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Stable Adaptive Control Using Fuzzy 
Systems and Neural Networks 
Jeffrey T. Spooner and Kevin M. Passino, Senior Member, IEEE 

Abstract- Stable direct and indirect adaptive controllers are 
presented which use Takagi-Sugeno fuzzy systems, conventional 
fuzzy systems, or a class of neural networks to provide asymptotic 
tracking of a reference signal for a class of continuous-time 
nonlinear plants with poorly understood dynamics. The indirect 
adaptive scheme allows for the inclusion of a priori knowledge 
about the plant dynamics in terms of exact mathematical equa
tions or linguistics while the direct adaptive scheme allows for 
the incorporation of sueh a priori knowledge in specifying the 
controller. We prove that with or ""ithout such knowledge both 
adaptive schemes can "learn" how to control the plant, provide 
for bounded internal signals, and achieve asymptotically stable 
tracking of a reference input. In addition, for the direct adaptive 
scheme a technique is presented in which linguistic knowledge 
of the inverse dynamics of the plant may be used to accelerate 
adaptation. The performance of the indirect and direct adaptive 
schemes is demonstrated through the longitudinal control of an 
automobile within an automated lane. 

I. INTRODUCTION 

FUZZY controllers have stirred a great deal of excitement 
in some circles since they allow for the simple inclusion 

of heuristic knowledge about how to control a plant rather 
than requiring exact mathematical models. This can sometimes 
lead to good controller designs in a very short period of 
time. In situations where heuristics do not provide enough 
information to specify all the parameters of the fuzzy controller 
a priori, researchers have introduced adaptive schemes that use 
data gathered during the on-line operation of the controller, 
and special adaptation heuristics, to automatically learn these 
parameters (see e.g., [l]-[13] and the references therein). To 
date, stability conditions have not been provided for any of the 
approaches in [l]-[13], but Langari and Tomizuka [14] and 
others have developed stability conditions for (nonadaptive) 
fuzzy controllers and recently several stable adaptive fuzzy 
control schemes have been introduced [15]-[18]. Moreover, 
elosely related neural control approaches have been studied 
[19]-[24]. 

In this paper, we seek to introduce adaptive fuzzy or 
neural control approaches that are guaranteed to operate prop
erly under less restrictive assumptions and for more general 

Manuscript received February 15, 1995; revised March 12, 1996. J. T. 
Spooner was supported by a CITR-OSU Fellowship. This work was supported 
in part by The Center for Intelligent Transportation Research (CITR) at The 
Ohio State University and National Science Foundation Grants IRI-9210332 
and EEC-9315257. 

J. T. Spooner was with the Department of Electrical Engineering, Ohio 
State University, Columbus, OH 43210 USA. He is currently with Sandia 
National Laboratories, Albuquerque, NM 87185 USA. 

K. M. Passino is with the Department of Electrical Engineering, The Ohio 
State University, Columbus, OH 43210 USA. 

Publisher Item Identifier S 1063-6706(96)05627-5. 

continuous-time nonlinear systems. In particular, we first intro
duce an "indirect adaptive controller"1 in which fuzzy systems 
or neural networks are used to estimate the plant dynamics, 
and then use these estimates to generate controls that achieve 
asymptotic tracking of a reference input. Work on the use of 
fuzzy systems and neural networks for identification has been 
performed in [15], [19], and [26]. Indirect adaptive controllers 
based on neural network radial-basis functions and standard 
fuzzy systems have both been shown to provide asymptotic 
tracking of a reference signal for a class of continuous time 
nonlinear plants with no zero dynamics, provided that the 
error in representing the nonlinear plant dynamics with neural 
networks or fuzzy systems converges to zero [15], [20]. A 
scheme was presented in [22] for a similar class of plants 
which uses modified Hebbian learning rules. In theory, it is 
possible to exactly represent the dynamics of a large class 
of nonlinear plants using standard fuzzy systems or radial
basis functions. Unfortunately, this may require the use of a 
very large, or infinite, number of rules (for fuzzy systems) or 
nodes (for neural networks), limiting the applicability of the 
techniques in [15] and [20]. In particular, in [15] and [20], the 
authors represent the error between the actual plant dynamics 
and the fuzzy estimation by a term w(t), Convergence of the 
tracking error to zero is guaranteed by assuming that w(t) 
is square integrable. This, however, is difficult to show for 
any given plant (indeed, even for some very simple nonlinear 
plants such as a tank-level control problem, the assumption 
fails to hold). In addition, this calculation may require an 
exact model of the plant, which defeats the purpose of using a 
"model-free" technique. Within this work, we simply require 
knowledge of the plant relative degree and bounds on the plant 
dynamics. 

For our indirect adaptive controller, we take advantage of 
robustness properties associated with sliding mode techniques 
[27] to ensure that the tracking errors will asymptotically 
converge to zero even if there are approximation errors be
tween the identifier model and plant. We also show that the 
control signal may be smoothed, allowing for stable operation 
and tracking convergence to an ;-:-neighborhood of zero. Our 
indirect adaptive scheme allows for the use of a combination 
of standard fuzzy systems, Takagi-Sugeno fuzzy systems, and 

1Indirect adaptive control uses an "identifier" to synthesize a model of 
the plant dynamics and then information from this model is used to tune a 
controller (we that the controller was tuned "indirectly" by first identifying 
a model of the For "direct adaptive control;' an identifier is not used 
for the plant; pai·arn.eters of the controller are tuned directly (some think 
of the direct controller as a "controller identifier"). For more details 
see, e.g., [25]. 

1063-6706/96$05.00 1996 IEEE 

https://1063-6706/96$05.00


340 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL 4, NO. 3, AUGUST 1996 

neural networks. If knowledge of the plant is available either 
in the form of linguistics or mathematical formulations, this 
information may be incorporated into the indirect adaptive 
scheme to accelerate tracking convergence. The combination 
of Takagi-Sugeno fuzzy systems and the ability to incorporate 
knowledge of the plant dynamics provides a great deal of 
design flexibility. 

Though this paper is developed through the same general 
philosophy as many of the cited papers, our indirect adaptive 
controller does possess the following distinctions: i) the results 
of the stability theory may be applied to a class of plants with 
zero dynamics (this was not done in [15], [20], [22]), ii) this 
paper ensures asymptotic tracking convergence using a larger 
class of fuzzy systems (i.e., Takagi-Sugeno fuzzy systems) 
than in [15] and a larger class of neural networks (i.e., those 
with a second hidden layer) than in [20], iii) within this paper 
we allow for the direct inclusion of a mathematical description 
of the known part of the plant dynamics (this was not done in 
[ 15], [20], and [22]), iv) unlike [15], [20], and [22], this paper 
uses a manifold to develop an error measurement which allows 
for asymptotic stability of the output error even if the modeling 
error does not go to zero, and v) tracking convergence is 
guaranteed to a boundary layer of zero using the smoothed 
version of the control law. 

A direct adaptive controller is then introduced which at
tempts to directly adjust the parameters of a fuzzy or neural 
controller to achieve asymptotic tracking of a reference input. 
Within [16] a stable direct adaptive control scheme based on 
standard fuzzy systems was presented for a class of plants 
with constant input gain and no zero dynamics. Asymptotic 
tracking convergence was proven for this scheme if a certain 
approximation error is square integrable. The direct adaptive 
scheme in [16] thus has the same deficiencies as in [15] and 
[20] by requiring square integrability of the approximation 
error. It was shown that radial basis neural networks and 
standard fuzzy systems may provide asymptotic tracking of 
a reference signal for a class of nonlinear plants, even if 
the estimation error is not square integrable in [17] and [21]. 
Within this paper, we present a direct adaptive scheme which 
uses standard fuzzy systems, Takagi-Sugeno fuzzy systems, or 
neural networks to achieve stable tracking of a reference input 
for a class of plants with zero dynamics and a state-dependent 
input gain. If knowledge of how to design the controller is 
available either in the form of linguistics or mathematical 
equations, this information may be incorporated into the 
direct adaptive scheme to accelerate convergence. Our direct 
adaptive scheme also allows for the inclusion of linguistic 
knowledge of the plant inverse dynamics to accelerate tracking 
convergence, and a control smoothing scheme may be used 
to reduce the control action while maintaining closed-loop 
stability. 

As with the indirect adaptive scheme, our direct adaptive 
scheme has many differences from the existing techniques 
(i.e., those presented in [16], [17], and [21]). Particularly, 
i) the stability results presented here may be applied to 
systems with a state-dependent input gain, whereas [16] and 
[21] consider a class of nonlinear plants with constant input 
gain, and [17] only considers the special case of unity gain, 

ii) none of the results in [16], [17], and [21], considered 
systems containing zero dynamics, iii) unlike [16], our direct 
adaptive algorithm ensures that even if the approximation error 
is not square integrable, then the tracking error will go to 
zero ( or to an E-boundary layer of zero for the smoothed 
control version), iv) our direct adaptive controller allows for 
Takagi-Sugeno fuzzy systems, standard fuzzy systems, or 
neural networks, v) the direct adaptive technique presented 
here allows for the inclusion of a known controller Uk so that 
it may be used to either enhance the performance of some 
prespecified controller or stand alone as a stable adaptive 
controller, and vi) furthermore, our approach allows for the 
incorporation of heuristics about the inverse plant dynamics 
to speed adaptation. We illustrate the design of both indirect 
and direct adaptive controllers for the longitudinal control of a 
vehicle within an automated lane (it seems that adaptive fuzzy 
control has not yet been used for this application). 

It should be mentioned that other work has been completed 
in combining conventional stable adaptive control and intel
ligent control. Within [18] a nonlinear discrete-time plant is 
represented by a linear regression form using Takagi-Sugeno 
fuzzy systems to provide global stability. A discrete time 
adaptive routine is presented in [23] which uses layered neural 
networks to provide stable adaptive tracking provided some 
initialization conditions are satisfied. Finally, in [24], a new 
adaptive routine using dynamic neural networks is presented 
with stability investigated using a singular perturbation model 
of the plant [28]. 

This paper is organized as follows. In Section II, we define 
a class of Takagi-Sugeno fuzzy systems and show that a large 
class of fuzzy systems and neural networks may be represented 
using the same functional form. Sections III and IV present the 
indirect and direct adaptive schemes and the stability proofs. 
In Section V, we illustrate the concepts on the longitudinal 
control of a vehicle in an automated lane. Section VI contains 
the concluding remarks where we discuss both the advantages 
and disadvantages of the adaptive schemes. Note that this 
paper expands on the work done in [29]-[32]. 

II. Fuzzy SYSTEMS AND NEURAL NETWORKS 

In this section, we define the Takagi-Sugeno fuzzy system 
and show that a class of standard fuzzy systems2 and some 
neural networks are a special case of this model. 

A. Takagi-Sugeno Fuzzy Systems 

A multiple-input single-output (MISO) fuzzy system 
is a nonlinear mapping from an input vector X 
[.1:1, x2, • • ·, xnV E ~n (T denotes transpose) to an 
output y = .f(X) E ~ (note that we use X as a general
vector input to the fuzzy system; it may or may not be the 
same as the "state" that is used in all the later sections). 
Using the Takagi-Sugeno model [34], the fuzzy system is 
characterized by a set of p If-Then rules stored in a rule-base 

2 It is assumed that the reader has some familiarity with fuzzy systems. For 
an introduction, see [5], [15], and [33] 
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TABLE I 
SOME STANDARD MEMBERSHIP FUNCTIONS 

Triangular Gaussian 

if X $ Cif X $ C
Left µ(x) = { ~ax(0,1+ c-;,,"') otherwise µ(x) = { ~xp (- (7)2) otherwise 

max (0, 1 + x;;;c) if X $ C
Centers µ(x) = exp (- ("';c) 2)µ(x)= { max(0,l+c;;-,x) otherwise 

Right µ(x) = { ~ax (0, 1 + "';;;c) if X $ C µ(x) = { ~xp (- ("';c)2) if X $ C 
otherwise otherwise 

and expressed as defuzzification may be obtained using 

R1: If (i:1 is Pf and··· and in is PD 
Then c1 = g1(X) 

fj = .f(X) = (4) 

Rp: If (i:1 is Ff and··· and in is F;,) 
Then cp = gp(X). 

where µi := µF,x---xFJx1, • · ·, Xn) is the value that the 
Here, pba is the ath linguistic value associated with the membership function [defined via (2) or (3)] for the antecedent 
linguistic variable xb that describes input Xb, and cq = gq(X) of the ith rule takes on at X = [x1 , • • • , xn?. It is assumed 
is the consequence of the qth rule and gq: ~n ----+ ~- Using that the fuzzy system is defined so that for all X E ~n, we 
fuzzy set theory, the rule-base is expressed as have I:f=1 µi -::J 0. We may express (4) equivalently as 

If (Ff and··· and Fi) (5) 
Then c1 = g1(X) 

where cT := [c1 · • • cp] and (T := [µ1 µp]/[I:f=1 µi]. 

RP: If (F1k and · · · and F;,) We assume that J, the mapping produced by the fuzzy system, 

Then cP = gp(X) is Lipschitz continuous [25]. 
In this paper, the output consequences for each rule are 

where Fba is a fuzzy set defined by taken as a linear combination of a set of Lipschitz continuous 
functions 0k(X) E ~, k = l, 2, • • •, m - 1, so that 

(1) 
Ci = 9i(X) 

:= ai,o + ai,101(X) + · · · The membership function µpba E [O, l] quantifies how well 
(6)the linguistic variable Xb that represents Xb is described by the + ai,m-20m-2(X) + ai,m-l0m-l(X) 

linguistic value Ft There are many ways to define member
ship functions [15]. For instance, Table I specifies triangular i = 1, • • •, p. Define the following: 

membership functions with "center" c and "width" w, and 
it specifies Gaussian membership functions with "center" c 

and "width" u (see Figs. 6 and 10 in Section V for graphical (7)
representations). 

The antecedent fuzzy set F1 x F2 x · · · x Fn (fuzzy Cartesian 
product), of each rule is quantified by the "t-norm" [15] which and 
may be defined by, for example, the min-operator or the a1 o 

a1,m-l lproduct-operator T a2,o a2,m-l
A ·-.- . . . (8) 

µF1X···XFn(X1,. •·, Xn) rap,O ap,m-l 
:= min {µp1(xi), · · ·, µpn (xn)} (2) 

The consequence vector associated with the fuzzy rules is nowor 
given by c = ATz, so that the output of the fuzzy system may 

µp, X···XFn (xl, • • ·, Xn) now be expressed as 
:= µFi (x1) • • • • • µpn (xn) (3) 

(9) 

respectively (notice that for convenience, we have removed 
the superscripts from the Ff:). Using singleton fuzzification, Clearly, (9) is a special form of a Takagi-Sugeno fuzzy system. 
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input layer input layer 

hidden layer 
hidden layer 1 

Fig. 1. 

y output layer 

y 

Two types of neural networks which may be used with the adaptive techniques. 

hidden layer 2 

output layer 

B. Standard Fuzzy Systems 

Standard fuzzy systems naturally allow for the inclusion of 
heuristics into controller design. In standard fuzzy control, the 
output of a fuzzy system may be found using the center of 
gravity operation, which for a wide class of fuzzy systems is 
expressed as 

p 

Lcili 
~ i=l 
y=-p- (10) 

Lli 
i=l 

where c; is the center of the output membership function 
associated with the ith rule, and li is the area of the implied 
membership function associated with the ith rule (i.e., l; is 
the area of the output membership function that is modified 
via the fuzzy implication that represents the ith rule). This 
fits the form of (9) with z = [l], A = [c1 • • • cp], and 
(; = l;/ I:f=1 l; so that this standard fuzzy system is a 
special case of the Takagi-Sugeno fuzzy system defined by (9). 
Other standard fuzzy systems such as those that use centroid 
defuzzification will also fit the form of (9). 

C. Neural Networks 

Our framework allows for the use of neural networks in 
which a single hidden layer of radial-basis functions are used 
or if a special form of two hidden layers is used. Fig. 1 
demonstrates these two cases. With a single hidden layer of 
radial basis functions the output of neural network is given by 

(11) 

where ( E ~P are (possibly normalized) radial-basis functions 
(e.g., squashing functions characterized by Gaussian functions 
[35]) and cT is a vector of adapting weights. This type of 
system may be described by (9) with z = [l] and A= cT_ As 
it is well-recognized in the literature, this is exactly the same 
representation as used with standard fuzzy systems [15]. 

A second type of neural network considered in this paper 
is one in which there are two hidden layers with the second 
hidden layer of a special form. The output of the first hidden 

layer produces a vector of functions 

(12) 

The nodes which make up the first hidden layer may be 
normalized radial-basis functions, squashing functions or any 
other standard neural-basis function [35]. Here, we allow both 
the output of the first hidden layer and the original input to be 
passed to the second hidden layer (see Fig. 1). The output of 
the ith node of the second hidden layer is given by 

(; ~ (;(Z, X) (b,,o+ t b;,J0J I t b;,J+mXJ) (13) 

where (; (z, X) are squashing functions or radial-basis func
tions (which may be normalized) and b;, 0 is the bias for ith 
node. The output of the neural network is taken as a linear 
combination of the outputs of the second hidden layer; that is 

p 

iJ = L c;l;. (14) 
j=l 

We may combine (13) and (14) to obtain 

p ( m n )y = ~ (;(z, X) a;,o + ~ a;,j0j + ~ ai,j+mXj 

(15) 

which may be expressed in the form of (9) with z 
[1 01 • • • Bmx1 • • • xnf, and A = [a;,j] with a;,j 

c;bi,j· Note that z may or may not include any 0; or x;. 
Within the adaptive framework to follow, we shall typically 

refer to Takagi-Sugeno fuzzy systems within our discussion. 
However, any of the above fuzzy or neural network systems 
apply. 

III. INDIRECT ADAPTIVE CONTROL 

Our objective is to design a control system which will 
cause the output of a relative degree r plant, Yp, to track a 
desired output trajectory, Ym (a relative degree r plant is one 
in which the plant input appears in the output dynamics after 
r differentiations of the output). The desired output trajectory 
may be defined by a signal external to the control system so 
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Fig. 2. An indirect adaptive fuzzy control system with a reference model. 

that the first r derivatives of Ym may be measured, or by a 
reference model, with relative degree greater than or equal to 
r which characterizes the desired performance (see Fig. 2). 
With these considerations, we make the following assumption 
about the reference signal [let ytl denote the rth derivative 
of Ym with respect to time]. 

RI) Reference Input Assumption: The desired output tra
jectory and its derivatives Ym, • • •, yt) are measurable and 
bounded. 

Within this section, we use an "output error indirect adaptive 
controller," as shown in Fig. 2 (using the terminology from 
[25]) where an identifier seeks to approximate the plant 
dynamics and uses this to tune the parameters of a controller 
so that Yp follows Ym, and hence, e0 = Ym - Yp ----, 0. Next, 
we describe each component of Fig. 2. 

Here, we consider the SISO plant 

X = f(X) + g(X)up (16) 

Yp = h(X) (17) 

:"here X E ~n is the state vector, up E ~ is the input, Yp E ~ 

1s the output of the plant and functions f(X), g(X) E ~n, 

and h(X) E ~ are smooth. If the system has "strong relative 
degree" r then 

------. 
Identifier I 

I 
IX I 
I 
I 

+ I 
+ I 

--•I 

0i:(t) 

with 6 = Yp, which may be rewritten as 

where L~h(X) is the rth Lie derivative of h(X) with respect 
to g {L9 h(X) = (8h/8X)g(X) and, e.g., L~h(X) = 
L 9 [L 9 h(X)]}; and it is assumed that for some p0 > 0, we 
have IPk(t) + p(X)I 2: p0 so that it is bounded away from 
zero (for convenience we assume that Pk(t) + (3(X) > 0, 
however, the following analysis may easily be modified for 
systems which are defined with Pk(t) + p(X) < 0). We will 
assume that ak(t) and Pk(t) are known components of the 
dynamics of the plant (that may depend on the state) or known 
exogenous time dependent signals and that a(X) and p(X) 
represent nonlinear dynamics of the plant that are unknown. It 
is assumed that if Xis a bounded state vector, then ak(t) and 
Pk (t) are bounded signals. Throughout the analysis to follow, 
both ak (t) and Pk (t) may be set to zero for all t > 0. 

