1� 

of (3) must asymptotically decrease to ��(
1� 

� + �sw+ u) as k !1  

so that the sum of the buffer levels will get no larger than the bound 
x (0) �at time k = 0. If  < , then the right side of (3) must

i2P � 1� 

asymptotically increase to ��(
1� 

� + �sw + u) as k !1. Hence, (3) 
helps to characterize both the transient and steady-state behavior of 
the machine. Notice that our proof is for a more general class of 
stream constraints for the parts arriving at and departing from the 
machine than in [1] and (3) provides a more detailed characterization 
of the transient behavior of the machine. It is also possible to defne 
a generalized CAF (GCAF) in which only a fxed fraction of the 
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parts in a buffer at the beginning of a production run are cleared 
during that production run. Similar results hold for the GCAF policy. 
Finally, recall that the buffer bound established above is only valid at 
real times tk. However, if the “inter-sample” input and output stream 
functions are known or can be bounded, then the above bound can 

+be modifed so that it is valid for all t 2 <  . If we know nothing 
of the “inter-sample” input and output stream functions, we can add 
di for all i 2 P to the buffer bounds so that the bounds are valid 

+for all t 2 <  .  

IV. STABILITY ANALYSIS OF THE CAOB POLICY 

We now introduce what we call the “clear-the-average-oldest 
buffer” (CAOB) policy. For all i 2 P and for all k 2 W , 
let Ti(k) be the maximum number of periods that any part in 
buffer i has been waiting for service at time k and let T (k) =  

[T1(k); T2(k); � � � ; TN  (k)]
t . Let the CAOB policy choose at time k 

a part j 2 fi  2 P  :  Ti(k)  � �  
N  

(k)g to process where 
m=1 Tm 

1� 2 (0; ].
N 

Theorem 2: If the CAOB part servicing policy is used to control 
1the above machine and if wi < N for all i 2 P , then it has buffer 

levels that are bounded for all k 2 W by 

in F (k�1)+1 � 
xi(k) � a� 1 � + ��  

1 � 
i2P 

in 
+ xi(0) + b + 1  (12)i 

i2P 

where 

in(N � 1)ai 
= max  1  � �  1  �  (0 < < 1) (13) 

i �i(1 � wi) 

inN � 1 2bi + 1  
� = max + si + 1  (14) 

i 1 � wi �i 

in in
�i = max k 2W : ceil a (k + 1)  +  bi i 

� foor(�i(k + 1  � si)) > 0 : (15) 

Proof: Choose V (T (k)) = 
i2P 

Ti(k). Beginning in a similar 
way to the proof of Theorem 1 we know that (6) holds for CAOB. No-
tice that Tj (k )(kp+1 ) = 0; Ti(kp+1) � Ti(kp) � �p for all i 2 

in inP; i =6  j�(kp), and xi(k) � ai (Ti(k)) + bi +1  for all i 2 P; k 2 

Z. From this and from the defnition of the CAOB policy, we see that 
Ti(kp+1) � Ti(kp)�Tj (k (kp)+(N �1)�p. Hence)i2P i2P 

V (T (kp+1)) 

in(N � 1)aj (k ) 
� V (T (kp)) � �V (T (kp)) 1 � 

�j (k )(1 � wj (k )) 

in2b + 1  
+ + sj (k ) + 1  

1 � wj (k ) �j (k ) 

N � 1 j (k ) 

in(N � 1)aj (k ) 
= V (T (kp)) 1 � � 1 � 

�j (k )(1 � wj (k )) 

in2b + 1  
+ + sj (k ) + 1  :  (16)

1 � wj (k ) �j (k ) 

N � 1 j (k ) 

If we defne and � as in the statement of Theorem 2 we see from 
(16) that V (T (kp+1)) � V (T (kp)) + �, for all kp 2 R. Notice 

that by assumption, 0 < < 1. Hence, we have V (T (kp)) � 
(1 � p) 

1� 

� G(p) (note that V (T (k0)) = 0) and so we have 
bounded V (T (k)) for all k 2 R. 

