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Abstra t 

A “lear i g system” possesses the capability to improve its performa ce over time by i teractio  with its e viro me t. 
A lear i g co trol system is desig ed so that its “lear i g co troller” has the ability to improve the performa ce of the 
closed-loop system by ge erati g comma d i puts to the pla t a d utilizi g feedback i formatio  from the pla t. I  this 
brief paper, we i troduce a lear i g co troller that is developed by sy thesizi g several basic ideas from fuzzy set a d co trol 
theory, self-orga izi g co trol, a d co ve tio al adaptive co trol. We utilize a lear i g mecha ism which observes the pla t 
outputs a d adjusts the membership fu ctio s of the rules i  a direct fuzzy co troller so that the overall system behaves 
like a “refere ce model”. The effective ess of this “fuzzy model refere ce lear i g co troller” (FMRLC) is illustrated by 
showi g that it ca  achieve high performa ce lear i g co trol for a  o li ear time-varyi g rocket velocity co trol problem 
a d a multi-i put multi-output (MIMO) two degree-of-freedom robot ma ipulator. 

I Intro uction 

Over recent years, fuzzy control has emerged as a practical alternative to classical control schemes when 

one is interested in controlling certain time-varying, non-linear, and ill-defined processes  There have in 

fact been several successful commercial and industrial applications of fuzzy control [1] - [5]  Despite this 

success, there exist several significant drawbacks of this approach: 

1  The design of fuzzy controllers is usually performed in an ad hoc manner; hence, it is often not clear 

exactly how to justify the choices for many parameters in the fuzzy controller (e g , the membership 

functions, defuzzification strategy, and fuzzy inference strategy)  

2  The fuzzy controller constructed for the nominal plant may later perform inadequately if significant 

and unpredictable plant parameter variations, structural changes, or environmental disturbances 

occur  

In this paper a “learning” control algorithm is presented which helps to resolve some of these fuzzy con-

troller design issues  This algorithm employs a reference model (a model of how you would like the plant 

to behave) to provide closed-loop performance feedback for synthesizing and tuning a fuzzy controller’s 
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knowledge-base  Consequently, this algorithm is referred to as a “fuzzy model reference learning con-

troller” (FMRLC)  The FMRLC grew from research on how to improve Procyk and Mamdani’s linguistic 

self-organizing controller (SOC) [6] by utilizing certain general ideas in conventional adaptive control [7, 8]  

The first advantage that the FMRLC has over the SOC is that it does not rely on the specification of an ex-

plicit inverse model of the process (which can be difficult/impossible to determine for many applications)  

In addition, the performance criteria for the linguistic SOC can only characterize what is essentially a 

compromise between rise-time and overshoot (and not the relative importance of each) and hence it pro-

vides little flexibility in specifying what performance is to be achieved/maintained (this is the case even 

if the “optimized” fuzzy performance evaluator introduced in [9, 10, 11] is used)  Via the use of a ref-

erence model, in the FMRLC framework we incorporate a capability for accurately quantifying virtually 

any form of desired performance  Next, note that the knowledge-base modification algorithm of Procyk 

and Mamdani [6] relies on modification of a fuzzy relation table which describes the relationship between 

the fuzzy controller inputs and outputs  Often, this automatically implies that all input and output uni-

verses of discourse must be quantized into discrete levels to implement the fuzzy relation in a computer  

Unfortunately, this will generally result in large memory requirements and computational demands since a 

fuzzy relation table often contains many entries for real world applications (some progress has been made 

at addressing the computational complexity of knowledge-base modification for the SOC in [9])  In this 

article, we use a knowledge-base modification algorithm (similar to the one in [11]) which reduces com-

putation time and memory requirements by utilizing a rule base array table rather than a fuzzy relation 

table  The knowledge-base modification approach is flexible enough to be used in both the conventional 

SOC approach and the FMRLC (this is shown in [12])  Finally, we note that the linguistic SOC has been 

used in robotics applications [9, 10], motor and temperature control [13], blood pressure control [14], and 

in satellite control [15, 16, 17]  While in this paper we describe the application of the FMRLC to robotics 

and a rocket velocity control problem (where there is a significant underlying process variation resulting 

from fuel consumption as the rocket launches), the FMRLC has also recently been used for (i) control of 

a cart-pendulum system where certain improvements over SOC were illustrated [12], (ii) anti-skid brake 

system control to enhance performance when there are significant variations in the road conditions [18, 19], 

(iii) cargo ship steering where in [20, 21] it is shown to have certain advantages over conventional model 

reference adaptive control, (iv) vibration damping in a two-link flexible robot where in [22] the authors 

develop a fuzzy controller and show how its performance can be enhanced if it is tuned with the FMRLC 