We shall approximate the functions a(X) and ~(X) with 
fuzzy systeip-s (neural networks) Yo: = .fo:(X) = z;Ao:(o: 
and Y(3 = f f3(X) = zJ A(3((3 by adjusting the Ao: and A(], 
The parameter matrices Ao: and A(] are assumed to be defined 
within the compact parameter sets no: and 0(3, respectively. In 
addition, we define the subspace Bx ~ Rn as the space through 
which the state trajectory may travel under closed-loop control 
(we are making no a priori assumptions here about the size 
of Bx; later, we will specify a control law that will place an 
explicit bound on Bx)- Notice that 

~r-1 =~r = L'/
1 h(X) a(X) = z;A:(o: + da(X) (20) 

~r = Lfh(X) + L9 L'/ 1 h(X)up (18) (3(X) = zJ A~(o + do(X) (21) 
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where 

A: E ~maXPa 

A::= arg min [ sup lz;Aa(a - a(X)I] (22) 
AaE!ta XESx 

A~ E ~m13Xp13 

A* :=arg min [sup lzIA13(13-,6(X)I] (23)
/3 Ao E!l13 X ESx 

so that da(X) and d13(X) are approximation errors which 
arise when a(X) and ,6(X) are represented by fuzzy systems. 
We assume that Da(X) 2 lda(X)I, and D13(X) 2 ld13(X)I 
where Da(X) and D 13 (X) are known bounds on the error in 
representing the actual system with fuzzy systems. Since fuzzy 
systems are "universal approximators" (see [15]) both lda(X)I 
and ld13(X)I may be made arbitrarily small by a proper choice 
of the fuzzy system if a(X) and ,6(X) are smooth (of course 
this may require an arbitrarily large number of rules), It is 
important to keep in mind that Da(X) and D13(X) represent 
the magnitude of error between the actual nonlinear functions 
describing the system dynamics and the fuzzy systems when 
the "best" parameters are used within the fuzzy systems. 

The fuzzy system approximations of a(X) and ,6(X) of 
the actual system are 

&(X) = z;Aa(a (24) 

/3(X) = zIA13(13 (25) 

where the matrices A, ( t) and A13 (t) are updated on line as 
shown in Fig. 2. The parameter error matrices 

<I>a(t) = Aa(t) - A: (26) 

<I>13(t) = A13(t) - A~ (27) 

are used to define the difference between the current estimate 
of the parameters and the best values of the parameters defined 
by (22) and (23). 

Consider the indirect adaptive control law 

(28) 

The control law is comprised of a "bounding control" term, 
ubi, a "sliding mode" term, Usi, and a "certainty equivalence" 
[25] control term Uce. 

A. Certainty Equivalence Control Term 

The certainty equivalence control term [36] is defined as 

1 
Uce = {-[ak(t) + &(X)] + v(t)} (29)A 

,6k(t) + ,6(X) 

where v(t) := ytl +ryes+ es, with es := es - e£r) and ry > 
0. For now we assume that ,6k(t) + /3(X) is bounded away 
from zero so that (29) is well-defined, however, we shall later 
show how to ensure that this is the case. The tracking error 
is defined as es := kT e where e := [ea ea ... e~r-l)ir, 
k := [ko • • • kr-2 l]I', and ea := Ym - Yp, thus, es = 
[ea • • • e£r-l)l[k0 · · · kr_ 2jY. We pick the elements of k 
such that L(s) := sr- 1+kr-2sr-2+- · -+k1s+ko has its roots 
in the open left half plane. The goal of the adaptive algorithm 

is to "learn" how to control the plant to drive es to zero. 
Thus, es is a measure of the tracking error. The term "certainty 
equivalence" is used to describe Uce since this control term is 
obtained by assuming that the current estimates of the plant 
parameters are close to the actual plant parameters, so that a 
"feedback linearizing controller" may be obtained [25]. Even 
though the current estimates may not be close to the actual 
plant parameters, the certainty equivalence control term may 
be used to later manipulate the system dynamics into a special 
fo1m. 

Using the control (28), the rth derivative of the output error 
becomes e£r) = yt) - Yir) so 

e(r) = y(r) - [a (t) + a(X)] - ,6k(t) + ~(X) 
o m k ,6k(t)+,6(X) 

· {-[ak(t) + &(X)] + v(t)} 

- [,6k(t) + ,6(X)](usi + Ubi)- (30) 

We may rearrange terms so that 

e(r) = [l _,6k(t) + ~(X)l
0 

,6k(t) + ,6(X) 

• {-[ak(t) + &(X)] + v(t)} - a(X) + &(X) 

- ryes - es - [,6k(t) + ,6(X)](usi + Ubi) (31) 

= [&(X) - a(X)] + [/j(X) - ,6(X)]uce 

- ryes - es - [,6k(t) + ,6(X)](usi + Ubi)- (32) 

We may express (32) as 

es + ryes = [&(X) - a(X)] + [,B(X) - ,6(X)]uce 

- [,6k(t) + ,6(X)](usi + Ubi)- (33) 

With this representation, we next define the bounding and 
sliding mode control terms in (28). 

B. Bounding Control Term 

Later, we will show that if the plant states are bounded 
then an indirect adaptive fuzzy controller may be used to 
provide stable, asymptotic tracking of the output. At this point, 
however, we need to define a "bounding control" Ubi to ensure 
that the output and states are bounded. Consider 

(34) 

Using (33) and (34), and the fact the ,6k(t) + /3(X) 2 ,60 > 0, 
for some ,60 we obtain 

Vbi = - rye;+ es {[&(X) - a(X)] + [/j(X) - ,6(X)]uce 
- [,6k(t) + ,6(X)](usi + Ubi)} (35) 

::; - rye;+ lesl{J&(X)J + Ja(X)J 

+ [J/3(X)I + l,6(X)l]lucel} 
+ lesl{[,6k(t) + ,6(X)]lus;I} 
- es[,6k(t) + ,6(X)]ubi· (36) 

Let EM and Me be fixed parameters such that O < EM ::; Me. 
We choose the bounding control to be 

(37) 
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where 

1, if Me '.S lesl 
= lesl + EM - Me, I I MII(t) if Me - EM '.S es < e 

{ EM 
0, otherwise 

(38) 

and 
1 X > 0 (39)sgn (x) := { _ 
1 X < 0. 

The bounding control is continuous and defined so that it 
is always used when Ies I 2: Me. We require that there are 
known bounds ,61(X) 2: l,6(X)I and a1(X) 2: la(X)I when 
lesl 2: Me with a1(X) and ,61(X) continuous in x. Using 
these state dependent bounds, the following gain is used 

kb;(t) = ; {l&(X)I + a1(X) 
0 

+ [l~(X)I + ,61(X)]lucel} + lusil• (40) 

Using (36) with (40), we obtain 

(41) 

Thus, we are ensured that if there exists a time t' such 
that les(t')I > Me, then for t > t', les(t)I will decrease 
exponentially until lesl '.S Me. 

At this point, it is convenient to define transfer functions 

SiA 

Gi(s) :=-A-, i = 0, • • ·, r - 1 (42) 
L(s) 

which each are stable since L(s) has its poles in the open 

left half plane. Since e~i) = Gi(s)es with es bounded, then 

e~i) E £= (£= = {z(t): supt lz(t)I < oo}). This is shown 
for the case e8 = c + k0 e0 in Fig. 3 where if les I '.S Me then0 

e0 and c0 stay in the shaded region (i.e., le0 I '.S Me/k0 and 
ic0 I '.S 2Me). This may be extended to higher dimensional 
systems as 

and since e~r-l) = e8 - ~~:;:i kie~i) the triangular inequality 
may be used to show that 

r-2 
le~r-l)I '.S Me+ Me L killGi(s)ll1 (44) 

i=O 

for all time if les I '.S Me and the initial conditions are such 

that le~i)(O)I '.S MellGi(s)ll1, i = 0, · · ·, r - 2. The transfer 
function 1-norm is defined as IIG';(s)lli := J~= lgi(T)ldT, 

where gi (t) is the impulse response of Gi ( s). Using the 

example of es = c + koe 0 , we obtain Go(s) = l/(s + ko) 
which has an impulse response function of g0(t) = e-kot with 

the I-norm IIGo(s)ll1 = 1/ko. Using (43) and (44), we obtain 
the bounds leol '.S Me/ko and lcol '.S 2Me, as shown in Fig. 3. 
Overall, we see that (43) and (44) provide explicit bounds on 
the output error when the bounding control ubi is used. 

Up to this point, we have shown output-error boundedness. 
Next, we show that for some plants state boundedness is 

0 

Fig. 3. Boundedness around the manifold es = Co+ kaeo = 0. 

also guaranteed. The dynamics for a relative degree r plant 
described by (16) may be written in normal form as 

(45) 

(46) 

tr-1 = fr (47) 

tr =a(f, 1r) + /3(f, 1r)up (48) 

ir = W(f, 1r) (49) 

with 1r E ~n-r and Yp = 6- The "zero dynamics" of the 
system are given as 

ir = W(0, 1r). (50) 

We may now consider the adaptive control of plants with no 
zero dynamics, or plants which have exponential attractivity 
of the zero dynamics (i.e., plants where (50) is exponentially 
stable when the states 1r move outside a ball l1rl > B). The two 
plant types are characterized by the following assumptions. 

P 1) Plant Assumption: The plant is of relative degree r = 
n (i.e., no zero dynamics) such that 

d 
dt Xi =Xi+1, i = 1, • • ·, n - 1 

d 
dt Xn = a(X) + ak(t) + [,6(X) + ,6k(t)]up 

where Yp = x1 , with ak(t) and ,6k(t) known functions. Here, 
it is assumed that there exists f3o > 0 such that (3( X) + ,Gk (t) 2: 
(30 , and that x1 , • • • , Xn are measurable. 

P2) Plant Assumption: The plant is of relative degree r, 1 
:s; r < n with the zero dynamics exponentially attractive and 
there exists (30 > 0 such that f](X) + h(t) 2: f3o- The outputs 

(r-1) blYp, • • • , Yp are measura e. 
Clearly, plants satisfying Pl) have bounded states if the 

reference input, Ym, and its derivatives are bounded with 
the output error e0 and its derivatives bounded. We may use 
Lipschitz properties of W (f, 1r) to see that plants satisfying P2) 
have bounded states if the output is bounded in the following 
manner [25]. For some positive constants 'Yl, 'Y2, 'Y3, ,y4, and 
B and function v1 we have 

'Y1l1rl 2 :s; v1(1r) :s; 'Y2l1rl 2 (51) 

2
~: W(0, 1r) '.S -,y3l1rl , if l1rl > B (52) 

dv1 I 
d1r :c:; 'Y411rl 

I 
(53) 
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if the zero dynamics are exponentially attractive. Since we 
have e0 bounded and bounded reference signals, by RI, Ill :::; 
k1 where k1 is some positive constant. Using (52), we have 

. dv 1 
v, = d1r IJ! (l, 1r) (54) 

2 dv 1 
:::; -•'d1rl + d1r [IJ!(l, 1r) - IJ!(0, 1r)] 

if l1rl > B. (55) 

If IJ!(l, 1r) is Lipschitz in l, then IIJ!(l, 1r) - IJ!(0, 1r)I :::; k2lll 
some positive k2. Using this, if l1rl > B we now have 

2v,:::; -13l1rl + I-;f;dv, I l[IJ!(( 1r) - IJ!(0, 1r)]I (56) 

2 
:::; -13l1rl + 14k2llll1rl (57) 

:::; -13l1rl 2 + 14k1k2l1rl. (58) 

Therefore, v, :::; 0 if l1rl 2 max (B, 14k1k2/13). This ensures 
boundedness of l and 1r, therefore the system states are 
bounded. 

Since the fuzzy systems are used to approximate a(X) and 
;3(X), we require that the plant be described by either Pl) 
or P2), ensuring state boundedness so that the fuzzy system 
input-membership functions do not need to cover all ~n. The 
subspace through which the plant state trajectory may travel Sx 
is determined by first finding the range of the reference signal 
and the output error from (43) and (44). Then, the range of 
the states may be determined from the particular application 
and choice of state representation. 

C. Adaptation Algorithm 

Consider the following Lyapunov function candidate 

V; = ½e; + ½tr(<P~Qo:<Pa) + ½tr(<PJQ;3<P;3) (59) 

where tr(·) is the trace operator ({tr(A) =Lia;,;, if A= 
[a;,j] is square)} with Qo: E ~m"'xm" and Q;3 E ~mexm 13 

positive definite and diagonal. This Lyapunov candidate quan
tifies both the error in tracking and in the parameter estimates. 
Taking the derivative of (59) yields 

v; = es[esl +tr(<P~Q°'4°') +tr(<PIQ;34;3). c6o) 

Substituting in the derivative of the tracking error es from 
(33) yields 

V; = es{[&(X) - a(X)] + [,B(X) - ;3(X)]uce 

- TJes - [/3k(t) + ;3(X)](usi + Ubi)} 
T • T • 

+ tr(<Po:Qa<Pa) + tr(<P;3Q;3<P;3). (61) 

We may use (20), (21), and (24)-(27) to obtain 

V; = - 'rJe; + {z;<Pa(a - da(X) + z;3<PI(;3V.ce 

- d;3(X)v.ce - [/3k(t) + ;3(X)](v.si + V.b;)}es 
T • T • 

+ tr(<PaQa<Pa) + tr(<P;3Q;3<Pe). (62) 

Now consider the following fuzzy system update laws 

Aa(t)= -Q;;; 1za(;es (63) 

.A.;3(t) = - Q~ 1z;3(j esUce· (64) 

Using the fact that 4a = Ao:, <D;3 = .A.;3, and tr(AB) = 
tr(BA) where A E ~nxm and B E ~mxn, the adaptive 
update laws (63) and (64) may be used so that (62) is expressed 
as 

V; = -17e; + [z;<Pa(a - da(X) 

+ z;3<PJ(;3Uce - d;3(X)v.ce]es 

- [/3k(t) + ;3(X)](v.si + V.b;)es 

- tr(z;<Pa(a)es - tr(zI<P;3(;3)esV.ce• (65) 

Equation (65) may equivalently be expressed as 

V; = -17e; - [da(X) + d;3(X)v.ce]es 

- [/3k(t) + ;3(X)](V.si + V.bi)es. (66) 

The fuzzy system adaptation laws defined by (63) and (64) 
do not guarantee that Aa E Da and A;3 E S1;3. To guaran
tee this, a "projection algorithm" is used. If the parameter 
spaces are defined so that the parameters are bounded by 
A E [Amin A max] and A E [Amin A max] then a simple 

0: °''°' /J /J'/J
projection algorithm may be used (we use the notation A E 
[Amin, A max] to define bounds on the matrix elements such 

[ min max] • - 1 • - 1 hthat a;, j E a;, j , a;, j , i - , • • • , m, J - , • • • , n w ere 
A, Amin, Amax E ~mxn are defined element by element as 
A = [a· ·] Amin = [ami_n] and Amax = [amax]) Define 

i) J ' i, J ' i, J • 

a°'i j to be the i, jth element of zo:('£ es and a;3i,j to be the 
i, jth element of z;3(j esV.ce• Then the parameter matrices are 
updated according to 

(67) 

(68) 

where 

if a __ d (am_in am_ax)
CYi,J °'F O'i,J' 0::i,J 

and ao: . .(a°'i , - a~ ) < 0 (69)
i, j ' i, J 

otherwise 

if a _~ (amin amax)/J,,, /J,,J' /J,,J 
and a;3,, j (a/Ji, j - ai,,,) < 0 (70) 

otherwise 

with some fixed A~ E (A~in, A~ax) and fixed Ai E 

(Atn, Ap'ax). Assuming that the parameters are initialized 
such that Ao: E [A~in, A~ax] and A;3 E [Atn, Ap'ax], the 
element aa, /Ji, j will become greater than that its maximum 
bound only if aa, /Ji, 1 = a~,affi, j and &.a, /3,, 1 > 0. Since 
the projection algorithm prevents this from occurring, we 
are ensured that Aa, /J :::; A~,ag where "S" is an element
wise relation (a similar argument may be made ensuring that 
A,, ;3 2 A~i)D- Thus, using this modified update law will 
ensure that the parameter matrices will stay within the feasible 
parameter space. 

Using the projection algorithm, we are also ensured that 

V;:::; -17e; - [da(X) + d;3(X)uce]es 

- [/3k(t) + ;3(X)](v.si + V.bi)es (71) 

since the modified adaptation law guides the searching algo
rithm toward the optimal parameters, A~ and A~, thus, helping 

https://3(X)](v.si
https://3(X)](v.si
https://3(X)](v.si
https://d;3(X)v.ce
https://z;3<PI(;3V.ce
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to decrease v;. To see this, we notice that from (62), the term 

z;<I>a(aes +tr(<I>;Qa<J>a) 
T T'

=za<I>a(aes-tr(<I>aAa) (72) 
A -T T y-

= za<I>a(aes - tr[<I>a(Aa -Aa) + <f>aAa] (73) 

= -tr [<I>~(Aa - Aa)] (74) 

= -I: I: c/Ja,,j(aai,j -a"i,j):::; o (75) 
j 

where <Pa = [¢a,,J Similarly, we have zJ<I>13(13ucees + 

tr ( <I>~ Q ii<i> f3) :S 0, thus, we may establish the inequality of 
(71) using (65) and the modified fuzzy system update algo
rithm given by (67) and (68). Since the errors in representing 
the plant nonlinearities with fuzzy systems or neural networks 
da(X) and d13 (X), in general, are nonzero, a sliding mode 
term is now defined which ensures negative semidefiniteness 
of (71). 

D. Sliding-Mode Control Term 

To ensure that (71) is negative semidefinite, we choose 

(76) 

where ksi(t) = Da(X) + D,e(X)lucel- Since -[da(X) + 
d13(X)uce]es :S [lda(X)I + ld13(X)ucel]lesl, and from (37) 
-[,6k(t) + (J(X)]ubies = -[fJk(t) + ,6(X)]IIkb;(t)lesl :S 0, 
we may rewrite (71) as 

¼:S -77e; + [lda(X)I + ld13(X)ucel]lesl 

- es[/Jk(t) + ,6(X)]usi• (77) 

Combining (76) and (77) we have 

(78) 

Thus, v; is negative semidefinite and ¼ E £ 00 • It should be 
noted that even though Usi is called a "sliding-mode" term, 
it does not guarantee that the state trajectory will "slide" 

along the manifold es = 0 as traditionally guaranteed with 
nonadaptive sliding-mode control [27]. The sliding-mode term 
is required to overcome modeling errors between the nonlinear 
functions of the system a(X) and ,6(X), and the fuzzy systems 
or neural networks with optimal parameters z;A:(a and 

zJAt1'f3· 

E. Stability Properties 

The assumptions for the controller are summarized in the 
following: 

Cl) Control Assumption: The fuzzy systems (neural net
works) are defined such that Da(X), D13(X) E £ 00 , for 
X E Bx ~ ~n and there are some known continuous 
functions a1(X) and ,61(X) such that a1(X) ;::: la(X)I and 
fJ1(X) 2 l,6(X)I- The projection algorithm is defined such 
that {J(X) + ,6k(t) 2: /Jo > 0. 

We now summarize the properties of the indirect adaptive 
controller in Theorem 1. 

Theorem I: Stability and tracking results using indirect 
adaptive control: 

If reference input assumption Rl) holds, either plant as
sumption Pl) or P2) holds, and the control law is defined 
by (28) with the control assumptions Cl). 
Then the following holds. 

a) The plant output and its derivatives Yp, • • ·, Yir-l) 
are bounded. 

b) The control signals are bounded, i.e., Ubi, Uce, Usi E 

Loo. 
c) The magnitude of the output error leal decreases at 

least asymptotically to zero, i.e., limt-+oo lea I = 0. 

Proof of Theorem I: 

Part 1) Equations (43) and (44) guarantee that le~i) I E £ 00 , 

i = 0, • • •, r- 1 since les I is bounded from (78). By 
. . (i) _ (i) (i) w. _ O l

defin1t1on, ea - Ym - YP , v i - , • • • , r- , 

with y~ and e~i) bounded; therefore, Yii), Vi = 
0, • • • , r- 1 is bounded. 