Consider now the set of times Sp such that if k 2 Z and 
k 2 (kp; kp+1), then k 2 Sp. We have found a bound G(p) for 
V (T (k)), for k = kp, and kp+1. We now wish to bound V (T (k)) 
for all k 2 Sp [ fkp; kp+1g. To do this, we frst must bound 
Tj (k )(k

0) � Tj (k )(kp) for all k0 2 Sp. Consider the following 
expression: 

k �T (k )+k 

Aj (k ) (k) �Dj (k ) k + Tj (k )(kp) (17) 
k=k �T (k ) 

for all kp + k0 2 Sp. Expression (17) is the sum of all parts which 
arrived at buffer j�(kp) at any time k 2W; kp �Tj (k ) (kp) � k � 

kp � Tj (k ) (kp)+  k0  minus the sum of all parts which leave buffer 
j�(kp) at any time k 2 Sp; kp  � k  � kp  +  k0  . If expression (17) is 
positive for a given k0 2W , then more parts arrived at buffer j�(kp) 

in the k0 +1 periods beginning at time kp �Tj (k )(kp) than have left 
buffer j�(kp) in the k0 +1 periods beginning at time kp. Hence, there 
is at least one part which arrived at buffer j�(kp) on or before time 
kp �Tj (k )(kp)+k0  which remains in the buffer at time kp +k0 +1  

so that Tj (k )(kp + k
0) > Tj  (k  )(kp). By the same reasoning, if 

(17) is not positive, then Tj (k )(kp + k
0) � Tj (k )(kp). It is clear 

that Tj (k ) (kp + k
0) � Tj (k )(kp) � k0 . We can bound expression 

(17) by specifying that parts in buffer j�(kp) be serviced as slowly 
as possible so that 

k �T (k )+k 

Aj (k )(k) �Dj (k ) k + Tj (k ) (kp) (18) 
k=k �T (k ) 

in 0 in 
� ceil aj (k )(k + 1) +  bj (k ) 

� foor �j (k ) k
0 
+ 1  � sj  (k  )  (19) 

for all kp + k0 2 Sp. For all i 2 P , let �i be defned as given 
in �in the statement of Theorem 2. Notice that because ai � N for 

inall i 2 P and because we are inherently assuming that bi < 1 

for all i 2 P; �i < 1 for all i 2 P . Then, for all kp + k0 2 Sp; 

Tj (k )(kp+k
0)�Tj (k )(kp) � �j (k ) . Hence, for all kp+k0 2 Sp, 

V (T (kp +k0)) � G(p+1)+�j  (k  ). Notice in the above bound that 
G(p+1)  appears rather than G(p). This is due to the fact that for all 
i 2 P; i 6= j�(kp); Ti(kp+1) > Ti(kp  +  k0);  for all kp + k0 2 Sp. 
Hence 

�F (k�1)+1
V (T (k)) � 1 � + ��  (20)

1 � 

for all k 2 Z; k > 0, and, hence, for all k 2 W; k > 0. Because 
in in xi(k) � xi(0) + ai Ti(k) +  bi for all k 2W and for all i 2 P , it  

in inis clear that xi(k) � (xi(0) + a Ti(k) +  b  + 1)  �i ii2P i2P 

in in a� V (T (k)) + 
i2P 

(xi(0) + bi + 1)  which with (20) gives the 
fnal result for all k 2W; k > 0. 

Notice that in bounding V (T (k)) in (20), that the bound increases 
from �� to � + ��  as k ! 1 so that we also characterize the 

1� 

transient properties of CAOB. A clear-the-oldest buffer (COB) policy 
is a special case of the CAOB policy; hence, the bounds above hold 
for this policy also. The COB policy is sometimes called the “frst-
come frst-clear” (FCFC) policy since it will service the buffer which 
contains the part that arrived before all other parts in any of the other 
buffers. If parts tend to arrive at the machine such that a group of 
parts arriving at one buffer is followed by a group of parts arriving 
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at another buffer and so on (at a low enough frequency), then the 
CAOB policy will tend to behave like an FCFS policy. 