(experimental results are also provided for both the direct fuzzy controller and the FMRLC to illustrate its 

ability to compensate for the effects of a payload variation), and (v) for aircraft control law reconfiguration 

in case of failures [23]  

Using conventional adaptive control terminology, the FMRLC and SOC are “direct” adaptive control 

schemes since they directly update the parameters of the controller without explicit identification of the 

plant parameters  Other relevant literature that focuses on direct adaptive fuzzy control includes the work 

in [24] where an adaptive fuzzy system is developed for a continuous casting plant, and the approach in 

[25] where a fuzzy system adapts itself to driver characteristics for an automotive speed control device  
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The use of fuzzy systems for estimation/identification [26, 27, 28, 29, 30, 31, 32] is relevant, especially if 

“indirect adaptive” [7, 8] fuzzy control techniques (i e , ones where plant parameters are identified and 

used to tune the parameters of the controller) such as those in [33, 34, 35] are used  Also, it is interesting 

to note that in [30, 31, 34] there are inherent uses of inverse dynamics of the plant; however, our use of 

the fuzzy inverse model is significantly different  Finally, the authors note that since the initial results 

in FMRLC have been introduced in [21] some other relevant new adaptive/learning techniques have been 

developed [36, 37, 38, 39] where neural approaches are used to tune fuzzy systems and one fuzzy adaptive 

control scheme is shown to be stable  

In Section II, the detailed description of the FMRLC algorithm is presented  Then in Section III we 

study the performance of the FMRLC for single stage rocket velocity control where there is a significant 

variation in the process dynamics due to the change in mass of the rocket as fuel is expended  Moreover, 

the FMRLC will be used as a learning controller for a two degree-of-freedom robot manipulator to illustrate 

the application of FMRLC for a multi-input, multi-output (MIMO) process  Finally, in the concluding 

remarks in Section IV we will discuss the advantages and disadvantages of FMRLC and highlight some 

important future research directions  

II Fuzzy Mo el Reference Learning Control 

In this Section, we present a novel learning control technique that was developed by extending some of 

the linguistic self-organizing control concepts presented by Procyk and Mamdani in [6] and by utilizing ideas 

from conventional “model reference adaptive control” (MRAC) [8, 7]  The learning control technique, which 

is shown in Figure 1, utilizes a learning mechanism that: (i) observes data from a fuzzy control system, 

(ii) characterizes its current performance, and (iii) automatically synthesizes and/or adjusts the fuzzy 

controller so that some pre-specified performance objectives are met  These performance objectives are 

characterized via the reference  odel shown in Figure 1  In an analogous manner to conventional MRAC 

[8, 7] where conventional (often linear) controllers are adjusted, the learning mechanism seeks to adjust the 

fuzzy controller (a nonlinear controller) so that the closed-loop system (the map from y (kT ) to  y(kT )) acts 
r 

like a pre-specified reference model (the map from y (kT ) to  y (kT ))  We have named the new learning 
r m 

control technique “fuzzy model reference learning control” (FMRLC) due to its similarities to MRAC, 

its unique approach to remembering the adjustments it makes, and according to the prevailing definition 

of “learning” and “adaptive” [40] (we avoid the term “self-organizing” due to the differences between 

our approach and the work in [6])  For a much more detailed discussion of the key issues encountered 

when studying the comparison between adaptive and learning systems see [40, 21]  Next we describe each 

component of the FMRLC in more detail  

A. The Fuzzy Controller 

The process  in  Figure 1  is  assumed to  have  r inputs denoted by the r - dimensional vector  (kT ) =  

[ 1(kT ) ...  r(kT )]t (T is the sample period) and s outputs denoted by the s - dimensional vector y(kT ) =  
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Figure 1: Functional Architecture for the FMRLC  

[y1(kT ) ... ys(kT )]t   Most often the inputs to the fuzzy controller are generated via some linear function 

of the plant output y(kT ) and reference input y (kT )  Figure 1 shows a special case of such a linear 
r 

map that was found to be useful in many applications  The inputs to the fuzzy controller are the error 

e(kT ) = [e1(kT ) ... es(kT )]t and change in error c(kT ) = [c1(kT ) ... cs(kT )]t defined as 

r 

e(kT ) =  y (kT ) − y(kT ),
r 

(1) 

c(kT ) =  
e(kT ) − e(kT − T ) 

,
T 

(2) 

respectively, where y (kT ) =  [yr1 (kT ) ... yrs (kT )]t denotes the desired process output  