Part 2) With Yp, • • ·, Yir-l) E £ 00 , the plant states are 
bounded using plant assumptions PI or P2. This 
implies that a(X), ak(t), (J(X), ,6k(t) E Loo. The 
projection algorithm ensures that /Jk(t) + /J(X) is 
bounded away from zero and that &(X) is bounded, 
thus, Uce E £ 00 • With a1 ( X), ,61 (X) E £ 00 we 
establish that Ubi E £ 00 • Since the fuzzy systems 
are defined appropriately so that Da(X), D13(X) E 

Loo, then Usi E Loo. 
Part 3) To show asymptotic stability of the output, we 

would like to find a bound on It e; dt. Using 
(78) we have 

00 

77e; dt :S - (79)1 1= v; dt 

= ¼(O) - ¼(oo). (80) 

This establishes that es E .C2 (£2 
{z(t): It z 2 (t)dt < oo}) since ¼(O), ¼(oo) E 
,C=· If ¼ E .C= then e8 E £ 00 by the 
definition of ¼. In addition, we know that 
e~i) E £ 00 , i = 0, · · · , r- 1 since es E £ 00 

and e~i) = Gi(s)es, with all the poles of Gi(s), 
i = 0, •• • , r- 1 in the open left-half plane. If 
a(X), &(X), ,6(X), /J(X), ,6k(t), Uce, Ubi, Usi E 
.C=, then es E £ 00 from (33). Since es E .C2, .C=, 
and es E £ 00 , by Barbalat's Lemma we have 
asymptotic stability of es (i.e., limt-+= es = 0), 
which implies asymptotic stability of ea (i.e., 
limt--,= ea = 0). D 

Remark I.I: The bounding control term, Ubi, within the 
indirect adaptive control law defined by (28) is used to restrict 
the output trajectory so that fuzzy systems may be defined 
for a small range of inputs. Without the bounding control 
term, an output trajectory may travel over a space which is 
so large that specifying a fuzzy system or neural network is 
cumbersome. Using a bounding controller in this manner is 
similar to the supervisory control in [37]. The sliding-mode 
control term Usi is used to compensate for approximation 
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errors in representing the actual nonlinear dynamics by fuzzy 
systems or neural networks with ideal parameter values. The 
certainty equivalence term is then used to "learn" the unknown 
dynamics of the system providing asymptotic convergence of 
the tracking error. 

Remark 1.2: It is possible to incorporate linguistic infor
mation about the plant since ak (t) and f3k (t) may be linear 
combinations of Lipschitz functions. For example, we may 
use rules R1 through Rka associated with a and the rules R 1 
through Rk13 associated with /3 to describe the plant according 
to a set of linguistics, while rules Rka+l through RPa and 
Rk +1 through Rp may be used for the fuzzy estimation in13 13 
the identifier. The advantage of using linguistic information 
in this manner is that if the first k rules describe the plant 
fairly well; then, in general, the magnitude of the fuzzy 
estimation error will be small, thus providing better tracking 
of the reference signal as the fuzzy estimators learn a(X) 
and /3(X). The linguistics used to describe ak(t) may be 
obtained by setting up = 0, and describing how the system 
output, y}r), behaves. Once this is done, it is possible to find 
a set of linguistics describing f3k (t). To do this, allow an input 
into the system and characterize how the same input effects 
the system output, y}r), in different operating regions. It is 
interesting to note that the designer does not have to know how 
to control the plant when incorporating linguistics, rather, one 
simpiy describes how the plant itself behaves, thus allowing 
the indirect adaptive fuzzy controller to use the linguistics to 
better control the system. It is also possible for ak (t) and f3k (t) 
to be the output of fuzzy systems separate from the fuzzy 
estimation systems. It should also be emphasized that little 
information about the plant is needed since ak (t) and f3k (t) 
may be arbitrarily set to zero. In [15], a priori knowledge of 
the plant can be incorporated, however, this is done simply by 
setting the initial conditions of the controller to prespecified 
values, rather than explicitly allowing for ak(t) and f3k(t). 

Remark 1.3: The parameter error matrices, <l.>a and <l.>/3, 
are bounded if A: and Ai, are bounded since we have 
A E [Amin Amax] and A E [Amin Amax] according to 

C, °''°' /J /J'/J 
our projection algorithm. It is important to pick the bounds 
on the elements of A/3 so that f3k(t) + /3(X) ?: /30 > 0. If 
Atn and A;rax are not properly chosen, then it is possible that 

f3k(t)+/3(X) is not bounded away from zero, thus causing (29) 
to become undefined. Consider the case in which a standard 
fuzzy system is used to represent /3(X) (i.e., Zf3 = [l]) and 
f3k = 0. Then atn S /3(X) S arfax_ This is true since each 
(/3, i ?: 0 so that 

P/3 

'\""""' amin;-, = amin < /3A(X)L.., /3,i ',i /J -
i=l 

S L
P/3 

arfax(/3,i = arfax_ 
i=l 

If f3k (X) is nonzero, or Takagi-Sugeno fuzzy systems are used 
then the design of a projection algorithm will be dependent 
upon the choice of f3k(X) and zJ. 

Remark 1.4: Even though the bounding control term, Ubi, 
was not used explicitly in Theorem 1, it is used to confine the 

plant states to a known region so that the input membership 
functions of a fuzzy system may be defined over this region. 
Knowledge of the range over which the input membership 
functions must be defined is required for Da(X) and D/J(X) 
to be small. The fuzzy systems or neural networks are to 
be designed such tllat the approximation errors D °' (X) and 
D/J(X) are small when the state trajectory travels within some 
region. When the state trajectory travels outside this region, 
however, Da(X) and D/J(X) may become large so that the 
control gain associated with Usi is large, thus causing the 
adaptive controller to act similar to a poorly designed sliding 
mode controller rather than an adaptive controller with a small 
sliding mode contribution. 

Remark 1.5: The bounding control term requires that an 
upper bound on /3(X) (i.e., /31) is known. This requirement 
may be eliminated since 

Vbi = - 71e; + es{[&(X) - a(X)] 

+ [/j(X) + f3k(t) - /3(X) - f3k(t)]uce} 

- es[f3k(t) + /3(X)](usi + Ubi) 

S - 71e; + lesl{l&(X)I + la(X)I 

+ [l/3(X) + /3k(t)l]lucel} - [/3(X) + /3k(t)]ucees 

+ lesl{[/3k(t) + /3(X)]lusil} 

- es[f3k(t) + /3(X)]ubi• (81) 

Defining the bounding control term as 

Ubi = ( {; [l&(X) + la1(X)I 
0 

+ i/3(X) + f3k(t)I lucel] + lusil} 

• sgn(es) - Uce) II(t) 

will once again ensure that 

Vbi S -71e;, if lesl ?: Me, 

Remark 1.6: While the bounding control term was added 
to help with the definition of the input membership functions 
of the fuzzy system, if the bounding control term is removed, 
then asymptotic stability is still achieved since the plant states 
are still bounded so Barbalat's lemma may still be applied. 
This is true since 

V;(0) = ½e;(O) +½tr[<!.>; (0)Qa<l.>a(0)] 

+ ½[<!.>J(0)Q/3<1.>/3(0)] (82) 

and since the Lyapunov function ¼(t) is positive and nonin
creasing 

e;(t) s ¼(t) S ¼(0). (83) 

Thus the size of the tracking error may be reduced by either 
making <I>a(O) or <I>/3(0) small, or increasing the adaptation 
gains, Q-,:;;1 and Qr/. However, in implementation, large Q-,:;;1 

and Q~ 1 may result in instabilities because of the time delays 
associated with digital input and output. Thus, if a bounding 
term is not to be used, then a good initial estimate of a(X) 
and f3(X) may improve the performance of the closed-loop 
system. 
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Remark 1.7: If there exists some constants Da and D13 
such that lda(X)I S Da and d13(X) S D13 for all X E Bx, 
then it is possible to use an adaptive routine to find Da and D 13 
while preserving the previous stability results [17], [21]. The 
sliding-mode gain may be modified as ksi(t) = Da + D13lucel 
where Da and D13 are the current estimates of Da and D13, 
respectively. The update laws for the estimates of the bounds 
on the errors in representing the nonlinear dynamics of the 
plant with fuzzy systems or neural networks are given as 

(84) 

(85) 

where qa, q13 > 0. Though les I converges to zer~ over ti~e, we 

notice that Da and b 13 may become large since Da and D13 are 
always positive. A projection algorithm may be used to bound 
the growth of Da and b 13 , but then the bounds must be known 
ahead of time so that the sliding mode gain may over time 
become equal to the original nonadaptive sliding mode gain. 
Stability is proven by adding the terms qa(Da - Da) 2 /2 and 
q13(D13 - D13) 2 /2 to the Lyapunov candidate for the indirect 
adaptive algorithm defined in (59). 

Remark 1.8: Though many of the concepts within this 
paper are similar to those used within previous work, specif
ically within [15], [20], and [22], there are many significant 
differences: i) the results of Theorem 1 may be applied to 
a class of plants with zero dynamics (this was not done 
in [15], [20], and [22]), ii) this paper ensures asymptotic 
tracking convergence using a larger class of fuzzy systems 
(i.e., Takagi-Sugeno fuzzy systems) than in [15] and a larger 
class of neural networks (i.e., those with a second hidden 
layer) than in [20], iii) within this paper we allow for the 
direct inclusion of a mathematical description of the known 
part of the plant through ak(t) and f3k(t) (this was not done 
in [15], [20], and [22]), iv) unlike [15], [20], and [22], this 
paper uses a manifold to develop an error measurement which 
allows for asymptotic stability of the output error, even if the 
modeling error (i.e., da(X) + d13(X)uce) does not go to zero, 
and v) tracking convergence is guaranteed to a boundary layer 
of zero using the smoothed version of the control law, as we 
show next. 

F. Smoothing The Control Action 

The sliding-mode control term, Usi, can introduce a high
frequency signal to the plant which may excite unmodeled 
dynamics. To avoid this, we now consider a "smoothed" 
version of the previous indirect adaptive controller in which 
the tracking error es is driven to an £-neighborhood of es = 
0. Using the error measurement of [38], we define 

(86) 

where E > 0 and 

1, if 1 '.S X 

sat ( x) = x, if -1 < x < l . (87)
{ 

-1, if X '.S -1 

From the above definition, we see that e, measures the distance 
between e5 and the desired boundary layer, and ee = 0 when 
es is within the boundary layer. 

The bounding controller is now defined as 

(88) 

with f < Me and II(t) as defined in (38). The certainty 
equivalence controller is redefined as 

(89)Uce = 

where v,(t) := yt) + 7Je, + es, with es as defined before. 
Thus, (33) is now given as 

es + rJee = [a(X) - a(X)] + [,B(X) - (3(X)]uce 

- [f3k(t) + /3(X)](usi + Ubi)- (90) 

Now consider (59) with the e, as the tracking error mea
surement 

Taking the derivative of (91), we obtain 

• · T • T •
¼ = ec[es] + tr(<PaQa<Pa) + tr(<P13Q13<P13). (92) 

We change the update laws so that cia . is the ·i, jth element 
of za(;ee and a13i, j is the i, jth eleru'~~t of z13(fe,uce, with 
the remaining projection algorithm unchanged. With this, (77) 

is expressed as 

We now redefine the sliding-mode control term as 

ksi(t) (es)Usi = --sat - (94)
/3o f 

so that we now have smooth control action. With respect to 
Theorem 1, we now simply use the fact that e,sat(e./E) = lecl 
to see that 1% :S -7Je~, which ensures asymptotic stability of 
e" using Barbalat's Lemma. This implies that es will converge 
asymptotically to an f neighborhood of e8 = 0, and using (43), 
ea will converge to an fllG0 (s )11 1 -neighborhood of ea = 0. We 
may additionally redefine the adaptation laws for the scheme 
presented within Remark 1.5 so that the sliding mode gains do 
not increase when the tracking error has converged to within 
the f-neighborhood of es = 0. 

IV. DIRECT ADAPTIVE CONTROL 

Within this section, we define an "output-error direct adap
tive controller" (using the terminology from [25]), as shown 
in Fig. 4. An indirect adaptive controller attempts to identify 
the plant dynamics and then develop a controller based on the 
current best guess at the plant dynamics. A direct adaptive 
controller, on the other hand, directly adjusts the parameters 
of a controller to meet some performance specifications. 

In addition to the plant assumptions Pl) or P2), we require 
the following plant assumption when using the direct adaptive 
controller. 
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Fig. 4. A direct adaptive control system with a reference model. 

P3) Plant Assumption: Given Yir) = [a(X) + ak(t)] + 
[p(X) + Pk(t)]1ip, we require that Pk(t) = 0, t 2 0, and 
that there exists positive constants p0 and p1 such that 0 
< Po S p(X) S Pl < oo and some function B(X) 2 0 
such that l/3(X)I = l(8p/8X)XI S B(X) for all X E Sx. 
Here, as earlier, ak (t) is a known time-dependent signal. 

The first part of P3) introduces a new requirement that the 
controller gain p(X) be bounded from above by a constant 
p1 . In general, this will not pose a large restriction upon 
the class of plants since situations in which a finite input 
will cause an infinitely large effect upon Yir) rarely occur 
in physical plants. The second restriction within P3) requires 
that l/3(X)I S B(X) for some B(X) > 0. We know that 
l/3(X)I s IJ8p(X)/ax1111x11 thus if IJ8p(X)/8XII and 11x11 
are bounded, then some B(X) may be found. Once ;;i.gain 
if we consider physical plants with finite controller gain, 
then ll8p(X)/8XII will be bounded. If Yii), i = 0, • · ·, r is 
bounded, then plants with no zero dynamics are ensured that 
IIXJJ is bounded since the states may be written in terms of the 
outputs, Yii), i = 0, • • • , r- 1. If a plant has zero dynamics, 
but p(X) is not dependent upon the zero dynamics, then once 
again we have l/3(X)I bounded. 

Using feedback linearization [25], we know that there exists 
some ideal controller 

·u* = p(~) [-a(X) + v(t)] (95) 

where v(t) is a free parameter. We may express u* in terms 
of a Takagi-Sugeno fuzzy model, so that 

where uk is a known part of the controller (possibly a fuzzy, 
proportional integral derivative (PID), or some other type of 
controller). Since the indirect adaptive controller attempted to 
determine a feedback linearizing controller based on a best 
guess of the plant dynamics, we allowed for the inclusion 
of ak(t) and Pk(t) so that known parts of the plant may be 
included. The direct adaptive controller, however, attempts 
to directly determine a controller, so within this section we 
allow for a known part of the controller that is perhaps 
specified via heuristics or past experience with the application 
of conventional direct control. We also define the ideal direct 
control parameters 

A: E wmuXPu 

A::= arg min [ sup lz;:'Au(u - (u* - uk)I] (97) 
AuErlu XESx, vESm 

so that du(X) is an approximation error which arises when u* 
is represented by a fuzzy system. We assume that Du(X) 2 
Jdu(X)I, where Du(X) is a known bound on the error in 
representing the ideal controller with a fuzzy system. We see 
that if Jdu(X)I is to be small, then our fuzzy controller will 
require X and v to be available, either through the input 
membership functions or through z'{;. The fuzzy approximation 
of the desired control is 

(98) 

where the matrix Au is updated on line. The parameter error 
matrix for the direct adaptive controller 

(96) (99) 
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is used to define the difference between the parameters of the 
current controller and the desired controller. 

Consider the control law 

(100) 

The direct adaptive control law is comprised of a bounding 
control term, Ubd, a sliding-mode control term Usd, and an 
adaptive control term, ft. Here, we define v(t) := y!,;;) +rJes + 
es - ak(t) with es and es as defined for the indirect adaptive 
controller so that es = [eo . . . eir-l)][ko . . . kr_,]T and 

es= [eo · · · e~r-l)][ko · · · kr-2lf where L(s) := sr- 1 + 
kr_ 2 sr-'.! + · · • + k1 s + k0 has its poles in the open left-half 
plane. 

Using the control (100), the rth derivative of the output 
error becomes 

Using the definition of u* (95) we may rearrange (101) so that 

eir) =yt,l - a(X) - ak(t) - /3(X)u* 

- (3(X)(u - u*) - f](X)(usd +Ubd) (102) 

= - rJes - es - f](X)(u - u*) 

- (3(X)(usd + Ubd)- (103) 

We may alternatively express (103) as 

e
8 
+ rJEs = -(3(X)(u - u*) _ (3(X)(usd + ubd)- (104) 

We now define the bounding control term ubd for the direct 
adaptive controller. 

A. Bounding Control 

The bounding control for the direct adaptive controller is 
determined by considering 

(105) 

We differentiate (105) and use (104) to obtain 

Vbd = -- rJe; - es[f3(X)(u - u*) + f3(X)(usd +Ubd)] (106) 

'.S -- 77e; + lesl[/3(X)(lul + lu*I) + /3(X)lusdl] 
(107) 

We do not explicitly know u*, however, so the bounding 
controller will be implemented using a1(X) 2 la(X)I as 
defined for the indirect adaptive controller. We choose 

(108) 

where II(t) is as defined in (38) and 

a,(X) + lvl 
kbd(t) = lul 

A 

+ l·usdl + f3o (109) 

(we note that lu* I ::; [a1(X) + lvll/,80). With this definition of 
ubd, we are once again guaranteed that !es I ::; Me if the initial 
conditions are such that Jes(0)J ::; Me. The plant assumptions 
P 1 or P2 are then required so that state boundedness is 
guaranteed. 

B. Adaptation Algorithm 

Consider the following Lyapunov equation candidate 

(110) 

where Qu E ~mu Xmu is positive definite and diagonal. Since 
0 < (30 ::; (3( X) ::; f3i < oo, Vd is radially unbounded. 
The Lyapunov candidate Vd is used to describe both the error 
in tracking and the error between the desired controller and 
current controller. If Vd ----+ 0, then both the tracking and 
learning objectives have been fulfilled. Taking the derivative 
of (110) yields 

• e8 • T • /3(X)e;
Vd = (3(X) [es] +tr(<I>uQu<I>u)- 2(32 (X)" (111) 

Substituting es, as defined in (104), yields 

Vd = (3;_;{) [-rJes - (3(X)(u - u*) - (3(X)(usd + Ubd)] 

T • ~(X)e;
+tr(<I>uQu<I>u)- 2/P(X)" (112) 

Now consider the following fuzzy controller update law 

(113) 

where q(t) is a function yet to be defined. Since 4u = Au 

(114) 

Equation (114) may equivalently be expressed as 

(115) 

Typically, we will choose q(t) = 0, for all t 2 0, however, 
we will later show how to incorporate information about the 
plant inverse dynamics so that sgn[q(t)] = sgn(z;<I>u(u) to 
improve adaptation. 

Using the fuzzy adaptation law defined by (113), we are 
not guaranteed that Au E nu. Once again we use a projection 
algorithm. The parameter space is defined so that the param
eters are bounded by Au E [A~in, A~ax]. Define au,, j to be 
the i, jth element of zu(;[es - q(t)]. The parameter matrix 
is updated according to 

(116) 

where the elements of Au(t) are defined by 

0 if a d (Amin Amax) 
, Ui,J Y::. U ' U 

aUi, j = and au,, j ( au,, j - a~,.,) > 0 (117)
{ au,.j, otherwise 
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with A~ E (A~in, A~ax). Using this modified update law 
will ensure that the parameter matrices will stay within the 
feasible parameter space and that 

• rJ 2 T
,Vi S - /3(X) es - q(t)zu <l>u(u 

[ 
l (~(X)es- 2/J2(X) - du es - es Usd + Ubd) (118) 

since the modified adaptation law guides the searching algo
rithm toward the optimal parameters A:. 

C. Sliding-Mode Control Term 

We once again need to define a sliding-mode control term 
to compensate for the approximation error in modeling u* by 
a fuzzy system or neural network. If q(t) = 0, for all t 2 0, or 
sgn [q(t)] = sgn (zJ<l>u(u), and ubd is as defined in (108), then 

vd S - /3?X) e; - [i;~~) -dules - esUsd (119) 

T/ [IP(X)I lesl ]
S - Pl e; + 2/3 2 (X) + ldul lesl - esUsd· (120) 

We now define the sliding-mode control term for the direct 
adaptive controller as 

(121) 

where 

k (t) = B(X)lesl + D (X) (122)sd 2135 u 

which ensures that Vd S -rJe;/ /31 as long as we choose q(t) = 
0, for all t 2 0, or sgn [q(t)] = sgn (zJ<l>u(u)-

D. Stability Properties 

The controller assumption for the direct adaptive control 
scheme is given as follows. 

C2) Control Assumption: The fuzzy systems (neural net
works) are defined such that Du(X) E L 00 , for X E Sx ~ ~n 
and there are some known continuous functions a 1(X) and 
fh(X) such that a1(X) 2 la(X)I and /31(X) 2 l/3(X)I- The 
function q(t) = 0, for all t 2 0, or sgn [q(t)] = sgn (zJ<l>u(u)-

We now summarize the properties of the direct adaptive 
controller in Theorem 2. 

Theorem 2: Stability and tracking results using direct adap-
tive control: 

If reference input assumption RI) holds, either plant as
sumption Pl) or P2) holds, plant assumption P3 holds 
and the control law is defined by (100) with the control 
assumptions C2). 
Then the following holds. 

a) The plant output and its derivatives Yp, • • •, y~r-l) 

are bounded. 
b) The control signals are bounded, i.e., ubd, Usd, u E 

Loo. 
c) The magnitude of the output error Ie0 I decreases at 

least asymptotically to zero, i.e., limt-,oo leol = 0. 