V. STABILITY ANALYSIS OF THE RPS POLICY 

We now introduce what we call the RPS policy. Under this policy, 
the machine is free to choose any nonempty buffer to service at any 
time just so long as it never sits idle (i.e., it is either setting up for 
or processing a part at every instant). 

in 1Theorem 3: If ai � for all i 2 P , and the RPS
N(�s+1) 

part servicing policy is used to control the above machine, then 
N 

xi(k) � b + N + 1 +  
N  

xi(0), for all k 2 W , where
i=1 i=1 

N inb = b .i 

N 
i=1 

Proof: Let A(k) be defned so that A(k) =  
i=1 

Ai(k), for 
all k 2 W . In the worst case in which the machine produces only a 
single part from any buffer before switching production to a different 
buffer, it is clear that it can take no longer than s� + 1  periods to 
produce one part. If we let D(k) =  maxfDi(k) :  i  2  Pg, we see 

k k �k +1that D(k) � foor( ), for all k ; k2  2  Z; k � k2.
k=k s�+1 1 1 

inFrom this, the defnition of A(k), and the assumption on ai ; i 2  P ,  
in the statement of the theorem, it is apparent that 

k 

[A(k) � D(k)] 

k=0 

N 

k0 k0 + 1  in + 1  
� + bi + 1  �  foor (21)

N(�s+ 1)  s�+ 1  
i=1 

k0 k0 + 1  + 1  
= + b+ N � foor (22) 

s�+ 1  s�+ 1  

� b+ N + 1  (23) 

k N Nand that [A(k)� D(k)] = xi(k
0 
+1)�  xi(0), for

k=0 i=1 i=1 
Nall k0; k0  + 1  2  Z. Clearly, then, 
i=1 

xi(k
0 
+ 1)  �  b +  N  + 1 +  

N  

i=1 
xi(0), for all k0; k0  + 1  2  W .  

Notice that unlike the conditions on stability of the CAF policy, 
the condition for stability of the RPS policy does not depend on 
the processing speed of the machine (of course, we have required 
previously that the period length be chosen so that 1 � �i � di for 
all i 2 P ). Rather, the condition simply limits the rates of the input 
streams of the machine. Intuitively, the RPS policy is stable because 
it is persistent in that if there are parts in any machine buffer, it 
will always be either processing parts or setting up to process parts. 
Under the conditions of Theorem 2, several commonly used policies 
are special cases of the RPS policy and hence are stable because 
they are persistent: 1) the frst-come frst-serve (FCFS) policy; (b) 
the priority policy (buffers are serviced in a fxed order, but empty 
buffers are skipped as in [7]), and fxed time policy (nonempty buffers 
are serviced for a fxed amount of time). Moreover, policies studied 
in [8], such as the “earliest due date” policy, are special cases of 
RPS. It is interesting to note that in [4] the author was able to show 
that FCFS is unstable for certain FMS topologies where there are no 
setup times. The key to obtaining stability here is that unlike in [4] 
we constrain the rates at which parts may be input to machines (so 
that if applied to a network of machines our results would require a 
stream modifer like in the next section to achieve stable operation). 

The stability conditions for the RPS policy in Theorem 3 are 
somewhat dissatisfying because we cannot affect the input stream 
rate constraints by speeding up the machine, and this is contrary to 
our intuition. In light of this, we now reformulate the problem by 
altering the way that we look at part arrivals and departures. First of 
all, it is necessary to redefne the period for this analysis. We choose 

in0 the new period and constants ai so that for every i 2 P there are 

in0 at least ai periods for each part that arrives at buffer i that is not 
attributable to the input stream burstiness. Similarly, choose �i 

0 so 
that when the machine is producing parts of type i it outputs parts no 
slower than one part every �i 

0 periods. As before, let si be the number 
of periods needed to set up for production on buffer i 2 P . Assume 

in0 that for all i 2 P; ai and �i 
0 are integers (this assumption is not 

limiting since we can choose the period to be as small as desired). 
Theorem 4: If the RPS part servicing policy is used to control the 

above machine, and 

10 
maxf�i + sig 0 � 1 
i inai2P i

then N 
xi(k) � b+ N + 1+  

N  
xi(0), for all k 2 W , where

i=1 i=1 

N inb = b .ii=1 

Proof: Let A(k) =  Ai(k)  and D(k) =  Di(k)  for
i2P i2P 

all k 2 W so that 

k 

k2 � k1 + 1  in
Ai(k) � foor + 1 +  b

in i 

a ik=k 

k2 � k1 + 1  in 
� + 1 +  bi (24) 

ain 
i 

k 

1 in
A(k) � (k2 � k1 + 1)  + N + b (25) 

ain i 

ik=k i2P i2P 

k k �k +1 k �k +1and D(k) � foor � � 1, for all 
k=k max f� +s g max f� +s g 

k1; k2  2  W; k1 � k2. Notice that as in the previous analysis of the 
RPS policy, we have identifed the maximum number of periods per 
part serviced (i.e., as long as there are parts in any machine buffer, the 
machine must output at least one part every maxif�i 