Often, for greater flexibility in fuzzy controller implementation, the universes of discourse for each 

process input are “normalized” to the interval [−1, +1] by means of constant scaling factors  For our fuzzy 

controller design, the gains g , g , and  g were employed to normalize the universe of discourse for the 
e c   

error e(kT ), change in error c(kT ), and controller output  (kT ), respectively (e g , g = [ge1 , ..., ges]
t so 

e 

that gei ei(kT ) is a scaled input to the fuzzy controller)  

For convenience we utilize r multi-input single output (MISO) fuzzy controllers (one for each process 

input  n) as  it is  equivalent to using  one  s input r output MIMO fuzzy controller  The knowledge-base 
thfor the fuzzy controller associated with the n process input is generated from IF-THEN control rules of 

the form: 

j U j,...,k,l,...,m If ẽ1 is Ẽ and     and ẽs is Ẽk and c̃1 is C̃l and     and c̃s is C̃m Then  ̃n is ˜ ,1 s 1 s n 

where ẽa and c̃a denote the linguistic variables associated with controller inputs ea and ca, respectively, 

 ̃n denotes the linguistic variable associated with the controller output  n, Ẽb and C̃b denote the bth 
a a 

U j,...,k,l,...,m linguistic values associated with ẽa and c̃a, respectively, and ˜ 
n denotes the consequent linguistic 
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value associated with  ̃n for the rule listed above  The above control rule may be quantified by utilizing 

fuzzy set theory to obtain a fuzzy implication of the form: 

j Then U j,...,k,l,...,m If E and     and Ek and Cl and     and Cm ,1 s 1 s n 

, and  U j,...,k,l,...,m where Eb , Cb denote the fuzzy sets that quantify the linguistic state ents “ẽa is Ẽb”, “c̃sa a n a 

Cm U j,...,k,l,...,m is ˜ 
s ”, and “ ̃n is ˜ 

n ”, respectively  This fuzzy implication can be represented by a fuzzy relation 

Rj,...,k,l,...,m j ) × U j,...,k,l,...,m = (E1 × ... × Ek) × (C1 
l × ... × Cm . (3)n s s n 

The fuzzy controller decision mechanism for this control rule may be expressed by 

Û j,...,k,l,...,m(kT ) =  ((Ê1(kT ) × Ê2(kT ) × ... × Ê 
s(kT )) ×n 

(kT ))) ◦ Rj,...,k,l,...,m (Ĉ1(kT ) × Ĉ2(kT ) × ... × Ĉ 
s (4)n 

where Êj(kT ) and  Ĉj (kT ) denote the fuzzified error and change in error, respectively, associated with 

U j,...,k,l,...,m the jth element of e(kT ) or  c(kT ), ˆ (kT ) denotes the implied fuzzy set, and “◦” denotes Zadeh’s n 

Composition  See [41] for a more detailed mathematical explanation of Equation 4  Typically in fuzzy 

system design, a fuzzy implication exists for every possible combination of fuzzy sets describing the inputs 

to the fuzzy system  Therefore, the fuzzy controller is made up of many fuzzy implications whose overall 

control action may be computed by the “center of gravity” (COG) method expressed as 

� 
Âj,...,k,l,...,m j,...,k,l,...,m (kT ) ĉ (kT )j,...,k,l,...,m n n 

 n(kT ) =  � , (5)
j,...,k,l,...,m 

j,...,k,l,...,m Â
 
n (kT ) 

Aj,...,k,l,...,m j,...,k,l,...,m where ˆ (kT ) and  ̂c (kT ) are the area and center of area, respectively, of the membership n n 

U j,...,k,l,...,m function associated with ˆ (kT ) n 

B. The Referen e Model 

The reference model provides a capability for quantifying the desired performance of the process  In 

general, the reference model may be any type of dynamical system (linear or non-linear, time-invariant or 

time-varying, discrete or continuous time, etc )  The performance of the overall system is computed with 

respect to the reference model by generating an error signal y (kT ) = [ye1 ... yes ]t where 
e 

y (kT ) =  y (kT ) − y(kT ). (6)
e m 

Given that the reference model characterizes design criteria such as stability, rise time, overshoot, settling 

time, etc  and the input to the reference model is the reference input y (kT ), the desired performance of the 
r 

controlled process is met if the learning mechanism forces y (kT ) to remain very small for all time  Hence, 
e 

the error y (kT ) provides a characterization of the extent to which the desired performance is met at time 
e 

t = kT   If the performance is met (y (kT ) ≈ 0) then the learning mechanism will not make significant 
e 

modifications to the fuzzy controller  On the other hand if y (kT ) is big, the desired performance is not 
e 

achieved and the learning mechanism must adjust the fuzzy controller  
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C. The Learning Me hanism 