Proof of Theorem 2: Follows from proof of Theorem 1. D 
Remark 2.1: The bounding control-term ubd for the direct 

adaptive controller is once again used to restrict the output 
trajectory so that a smaller fuzzy controller or neural network 
may be used to approximate the ideal feedback controller, 
u*. The sliding-mode control term Usd is required due to the 
modeling errors between the ideal feedback controller and the 
fuzzy controller or neural network with optimal parameters. 
The adaptive control term u is then used to ensure asymptotic 
convergence of the tracking error. 

Remark 2.2: The direct adaptive scheme allows for the 
inclusion of uk so that a control engineer may use conventional 
techniques to develop an initial control design and then use the 
above adaptive technique to work in parallel to meet the track
ing requirements. For example, some PID controller design 
may provide moderate performance, however, the ab_ove direct 
adaptive technique may be used to meet tracking requirements. 
Even if uk produces an unstable closed-loop system by itself, 
the use of the above direct adaptive scheme will result in 
asymptotically stable tracking. 

Remark 2.3: The direct adaptive scheme does not require 
that the parameter set nu be defined so that ZuAu(u + Uk is 
bounded away from a particular value as required with the 
indirect adaptive scheme. 

Remark 2.4: A smoothed version of the direct adaptive 
controller may be designed such that the output will converge 
to an t:IIGo(s)ll1 neighborhood of e0 = 0. Since this is 
accomplished exactly the same as for the indirect case, we 
do not include the details here. 

Remark 2.5: We may also use an adaptive estimate for 
some constant such that ldu I S Du in a similar fashion as 
described in Remark 1.5. The slidi:qg-mode gain is modified 

2 ~A 

to be ksd(t) = B(X)lesl/2/30 + Du, where Du = lesl/qu 
with q;;, 1 > 0. To show stability using this adaptive algorithm 
for the sliding-mode gain, the term qu(Du - Du)2 /2 may 
be added to the Lyapunov candidate for the direct adaptive 
controller defined in (110). This may also be modified for the 
smoothed version of the direct adaptive controller. 

Remark 2.6: As with the indirect adaptive scheme, our 
direct adaptive scheme has many differences from the existing 
techniques (i.e., those presented in [16], [17), and [21)), 
particularly i) the results of Theorem 2 may be applied to 
systems with a state dependent input gain f3(X) whereas [16] 
and [21] consider a class of nonlinear plants with constant 
input gain (i.e., /3(X) = /3; a constant) and [17) only considers 
the special case of f3 = I, ii) none of the results in [16), [17], 
and [21) considered systems containing zero dynamics, iii) 
unlike [ 16], our direct adaptive algorithm ensures that even 
if the approximation error du is not square integrable, the 
tracking error will go to zero (or to an E-boundary layer of 
zero for the smoothed control version), iv) our direct adaptive 
controller allows for Takagi-Sugeno fuzzy systems, standard 
fuzzy systems, or neural networks, v) the above direct adaptive 
technique allows for the inclusion of a known controller uk 

so that it may be used to either enhance the performance of 
some prespecified controller or stand alone as a stable adaptive 
controller, and vi) furthermore, as we show in the next section, 
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Car#i-1 Car#I Car#l+1 

Fig. 5. Car following within an automated lane. 

our approach allows for the incorporation of heuristics about 
the inverse plant dynamics to speed adaptation. 

E. Inverse Model Linguistics 

Although we typically set q( t) = 0 for all t :2:: 0, there 
may be cases in which a control engineer is able to look at 
the plant output and determine if u, (98), is larger or smaller 
than u* [i.e., (96)]. This information may be incorporated, for 
example, by using a fuzzy model of the inverse plant dynamics 
(i.e., a fuzzy system that is heuristically designed to roughly 
approximate the plant's inverse dynamics). Consider a MISO 
fuzzy system, which is developed so that it provides a measure 
of the error between the actual control u and the ideal control, 
u*. Then we may use a fuzzy system, for example, with rules 
defined as 

R 1 : If (e0 is "Negative Large" and i\ is "slow") 
Then p1 is "Positive Large" 

RP: If (e is "Positive Large" and i:i is "fast")0 

Then Pp is "Negative Large." 

(Note that we switch to the standard notation for the conse
quences of these rules. This can be done since our class of 
fuzzy systems includes standard fuzzy systems.) The first rule 
might correspond to the case in which the input up should 
be decreased since the output error e0 = Ym - Yp is negative 
which implies that Yp is too large. Thus, the actual output is 
too large so u- u* > 0, implies that the output of the fuzzy 
system should be positive. Using fuzzy systems to describe 
the inverse dynamics of a plant is not a new concept. "Fuzzy 
model reference learning control" is, for example, one such 
technique which allows for the incorporation of information 
about the inverse dynamics of a plant to help an adaptive 
scheme learn how to control the plant [9]. 

From (118) and the definitions of u,d and Ubd, we have 

• 'f/ 2 T 
Vd ~ -(3(X) e, - q(t)zu <l>u(u (123) 

which may be rewritten as 

We want to be able to incorporate linguistic information so 
that the quantity q(t)[u - u* + du(X)] is positive semidefinite 
(but not zero for all time, since if it is large, it will tend to 
increase the rate of convergence). Define 

q(t) := {p(t) - Ed sat [p;:)]} (125) 

where p(t) is the output of the inverse model, and Ed :2:: 0 is 
a fixed parameter. Suppose that, for instance, p only depends 
on X. In this case, we denote p(t) by p(X) and require that 
p(X) is defined such that if p(X) :2:: Ed then u- u* 2: Du(X) 
and if p(X) ~ -Ed then u - u* ~ -Du(X). Note that if 
il-u* 2: Du(X), we know that u-u*+du(X) 2 0. Similarly, 
il- u* ~ -Du(X) implies that u - u* + du(X) ~ 0. We may 
now consider three ranges of p(X). If p(X) :2:: Ed, then q(t) :2:: 
0 and u - u* + du(X) 2: 0, thus q(t)[u - u* + du(X)] 2: 0. If 
-Ed < p(X) < Ed, then q(t) = 0 and q(t)[u - u* + du(X)] = 
0. If p(X) ~ -Ed, then q(t) s; 0 and u - u* + du(X) S 0, 
thus, q(t)[il-u*+du(X)] :2:: 0. Therefore, we here established 
that sgn [q(t)] = sgn(z~<I>u(u) so that 

(126) 

Thus, incorporating linguistic information into the fuzzy model 
of the inverse dynamics may improve controller performance 
since q(t)[u - u* + du(X)] is positive semidefinite, causing 
the Lyapunov function Vd to decrease more quickly than if no 
linguistic information is used [i.e., q(t) = 0, t 2 O]. 

V. EXAMPLE: AN AUTOMATED HIGHWAY SYSTEM 

Due to increasing traffic congestion, there has been an 
renewed interest in the development of an automated highway 
system (AHS) in which high traffic flow rates may be safely 
achieved. Since many of today's automobile accidents are 
caused by human error, automating the driving process may 
actually increase the safety of the highway. Vehicles will be 
driven automatically with onboard lateral and longitudinal 
controllers. The lateral controllers will be used to steer the 
vehicles around comers, make lane changes, and perform 
additional steering tasks. The longitudinal controllers will be 
used to maintain a steady velocity if a vehicle is traveling 
alone (conventional cruise control), following a lead vehicle at 
a safe distance (car following, see Fig. 5), or performing other 
speed/tracking tasks. For more details on intelligent vehicle 
highway systems see [39] and [40]. Within this section, we 
will apply the above adaptive techniques to the car following 
problem or longitudinal control of a vehicle within an AHS. 

The dynamics of the car following system for the ith vehicle 
may be described by the state vector Xi = [bi, Vi, fiV where 
bi = Xi - x;_ 1 is the intervehicle spacing between the ith and 
i- 1st vehicles, Vi is the ith vehicle's velocity, and Ji is the 
driving/braking force applied to the longitudinal dynamics of 
the ith vehicle. The longitudinal dynamics may be expressed as 

fj = V - Vi-I (127) 

v = ~ (-Apv 2 
- d + .f) (128) 

m 
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TABLE II 
AUTOMOBILE VARIABLES AND PARAMETERS 

X vehicle position 
V vehicle velocity 
f applied force in longitudinal direction 

m =1300kg mass of the vehicle 
Ap = 0.3Ns2/m2 aerodynamic drag 

d =l00N constant frictional force 
T = 0.2s engine/brake time constant 

(129) 

where up is the control input (if up > 0, then it represents a 
throttle input and if up < 0, it represents a brake input), and the 
vehicle variables and parameters are summarized in Table II 
(we assume that the variables and parameters are associated 
with the ith vehicle, unless subscripts indicate otherwise). 

The plant output is Yp = 15 + AV, A > 0. This measurement 
allows for a velocity dependent intervehicle spacing. As the 
velocity of the ith vehicle increases, the distance between the 
ith and i- 1st vehicles should increase. A standard good 
driving rule for humans is to allow an intervehicle spacing 
of one vehicle length per 10 mph (this roughly corresponds to 
A = 0.9). With A cf. 0, the plant is of relative degree two since 

2y~ ) = iJ + Av - vi-1 (130) 

1 2 A[ • 1]=m[-Apv -d+f]+m -2Apvv--:;.f 

A .+ - Up - Vi-l· (131)
mT 

This is clearly of the form required by both the indirect and 
direct adaptive schemes [i.e., (19)] with 

1 2
a(X)=-[-Apv -d+f]

m 

+ ~ [-2A vv - ! t] (132)
m p T 

/3(X) = ~ (133)
mT 

where ak(t) = -vi-l and f3k(t) = 0 for all t 2: 0 and for 
any XE ~ 3 . We see that /3(X) 2: (30 > 0 for /Jo= A/m1T1, 
where the vehicle parameters are defined within the intervals 
m E [mo, m1] and T E [To, T1], where mo, To > 0. 

The zero dynamics are found by setting Yp = 0, which 
results in A8 = -15 - >..vi-l· The zero dynamics are, thus, 
exponentially attractive since if we let v1 = 152

, we obtain 

(134) 

If we assume that lvi-1 I S: Vm, some bound on achievable 
velocities for the vehicles, then 

. 2a 2
V1 < --15 if 1151:::, I AVm I (135)

- A ' l-a 

where O < a < l. Thus, as long as A > 0, we are ensured 
exponential attractivity of the zero dynamics. 

A. Indirect Adaptive Control 

Since we desire that Yp -+ 0, here we simply select Ym := 
0 so that 

(136) 

Since the plant is of relative degree two, the error metric is 
defined as 

(137) 

For this example, we simply choose ko = l (i.e., the desired 
tracking eigenvalue is at -1). If e8 is to be measured, then 
sensors will need to obtain 15, 15, v, iJ, and Vi-l· With such 
sensors, assumption P2) is satisfied. Using the definition of 
(;'i(s) from (42) we see that IIGo(s)lli = l/ko = l. Thus ifwe 
want the bounding control term to be defined such that lea I .S: 
1 meter, we use (43) to pick Me = l and EM = 0.1. Ideally, 
we will not need to use the bounding controller unless the 
initial conditions are such that ea 2: 1. If the following vehicle 
becomes too close to the lead vehicle, however, the bounding 
controller may be used to ensure that the two vehicles do not 
collide. The upper bounds on a(X) and /3(X) are found from 

la(X)I .S: AP (lvl + 2AliJl)lvl
m 

ldl 1 (+-+- l+-A) Iii (138) 
m m T 

l/3(X)I .:<::: -2__ (139)
mT 

Using bounds on the vehicle parameters, we obtain 

1 
la(X)I .S: Ap, (lvl + 2AliJl)lvl + ~ + - (1 + ~) Iii 

mo mo mo ~ 

:=a1 (X) (140) 
A 

l/3(X)I .S: - := /31(X). (141)
moTo 

where APE [Ap 0 , Ap,] and d E [do, d1], with Ap do:::, 0. If0 , 

vehicle variable bounds are known, these may be used within 
(140) and (141) rather than the instantaneous variable values. 

Here, we will consider six rules in the fuzzy system &(X) 
to approximate a(X) 

R1 : If vel is slow and ace is neg 

Then c1 = a1,o + a1, 1v2 

R 2 : If vel is med and ace is neg 

Then c2 = a2, o + a2, 1 v 
2 

R 3 : If vel is fast and ace is neg 

Then c3 = a3, o + a3, 1v
2 

R4 : If vel is slow and ace is pos 

Then c4 = a4, o + a4, 1 v 
2 

R 5 : If vel is med and ace is pos 
2Then C5 = a5, o + a5, 1v 

R 6 : If vel is fast and ace is pos 

Then c5 = a5, o + a5, 1v 2 
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15 

Fig. 6. Membership functions for the indirect adaptive routine. 

2 2 6 6so that Zo = [1, v ]T, Aa E ~ x , and (a E ~ . We chose 
01 (X) = v2 in (7) since we expect the longitudinal dynamics 
of the vehicle to depend upon v2 when looking at (129). We 
use two rules to approximate (3(X) 

R1: If vel is slow Then c1 = a1, o 

R2: If vel is fast Then c2 = a2, 0 

1 2 2so that Zf3 = [l], Af3 E ~ x , and ((3 E ~ . We use this simple 
fuzzy system since~ is only approximating the constant (3. The 
t-norm was taken as the product operator (3) for both fuzzy 
systems. The membership functions are shown in Fig. 6 where 
standard llinguistic variables ("vel" and "ace") and linguistic 
values ("slow," "med," etc.) are used in R 1-R6 and to label the 
membership functions. Triangular membership functions were 
chosen in this example even though any standard membership 
functions may have been used. 

2Since "i''s = es - e~ ) = koe 0 , we have v(t) = es + es = 
2ea + ea, using rJ = 1. The smoothed version of the adaptive 
controller described in Section 111-F is used to help avoid 
overactuation of the throttle and brakes. We chose a value 
of E = 0.1. To determine the possible tracking error, we note 
that IIGo(s)ll1 = 1, so that ea will asymptotically converge 
to leal S 0.05. In addition, we need to specify bounds for 
the parameter matrix Af3. Since A(3((3 2'. At0 ((3 with each 
ele~ent a3:'.: = f3min > 0 a positive constant, we choose 
af3mm = 0.001 and af3max = 1.0 for all i, j. This will ensure 

i, J i, J 

that ~(X) 2: (30 = f3min > 0 as required by our controller 
assumption, C1. No bounds are placed on the parameters Aa. 

In addition, the initial conditions are picked such that a°'. . = 
0 and af3,,j = 0.02 for all i, j. The sliding mode gain'•~as 
taken as ksi(t) = 0.1 + 0.00llucel [i.e., Da(X) S 0.1 and 
Df3(X) ::;• 0.001]. These values were picked after taking into 
consideration the size of a(X) and (3(X). Since a(X) is 
proportional to 1 / rn, where the vehicle mass rn is large, the 
error in representing a(X) with a fuzzy system should not 
be greater than 0.1. In addition, since (3( X) is a constant, a 
fuzzy system with a single membership function can represent 
(3(X) exactly, however, here we choose two membership 
functions for the sake of illustration. The fuzzy system update 

20 25 

TABLE III 
CONTROL PARAMETERS FOR THE DIRECT AND INDIRECT ADAPTIVE ALGORITHMS 

Me= 1 ko =1 TJ= 1 
fM =0.1 £ =0.05 q(t) = 0 

Q-1 = [ 0.01 0 ] Q~1 = [ 0.01] Q-1 = [ 500 0 ]
" 0 0.01 " 0 500 

parameters and other parameters for the adaptive controller 
are summarized in Table III. Notice that the elements of Q;;: 1 

and Q~ 1 are small since the functions a(X) and (3(X) are 
typically small. 

Within our simulation, the following car attempted to track 
a lead car during a series of accelerations and decelerations 
(note that similar results are obtained if the controller is used 
on N vehicles in a "platoon"). The velocity profiles for the 
lead and following vehicles are shown in Fig. 7 (note that 
the deceleration of the lead vehicle is abrupt enough so that 
braking is required by the following vehicle). The output error 
ea during the simulation is shown in Fig. 8. The indirect 
adaptive scheme is able to quickly control the intervehicle 
spacing, allowing Jea I to increase only slightly above E = 0.05 
at any given time. The control inputs for the lead and following 
cars are shown in Fig. 9. We notice that the control action for 
the following car using the above indirect adaptive routine is 
smooth and similar to the control action applied to the lead car. 
Finally, if the reader is concerned with "slinky effects" (i.e., 
where spacing and velocity deviations are propagated along a 
string of N vehicles) consult, e.g., [41]. 

B. Direct Adaptive Control 

We will now show how to apply the direct adaptive control 
scheme to the car following problem. Plant assumption P3 is 
clearly satisfied since (3(X) is a constant so that ~(X) = 0. 
We define the known controller to be a simple proportional 
controller 

(142) 
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m ~ oo oo 100 1m 1~ 100 100 200 
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Fig. 7. Velocity profiles of the lead car(__ ) and following car(·••). 

0.04 

0.02 

~ 
l!l 

f 0 

al 

-0.02 

-0.04 

m ~ oo oo 100 1m 1~ 100 100 mo 
time (sec) 

Fig. 8. Output error eo for the car following problem using indirect adaptive 
control. 

with kp = 100. The rule base for the fuzzy controller that 
generates u in (98) is 

R1: If vel is slow and e8 is neg 

Then c1 = a1,o + a1,1v(t) 

R2: If vel is med and e8 is neg 

Then c2 = a2,o + a2,1v(t) 

R3: If vel is fast and es is neg 

Then c3 = a3,o + a3,1v(t) 

R4: If vel is slow and e5 is zero 

Then c4 = a4,o + a4,1v(t) 

R5: If vel is med and es is zero 

Then C5 = a5,o + a5,1v(t) 

R5: If vel is fast and es is zero 

Then c5 = a5, o + a5, 1v(t) 

R1: If vel is slow and es is pos 

600 

500 

400 

300 

~ 
" 

200 

100 

0 

-100L--'---'---'---'----'----'----'----'----'-------' 
o m ~ oo oo 100 1m 1~ 100 100 = 

time (sec) 

Fig. 9. Control input for the lead car(__) and the following car(·• •).u 
in (98) is 

Then c4=a1,o+a1,1v(t) 

R 8 : If vel is med and es is pos 

Then c5 = as, o + as, 1v(t) 

R9 : If vel is fast and e8 is pos 

Then c5=a9,o+a9,1v(t) 

R2 9 R9so that Zu = [1, v(t)]T, Au E x , and (u E , with 
v(t) = 2ea +ea+ vi-1 [recall that r = 2, ko = 1, Ym = 0, 
and a.k(t) = -vi_1]. Here, we picked v(t) so that the fuzzy 
system may approximate u* with a small number of rules 
since u* is directly a function of v(t). We once again use 
the smoothed version of the adaptive control. The t-norm was 
taken as the minimum operator as in (2). The membership 
functions were defined as Gaussian membership functions, 
as shown in Fig. 10 (the Gaussian membership functions are 
defined as in Table I with er = 2.5 and 0.5 for /.lvel and /.Les, 
respectively). 

The bounding functions a.1(X) and ;31(X) are defined 
as before. Here we assume that our adaptive system when 
properly tuned should be able to approximate the ideal control 
to within 100 Newtons, so Du(X) = 100. The projection 
limits were chosen to be a~in = -2000 and a~ax = 2000 
for all i, j. The adaptation p~:ameters were pickel to be the 
same as for the indirect adaptive case (see Table III). 

Using the direct adaptive controller, we once again tried 
to control the following vehicle to track the lead vehicle. 
The velocity profiles for the lead and following vehicles are 
shown in Fig. 11. The output error, ea, is shown in Fig. 12. 
Even though the output error is slightly larger using the 
direct adaptive routine than that for the indirect adaptive 
routine, it is of the order of magnitude for which we designed 
our adaptive controller. The control input for the lead and 
following vehicles is shown in Fig. 13. We see that although 
the controller required a few seconds to "learn" how to 
control the vehicle, the output of the following vehicle quickly 
matched the output of the lead vehicle. Fig. 14 shows how well 
the known control portion, uk, is able to track the position of 
the lead vehicle when no adaptive control portion is included, 
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Fig. 10. Membership functions for the direct adaptive controller. 
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Fig. 11. Velocity profiles of the lead car(__ ) and following car(·••). 
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Fig. 12. Output error e0 for the car following problem using direct adaptive 
control. 

i.e., up = Uk, Even though Uk is apparently able to stabilize 
the system, the control results in very poor performance which 
illustrates the advantage of using the adaptation algorithm. 