0 
+ sig periods). 

kClearly, [A(k)� D(k)] = (xi(k
0 
+1)�  xi(0)) � (k

0 
+

k=0 i2P 
1 1 

1) � +N+b+1, for all k0 2 W . Now, by 
i2P in max f� +s g

a 

the assumption in the theorem we see that 
i2P (xi(k+1)�xi(0)) � 

N+b+1 or, equivalently xi(k+1) � b+N+1+ xi(0),i2P i2P 

for all k 2 W . 
Notice that while the RPS stability condition in Theorem 4 is more 

fexible than the condition in Theorem 3 (in terms of our ability to 
design a machine that can achieve stability by speeding it up), the 
input stream rate constraints are still limited by the maximum machine 
setup time, regardless of how fast the machine is. This appears to be 

ina fundamental property of RPS policies. Notice also that if a i and 
�i 
0 are considered to be inverse rate constraints, the stability condition 

of Theorem 4 can be thought of as reducing to the capacity condition 
as si ! 0 for all i 2 P . 

VI. STREAM MODIFIER 

The “stream modifer” is a network element which consists of a 
buffer and a part fow policy which selectively queues incoming parts 
in the buffer or passes them directly through to the output stream 
(we use the term “stream modifer” rather than “regulator” simply to 
emphasize that the two are different). In addition, the policy must 
decide when to release queued parts into the output stream. The 
purpose of the stream modifer is to alter the maximum rate and 
maximum burstiness of its input stream. Note that the stream modifer 
is an important element for FMS’s since it can be used to modify 
the streams of parts between machines so that an entire FMS can be 
made stable [3]. 

At time k 2 W , let the number of parts in the stream modifer 
buffer be x(k), the number of parts arriving at the stream modifer 
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be A(k), and the number of parts leaving the stream modifer be 
in in outD(k). In addition, let a , b ; a  ; and bout be real, nonnegative 

constants which are used to describe the input and output streams of 
the stream modifer. In order to clarify the following analysis, assume 

outthat a in and a are integers. We specify the behavior of the input 
and output streams of the stream modifer with respect to constants 
in in out out a ; b ; a  ; and b as follows. 

1) For all k1; k2  2  W; k1 � k2 ; 
k

k=k A(k) � ceil(a in(k2 � 

in k out outk1 +1)+b  ); D(k) � ceil(a (k2 �k1 +1)+b  ).
k=k 

0 k in2) For all k 2 W; 
k=0

[A(k) � D(k)] � maxf(a � 
out in out a )(k0 + 1) +  b  � b + 1;  �x(0)g. 

Item 1) simply specifes the input stream constraint for the stream 
modifer and how we would like the output stream of the stream 
modifer to behave. Item 2) is included as a constraint on stream 
modifer behavior to ensure that its buffer is bounded. In fact, because 

k 
x(k+1)  =  x(k)+A(k)�D(k)  and because [A(k)�D(k)] = 

k=0 

x(k0 + 1)  �  x(0), for all k0 2 W , we see from item 2) that 
in out in out x(k0 +1)  � maxf(x(0)+(a �a )(k0 +1)+b  �b +1); 0g,  

out infor all k0 2 W . If we choose a = a , then for all k 2 W; 
in out x(k) � x(0) + b � b + 1, and the stream modifer buffer is 

out in outbounded. Notice also that if a = a , then we can choose b = 0  
so that the burstiness is completely removed from the output stream. 
In this case, if the input stream operates at its maximum rate, then the 
output stream can operate at its maximum rate and the extra bursts 
of parts on the input stream, that by defnition will never total more 

inthan b , will be stored in the stream modifer buffer. Notice that if 
out in a < a  , then either bout is infnite or we cannot bound x(k) for 

in out andall k 2 W . It is also clear that if a or bin is infnite and a 
bout are fnite, no bound exists for x(k) for all k 2 W . 