As previously mentioned, the learning mechanism performs the function of modifying the knowledge-base of 

a direct fuzzy controller so that the closed-loop system behaves like the reference model  These knowledge-

base modifications are made based on observing data from the controlled process, the reference model, and 

the fuzzy controller  The learning mechanism consists of two parts: a fuzzy inverse  odel and a knowledge-

base  odifier  The fuzzy inverse model performs the function of mapping necessary changes in the process 

output, as expressed by y (kT ), to the relative changes in to process inputs (denoted by p = [p1 ... pr]t)e 

necessary to achieve these process output changes  The knowledge-base modifier performs the function of 

modifying the fuzzy controller’s knowledge-base to affect the needed changes in the process inputs  More 

details of this process are discussed next  

The Fuzzy Inverse Model 

The fuzzy inverse  odel was developed by investigating methods to alleviate the problems with using 

the inverse process model in the linguistic SOC framework of Procyk and Mamdani [6]  Procyk and 

Mamdani’s use of the inverse process model depended on the use of an explicit mathematical model of 

the process and ultimately assumptions about the underlying physical process  This dependence on a 

mathematical model of the process often causes significant difficulties in applying their approach (e g , 

they are often forced to assume that the plant will act like a constant gain (matrix) and hope that the 

adaptation mechanism can compensate for this inaccuracy)  

Using the fact that most often a control engineer will know how to roughly characterize the inverse 

model of the plant, we introduce the idea of using a fuzzy system to represent the inverse plant dynamics  

We emphasize that it is not necessary to accurately characterize the inverse dynamics; only an approximate 

representation is needed  This “fuzzy inverse model” as it is shown in Figure 1, simply maps y (kT ), and 
e 

possibly other parameters such as the functions of y (kT ) and the process operating conditions, to the 
e 

necessary changes in the process inputs  Hence, the fuzzy inverse model is used to characterize how to 

change the plant inputs to force the plant output y(kT ) to be as close as possible to y (kT ) (i e , to 
m 

make y (kT ) small)  Again, we use r MISO fuzzy inverse models  While there exist numerous possible 
e 

combinations of inputs to the fuzzy inverse model, in Figure 1 only error y (kT ) and the change in error 
e 

y (kT ) are shown for the sake of brevity (e g  delayed versions and functions of the variables could also be 
c 

used)  In this paper, we will assume y (kT ) and  y (kT ) are always employed as inputs to the fuzzy inverse 
e c 

model  The reasons for using the change in the desired output change is to provide some “damping” in 

the learning mechanism  In other words, since we have information about the rate of change of the desired 

output changes, we may quantify that a small value of yei with a small change in yei is more desirable 

than a small value of yei with a large change in yei due to the fact that overshoot is likely to occur  (Using 

reasoning along similar lines the authors in [22] explain how to view the fuzzy inverse model as a controller 

in the adaptation loop and show how this perspective can be used in FMRLC design ) 

Note that similar to the fuzzy controller, the fuzzy inverse model shown in Figure 1 contains normalizing 

scaling factors, namely g , g , and  g , for each universe of discourse  Selection of the normalizing gains 
ye yc p 
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can impact the overall performance of the system and a gain selection procedure is given below in Section D  

The knowledge-base for the fuzzy inverse model associated with the nth process input is generated from 

Then P j,...,k,l,...,m fuzzy implications of the form: If Y j and     and Y k and Y l and     and Y m , where  e1 es c1 cs n 

Y b and Y b denote the bth fuzzy set associated with the error yea and change in error yca , respectively, ea ca 

th process output and P j,...,k,l,...,m and associated with the a denotes the consequent fuzzy set for this rule n 
thdescribing the necessary change in the n process input  This fuzzy implication can be represented by a 

fuzzy relation Sj,...,k,l,...,m )×P j,...,k,l,...,m = (Y j ×...×Y k )×(Y l ×...×Y m   The fuzzy inverse model decision n e1 es c1 cs n 

P j,...,k,l,...,m mechanism for this fuzzy implication may be expressed by ˆ (kT ) =  ((Ŷ 
e1 (kT ) × Ŷ 

e2 (kT ) × ... ×n 

(kT ))) ◦ Sj,...,k,l,...,m Ŷ 
es (kT )) ×(Ŷ 

c1 (kT ) × Ŷ 
c2 (kT ) × ...× Ŷ 

cs where Ŷ 
ep (kT ) and  Ŷ 

cp (kT ) denote the fuzzified n 

P̂ j,...,k,l,...,m error and change in error, respectively associated with the pth element of y and y , (kT ) denotes n 
th 

e c 

the implied fuzzy set for this fuzzy implication describing input changes for the n process input (actually 
ththe n direct fuzzy controller)  As was the case for the direct fuzzy controller, the overall input changes 

for the nth direct fuzzy controller pn(kT ) are determined from the COG defuzzification method  