VI. CONCLUDING REMARKS 

Indirect and direct adaptive control schemes were presented 
for a class of continuous-time nonlinear plants, conditions 
were provided for their stable operation, and we showed how 
they could be used for the longitudinal control of a vehicle 
in an automated lane. The adaptive schemes are particularly 
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Fig. 13. Control input for the lead car(--) and the following car(···). 
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Fig. 14. Tracking performance ea when the direct adaptive control is not 
used, i.e., u = uk. 

powerful since they: i) do not require a complete model of 
the plant, ii) use a general Takagi-Sugeno fuzzy system that 
includes a certain class of fuzzy systems and neural networks 
as a special case (note that for the indirect scheme, if desired, 
one can use a neural network for estimating ,B(X) an,d a fuzzy 
system for a(X) or vice versa), and iii) allow for the inclusion 
of a priori knowledge in the form of mathematical equations 
or heuristics to be loaded into the identifier (indirect case) 
or controller (direct case). Consider, for example, the case 
where a feedback linearizing controller may be designed based 
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on the nominal plant. The indirect adaptive controller may 
then be used basing ak and f3k on the linearization of the 
nominal plant, then using the fuzzy controller to compensate 
for unknown parameters or unmodeled dynamics. Another 
possibility is to design a linear quadratic regulator (LQR) 
based on a linear representation of a nonlinear plant. Setting 
zu equal to the plant states, it is possible to use the direct 
adaptive controller as an adaptive LQR, by assigning each 
column of Au to the coefficients found for the standard LQR. 
Each rule may be used to define the space over which each 
"local LQR" is to adapt. These are just two examples in which 
the techniques presented here may be used to enhance existing 
control designs. An upcoming paper [42] will show how each 
of the above ideas can be used in the implementation of the 
adaptive fuzzy controllers presented in this paper for a variety 
of applications. 

The indirect and direct adaptive fuzzy controllers both allow 
for Takagi-Sugeno fuzzy systems, require the same inputs, and 
provide the same stability results for the same class of plants, 
however, there are some differences. 

• The direct adaptive controller requires a known B(X) > 
l~(X)I-

• The direct adaptive controller does not require a projec
tion algorithm. For the direct adaptive fuzzy controller, 
the adjustable parameters are guaranteed to be bounded 
because of the choice of our Lyapunov function, Vd. 

• The direct adaptive controller requires only a single 
fuzzy system, and there may be resulting computational 
advantages if the control update rate is a limiting fac
tor for your implementation. For the indirect adaptive 
controller, even though there is the need for two fuzzy 
systems, one can use the same antecedents for the rule 
bases used to approximate a(X) and /3(X) (different 
consequence values, i.e., Aa and Ap, will still be used). 
This will speed up the implemented indirect adaptive 
controller considerably since once the implied degree of 
membership for each rule is determined for one fuzzy 
system, you have done most of the work to calculate the 
output of the other fuzzy system. For more details, see 
the work in [ 42]. 

• It has been our experience that the direct adaptive con
troller is easier to adjust in simulations and in the lab
oratory. It should be emphasized, however, this is only 
based on personal observations with a limited number of 
experiments_ For more details, see the work in [42]_ 

While the adaptive control schemes present significant ad
vantages, they have several drawbacks which cannot be over
looked. First, as with all mathematical stability analysis, one 
proves stability of the model of the closed-loop system and not 
the dynamics of the actual physical system. If the model of 
the physical system is reasonably accurate, then the stability of 
the algorithms will take on real physical meanings; however, 
if the model is inaccurate [e.g., the plant is only accurately 
represented by X = f(X, t, up), Yp = h(X) and cannot 
be split so that X = f (X) + g(X)up, YP = h(X)], the 
stability analyzes are certainly of limited value in verifying 
the properties of the physical control system. Furthermore, 

we do constrain, somewhat, the types of heuristic information 
that can be included so that we can guarantee stability of our 
adaptive systems (e.g., we do not allow for the inclusion of 
heuristics to tune the membership functions in the antecedents 
of the rule as done in [11] and [15]). It is important to 
remember that the Lyapunov approach used here provides 
sufficient conditions for stability; it is possible that some 
simpler heuristic approach to adaptive fuzzy control could 
provide stable operation of the closed-loop system and it 
may be difficult to use the somewhat conservative Lyapunov 
stability analysis approach to verify its stability (this is a 
standard problem in nonlinear analysis). 

Second, our adaptive schemes are only for continuous-time 
SISO nonlinear systems of a specific form. Extensions to 
discrete-time and MIMO nonlinear systems is an important 
direction. Third, there may be other adaptive schemes that 
do not rely as heavily on the need to measure certain plant 
variables (of course other approaches, i.e., [15], [20], have 
similar reliance on plant information). It may be possible, 
however, that if certain variables are not available, then the 
approximation errors da, dp or du may simply become larger 
while still providing stable closed-loop control. Fourth, while 
the implementation of our adaptive schemes is certainly fea
sible, since not too many computational resources are needed 
(consider, e.g., the complexity of the controllers for the vehicle 
following problem), there may exist simpler approaches that 
are perhaps more desirable from an implementation standpoint. 
Fifth, many of the heuristic fuzzy and neural adaptive con
trol approaches have been studied in experimental testbeds; 
similar experimental analysis of the adaptive schemes in this 
paper are needed but are beyond the scope of the present 
study. 
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	[20] by requiring square integrability of the approximation error. It was shown that radial basis neural networks and standard fuzzy systems may provide asymptotic tracking of a reference signal for a class of nonlinear plants, even if the estimation error is not square integrable in [17] and [21]. Within this paper, we present a direct adaptive scheme which uses standard fuzzy systems, Takagi-Sugeno fuzzy systems, or neural networks to achieve stable tracking of a reference input for a class of plants with
	As with the indirect adaptive scheme, our direct adaptive scheme has many differences from the existing techniques (i.e., those presented in [16], [17], and [21]). Particularly, 
	i) the stability results presented here may be applied to systems with a state-dependent input gain, whereas [16] and 
	[21] consider a class of nonlinear plants with constant input gain, and [17] only considers the special case of unity gain, 
	[21] consider a class of nonlinear plants with constant input gain, and [17] only considers the special case of unity gain, 
	ii) none of the results in [16], [17], and [21], considered systems containing zero dynamics, iii) unlike [16], our direct adaptive algorithm ensures that even if the approximation error is not square integrable, then the tracking error will go to zero ( or to an E-boundary layer of zero for the smoothed control version), iv) our direct adaptive controller allows for Takagi-Sugeno fuzzy systems, standard fuzzy systems, or neural networks, v) the direct adaptive technique presented here allows for the inclus

	It should be mentioned that other work has been completed in combining conventional stable adaptive control and intelligent control. Within [18] a nonlinear discrete-time plant is represented by a linear regression form using Takagi-Sugeno fuzzy systems to provide global stability. A discrete time adaptive routine is presented in [23] which uses layered neural networks to provide stable adaptive tracking provided some initialization conditions are satisfied. Finally, in [24], a new adaptive routine using d
	This paper is organized as follows. In Section II, we define a class of Takagi-Sugeno fuzzy systems and show that a large class of fuzzy systems and neural networks may be represented using the same functional form. Sections III and IV present the indirect and direct adaptive schemes and the stability proofs. In Section V, we illustrate the concepts on the longitudinal control of a vehicle in an automated lane. Section VI contains the concluding remarks where we discuss both the advantages and disadvantages
	II. Fuzzy SYSTEMS AND NEURAL NETWORKS 
	In this section, we define the Takagi-Sugeno fuzzy system and show that a class of standard fuzzy systemsand some neural networks are a special case of this model. 
	2 

	A. Takagi-Sugeno Fuzzy Systems 
	A multiple-input single-output (MISO) fuzzy system is a nonlinear mapping from an input vector X [.1:1, x2, • • ·, xnV E ~n (T denotes transpose) to an output y = .f(X) E ~ (note that we use X as a generalvector input to the fuzzy system; it may or may not be the same as the "state" that is used in all the later sections). Using the Takagi-Sugeno model [34], the fuzzy system is characterized by a set of p If-Then rules stored in a rule-base 
	It is assumed that the reader has some familiarity with fuzzy systems. For an introduction, see [5], [15], and [33] 
	2 


	TABLE I SOME STANDARD MEMBERSHIP FUNCTIONS 
	Triangular Gaussian if X $ C
	if X $ C
	if X $ C
	Left 

	µ(x) = { ~ax(0,1+ c-;,,"') otherwise µ(x) = { ~xp (-(7)2) otherwise 
	max (0, 1 + x;;;c) if X $ C
	max (0, 1 + x;;;c) if X $ C

	Centers µ(x) = exp (-("';c) )
	2

	µ(x)= { max(0,l+c;;-,x) otherwise 
	µ(x) = { ~ax (0, 1 + "';;;c) µ(x) = { ~xp (-("';c)2) otherwise otherwise 
	Right 
	if X $ 
	C 
	if X $ 
	C 

	and expressed as defuzzification may be obtained using 
	R1: If (i:1 is Pf and··· and in is PD Then c1 = g1(X) fj = .f(X) = (4) 
	Rp: If (i:1 is Ff and··· and in is F;,) Then cp = gp(X). 
	Rp: If (i:1 is Ff and··· and in is F;,) Then cp = gp(X). 

	where µi := µF,x---xFJx1, • · ·, Xn) is the value that the Here, pba is the ath linguistic value associated with the the antecedent 
	membership 
	function 
	[defined 
	via (2) 
	or (3)] for 

	linguistic variable of the ith rule takes on at X = [x, • • • , xn?. It is assumed is the consequence of the qth rule and gq: ~n ----+ ~-Using so that for all X E ~n, we fuzzy set theory, the rule-base is expressed as 
	xb 
	that describes 
	input 
	Xb, 
	and cq = 
	gq(X) 
	1
	that 
	the fuzzy 
	system 
	is defined 

	have I:f=µi -::J 0. We may express (4) equivalently as 
	1 

	If (Ff and··· and Fi) (5) Then c1 = g(X) 
	1

	where cT := [c1 · • • cp] and (T := [µ1 µp]/[I:f=µi]. 
	1 

	RP: If (Fk and · · · and F;,) We assume that J, the mapping produced by is Lipschitz continuous [25]. In this paper, the output consequences for each rule are where Fba is a fuzzy set defined by 
	1
	the fuzzy 
	system, 
	Then 
	cP = 
	gp(X) 

	taken as a linear combination of a set of Lipschitz continuous functions 0k(X) E ~, k = l, 2, • • •, m -1, so that 
	(1) Ci = 9i(X) 
	:= ai,o + ai,101(X) + ·· · 
	:= ai,o + ai,101(X) + ·· · 

	The membership function µpba E [O, l] quantifies how well (6)
	the linguistic variable Xb that represents Xb is described by the + ai,m-20m-2(X) + ai,m-l0m-l(X) linguistic value Ft There are many ways to define member
	ship functions [15]. For instance, Table I specifies triangular i = 1, • • •, p. Define the following: membership functions with "center" c and "width" w, and it specifies Gaussian membership functions with "center" c and "width" u (see Figs. 6 and 10 in Section V for graphical 
	(7)representations). The antecedent fuzzy set F1 x F2 x · · · x Fn (fuzzy Cartesian product), of each rule is quantified by the "t-norm" [15] which and may be defined by, for example, the min-operator or the a1 o 
	a1,m-l l
	a1,m-l l

	product-operator a2,m-lA ·-.-. . . (8) 
	T 
	a2,o 

	µF1X···XFn(X1,. •·, Xn) 
	µF1X···XFn(X1,. •·, Xn) 

	ap,O ap,m-l := min {µp1(xi), · · ·, µpn (xn)} (2) The consequence vector associated with the fuzzy rules is now
	r

	or given by c = ATz, so that the output of the fuzzy system may 
	µp, X···XFn (xl, • • ·, Xn) 
	µp, X···XFn (xl, • • ·, Xn) 

	now be expressed as := µFi (x1) • • • • • µpn (xn) (3) 
	(9) respectively (notice that for convenience, we have removed the superscripts from the Ff:). Using singleton fuzzification, Clearly, (9) is a special form of a Takagi-Sugeno fuzzy system. 
	input layer 
	input layer 
	input layer 
	input layer 

	hidden layer 
	hidden layer 
	hidden layer 1 

	Fig. 1. 
	Fig. 1. 
	y output layer y Two types of neural networks which may be used with the adaptive techniques. 
	hidden layer 2 output layer 


	B. Standard Fuzzy Systems 
	B. Standard Fuzzy Systems 
	Standard fuzzy systems naturally allow for the inclusion of heuristics into controller design. In standard fuzzy control, the output of a fuzzy system may be found using the center of gravity operation, which for a wide class of fuzzy systems is expressed as 
	p Lcili 
	~ i=l 
	y=-p-(10) 
	Lli 
	i=l 
	where c; is the center of the output membership function associated with the ith rule, and li is the area of the implied membership function associated with the ith rule (i.e., l; is the area of the output membership function that is modified via the fuzzy implication that represents the ith rule). This fits the form of (9) with z = [l], A = [c1 • • • cp], and (; = l;/ I:f=l; so that this standard fuzzy system is a special case of the Takagi-Sugeno fuzzy system defined by (9). Other standard fuzzy systems s
	1 

	C. Neural Networks 
	Our framework allows for the use of neural networks in which a single hidden layer of radial-basis functions are used or if a special form of two hidden layers is used. Fig. 1 demonstrates these two cases. With a single hidden layer of radial basis functions the output of neural network is given by 
	(11) 
	where ( E ~P are (possibly normalized) radial-basis functions (e.g., squashing functions characterized by Gaussian functions [35]) and cT is a vector of adapting weights. This type of system may be described by (9) with z = [l] and A= cT_ As it is well-recognized in the literature, this is exactly the same representation as used with standard fuzzy systems [15]. 
	A second type of neural network considered in this paper is one in which there are two hidden layers with the second hidden layer of a special form. The output of the first hidden 
	A second type of neural network considered in this paper is one in which there are two hidden layers with the second hidden layer of a special form. The output of the first hidden 
	layer produces a vector of functions 
	(12) 

	The nodes which make up the first hidden layer may be normalized radial-basis functions, squashing functions or any other standard neural-basis function [35]. Here, we allow both the output of the first hidden layer and the original input to be passed to the second hidden layer (see Fig. 1). The output of the ith node of the second hidden layer is given by 
	(; ~ (;(Z, X) (b,,o+ t b;,J0J I t b;,J+mXJ) (13) 
	where (; (z, X) are squashing functions or radial-basis functions (which may be normalized) and b;, 0 is the bias for ith node. The output of the neural network is taken as a linear combination of the outputs of the second hidden layer; that is 
	p 
	iJ = L c;l;. (14) j=l 
	We may combine (13) and (14) to obtain 
	p ( m n )
	y = ~ (;(z, X) a;,o + ~ a;,j0j + ~ ai,j+mXj 
	(15) 
	which may be expressed in the form of (9) with z [1 01 • • • Bmx1 • • • xnf, and A = [a;,j] with a;,j c;bi,j· Note that z may or may not include any 0; or x;. Within the adaptive framework to follow, we shall typically 
	refer to Takagi-Sugeno fuzzy systems within our discussion. However, any of the above fuzzy or neural network systems apply. 
	III. INDIRECT ADAPTIVE CONTROL 
	Our objective is to design a control system which will cause the output of a relative degree r plant, Yp, to track a desired output trajectory, Ym (a relative degree r plant is one in which the plant input appears in the output dynamics after r differentiations of the output). The desired output trajectory may be defined by a signal external to the control system so 

	Reference Model 
	Reference Model 

	r-------------------------~
	r-------------------------~
	I 
	I 
	I 
	Controller 
	I 

	IIv(t) 
	IIv(t) 
	"« 
	I I up 
	Plant 

	I 
	I 

	I 
	I 

	I 
	I 

	I 
	I 

	I 
	I 

	I----
	I----
	-

	X 
	e, 

	TR
	Xr,---+-----+-----------,~--1----
	-



	1 
	1 
	I 
	'x
	I 

	I I I I I
	'----------
	-


	Fig. 2. An indirect adaptive fuzzy control system with a reference model. 
	that the first r derivatives of Ym may be measured, or by a reference model, with relative degree greater than or equal to r which characterizes the desired performance (see Fig. 2). With these considerations, we make the following assumption about the reference signal [let ytl denote the rth derivative of Ym with respect to time]. 
	RI) Reference Input Assumption: The desired output trajectory and its derivatives Ym, • • •, yt) are measurable and bounded. 
	Within this section, we use an "output error indirect adaptive controller," as shown in Fig. 2 (using the terminology from [25]) where an identifier seeks to approximate the plant dynamics and uses this to tune the parameters of a controller 
	so that Yp follows Ym, and hence, e0 = Ym -Yp ----, 0. Next, we describe each component of Fig. 2. Here, we consider the SISO plant 
	X = f(X) + g(X)up (16) Yp = h(X) (17) 
	X = f(X) + g(X)up (16) Yp = h(X) (17) 

	:"here X E ~n is the state vector, up E ~ is the input, Yp E ~ 1s the output of the plant and functions f(X), g(X) E ~n, and h(X) E ~ are smooth. If the system has "strong relative degree" r then 
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	--•
	--•
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	0i:(t) 

	with 6 = Yp, which may be rewritten as 
	where L~h(X) is the rth Lie derivative of h(X) with respect 
	to g {Lh(X) = (8h/8X)g(X) and, e.g., L~h(X) = L[Lh(X)]}; and it is assumed that for some p0 > 0, we have IPk(t) + p(X)I 2: p0 so that it is bounded away from zero (for convenience we assume that Pk(t) + (3(X) > 0, however, the following analysis may easily be modified for systems which are defined with Pk(t) + p(X) < 0). We will assume that ak(t) and Pk(t) are known components of the dynamics of the plant (that may depend on the state) or known exogenous time dependent signals and that a(X) and p(X) represe
	9 
	9 
	9 

	We shall approximate the functions a(X) and ~(X) with fuzzy systeip-s (neural networks) Yo: = .fo:(X) = z;Ao:(o: and Y(3 = ff3(X) = zJA(3((3 by adjusting the Ao: and A(], The parameter matrices Ao: and A(] are assumed to be defined within the compact parameter sets no: and 0(3, respectively. In addition, we define the subspace Bx ~ Rn as the space through which the state trajectory may travel under closed-loop control (we are making no a priori assumptions here about the size of Bx; later, we will specify a
	~r-1 =~r = L'/h(X) 
	~r-1 =~r = L'/h(X) 
	1 

	a(X) = z;A:(o: + da(X) (20) 
	~r = Lfh(X) + LL'/h(X)up (18) 
	9 
	1 

	(3(X) = zJA~(o + do(X) (21) 
	where 
	A: E ~maXPa 
	A::= arg min [ sup lz;Aa(a -a(X)I] (22) 
	AaE!ta XESx 
	A~ E ~m13Xp13 
	A* :=arg min [sup lzIA13(13-,6(X)I] (23)
	/3 Ao E!l13 X ESx 
	so that da(X) and d13(X) are approximation errors which arise when a(X) and ,6(X) are represented by fuzzy systems. We assume that Da(X) 2 lda(X)I, and D13(X) 2 ld13(X)I where Da(X) and D(X) are known bounds on the error in representing the actual system with fuzzy systems. Since fuzzy systems are "universal approximators" (see [15]) both lda(X)I and ld13(X)I may be made arbitrarily small by a proper choice of the fuzzy system if a(X) and ,6(X) are smooth (of course this may require an arbitrarily large num
	13 

	The fuzzy system approximations of a(X) and ,6(X) of the actual system are 
	&(X) = z;Aa(a (24) /3(X) = zIA13(13 (25) 
	where the matrices A, ( t) and A13 (t) are updated on line as shown in Fig. 2. The parameter error matrices 
	<I>a(t) = Aa(t) -A: (26) <I>13(t) = A13(t) -A~ (27) 
	are used to define the difference between the current estimate of the parameters and the best values of the parameters defined by (22) and (23). 
	Consider the indirect adaptive control law 
	Consider the indirect adaptive control law 
	(28) 