We now specify a practical policy for the stream modifer which 
we will show satisfes items 1) and 2) by releasing the maximum 
number of parts allowable without violating the second inequality 
at every time k in item 2). For every time k 2 W , let Ek = 
fEk 

0; Ek  
1; � � � ; Ek

k  g, where Ek
k is the maximum allowable value of 

D(k) such that 

k 
out out

D(l) =  ceil(a (k � k
0 
+ 1)  +  b  ): (26) 

l=k 

Because the stream modifer cannot violate (26) for any k0 ; k0  � k; 
let its policy choose 

D(k) =  min (Ek  [ fA(k) +  x(k)g)  (27) 

(this policy is not implementable because as k ! 1 jEkj ! 1;  
below we will show how to modify it so that it is an implementable 
policy). We now must ask whether our policy will satisfy items 1) 
and 2). Because our policy in (27) guarantees that (26) will not 
be violated for any k0 ; k  2  W; k0 � k, it is clear that it satisfes 
the second inequality in item 1) because (26) is more strict than 
the second inequality in item 1). Next consider item 2). Choose 
any time k0 2 W . If  D(k0) = minfEk [ fA(k

0) +  x(k0)gg = 
A(k0 ) +  x(k0), then because x(k0 + 1)  =  0  (the stream modifer 
buffer is cleared by the policy’s choice of D(k0 )), it is clearly the 
case that k

k=0 (A(k)�D(k)) = �x(0) so that item 2) holds. If, on 
the other hand, D(k0 ) = minfEk [fA(k

0)+x(k0)gg = min(Ek ), 
then from the defnitions of E0 in (26) and the stream modifer policy k 

� k0 kin (27), there is some k1 2 W; k1 , such that 
k=k D(k) =  

out outceil(a (k0 �k1 +1)+b ). Below we defne a recursive procedure 

TABLE I 
Ek 

TABLE II 
Ek+1 

whose goal is to defne a time k
� 
2 W which we use later in the 

analysis. Upon initially entering the procedure, let i = 0.  

1) If i = 0, let ni = k0; otherwise, let ni = mi�1 � 1. 
2) If D(ni) = min(En ), then fnd the smallest q 2 W such that 

n 
out out

D(k) =  ceil(a (ni � q + 1)  +  b  ) (28) 
k=q 

and let mi = q. 
3) If mi = 0, then let k

� 
= 0  and stop. 

4) If D(mi � 1) < min(Em �1 ), then let k
� 
= mi � 1 and stop; 

otherwise, let i = i + 1  and return to step 1. 

Notice that the above procedure will always terminate. If k
� 
= 

00, then the entire range of times [0; k  ]  is composed of adjacent 
0subranges of times [mi ; ni]; i  = 0; 1; 2; � � � ; Q, where n0 = k ; 

mQ = 0; ni  =  mi�1  � 1  for all i = 1; 2; � � � ; Q, and 

n 
out out

D(k) =  ceil(a (ni �mi + 1)  +  b  ) (29) 
k=m 

for all i = 0; 1; 2; � � � ; Q. Hence, we see that 
k

k 
=0 D(k) =  

Q  out out 
i=0 ceil(a (ni �mi +1)+b ) and (because ceil(a)+ceil(b) � 

k out 0 outceil(a + b)) that D(k) � ceil(a (k + 1) +  (Q+ 1)b  ).
k=0 

Because we have established that our policy obeys item 1), we 
k see that either Q or bout must equal zero so that 
k=0 D(k) =  

out 0 out kceil(a (k + 1)  +  b  ). Therefore, 
k=0

(A(k) � D(k)) � 
in 0 in out 0 out in out 0ceil(a (k +1)+b )�ceil(a (k +1)+b ) � (a �a )(k + 
in out 01) + b � b + 1, so that for D(k ) = min(Ek ) and k

� 
= 0,  

our policy satisfes item 2). 
0If k

� 
> 0, then the entire range of times [k

� 
+ 1; k  ]  is composed 

of adjoining subranges of times [mi ; ni]; i  = 0; 1; 2; � � � ; Q, where 
0 n0 = k ; mQ  =  k

�  
+ 1; ni  =  mi�1  � 1  for all i = 1; 2; � � � ; Q,  

and (29) holds for all i = 0; 1; 2; � � � ; Q. Similar to before, it 
k out 0 outfollows that D(k) =  ceil(a (k � k