A typical rule base array which may be employed in a fuzzy inverse model for a SISO process is 

shown in Table 1 below (this and other fuzzy inverse models are used in the applications) where Y j and e 
j,k 

Y k denote the fuzzy sets associated with ye(kT ) and  yc(kT ), respectively, and the P denote the fuzzy c i 

sets quantifying the desired process input change pi(kT )  Note that the body of Table 1 lists the center 

values for convex, symmetric, and normal membership functions that are defined on universes of discourse 

normalized to [−1, 1]  

Table 1: Typical rule base array table for the fuzzy inverse model  

j,  Pi 

Y   
c 

−5 −4 −3 −2 −1  +0  +1  +2  +3  +4  +5  

Y j 
e 

−5 

−4 

−3 

−2 

−1 

0 

+1 

+2 

+3 

+4 

+5 

−1.0 

−1.0 

−1.0 

−1.0 

−1.0 

−1.0 

−0.8 

−0.6 

−0.4 

−0.2 

0.0 

−1.0 

−1.0 

−1.0 

−1.0 

−1.0 

−0.8 

−0.6 

−0.4 

−0.2 

0.0 

+0.2 

−1.0 

−1.0 

−1.0 

−1.0 

−0.8 

−0.6 

−0.4 

−0.2 

0.0  

+0.2  

+0.4 

−1.0 

−1.0 

−1.0 

−0.8 

−0.6 

−0.4 

−0.2 

0.0  

+0.2  

+0.4  

+0.6 

−1.0 

−1.0 

−0.8 

−0.6 

−0.4 

−0.2 

0.0 

+0.2 

+0.4 

+0.6 

+0.8 

−1.0 

−0.8 

−0.6 

−0.4 

−0.2 

0.0 

+0.2 

+0.4 

+0.6 

+0.8 

+1.0 

−0.8 

−0.6 

−0.4 

−0.2 

0.0  

+0.2  

+0.4  

+0.6  

+0.8  

+1.0  

+1.0 

−0.6 

−0.4 

−0.2 

0.0  

+0.2  

+0.4  

+0.6  

+0.8  

+1.0  

+1.0  

+1.0 

−0.4 

−0.2 

0.0 

+0.2 

+0.4 

+0.6 

+0.8 

+1.0 

+1.0 

+1.0 

+1.0 

−0.2 

0.0 

+0.2 

+0.4 

+0.6 

+0.8 

+1.0 

+1.0 

+1.0 

+1.0 

+1.0 

0.0 

+0.2 

+0.4 

+0.6 

+0.8 

+1.0 

+1.0 

+1.0 

+1.0 

+1.0 

+1.0 

The fuzzy inverse model rule base array shown in Table 1 was designed to take advantage of the “damp-
ing” feature described above  For example, consider the case where ye(kT ) = 0 which is best characterized 

by fuzzy set Y j where j = 0 since it characterizes the case where ye(kT ) is small  The best change in e 

ye(kT ), is yc(kT ) = 0 which is characterized in a similar way by Y k where k = 0  This zero point (i e , the c 

center of Table 1, j = k = 0) represents a point where the fuzzy inverse model indicates that no change in 

the input is required to force y(kT ) =  y (kT ) since this equality is already achieved  If for some time k,
m 
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we have j = 0 but k = −2 (i e , currently y(kT ) is  close  to  y (kT ) but y(kT ) is  increasing above  y (kT ))
m m 

then Table 1 indicates that for P j,k, the center of the fuzzy set is at −0.4 which characterizes the fact i 

that a negative increment should be added to the process input to ensure that y will not continue to in-
crease (i e , so that we maintain a small yei )  Similar statements hold for the remaining elements in Table 1  

It is important to note that: (i) development of the fuzzy inverse model does not depend on the exis-
tence and specification of the mathematical model of the plant or its inverse (i e , the plant inverse need not 

exist), (ii) the fuzzy inverse model should not be confused with the mathematical model of the inverse of 
the plant that is sometimes used in fixed (i e , non-adaptive) control where the controller has no ability to 

synthesize itself or auto-tune in response to plant parameter changes, and (iii) while the above discussion 

provides some general guidelines for the construction of the fuzzy inverse model, and the applications in 