	The control law is comprised of a "bounding control" term, ubi, a "sliding mode" term, Usi, and a "certainty equivalence" 
	[25] control term Uce. 
	A. Certainty Equivalence Control Term 
	The certainty equivalence control term [36] is defined as 
	1 
	Uce = {-[ak(t) + &(X)] + v(t)} (29)
	A 
	,6k(t) + ,6(X) 
	where v(t) := ytl +ryes+ es, with es := es -e£r) and ry > 
	0. For now we assume that ,6k(t) + /3(X) is bounded away from zero so that (29) is well-defined, however, we shall later show how to ensure that this is the case. The tracking error is defined as es := kT e where e := [ea ea ... e~r-l)ir, k := [ko • • • kr-2 l]I', and ea := Ym -Yp, thus, es = [ea • • • e£r-l)l[k0 · · · kr_ 2jY. We pick the elements of k such that L(s) := sr-+kr-2sr-+-· -+k1s+ko has its roots 
	1
	2

	in the open left half plane. The goal of the adaptive algorithm 
	in the open left half plane. The goal of the adaptive algorithm 
	is to "learn" how to control the plant to drive es to zero. Thus, es is a measure of the tracking error. The term "certainty equivalence" is used to describe Uce since this control term is obtained by assuming that the current estimates of the plant parameters are close to the actual plant parameters, so that a "feedback linearizing controller" may be obtained [25]. Even though the current estimates may not be close to the actual plant parameters, the certainty equivalence control term may be used to later 

	Using the control (28), the rth derivative of the output error becomes e£r) = yt) -Yir) so 
	e(r) = y(r) -[a (t) + a(X)] -,6k(t) + ~(X) 
	o m k ,6k(t)+,6(X) · {-[ak(t) + &(X)] + v(t)} -[,6k(t) + ,6(X)](usi + Ubi)-(30) 
	We may rearrange terms so that 
	e(r) = [l _,6k(t) + ~(X)l,6k(t) + ,6(X) 
	0 

	• {-[ak(t) + &(X)] + v(t)} -a(X) + &(X) -ryes -es -[,6k(t) + ,6(X)](usi + Ubi) (31) 
	= [&(X) -a(X)] + [/j(X) -,6(X)]uce -ryes -es -[,6k(t) + ,6(X)](usi + Ubi)-(32) 
	We may express (32) as 
	es + ryes = [&(X) -a(X)] + [,B(X) -,6(X)]uce -[,6k(t) + ,6(X)](usi + Ubi)-(33) 
	With this representation, we next define the bounding and sliding mode control terms in (28). 
	B. Bounding Control Term 
	Later, we will show that if the plant states are bounded then an indirect adaptive fuzzy controller may be used to provide stable, asymptotic tracking of the output. At this point, however, we need to define a "bounding control" Ubi to ensure that the output and states are bounded. Consider 
	(34) 
	Using (33) and (34), and the fact the ,6k(t) + /3(X) 2 ,60 > 0, for some ,60 we obtain 
	Vbi = -rye;+ es {[&(X) -a(X)] + [/j(X) -,6(X)]uce -[,6k(t) + ,6(X)](usi + Ubi)} (35) 
	::; -rye;+ lesl{J&(X)J + Ja(X)J + [J/3(X)I + l,6(X)l]lucel} + lesl{[,6k(t) + ,6(X)]lus;I} -es[,6k(t) + ,6(X)]ubi· (36) 
	Let EM and Me be fixed parameters such that O < EM ::; Me. We choose the bounding control to be 
	(37) 
	(37) 
	where 


	1, if Me '.S lesl = lesl + EM -Me, I I M
	1, if Me '.S lesl = lesl + EM -Me, I I M
	II(t) if Me -EM '.S es < e 
	{ EM 
	0, otherwise (38) 

	and 1 X > 0 
	and 1 X > 0 
	(39)
	sgn (x) := { _ 

	1 X < 0. 
	1 X < 0. 

	The bounding control is continuous and defined so that it is always used when Ies I 2: Me. We require that there are known bounds ,61(X) 2: l,6(X)I and a1(X) 2: la(X)I when lesl 2: Me with a1(X) and ,61(X) continuous in x. Using these state dependent bounds, the following gain is used 
	kb;(t) = ; {l&(X)I + a1(X) 
	kb;(t) = ; {l&(X)I + a1(X) 
	0 
	+ [l~(X)I + ,61(X)]lucel} + lusil• (40) 

	Using (36) with (40), we obtain 
	Using (36) with (40), we obtain 
	(41) 

	Thus, we are ensured that if there exists a time t' such that les(t')I > Me, then for t > t', les(t)I will decrease exponentially until lesl '.S Me. 
	At this point, it is convenient to define transfer functions 
	At this point, it is convenient to define transfer functions 
	Si
	A 
	Gi(s) :=-A-, i = 0, • •·, r -1 (42) 
	L(s) 

	which each are stable since L(s) has its poles in the open left half plane. Since e~i) = Gi(s)es with es bounded, then e~i) E £= (£= = {z(t): supt lz(t)I < oo}). This is shown 
	for the case e8 = c + ke0 in Fig. 3 where if les I'.S Me then
	0 

	0 
	0 

	0 and c0 stay in the shaded region (i.e., le0 I '.S Me/k0 and icI '.S 2Me). This may be extended to higher dimensional systems as 
	e
	0

	and since e~r-l) = e8 -~~:;:i kie~i) the triangular inequality may be used to show that 
	r-2 le~r-l)I '.S Me+ Me L killGi(s)ll1 (44) 
	r-2 le~r-l)I '.S Me+ Me L killGi(s)ll1 (44) 
	i=O 

	for all time if les I '.S Me and the initial conditions are such that le~i)(O)I '.S MellGi(s)ll1, i = 0, · · ·, r -2. The transfer function 1-norm is defined as IIG';(s)lli := J~= lgi(T)ldT, where gi (t) is the impulse response of Gi ( s). Using the 
	example of es = c + koe, we obtain Go(s) = l/(s + ko) which has an impulse response function of g0(t) = e-kot with the I-norm IIGo(s)ll1 = 1/ko. Using (43) and (44), we obtain the bounds leol '.S Me/ko and lcol '.S 2Me, as shown in Fig. 3. Overall, we see that (43) and (44) provide explicit bounds on ubi is used. 
	0 
	the output error when the bounding control 

	Up to this point, we have shown output-error boundedness. Next, we show that for some plants state boundedness is 
	0 
	0 

	Fig. 3. Boundedness around the manifold es = Co+ kaeo = 0. 
	also guaranteed. The dynamics for a relative degree r plant described by (16) may be written in normal form as 
	(45) 
	(45) 
	(46) 
	tr-1 = fr (47) tr =a(f, 1r) + /3(f, 1r)up (48) 
	ir = W(f, 1r) (49) 

	with 1r E ~n-r and Yp = 6-The "zero dynamics" of the system are given as 
	ir = W(0, 1r). (50) 
	ir = W(0, 1r). (50) 

	We may now consider the adaptive control of plants with no zero dynamics, or plants which have exponential attractivity of the zero dynamics (i.e., plants where (50) is exponentially stable when the states 1r move outside a ball l1rl > B). The two plant types are characterized by the following assumptions. 
	P 1) Plant Assumption: The plant is of relative degree r = n (i.e., no zero dynamics) such that 
	d 
	d 
	dt Xi =Xi+1, i = 1, • • ·, n -1 
	d 
	dt Xn = a(X) + ak(t) + [,6(X) + ,6k(t)]up 

	where Yp = x, with ak(t) and ,6k(t) known functions. Here, it is assumed that there exists f3o > 0 such that (3( X) +,Gk (t) 2: , and that x, • • • , Xn are measurable. 
	1 
	(3
	0
	1

	P2) Plant Assumption: The plant is of relative degree r, 1 :s; r < n with the zero dynamics exponentially attractive and there exists (30 > 0 such that f](X) + h(t) 2: f3o-The outputs 
	(r-1) bl
	(r-1) bl

	Yp, • • • , Yp are measura e. 
	Clearly, plants satisfying Pl) have bounded states if the reference input, Ym, and its derivatives are bounded with e0 and its derivatives bounded. We may use Lipschitz properties of W (f, 1r) to see that plants satisfying P2) have bounded states if the output is bounded in the following 
	the output error 

	manner [25]. For some positive constants 'Yl, 'Y2, 'Y3, ,y4, and 
	manner [25]. For some positive constants 'Yl, 'Y2, 'Y3, ,y4, and 
	if the zero dynamics are exponentially attractive. Since we e0 bounded and bounded reference signals, by RI, Ill :::; k1 where k1 is some positive constant. Using (52), we have 
	have 


	B and function 
	B and function 
	B and function 
	v1 we have 

	TR
	'Y1l1rl 2 :s; v1(1r) :s; 
	'Y2l1rl 2 
	(51) 

	2~: W(0, 1r) '.S -,y3l1rl , 
	2~: W(0, 1r) '.S -,y3l1rl , 
	if 
	l1rl > B 
	(52) 

	dv1 I d1r :c:; 'Y411rl I 
	dv1 I d1r :c:; 'Y411rl I 
	(53) 


	. dv1 v, = d1r IJ! (l, 1r) 
	. dv1 v, = d1r IJ! (l, 1r) 
	. dv1 v, = d1r IJ! (l, 1r) 
	. dv1 v, = d1r IJ! (l, 1r) 
	(54) 

	2 dv 1 :::; -•'d1rl + d1r [IJ!(l, 1r) -IJ!(0, 1r)] 
	2 dv 1 :::; -•'d1rl + d1r [IJ!(l, 1r) -IJ!(0, 1r)] 

	if 
	if 
	l1rl > B. 
	(55) 


	If IJ!(l, 1r) is Lipschitz in l, then IIJ!(l, 1r) -IJ!(0, 1r)I :::; k2lll some positive k2. Using this, if l1rl > B we now have 
	2
	v,:::; -13l1rl + I-;f;dv, I l[IJ!(( 1r) -IJ!(0, 1r)]I (56) 
	2 
	:::; -13l1rl + 14k2llll1rl (57) :::; -13l1rl + 14k1k2l1rl. (58) 
	2 

	Therefore, v, :::; 0 if l1rl 2 max (B, 14k1k2/13). This ensures boundedness of l and 1r, therefore the system states are bounded. 
	Since the fuzzy systems are used to approximate a(X) and ;3(X), we require that the plant be described by either Pl) or P2), ensuring state boundedness so that the fuzzy system input-membership functions do not need to cover all ~n. The subspace through which the plant state trajectory may travel Sx is determined by first finding the range of the reference signal and the output error from (43) and (44). Then, the range of the states may be determined from the particular application and choice of state repre
	C. Adaptation Algorithm 
	Consider the following Lyapunov function candidate 
	V; = ½e; + ½tr(<P~Qo:<Pa) + ½tr(<PJQ;3<P;3) (59) 
	where tr(·) is the trace operator ({tr(A) =Lia;,;, if A= [a;,j] is square)} with Qo: E ~m"'xm" and Q;3 E ~mexm13 positive definite and diagonal. This Lyapunov candidate quantifies both the error in tracking and in the parameter estimates. Taking the derivative of (59) yields 
	= es[esl +tr(<P~Q°'4°') +tr(<PIQ;34;3). c6o) 
	v; 

	Substituting in the derivative of the tracking error es from 
	(33) yields 
	V; = es{[&(X) -a(X)] + [,B(X) -;3(X)]uce -TJes -[/3k(t) + ;3(X)](usi + Ubi)} 
	T • T • 
	+ tr(<Po:Qa<Pa) + tr(<P;3Q;3<P;3). (61) 
	We may use (20), (21), and (24)-(27) to obtain 
	V; = -'rJe; + {z;<Pa(a -da(X) + --[/3k(t) + + V.b;)}es 
	z;3<PI(;3V.ce 
	d;3(X)v.ce 
	;3(X)](v.si 

	T • T • 
	+ tr(<PaQa<Pa) + tr(<P;3Q;3<Pe). (62) 
	Now consider the following fuzzy system update laws 
	Aa(t)= -Q;;;za(;es (63) 
	1

	.A.;3(t) = -Q~z;3(j esUce· (64) 
	1

	Using the fact that 4a = Ao:, <D;3 = .A.;3, and tr(AB) = tr(BA) where A E ~nxm and B E ~mxn, the adaptive update laws (63) and (64) may be used so that (62) is expressed as 
	V; = -17e; + [z;<Pa(a -da(X) 
	+ z;3<PJ(;3Uce -d;3(X)v.ce]es 
	-[/3k(t) + + V.b;)es 
	;3(X)](v.si 

	-tr(z;<Pa(a)es -tr(zI<P;3(;3)esV.ce• (65) 
	Equation (65) may equivalently be expressed as 
	V; = -17e; -[da(X) + d;3(X)v.ce]es 
	-[/3k(t) + ;3(X)](V.si + V.bi)es. (66) 
	The fuzzy system adaptation laws defined by (63) and (64) do not guarantee that Aa E Da and A;3 E S1;3. To guarantee this, a "projection algorithm" is used. If the parameter spaces are defined so that the parameters are bounded by A E [Amin A max] and A E [Amin A max] then a simple 
	0: °''°' /J /J'/J
	projection algorithm may be used (we use the notation A E [Amin, A max] to define bounds on the matrix elements such min max] • -1 • -1 h
	[ 

	that a;, j E a;, j , a;, j , i -, • • • , m, J -, • • • , n w ere A, Amin, Amax E ~mxn are defined element by element as A = [a· ·] Amin = [ami_n] and Amax = [amax]) Define 
	i) J ' i, J ' i, J • 
	a°'i j to be the i, jth element of zo:('£ es and a;3i,j to be the i, jth element of z;3(j esV.ce• Then the parameter matrices are updated according to 
	(67) 
	(68) 
	where 
	if a __ d (am_in am_ax)
	CYi,J °'F O'i,J' 0::i,J 
	and ao: . .(a°'i , -a~ ) < 0 (69)
	i, j ' i, J 
	otherwise if a _~ (amin amax)
	/J,,, /J,,J' /J,,J and a;3,, j (a/Ji, j -ai,,,) < 0 (70) otherwise 
	with some fixed A~ E (A~in, A~ax) and fixed Ai E (Atn, Ap'ax). Assuming that the parameters are initialized such that Ao: E [A~in, A~ax] and A;3 E [Atn, Ap'ax], the element aa, /Ji, j will become greater than that its maximum bound only if aa, /Ji, = a~,affi, j and &.a, /3,, > 0. Since the projection algorithm prevents this from occurring, we are ensured that Aa, /J :::; A~,ag where "S" is an elementwise relation (a similar argument may be made ensuring that A,, ;3 2 A~i)D-Thus, using this modified update 
	1 
	1 

	ensure that the parameter matrices will stay within the feasible parameter space. Using the projection algorithm, we are also ensured that 
	V;:::; -17e; -[da(X) + d;3(X)uce]es 
	-[/3k(t) + + V.bi)es (71) 
	;3(X)](v.si 

	since the modified adaptation law guides the searching algorithm toward the optimal parameters, A~ and A~, thus, helping 
	since the modified adaptation law guides the searching algorithm toward the optimal parameters, A~ and A~, thus, helping 
	to decrease v;. To see this, we notice that from (62), the term 


	z;<I>a(aes +tr(<I>;Qa<J>a) 
	z;<I>a(aes +tr(<I>;Qa<J>a) 
	T T'
	=za<I>a(aes-tr(<I>aAa) (72) 
	A 
	-

	T T y
	-

	= za<I>a(aes -tr[<I>a(Aa -Aa) + <f>aAa] (73) = -tr [<I>~(Aa -Aa)] (74) 
	= -I: I: c/Ja,,j(aai,j -a"i,j):::; o (75) j 

	where <Pa = [¢a,,J Similarly, we have zJ<I>13(13ucees + tr ( <I>~ Qii<i> f3) :S 0, thus, we may establish the inequality of 
	(71) using (65) and the modified fuzzy system update algorithm given by (67) and (68). Since the errors in representing the plant nonlinearities with fuzzy systems or neural networks da(X) and d(X), in general, are nonzero, a sliding mode term is now defined which ensures negative semidefiniteness 
	13 

	of (71). 
	D. Sliding-Mode Control Term 
	To ensure that (71) is negative semidefinite, we choose 
	To ensure that (71) is negative semidefinite, we choose 
	(76) 

	where ksi(t) = Da(X) + D,e(X)lucel-Since -[da(X) + d13(X)uce]es :S [lda(X)I + ld13(X)ucel]lesl, and from (37) -[,6k(t) + (J(X)]ubies = -[fJk(t) + ,6(X)]IIkb;(t)lesl :S 0, we may rewrite (71) as 
	¼:S -77e; + [lda(X)I + ld13(X)ucel]lesl -es[/Jk(t) + ,6(X)]usi• (77) 
	¼:S -77e; + [lda(X)I + ld13(X)ucel]lesl -es[/Jk(t) + ,6(X)]usi• (77) 

	Combining (76) and (77) we have 
	Combining (76) and (77) we have 
	(78) 

	Thus, v; is negative semidefinite and ¼ E £ • It should be noted that even though Usi is called a "sliding-mode" term, it does not guarantee that the state trajectory will "slide" along the manifold es = 0 as traditionally guaranteed with nonadaptive sliding-mode control [27]. The sliding-mode term is required to overcome modeling errors between the nonlinear functions of the system a(X) and ,6(X), and the fuzzy systems or neural networks with optimal parameters z;A:(a and 
	00 

	zJAt1'f3· 
	E. Stability Properties 
	The assumptions for the controller are summarized in the following: 
	Cl) Control Assumption: The fuzzy systems (neural networks) are defined such that Da(X), D13(X) E £, for X E Bx ~ ~n and there are some known continuous functions a1(X) and ,61(X) such that a1(X) ;::: la(X)I and fJ1(X) 2 l,6(X)I-The projection algorithm is defined such that {J(X) + ,6k(t) 2: /Jo > 0. 
	00

	We now summarize the properties of the indirect adaptive controller in Theorem 1. 
	Theorem I: Stability and tracking results using indirect 
	adaptive control: If reference input assumption Rl) holds, either plant assumption Pl) or P2) holds, and the control law is defined by (28) with the control assumptions Cl). Then the following holds. 
	a) 
	a) 
	a) 
	a) 
	The plant output and its derivatives Yp, • • ·, Yir-l) are bounded. 

	b) 
	b) 
	The control signals are bounded, i.e., Ubi, Uce, Usi E Loo. 

	c) 
	c) 
	The magnitude of the output error leal decreases at least asymptotically to zero, i.e., limt-+oo lea I = 0. 



	Proof of Theorem I: 
	I E £ , 
	Part 1) Equations (43) and (44) guarantee that le~i) 
	00 

	i = 0, • • •, r-1 since les I is bounded from (78). By . . (i) _ (i) (i) w. _ O l
	i = 0, • • •, r-1 since les I is bounded from (78). By . . (i) _ (i) (i) w. _ O l
	v i -, • • • , r-, with y~ and e~i) bounded; therefore, Yii), Vi = 0, • • • , r-1 is bounded. 
	defin1t1on, 
	ea 
	-
	Ym 
	-
	YP 
	, 


	Part 2) With Yp, • • ·, Yir-l) E £ , the plant states are bounded using plant assumptions PI or P2. This implies that a(X), ak(t), (J(X), ,6k(t) E Loo. The projection algorithm ensures that /Jk(t) + /J(X) is bounded away from zero and that &(X) is bounded, thus, Uce E £• With a1 ( X), ,61 (X) E £00 we establish that Ubi E £ • Since the fuzzy systems are defined appropriately so that Da(X), D13(X) E Loo, then Usi E Loo. 
	00 
	00
	00 

	Part 3) To show asymptotic stability of the output, we would like to find a bound on It e; dt. Using 
	(78) we have 
	(78) we have 
	00 
	77e; dt :S -(79)
	v; dt 
	1 1= 

	= ¼(O) -¼(oo). (80) 
	This establishes that es E .C2 (£2 {z(t): It z (t)dt < oo}) since ¼(O), ¼(oo) E ,C=· If ¼ E .C= then e8 E £00 by the definition of ¼. In addition, we know that e~i) E £, i = 0, · · · , r-1 since es E £ 00 
	2 
	00


	and e~i) = Gi(s)es, with all the poles of Gi(s), i = 0, •• • , r-1 in the open left-half plane. If a(X), &(X), ,6(X), /J(X), ,6k(t), Uce, Ubi, Usi E .C=, then es E £ 00 from (33). Since es E .C2, .C=, and es E £ , by Barbalat's Lemma we have asymptotic stability of es (i.e., limt-+= es = 0), which implies asymptotic stability of ea (i.e., limt--,= ea = 0). D Remark I.I: The bounding control term, Ubi, within the indirect adaptive control law defined by (28) is used to restrict the output trajectory so that 
	00 

	similar to the supervisory control in [37]. The sliding-mode 
	control term Usi is used to compensate for approximation 
	control term Usi is used to compensate for approximation 
	errors in representing the actual nonlinear dynamics by fuzzy systems or neural networks with ideal parameter values. The certainty equivalence term is then used to "learn" the unknown dynamics of the system providing asymptotic convergence of the tracking error. 