�
) +  b  ). Because

k=k +1 
k 
k=0

(A(k) � D(k)) � 0, we see that 

k k 

(A(k) �D(k)) = (A(k) �D(k)) 
k=0 k=0 

k 

+ (A(k) �D(k)) (30) 
k=k +1 

k 

� (A(k) �D(k)) (31) 
k=k +1 
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in in
� ceil(a (k

0 
� k

�
) +  b  ) 

out out
� ceil(a (k

0 

� k
�
) +  b  ) (32) 

in out in out
� (a � a )(k

0 

� k
�
) +  b  � b + 1  

(33) 
in out in out

� (a � a )(k
0 

+ 1) +  b  � b + 1  (34) 

so that for D(k0) =  min(Ek  )  and k
� 
> 0, our policy satisfes item 

2). Hence, items 1) and 2) are satisfed by our policy. 
We now show how to recursively calculate Ek for all k 2 W . From 

(26), we can form Tables I and II. From the form of the expressions 

k

in Tables I and II, notice that Ek = Ek + a out �D(k) for all k0; 
0 � k, so that min(Ek+1 � fEk+1 g) = min(Ek) +  a  out � D(k). 

k+1 k 

k+1 

It is clear, then, that if we defne the set 

E� k = fmin(E� k�1) +  a  
out 

�D(k � 1)g 

out out
[ fceil(a + b )g (35) 

Comments on “A New Controller Design 
for a Flexible One Link Manipulator” 

Susy Thomas and B. Bandyopadhyay 

Abstract—In the above-mentioned paper1 a variable structure sliding 
mode controller (VSSMC) design for the tip position control of a fexible 
one-link manipulator has been presented, where a switching line con-
structed from the tip position and its derivative was employed for the 
design. The claim was that if the slope of this line is chosen positive and 
the system variables are made to stay on this line, they will converge to 
zero exponentially, thus yielding a stable system in sliding mode (SM). The 
purpose of this comment is to show that the choice of a positive constant 
as the slope for this switching line will not guarantee the stability of the 
system in SM because, in view of the functional relationship of the tip 
position with the generalized coordinates of the system through the mode 
shape functions, what is presented as a switching line is in fact a switching 
hypersurface. Hence, the stability of the system in SM is guaranteed only 
if the motion on this hypersurface is asymptotically stable. A positive 
value for the slope of the switching line employed by Qian and Ma will 
not guarantee this stability because variations in the mode shape functions 
due to varying payload conditions or other disturbances at the tip will 

� out out lead to a varying switching surface. These variations can be such that the E0 = fceil(a + bfor all k 2 W; k = 0  and if we let 6 )g, 
resulting sliding motion becomes unstable. Also, the varying switching 

then min(Ek) = min(E� k). Hence, we can defne our policy for all surface implies that the controller will fail to maintain sliding mode 
k 2 W as D(k) = minfE� k [ fA(k) +  x(k)gg. motion. 

VII. CONCLUDING REMARKS 

We have presented a new stability analysis of the CAF policy 
focusing on its transient behavior, shown that the CAOB and RPS 
policies are stable, and provided a stable implementation for a stream 
modifer. We have considered only the deterministic case throughout 
the paper. It would be interesting to study a stochastic version of the 
problem, for example for the case of failure-prone machines. Also, it 
is an important open question whether the policies proposed in this 
paper (and others) can help improve the performance of an FMS. 
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I. INTRODUCTION 

From (12) of the above-mentioned paper,1 the functional rela-
tionship between the tip position and the generalized coordinates 
considering only the frst two vibratory modes is 

yTP  =  Lq0 + ° 1(L)q1 + ° 2(L)q2 (1) 

where qi denotes the generalized coordinates and ° i(L) the mode 
shape functions of the fexible arm. 

In the paper,1 Qian and Ma defne the tip position error x1 as 
the difference between the current tip position yTP  and the set point 
xST . Without loss of generality it was assumed that 

xST = 0:  (2) 

Hence 

x1 = yTP  (3) 

and x2 was defned as 

x2 = _x1  = _yTP :  (4) 

The switching line was constructed as 

S = x2 (t) +  Cx1(t) = 0:  (5) 
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