Section III show how to construct it for a rocket velocity control problem with time-varying parameters 

and a multi-input multi-output robot control problem, if the plant is very complex then it can sometimes 

be difficult to specify the fuzzy inverse model  To gain further insight into how to specify the fuzzy inverse 

model see [22] where a fuzzy inverse model is developed for a FMRLC which is implemented on a complex 

flexible robotic mechanism (the perspective used there is that the fuzzy inverse model acts as a controller 

in the adaptation loop)  Moreover, see [20, 18] for the details on how to specify the fuzzy inverse model for 

the FMRLC for a cargo ship steering application and a anti-skid braking problem  Overall, the FMRLC’s 

performance depends on the engineer’s ability to specify a fuzzy inverse model  For the applications listed 

above we have found that the fuzzy inverse model is relatively easy to specify and that it does not need 

to be extremely accurate since the learning mechanism tends to compensate for the inaccuracies  The 

general guidelines given above, coupled with the applications studied in this paper and in [22, 20, 18], 
provide significant insights into choosing the fuzzy inverse model so that the FMRLC will be useful for 

other applications  Finally, it is interesting to note that other inherent uses of inverse dynamics of the 

plant in adaptive fuzzy control schemes can be found in [30, 31, 34]  

The Knowledge-Base Modifier 

The knowledge-base modifier presented next grew from work that focused on improving the knowledge-
base modification approach for the linguistic SOC [6]  In the linguistic SOC framework, knowledge-base � 

Rj,...,k,l,...,m modification was performed on the overall fuzzy relation (Rn = ) used to implement n 
j,...,k,l,...,m 

the fuzzy controller  However, this method of knowledge-base modification can be computationally complex 

due to the fact that Rn is generally a very large array  Here we use a knowledge-base modification algorithm 

(similar to the one in [11]) which increases computational efficiency by modifying the membership functions 

of consequent fuzzy sets U j,...,k,l,...,m rather than the fuzzy relation array Rn n 

The knowledge-base modifier performs the function of modifying the fuzzy controller so that better 

performance is achieved  Given the information about the necessary changes in the input as expressed by 

the vector p(kT ) from the fuzzy inverse model, the knowledge-base modifier changes the knowledge-base 

of the fuzzy controller so that the previously applied control action will be modified by the amount p(kT )  
Therefore, consider the previously computed control action, which contributed to the present good/bad 

system performance  Note that e(kT − T ) and  c(kT − T ) would have been the process error and change in 

error, respectively, at that time  Likewise,  (kT − T ) would have been the controller output at that time  
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The controller output which would have been desired is expressed by 

 ̄(kT − T ) =   (kT − T ) +  p(kT ). (7) 

Next we will show that by modifying the fuzzy controller’s knowledge-base we may force the fuzzy controller 

to produce this desired output given similar controller inputs  
Assume that only symmetric membership functions are defined for the fuzzy controller’s output so that 

j,...,k,l,...,m c denotes the center value of the membership function associated with the fuzzy set U j,...,k,l,...,m n n 

Knowledge-base modification is performed by shifting centers of the membership functions of the fuzzy 

sets U j,...,k,l,...,m which are associated with the fuzzy implications that contributed to the previous control n 

action  (kT − T )  This modification involves shifting these membership functions by an amount specified 

by p(kT ) = [p1(kT ) ... pr(kT )]t so that 

j,...,k,l,...,m j,...,k,l,...,m c (kT ) =  c (kT − T ) +  pn(kT ). (8)n n 

The degree of contribution for a particular fuzzy implication in the fuzzy controller whose fuzzy relation 

is denoted Rj,...,k,l,...,m is determined by its “activation level”, defined n 

δj,...,k,l,...,m(t) =  min{µn E  
s

( ( ))te , ..., µ j 1 E 
1 

(es(t)), 

µCl 
1
(c1(t)), ..., µCm

s
(cs(t))}, (9) 

where µA denotes the membership function of the fuzzy set A and t denotes the current time  Only 

those fuzzy implications Rj,...,k,l,...,m(kT − T ) whose activation level δj,...,k,l,...,m(kT − T ) > 0 are modified  n n 

All others remain unchanged (this allows for local learning and hence memory for our learning controller 

[40, 21])  
Consider the effect that the above knowledge-base modification has on the COG defuzzification (for 

the direct fuzzy controller) expressed in Equation 5  Notice that since the area of the implied fuzzy sets is 

(kT −T )   δj,...,k,l,...,m proportional to the “activation level” of the fuzzy relation (i e , Aj,...,k,l,...,m (kT −T ))n n 

only those fuzzy relations whose activation levels are greater than zero affect the center of gravity, or 

control action  Furthermore, notice that since symmetric membership functions are utilized, a shift in the 

membership function associated with fuzzy set U j,...,k,l,...,m(kT ) will also shift, by the same amount, the n 

U j,...,k,l,...,m centers of the membership functions associated with the previous implied fuzzy sets ˆ (kT − T ) n 

Therefore, given the previous controller inputs e(kT − T ) and  c(kT − T ) and the new fuzzy relation 

Rj,...,k,l,...,m(kT ) obtained after shifting the consequent fuzzy set, the new center value of the membership n 