	Remark 1.2: It is possible to incorporate linguistic information about the plant since ak (t) and f3k (t) may be linear combinations of Lipschitz functions. For example, we may use rules R1 through Rka associated with a and the rules R 1 through Rkassociated with /3 to describe the plant according Rka+l through RPa and Rk +1 through Rp may be used for the fuzzy estimation in
	Remark 1.2: It is possible to incorporate linguistic information about the plant since ak (t) and f3k (t) may be linear combinations of Lipschitz functions. For example, we may use rules R1 through Rka associated with a and the rules R 1 through Rkassociated with /3 to describe the plant according Rka+l through RPa and Rk +1 through Rp may be used for the fuzzy estimation in
	13 
	to a set of linguistics, while rules 

	13 13 
	the identifier. The advantage of using linguistic information in this manner is that if the first k rules describe the plant fairly well; then, in general, the magnitude of the fuzzy estimation error will be small, thus providing better tracking of the reference signal as the fuzzy estimators learn a(X) and /3(X). The linguistics used to describe ak(t) may be obtained by setting up = 0, and describing how the system output, y}r), behaves. Once this is done, it is possible to find a set of linguistics descri
	Remark 1.3: The parameter error matrices, <l.>a and <l.>/3, are bounded if A: and Ai, are bounded since we have A E [Amin Amax] and A E [Amin Amax] according to 
	C, °''°' /J /J'/J 
	our projection algorithm. It is important to pick the bounds on the elements of A/3 so that f3k(t) + /3(X) ?: /30 > 0. If Atn and A;rax are not properly chosen, then it is possible that 
	f3k(t)+/3(X) is not bounded away from zero, thus causing (29) to become undefined. Consider the case in which a standard fuzzy system is used to represent /3(X) (i.e., Zf3 = [l]) and f3k = 0. Then atn S /3(X) S arfax_ This is true since each (/3, i ?: 0 so that 
	P/3 
	'\""""' amin;-, = amin < /3A(X)
	L.., /3,i ',i /J i=l 
	-

	S Larfax(/3,i = arfax_ 
	P/3 

	i=l 
	If f3k (X) is nonzero, or Takagi-Sugeno fuzzy systems are used then the design of a projection algorithm will be dependent upon the choice of f3k(X) and zJ. 
	Remark 1.4: Even though the bounding control term, Ubi, was not used explicitly in Theorem 1, it is used to confine the 
	Remark 1.4: Even though the bounding control term, Ubi, was not used explicitly in Theorem 1, it is used to confine the 
	plant states to a known region so that the input membership functions of a fuzzy system may be defined over this region. Knowledge of the range over which the input membership functions must be defined is required for Da(X) and D/J(X) to be small. The fuzzy systems or neural networks are to be designed such tllat the approximation errors D°' (X) and D/J(X) are small when the state trajectory travels within some region. When the state trajectory travels outside this region, however, Da(X) and D/J(X) may beco

	Remark 1.5: The bounding control term requires that an upper bound on /3(X) (i.e., /31) is known. This requirement may be eliminated since 
	Vbi = -71e; + es{[&(X) -a(X)] 
	+ [/j(X) + f3k(t) -/3(X) -f3k(t)]uce} 
	-es[f3k(t) + /3(X)](usi + Ubi) 
	S -71e; + lesl{l&(X)I + la(X)I 
	+ [l/3(X) + /3k(t)l]lucel} -[/3(X) + /3k(t)]ucees 
	+ lesl{[/3k(t) + /3(X)]lusil} 
	-es[f3k(t) + /3(X)]ubi• (81) 
	Defining the bounding control term as 
	Ubi = ( {; [l&(X) + la1(X)I 
	0 
	+ i/3(X) + f3k(t)I lucel] + lusil} 
	• sgn(es) -Uce) II(t) 
	will once again ensure that 
	Vbi S -71e;, if lesl ?: Me, 
	Remark 1.6: While the bounding control term was added to help with the definition of the input membership functions of the fuzzy system, if the bounding control term is removed, then asymptotic stability is still achieved since the plant states are still bounded so Barbalat's lemma may still be applied. This is true since 
	V;(0) = ½e;(O) +½tr[<!.>; (0)Qa<l.>a(0)] 
	+ ½[<!.>J(0)Q/3<1.>/3(0)] (82) 
	and since the Lyapunov function ¼(t) is positive and nonincreasing 
	e;(t) s ¼(t) S ¼(0). (83) 
	Thus the size of the tracking error may be reduced by either making <I>a(O) or <I>/3(0) small, or increasing the adaptation gains, Q-,:;;and Qr/. However, in implementation, large Q-,:;;and Q~ may result in instabilities because of the time delays associated with digital input and output. Thus, if a bounding term is not to be used, then a good initial estimate of a(X) and f3(X) may improve the performance of the closed-loop system. 
	1 
	1 
	1 


	Remark 1.7: If there exists some constants Da and Dsuch that lda(X)I S Da and d13(X) S D13 for all X E Bx, then it is possible to use an adaptive routine to find Da and D13 while preserving the previous stability results [17], [21]. The sliding-mode gain may be modified as ksi(t) = Da + D13lucel where Da and D13 are the current estimates of Da and D13, respectively. The update laws for the estimates of the bounds on the errors in representing the nonlinear dynamics of the plant with fuzzy systems or neural 
	13 

	(84) 
	(84) 
	(85) 

	where qa, q13 > 0. Though les I converges to zer~ over ti~e, we notice that Da and b may become large since Da and D13 are always positive. A projection algorithm may be used to bound the growth of Da and b , but then the bounds must be known ahead of time so that the sliding mode gain may over time become equal to the original nonadaptive sliding mode gain. Stability is proven by adding the terms qa(Da -Da) /2 and 
	13 
	13
	2 

	q13(D13 -D13) /2 to the Lyapunov candidate for the indirect adaptive algorithm defined in (59). 
	2 

	Remark 1.8: Though many of the concepts within this paper are similar to those used within previous work, specifically within [15], [20], and [22], there are many significant differences: i) the results of Theorem 1 may be applied to a class of plants with zero dynamics (this was not done in [15], [20], and [22]), ii) this paper ensures asymptotic tracking convergence using a larger class of fuzzy systems (i.e., Takagi-Sugeno fuzzy systems) than in [15] and a larger class of neural networks (i.e., those wi
	F. Smoothing The Control Action 
	The sliding-mode control term, Usi, can introduce a highfrequency signal to the plant which may excite unmodeled dynamics. To avoid this, we now consider a "smoothed" version of the previous indirect adaptive controller in which the tracking error es is driven to an £-neighborhood of es = 
	0. Using the error measurement of [38], we define 
	(86) 
	(86) 

	where E > 0 and 
	1, if 1 '.S X sat ( x) = x, if -1 < x < l . (87)
	1, if 1 '.S X sat ( x) = x, if -1 < x < l . (87)
	{ 
	-1, if X '.S -1 

	From the above definition, we see that e, measures the distance between e5 and the desired boundary layer, and ee = 0 when es is within the boundary layer. 
	The bounding controller is now defined as 
	The bounding controller is now defined as 
	(88) 

	with f < Me and II(t) as defined in (38). The certainty equivalence controller is redefined as 
	(89)
	(89)
	Uce = 

	where v,(t) := yt) + 7Je, + es, with es as defined before. Thus, (33) is now given as 
	es + rJee = [a(X) -a(X)] + [,B(X) -(3(X)]uce -[f3k(t) + /3(X)](usi + Ubi)-(90) 
	es + rJee = [a(X) -a(X)] + [,B(X) -(3(X)]uce -[f3k(t) + /3(X)](usi + Ubi)-(90) 

	Now consider (59) with the e, as the tracking error measurement 
	Taking the derivative of (91), we obtain 
	• · T • T •
	• · T • T •
	¼ = ec[es] + tr(<PaQa<Pa) + tr(<P13Q13<P13). (92) 

	We change the update laws so that cia . is the ·i, jth element 
	of za(;ee and a13i, j is the i, jth eleru'~~t of z13(fe,uce, with the remaining projection algorithm unchanged. With this, (77) is expressed as 
	We now redefine the sliding-mode control term as 
	ksi(t) (es)
	ksi(t) (es)
	Usi = --sat -(94)
	f 
	/3o 


	so that we now have smooth control action. With respect to Theorem 1, we now simply use the fact that e,sat(e./E) = lecl to see that 1% :S -7Je~, which ensures asymptotic stability of e" using Barbalat's Lemma. This implies that es will converge asymptotically to an f neighborhood of e8 = 0, and using (43), ea will converge to an fllG(s )111 -neighborhood of ea = 0. We may additionally redefine the adaptation laws for the scheme presented within Remark 1.5 so that the sliding mode gains do not increase when
	0

	IV. DIRECT ADAPTIVE CONTROL 
	IV. DIRECT ADAPTIVE CONTROL 

	Within this section, we define an "output-error direct adaptive controller" (using the terminology from [25]), as shown in Fig. 4. An indirect adaptive controller attempts to identify the plant dynamics and then develop a controller based on the current best guess at the plant dynamics. A direct adaptive controller, on the other hand, directly adjusts the parameters 
	of a controller to meet some performance specifications. 
	In addition to the plant assumptions Pl) or P2), we require the following plant assumption when using the direct adaptive controller. 
	I ----------I I Controller I 
	I ----------I I Controller I 
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	Fig. 4. A direct adaptive control system with a reference model. 
	Fig. 4. A direct adaptive control system with a reference model. 
	P3) Plant Assumption: Given Yir) = [a(X) + ak(t)] + [p(X) + Pk(t)]1ip, we require that Pk(t) = 0, t 2 0, and that there exists positive constants p0 and p1 such that 0 < Po S p(X) S Pl < oo and some function B(X) 2 0 such that l/3(X)I = l(8p/8X)XI S B(X) for all X E Sx. Here, as earlier, ak (t) is a known time-dependent signal. 
	The first part of P3) introduces a new requirement that the controller gain p(X) be bounded from above by a constant p. In general, this will not pose a large restriction upon the class of plants since situations in which a finite input will cause an infinitely large effect upon Yir) rarely occur in physical plants. The second restriction within P3) requires that l/3(X)I S B(X) for some B(X) > 0. We know that l/3(X)I s IJ8p(X)/ax1111x11 thus if IJ8p(X)/8XII and 11x11 
	1

	are bounded, then some B(X) may be found. Once ;;i.gain if we consider physical plants with finite controller gain, then ll8p(X)/8XII will be bounded. If Yii), i = 0, •· ·, r is bounded, then plants with no zero dynamics are ensured that IIXJJ is bounded since the states may be written in terms of the outputs, Yii), i = 0, • • • , r-1. If a plant has zero dynamics, but p(X) is not dependent upon the zero dynamics, then once again we have l/3(X)I bounded. 
	Using feedback linearization [25], we know that there exists some ideal controller 
	·u* = p(~) [-a(X) + v(t)] (95) 
	where v(t) is a free parameter. We may express u* in terms of a Takagi-Sugeno fuzzy model, so that 
	where uk is a known part of the controller (possibly a fuzzy, proportional integral derivative (PID), or some other type of controller). Since the indirect adaptive controller attempted to determine a feedback linearizing controller based on a best guess of the plant dynamics, we allowed for the inclusion of ak(t) and Pk(t) so that known parts of the plant may be included. The direct adaptive controller, however, attempts to directly determine a controller, so within this section we allow for a known part o
	A: E wmuXPu 
	A::= arg min [ sup lz;:'Au(u -(u* -uk)I] (97) 
	AuErlu XESx, vESm 
	so that du(X) is an approximation error which arises when u* is represented by a fuzzy system. We assume that Du(X) 2 Jdu(X)I, where Du(X) is a known bound on the error in representing the ideal controller with a fuzzy system. We see that if Jdu(X)I is to be small, then our fuzzy controller will require X and v to be available, either through the input membership functions or through z'{;. The fuzzy approximation of the desired control is 
	(98) 
	where the matrix Au is updated on line. The parameter error matrix for the direct adaptive controller 

	(96) (99) 
	is used to define the difference between the parameters of the current controller and the desired controller. Consider the control law 
	(100) 
	(100) 

	The direct adaptive control law is comprised of a bounding control term, Ubd, a sliding-mode control term Usd, and an adaptive control term, ft. Here, we define v(t) := y!,;;) +rJes + es -ak(t) with es and es as defined for the indirect adaptive controller so that es = [eo . . . eir-l)][ko . . . kr_,]T and 
	es= [eo ·· · e~r-l)][ko · · · kr-2lf where L(s) := sr-+ kr_ sr-'.! + · · • + ks + k0 has its poles in the open left-half plane. 
	1 
	2 
	1 

	Using the control (100), the rth derivative of the output error becomes 
	Using the definition of u* (95) we may rearrange (101) so that 
	eir) =yt,l -a(X) -ak(t) -/3(X)u* 
	eir) =yt,l -a(X) -ak(t) -/3(X)u* 
	-(3(X)(u -u*) -f](X)(usd +Ubd) (102) 
	= -rJes -es -f](X)(u -u*) 
	-(3(X)(usd + Ubd)-(103) 

	We may alternatively express (103) as 
	+ rJEs = -(3(X)(u -u*) _ (3(X)(usd + ubd)-(104) 
	+ rJEs = -(3(X)(u -u*) _ (3(X)(usd + ubd)-(104) 
	e
	8 


	We now define the bounding control term ubd for the direct adaptive controller. 
	A. Bounding Control 
	The bounding control for the direct adaptive controller is determined by considering 
	(105) 
	(105) 

	We differentiate (105) and use (104) to obtain 
	Vbd = --rJe; -es[f3(X)(u -u*) + f3(X)(usd +Ubd)] (106) '.S --77e; + lesl[/3(X)(lul + lu*I) + /3(X)lusdl] (107) 
	We do not explicitly know u*, however, so the bounding controller will be implemented using a1(X) 2 la(X)I as defined for the indirect adaptive controller. We choose 
	(108) 
	(108) 

	where II(t) is as defined in (38) and 
	a,(X) + lvl 
	a,(X) + lvl 
	kbd(t) = lul + l·usdl + f3o 
	A 
	(109) 


	(we note that lu* I ::; [a1(X) + lvll/,80). With this definition of ubd, we are once again guaranteed that !es I ::; Me if the initial conditions are such that Jes(0)J ::; Me. The plant assumptions P 1 or P2 are then required so that state boundedness is guaranteed. 
	B. Adaptation Algorithm 
	Consider the following Lyapunov equation candidate 
	Consider the following Lyapunov equation candidate 
	(110) 

	where Qu E ~mu Xmu is positive definite and diagonal. Since 0 < (30 ::; (3( X) ::; f3i < oo, Vd is radially unbounded. The Lyapunov candidate Vd is used to describe both the error in tracking and the error between the desired controller and current controller. If Vd ----+ 0, then both the tracking and learning objectives have been fulfilled. Taking the derivative of (110) yields 
	• 8 • T • /3(X)e;Vd = (3(X) [es] +tr(<I>uQu<I>u)-(3(X)" (111) 
	• 8 • T • /3(X)e;Vd = (3(X) [es] +tr(<I>uQu<I>u)-(3(X)" (111) 
	e
	2
	2


	Substituting es, as defined in (104), yields 
	Vd = (3;_;{) [-rJes -(3(X)(u -u*) -(3(X)(usd + Ubd)] 
	T • ~(X)e;+tr(<I>uQu<I>u)-/P(X)" (112) 
	T • ~(X)e;+tr(<I>uQu<I>u)-/P(X)" (112) 
	2


	Now consider the following fuzzy controller update law 
	(113) 
	(113) 

	where q(t) is a function yet to be defined. Since 4u = Au 
	(114) 
	(114) 

	Equation (114) may equivalently be expressed as 
	Equation (114) may equivalently be expressed as 
	(115) 

	Typically, we will choose q(t) = 0, for all t 2 0, however, we will later show how to incorporate information about the plant inverse dynamics so that sgn[q(t)] = sgn(z;<I>u(u) to improve adaptation. 
	Using the fuzzy adaptation law defined by (113), we are not guaranteed that Au E nu. Once again we use a projection algorithm. The parameter space is defined so that the parameters are bounded by Au E [A~in, A~ax]. Define au,, j to be the i, jth element of zu(;[es -q(t)]. The parameter matrix is updated according to 
	(116) 
	(116) 

	where the elements of Au(t) are defined by 
	a d (Amin Amax) 
	a d (Amin Amax) 
	0 if 

	, Ui,J Y::. U ' U 
	aUi, j = and au,, j ( au,, j -a~,.,) > 0 (117)
	{ 
	{ 
	au,.j, otherwise 

	with A~ E (A~in, A~ax). Using this modified update law will ensure that the parameter matrices will stay within the feasible parameter space and that 
	• rJ 2 T
	,Vi S -/3(X) es -q(t)zu <l>u(u l (
	[ 

	~(X)es
	-/J2(X) -du es -es Usd + Ubd) (118) 
	2

	since the modified adaptation law guides the searching algorithm toward the optimal parameters A:. 
	C. Sliding-Mode Control Term 
	We once again need to define a sliding-mode control term to compensate for the approximation error in modeling u* by a fuzzy system or neural network. If q(t) = 0, for all t 2 0, or sgn [q(t)] = sgn (zJ<l>u(u), and ubd is as defined in (108), then 
	vd S -/3?X) e; -[i;~~) -dules -esUsd (119) 
	T/ [IP(X)I lesl ]
	S -Pl e; + /3 (X) + ldul lesl -esUsd· (120) 
	2
	2 

	We now define the sliding-mode control term for the direct adaptive controller as 
	(121) 
	where 
	k (t) = B(X)lesl + D (X) (122)
	sd u 
	2135 

	which ensures that Vd S -rJe;//31 as long as we choose q(t) = 0, for all t 2 0, or sgn [q(t)] = sgn (zJ<l>u(u)
	-

	D. Stability Properties 
	The controller assumption for the direct adaptive control scheme is given as follows. 
	C2) Control Assumption: The fuzzy systems (neural networks) are defined such that Du(X) E L, for X E Sx ~ ~n and there are some known continuous functions a 1(X) and fh(X) such that a1(X) 2 la(X)I and /31(X) 2 l/3(X)I-The function q(t) = 0, for all t 2 0, or sgn [q(t)] = sgn (zJ<l>u(u)
	00 
	-

	We now summarize the properties of the direct adaptive controller in Theorem 2. Theorem 2: Stability and tracking results using direct adaptive control: 
	-

	If reference input assumption RI) holds, either plant as
	sumption Pl) or P2) holds, plant assumption P3 holds 
	and the control law is defined by (100) with the control 
	assumptions C2). 
	Then the following holds. 
	a) 
	a) 
	a) 
	The plant output and its derivatives Yp, • • •, y~r-l) are bounded. 

	b) 
	b) 
	The control signals are bounded, i.e., ubd, Usd, uE 


	Loo. 
	c) The magnitude of the output error Ie0 I decreases at least asymptotically to zero, i.e., limt-,oo leol = 0. 
	Proof of Theorem 2: Follows from proof of Theorem 1. D 
	Remark 2.1: The bounding control-term ubd for the direct adaptive controller is once again used to restrict the output trajectory so that a smaller fuzzy controller or neural network may be used to approximate the ideal feedback controller, u*. The sliding-mode control term Usd is required due to the modeling errors between the ideal feedback controller and the fuzzy controller or neural network with optimal parameters. The adaptive control term uis then used to ensure asymptotic convergence of the tracking
	Remark 2.2: The direct adaptive scheme allows for the inclusion of uk so that a control engineer may use conventional techniques to develop an initial control design and then use the above adaptive technique to work in parallel to meet the tracking requirements. For example, some PID controller design may provide moderate performance, however, the ab_ove direct adaptive technique may be used to meet tracking requirements. Even if uk produces an unstable closed-loop system by itself, the use of the above di
	Remark 2.3: The direct adaptive scheme does not require that the parameter set nu be defined so that ZuAu(u + Uk is bounded away from a particular value as required with the indirect adaptive scheme. 
	Remark 2.4: A smoothed version of the direct adaptive controller may be designed such that the output will converge to an t:IIGo(s)ll1 neighborhood of e0 = 0. Since this is accomplished exactly the same as for the indirect case, we do not include the details here. 
	Remark 2.5: We may also use an adaptive estimate for some constant such that ldu I S Du in a similar fashion as described in Remark 1.5. The slidi:qg-mode gain is modified 
	2 ~
	A 
	to be ksd(t) = B(X)lesl/2/30 + Du, where Du = lesl/qu with q;;, > 0. To show stability using this adaptive algorithm for the sliding-mode gain, the term qu(Du -Du)2 /2 may be added to the Lyapunov candidate for the direct adaptive controller defined in (110). This may also be modified for the smoothed version of the direct adaptive controller. 
	1 