U j,...,k,l,...,m function associated with the implied fuzzy set ˆ (kT − T ) is expressed as n 

¯j,...,k,l,...,m j,...,k,l,...,m ĉ (kT − T ) = ĉ (kT − T ) +  pn(kT ). (10)n n 

Substituting this new center value into Equation 5 we obtain 

� j,...,k,l,...,m 
j,...,k,l,...,m A

j,...,k,l,...,m(kT − T ) ¯ ĉ (kT − T )n n 
 ̄ n(kT − T ) =  � (11)

j,...,k,l,...,m 
j,...,k,l,...,m An (kT − T ) 

where  ̄ n(kT − T ) is the new control action that is obtained  Simplifying, it is easy to see that 

 ̄ n(kT − T ) =   n(kT − T ) +  pn(kT ), (12) 
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which is the desired effect  Notice that this approach also achieves “generalization” as it is called in learning 

theory [40] since it will at the same time learn how to deal with values that are near to those considered 

(i e , near to e(kT ), c(kT ), and y(kT ))  Along these lines it is interesting to note that our knowledge-
base modification procedure implements a form of local adaptation and hence utilizes memory  Different 

parts of the rule-base are “filled in” based on different operating conditions of the system, and when one 

area of the rule-base is updated, the other rules are not affected  Hence, the controller adapts to new sit-
uations and also remembers how it has adapted to past situations (this is why the term “learning” is used)  

As an example of the knowledge-base modification procedure, Table 2 shows a knowledge-base array 

table where its entries represent the center values of symmetric membership functions associated with the 

implied fuzzy sets U j,k defined on a normalized universe of discourse (normalized to [−1, 1])  Given that 

the fuzzy controller employs a knowledge-base array table similar to Table 2, the process of knowledge-base 

modification reduces to a simple two step algorithm which is expressed below  

1  Determine which fuzzy implications in the knowledge-base array table contributed to the previously 

applied input  In other words, determine the fuzzy implications whose premise element has an 

activation level above zero (i e , the rule is “on” - its implied fuzzy set is not null)  

2  Modify the entries in the knowledge-base array for those fuzzy implications  

Table 2: Typical knowledge-base array table 

U j, 

C  

−5 −4 −3 −2 −1  +0  +1  +2  +3  +4  +5

−5 +1.0  +1.0  +1.0  +1.0  +1.0  +1.0  +0.8  +0.6  +0.4  +0.2  +0.0

−4 +1.0  +1.0  +1.0  +1.0  +1.0  +0.8  +0.6  +0.4  +0.2  +0.0 −0.2
−3 +1.0  +1.0  +1.0  +1.0  +0.8  +0.6  +0.4  +0.2  +0.0 −0.2 −0.4
−2 +1.0  +1.0  +1.0  +0.8  +0.6  +0.4  +0.2  +0.0 −0.2 −0.4 −0.6

Ej

−1
0

+1.0

+1.0  

+1.0

+0.8  

+0.8

+0.6  

+0.6  

+0.4  

+0.4

+0.2  

+0.2

+0.0

+0.0

−0.2
−0.2
−0.4

−0.4
−0.6

−0.6
−0.8

−0.8
−1.0

+1 +0.8  +0.6  +0.4  +0.2  +0.0 −0.2 −0.4 −0.6 −0.8 −1.0 −1.0
+2

+3

+4

+5

+0.6

+0.4

+0.2

+0.0

+0.4

+0.2

+0.0

−0.2

+0.2

+0.0

−0.2
−0.4

+0.0

−0.2
−0.4
−0.6

−0.2
−0.4
−0.6
−0.8

−0.4
−0.6
−0.8
−1.0

−0.6
−0.8
−1.0
−1.0

−0.8
−1.0
−1.0
−1.0

−1.0
−1.0
−1.0
−1.0

−1.0
−1.0
−1.0
−1.0

−1.0
−1.0
−1.0
−1.0

For example, assume that the previous process error e(kT −T ) took on a value such that the membership 

functions associated with sets E+3 and E+4 shown in Table 2 evaluated to be greater than zero  Similarly, 
assume that the previous change in the process error c(kT − T ) was best characterized by the fuzzy sets 

C−4 and C−5   The fuzzy implications which contributed (i e , had δ >  0) to the previously applied process 

input are illustrated by the boxed entries in Table 2 (i e , they are all the implications which contain as 

left-hand-side elements the boxed entries – 4 rules in this case)  Suppose that pi(kT ) =  g i pi(kT ) so that
pi(kT ) is the normalized desired change in the process input  For our example, assume that pi(kT ) = 0.1,
then after knowledge-base modification for the boxed values 0.4, 0.2, 0.0, and 0.2 in  Table  2  we  get  0.5, 
0.3, 0.1 and  0.3, respectively (all other entries in the Table remain unchanged at this time)  
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D. FMRLC Design Pro edure and Implementation Issues 