	Remark 2.6: As with the indirect adaptive scheme, our direct adaptive scheme has many differences from the existing techniques (i.e., those presented in [16], [17), and [21)), particularly i) the results of Theorem 2 may be applied to systems with a state dependent input gain f3(X) whereas [16] and [21] consider a class of nonlinear plants with constant input gain (i.e., /3(X) = /3; a constant) and [17) only considers the special case of f3 = I, ii) none of the results in [16), [17], and [21) considered sys

	Car#i-1 Car#I Car#l+1 
	Fig. 5. Car following within an automated lane. 
	our approach allows for the incorporation of heuristics about the inverse plant dynamics to speed adaptation. 
	E. Inverse Model Linguistics 
	Although we typically set q(t) = 0 for all t :2:: 0, there may be cases in which a control engineer is able to look at the plant output and determine if u, (98), is larger or smaller than u* [i.e., (96)]. This information may be incorporated, for example, by using a fuzzy model of the inverse plant dynamics (i.e., a fuzzy system that is heuristically designed to roughly approximate the plant's inverse dynamics). Consider a MISO fuzzy system, which is developed so that it provides a measure of the error betw
	R: If (e0 is "Negative Large" and i\ is "slow") Then p1 is "Positive Large" 
	1

	RP: If (e is "Positive Large" and i:i is "fast")
	0 
	0 
	Pp is "Negative Large." 
	Then 


	(Note that we switch to the standard notation for the consequences of these rules. This can be done since our class of fuzzy systems includes standard fuzzy systems.) The first rule up should be decreased since the output error e0 = Ym -Yp is negative which implies that Yp is too large. Thus, the actual output is 
	might correspond to the case in which the input 

	too large so u-u* > 0, implies that the output of the fuzzy system should be positive. Using fuzzy systems to describe the inverse dynamics of a plant is not a new concept. "Fuzzy model reference learning control" is, for example, one such technique which allows for the incorporation of information about the inverse dynamics of a plant to help an adaptive scheme learn how to control the plant [9]. 
	From (118) and the definitions of u,d and Ubd, we have 
	• 'f/ 2 T 
	• 'f/ 2 T 
	Vd ~ -(3(X) e, -q(t)zu <l>u(u (123) 

	which may be rewritten as 
	We want to be able to incorporate linguistic information so that the quantity q(t)[u -u* + du(X)] is positive semidefinite (but not zero for all time, since if it is large, it will tend to increase the rate of convergence). Define 
	q(t) := {p(t) -Ed sat [p;:)]} 
	q(t) := {p(t) -Ed sat [p;:)]} 
	(125) 

	where p(t) is the output of the inverse model, and Ed :2:: 0 is a fixed parameter. Suppose that, for instance, p only depends on X. In this case, we denote p(t) by p(X) and require that p(X) is defined such that if p(X) :2:: Ed then u-u* 2: Du(X) and if p(X) ~ -Ed then u -u* ~ -Du(X). Note that if il-u* 2: Du(X), we know that u-u*+du(X) 2 0. Similarly, il-u* ~ -Du(X) implies that u -u* + du(X) ~ 0. We may now consider three ranges of p(X). If p(X) :2:: Ed, then q(t) :2:: 0 and u -u* + du(X) 2: 0, thus q(t)[
	0. If p(X) ~ -Ed, then q(t) s; 0 and u -u* + du(X) S 0, thus, q(t)[il-u*+du(X)] :2:: 0. Therefore, we here established that sgn [q(t)] = sgn(z~<I>u(u) so that 
	(126) 
	(126) 

	Thus, incorporating linguistic information into the fuzzy model of the inverse dynamics may improve controller performance since q(t)[u -u* + du(X)] is positive semidefinite, causing the Lyapunov function Vd to decrease more quickly than if no linguistic information is used [i.e., q(t) = 0, t 2 O]. 
	V. EXAMPLE: AN AUTOMATED HIGHWAY SYSTEM 
	V. EXAMPLE: AN AUTOMATED HIGHWAY SYSTEM 

	Due to increasing traffic congestion, there has been an renewed interest in the development of an automated highway system (AHS) in which high traffic flow rates may be safely achieved. Since many of today's automobile accidents are caused by human error, automating the driving process may actually increase the safety of the highway. Vehicles will be driven automatically with onboard lateral and longitudinal controllers. The lateral controllers will be used to steer the vehicles around comers, make lane cha
	The dynamics of the car following system for the ith vehicle may be described by the state vector Xi = [bi, Vi, fiV where bi = Xi -x;_ 1 is the intervehicle spacing between the ith and i-1st vehicles, Vi is the ith vehicle's velocity, and Ji is the driving/braking force applied to the longitudinal dynamics of the ith vehicle. The longitudinal dynamics may be expressed as 
	fj = V -Vi-I (127) 
	fj = V -Vi-I (127) 
	v= ~ (-Apv-d + .f) (128) 
	2 

	m 
	TABLE II AUTOMOBILE VARIABLES AND PARAMETERS 
	X vehicle position 
	V vehicle velocity 
	f applied force in longitudinal direction 
	m =1300kg mass of the vehicle 
	Ap =0.3Ns/maerodynamic drag 
	2
	2 

	d =l00N constant frictional force 
	T = 0.2s engine/brake time constant 
	(129) 
	where up is the control input (if up > 0, then it represents a throttle input and if up < 0, it represents a brake input), and the vehicle variables and parameters are summarized in Table II (we assume that the variables and parameters are associated with the ith vehicle, unless subscripts indicate otherwise). 
	The plant output is Yp = 15 + AV, A > 0. This measurement allows for a velocity dependent intervehicle spacing. As the velocity of the ith vehicle increases, the distance between the ith and i-1st vehicles should increase. A standard good driving rule for humans is to allow an intervehicle spacing of one vehicle length per 10 mph (this roughly corresponds to A = 0.9). With A cf. 0, the plant is of relative degree two since 
	2
	y~ ) = iJ + Av -vi-1 (130) 
	1 2 A[ • 1]
	=m[-Apv -d+f]+m -2Apvv--:;.f 
	A .
	Up -Vi-l· (131)
	+ -

	mT 
	This is clearly of the form required by both the indirect and direct adaptive schemes [i.e., (19)] with 
	1 2
	a(X)=-[-Apv -d+f]
	m 
	+ ~ [-2A vv -! t] (132)
	m p T 
	/3(X) = ~ (133)
	mT 
	where ak(t) = -vi-l and f3k(t) = 0 for all t 2: 0 and for any XE ~. We see that /3(X) 2: (30 > 0 for /Jo= A/m1T1, where the vehicle parameters are defined within the intervals m E [mo, m1] and T E [To, T1], where mo, To > 0. 
	3


	The zero dynamics are found by setting Yp = 0, which results in A8 = -15 ->..vi-l· The zero dynamics are, thus, exponentially attractive since if we let v1 = , we obtain 
	15
	2

	(134) 
	(134) 

	If we assume that lvi-1 I S: Vm, some bound on achievable velocities for the vehicles, then 
	. 2a 
	. 2a 
	2
	V1 < --15 if 1151:::, I AVm I (135)
	-A ' l-a 

	where O < a < l. Thus, as long as A > 0, we are ensured exponential attractivity of the zero dynamics. 
	A. Indirect Adaptive Control 
	A. Indirect Adaptive Control 
	Since we desire that Yp -+ 0, here we simply select Ym := 0 so that 
	(136) 
	Since the plant is of relative degree two, the error metric is defined as 
	(137) 
	For this example, we simply choose ko = l (i.e., the desired tracking eigenvalue is at -1). If e8 is to be measured, then sensors will need to obtain 15, 15, v, iJ, and Vi-l· With such sensors, assumption P2) is satisfied. Using the definition of (;'i(s) from (42) we see that IIGo(s)lli = l/ko = l. Thus ifwe want the bounding control term to be defined such that lea I.S: 1 meter, we use (43) to pick Me = l and EM = 0.1. Ideally, we will not need to use the bounding controller unless the initial conditions a
	la(X)I .S: AP (lvl + 2AliJl)lvl
	m 
	ldl 1 (
	+-+-l+-Iii (138) 
	A) 

	m m T 
	.:<::: -2__ (139)
	l/3(X)I 

	mT 
	Using bounds on the vehicle parameters, we obtain 1 
	la(X)I .S: Ap, (lvl + 2AliJl)lvl + ~ + -(1 + ~) Iii 
	~ 
	mo mo mo 

	:=a(X) (140) 
	1 

	A 
	l/3(X)I .S: -:= /31(X). (141)
	moTo 
	APE [Ap, Ap,] and d E [do, d1], with Ap do:::, 0. If
	where 
	0

	, 
	0

	vehicle variable bounds are known, these may be used within 
	(140) and (141) rather than the instantaneous variable values. 
	Here, we will consider six rules in the fuzzy system &(X) to approximate a(X) 
	R: If vel is slow and ace is neg 
	1

	Then c1 = a1,o + a1, 1v
	2 

	R: If vel is med and ace is neg 
	2

	Then c2 = a2, o + a2, 1 v 
	2 

	R: If vel is fast and ace is neg 
	3

	Then c3 = a3, o + a3, 1v
	2 

	R: If vel is slow and ace is pos Then c4 = a4, o + a4, 1 v R : If vel is med and ace is pos 
	4
	2 
	5

	2
	Then C5 = a5, o + a5, 1v R : If vel is fast and ace is pos Then c5 = a5, o + a5, 1v 
	6
	2 
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	Fig. 6. Membership functions for the indirect adaptive routine. 
	226 6
	226 6

	so that Zo = [1, v ]T, Aa E ~ x , and (a E ~ . We chose 01 (X) = vin (7) since we expect the longitudinal dynamics of the vehicle to depend upon vwhen looking at (129). We use two rules to approximate (3(X) 
	2 
	2 

	R1: If vel is slow Then c1 = a1, o 
	R1: If vel is slow Then c1 = a1, o 
	R2: If vel is fast Then c2 = a, 0 
	2

	12 2

	so that Zf3 = [l], Af3 E ~ x , and ((3 E ~ . We use this simple fuzzy system since~ is only approximating the constant (3. The t-norm was taken as the product operator (3) for both fuzzy systems. The membership functions are shown in Fig. 6 where standard llinguistic variables ("vel" and "ace") and linguistic values ("slow," "med," etc.) are used in R -R6 and to label the membership functions. Triangular membership functions were chosen in this example even though any standard membership functions may have 
	1

	2
	2

	Since "i''s = es -e~ ) = koe, we have v(t) = es + es = 2ea + ea, using rJ = 1. The smoothed version of the adaptive controller described in Section 111-F is used to help avoid overactuation of the throttle and brakes. We chose a value of E = 0.1. To determine the possible tracking error, we note that IIGo(s)ll1 = 1, so that ea will asymptotically converge to leal S 0.05. In addition, we need to specify bounds for the parameter matrix Af3. Since A(3((3 2'. At((3 with each ele~ent a3:'.: = f3min > 0 a positiv
	0
	0 

	i, J i, J 
	that ~(X) 2: (30 = f3min > 0 as required by our controller assumption, C1. No bounds are placed on the parameters Aa. In addition, the initial conditions are picked such that a°'. . = 0 and af3,,j = 0.02 for all i, j. The sliding mode gain'•~as taken as ksi(t) = 0.1 + 0.00llucel [i.e., Da(X) S 0.1 and Df3(X) ::;• 0.001]. These values were picked after taking into consideration the size of a(X) and (3(X). Since a(X) is proportional to 1 / rn, where the vehicle mass rn is large, the error in representing a(X)
	20 25 
	TABLE III CONTROL PARAMETERS FOR THE DIRECT AND INDIRECT ADAPTIVE ALGORITHMS 
	Me= 1 ko =1 TJ= 1 fM =0.1 £ =0.05 q(t) = 0 
	Me= 1 ko =1 TJ= 1 fM =0.1 £ =0.05 q(t) = 0 

	Q-1 = [ 0.01 0 ] 1 Q-1 = [ 500 0 ]
	Q~
	= [ 0.01] 

	" 0 0.01 " 0 500 
	" 0 0.01 " 0 500 

	parameters and other parameters for the adaptive controller are summarized in Table III. Notice that the elements of Q;;: and Q~ are small since the functions a(X) and (3(X) are typically small. 
	1 
	1 

	Within our simulation, the following car attempted to track a lead car during a series of accelerations and decelerations (note that similar results are obtained if the controller is used on N vehicles in a "platoon"). The velocity profiles for the lead and following vehicles are shown in Fig. 7 (note that the deceleration of the lead vehicle is abrupt enough so that braking is required by the following vehicle). The output error ea during the simulation is shown in Fig. 8. The indirect adaptive scheme is a
	B. Direct Adaptive Control 
	We will now show how to apply the direct adaptive control scheme to the car following problem. Plant assumption P3 is clearly satisfied since (3(X) is a constant so that ~(X) = 0. We define the known controller to be a simple proportional controller 
	(142) 
	(142) 
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	Fig. 7. Velocity profiles of the lead car(__) and following car(·••). 
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	Fig. 8. Output error eo for the car following problem using indirect adaptive control. 
	with kp = 100. The rule base for the fuzzy controller that generates u in (98) is 
	R1: If vel is slow and e8 is neg Then c1 = a1,o + a1,1v(t) R2: If vel is med and e8 is neg Then c2 = a2,o + a2,1v(t) R3: If vel is fast and es is neg 
	Then c3 = a3,o + a3,1v(t) R4: If vel is slow and e5 is zero Then c4 = a4,o + a4,1v(t) 
	R5: If vel is med and es is zero Then C5 = a5,o + a5,1v(t) R5: If vel is fast and es is zero Then c5 = a5, o + a5, 1v(t) R1: If vel is slow and es is pos 
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	Fig. 9. Control input for the lead car(__) and the following car(·• •).u in (98) is 
	Then c4=a1,o+a1,1v(t) 
	R: If vel is med and es is pos 
	8

	Then c5 = as, o + as, 1v(t) 
	R: If vel is fast and e8 is pos 
	9

	Then c5=a9,o+a9,1v(t) 
	29 9
	R
	R

	so that Zu = [1, v(t)]T, Au E x, and (u E , with v(t) = 2ea +ea+ vi-1 [recall that r = 2, ko = 1, Ym = 0, and a.k(t) = -vi_1]. Here, we picked v(t) so that the fuzzy system may approximate u* with a small number of rules since u* is directly a function of v(t). We once again use the smoothed version of the adaptive control. The t-norm was taken as the minimum operator as in (2). The membership functions were defined as Gaussian membership functions, as shown in Fig. 10 (the Gaussian membership functions are
	The bounding functions a.1(X) and ;31(X) are defined as before. Here we assume that our adaptive system when properly tuned should be able to approximate the ideal control to within 100 Newtons, so Du(X) = 100. The projection limits were chosen to be a~in = -2000 and a~ax = 2000 for all i, j. The adaptation p~:ameters were pickelto be the same as for the indirect adaptive case (see Table III). 
	Using the direct adaptive controller, we once again tried to control the following vehicle to track the lead vehicle. The velocity profiles for the lead and following vehicles are shown in Fig. 11. The output error, ea, is shown in Fig. 12. Even though the output error is slightly larger using the direct adaptive routine than that for the indirect adaptive routine, it is of the order of magnitude for which we designed our adaptive controller. The control input for the lead and following vehicles is shown in

	SPOONER AND PASSINO: STABLE ADAPTIVE CONTROL USING FUZZY SYSTEMS AND NEURAL NETWORKS 
	15 20 25 Fig. 10. Membership functions for the direct adaptive controller. 
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	Fig. 11. Velocity profiles of the lead car(__) and following car(·••). 
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	Fig. 12. Output error efor the car following problem using direct adaptive control. 
	0 

	i.e., up = Uk, Even though Uk is apparently able to stabilize the system, the control results in very poor performance which illustrates the advantage of using the adaptation algorithm. 
	VI. CONCLUDING REMARKS 
	VI. CONCLUDING REMARKS 

	Indirect and direct adaptive control schemes were presented for a class of continuous-time nonlinear plants, conditions were provided for their stable operation, and we showed how they could be used for the longitudinal control of a vehicle in an automated lane. The adaptive schemes are particularly 
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	Fig. 13. Control input for the lead car(--) and the following car(···). 
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	Fig. 14. Tracking performance ea when the direct adaptive control is not used, i.e., u = uk. 
	powerful since they: i) do not require a complete model of the plant, ii) use a general Takagi-Sugeno fuzzy system that includes a certain class of fuzzy systems and neural networks as a special case (note that for the indirect scheme, if desired, one can use a neural network for estimating ,B(X) an,d a fuzzy system for a(X) or vice versa), and iii) allow for the inclusion of a priori knowledge in the form of mathematical equations or heuristics to be loaded into the identifier (indirect case) or controller
	IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 4, NO. 3, AUGUST 1996 
	IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 4, NO. 3, AUGUST 1996 
	on the nominal plant. The indirect adaptive controller may then be used basing ak and f3k on the linearization of the nominal plant, then using the fuzzy controller to compensate for unknown parameters or unmodeled dynamics. Another possibility is to design a linear quadratic regulator (LQR) based on a linear representation of a nonlinear plant. Setting zu equal to the plant states, it is possible to use the direct adaptive controller as an adaptive LQR, by assigning each column of Au to the coefficients fo
	The indirect and direct adaptive fuzzy controllers both allow for Takagi-Sugeno fuzzy systems, require the same inputs, and provide the same stability results for the same class of plants, however, there are some differences. 

	• 
	• 
	• 
	The direct adaptive controller requires only a single fuzzy system, and there may be resulting computational advantages if the control update rate is a limiting factor for your implementation. For the indirect adaptive controller, even though there is the need for two fuzzy systems, one can use the same antecedents for the rule bases used to approximate a(X) and /3(X) (different consequence values, i.e., Aa and Ap, will still be used). This will speed up the implemented indirect adaptive controller conside

	• 
	• 
	It has been our experience that the direct adaptive controller is easier to adjust in simulations and in the laboratory. It should be emphasized, however, this is only based on personal observations with a limited number of experiments_ For more details, see the work in [42]_ 

	• 
	• 
	The direct adaptive controller does not require a projection algorithm. For the direct adaptive fuzzy controller, the adjustable parameters are guaranteed to be bounded because of the choice of our Lyapunov function, Vd. 

	• 
	• 
	The direct adaptive controller requires a known B(X) > l~(X)I
	-



	While the adaptive control schemes present significant advantages, they have several drawbacks which cannot be overlooked. First, as with all mathematical stability analysis, one proves stability of the model of the closed-loop system and not the dynamics of the actual physical system. If the model of the physical system is reasonably accurate, then the stability of the algorithms will take on real physical meanings; however, if the model is inaccurate [e.g., the plant is only accurately represented by X 
	While the adaptive control schemes present significant advantages, they have several drawbacks which cannot be overlooked. First, as with all mathematical stability analysis, one proves stability of the model of the closed-loop system and not the dynamics of the actual physical system. If the model of the physical system is reasonably accurate, then the stability of the algorithms will take on real physical meanings; however, if the model is inaccurate [e.g., the plant is only accurately represented by X 
	we do constrain, somewhat, the types of heuristic information that can be included so that we can guarantee stability of our adaptive systems (e.g., we do not allow for the inclusion of heuristics to tune the membership functions in the antecedents of the rule as done in [11] and [15]). It is important to remember that the Lyapunov approach used here provides sufficient conditions for stability; it is possible that some simpler heuristic approach to adaptive fuzzy control could provide stable operation of t

	Second, our adaptive schemes are only for continuous-time SISO nonlinear systems of a specific form. Extensions to discrete-time and MIMO nonlinear systems is an important direction. Third, there may be other adaptive schemes that do not rely as heavily on the need to measure certain plant variables (of course other approaches, i.e., [15], [20], have similar reliance on plant information). It may be possible, however, that if certain variables are not available, then the approximation errors da, dp or du ma
	Second, our adaptive schemes are only for continuous-time SISO nonlinear systems of a specific form. Extensions to discrete-time and MIMO nonlinear systems is an important direction. Third, there may be other adaptive schemes that do not rely as heavily on the need to measure certain plant variables (of course other approaches, i.e., [15], [20], have similar reliance on plant information). It may be possible, however, that if certain variables are not available, then the approximation errors da, dp or du ma
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