The design procedure for the FMRLC involves: (i) the specification of a direct fuzzy controller with 

consequent membership functions that can be tuned (this fuzzy controller can be chosen via conventional 
(heuristic) fuzzy control design techniques for the nominal plant), (ii) specifying the reference model which 

characterizes the desired system performance, (iii) specifying the fuzzy inverse model which characterizes 

how the inputs to the plant should be changed so that the desired performance is achieved, and (iv) 

selection of the normalizing gains for the fuzzy controller and the fuzzy inverse model  As selection of 
the normalizing gains for both the fuzzy controller and the fuzzy inverse model can impact the overall 
performance, next we will provide a procedure to choose these parameters  It is important to note that 

although it is often not highlighted, most learning/adaptive control approaches require some type of initial 
choice of controller structure and parameters (e g , the choice of an adaptation gain or initial controller 

parameters in a conventional adaptive controller)  The gain selection procedure to be presented next 

provides a systematic methodology to select such initial parameters for the FMRLC  
Due to physical constraints for a given system, the range of values for the process inputs and outputs 

is generally known from a qualitative analysis of the process  As a result, we can determine the range of 
values or the universe of discourse for e(kT ),  (kT ), y (kT ), and p(kT )  Consequently, g , g , g , and  

e e  ye 

g are chosen so that the appropriate universes of discourse are mapped to [−1, +1]  To determine g we 
p c 

disconnect the adaptive mechanism and pick it using standard fuzzy control system design techniques or 

by iteratively applying inputs to y , observing c(kT ), and finding a scaling factors to map the universes of 
r 

discourse to [−1, 1]  
The vector g is left as a vector of tuning parameters for the FMRLC  Recall that the scaling factors 

yc 

g associated with the change in the desired output changes has the effect of providing “damping” to the 
yc 

controller modifications  Moreover, the “damping” effect is increased as the elements of the scaling factor 

g are increased  A suitable selection of g may be obtained by monitoring the response of the overall 
yc yc 

process with respect to the reference model response  If undesirable oscillations exist between a given 

process and the associated reference model output response, it is likely that the element of g associated 
yc 

with this ouput is too small and should be increased  Likewise, if a given element of g is too large, the 
yc 

process will be unable to keep up with the reference model due to the resulting damping  
Below a simple procedure is presented for selecting the gains: 

1  Select the controller gains g , g , and  g so that each universe of discourse is mapped to the interval 
e   ye 

[−1, 1]  

2  Choose the controller gains gpi to be the same as for the fuzzy controller output gain g i   This will 
allow the pi(kT ) to take on values as large as the largest possible inputs  i(kT )  

3  Using standard fuzzy control design techniques (i e , ones that use human expertise) or simple ex-
periments choose g to map the universes of discourse of c(kT ) to  [−1, 1] 

c 

4  Assign the numerical value 0 to the scaling factors associated with the changes in the desired output 

changes (i e , all elements of g are set equal to 0)  
yc 

5  Apply a step input to the process which is of a magnitude that may be typical for the process during 

normal operation  Observe the process response and the reference model response  

11 
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6  Three cases: 

(a) If there exist unacceptable oscillations in a given process output response about the reference 

model response, then increase the associated element of g  Go  to  step  5  
yc 

(b) If a given process output response is unable to “keep up” with the reference model response, 
then decrease the associated element of g  Go  to  step  5  

yc 

(c) If the process response is acceptable with respect to the reference model response, then the 

controller design is completed  

For the applications presented in this paper, the above gain selection procedure has proven very successful  
However, given that the procedure is a result of practical experience with the FMRLC rather than strict 

mathematical analysis, it is likely that it will not work for all processes  For some applications (none of 
the ones we’ve studied in [21, 12, 19, 20, 18, 22]), the procedure may result in an unstable process  In such 

situations, it may be necessary to modify other controller parameters such as the controller sampling period 

T or the number of fuzzy controller rules  Clearly, the stability analysis of the FMRLC is an important 

research direction  
Note that when implementing (and simulating) the FMRLC one must be concerned with the “curse of 

dimensionality”  Particularly, assume that: (i) the fuzzy controller has s inputs (where s = αs with α = 2  

for the case shown in Figure 1), r outputs, and N membership functions on each of its input universes 

of discourse; (ii) the fuzzy inverse model has s inputs (where s = βs with β = 2 for the case shown in 

Figure 1), r outputs, and M membership functions on each of its input universes of discourse; and (iii) 

that both the fuzzy controller and the fuzzy inverse model use the maximum number of rules possible (for 

completeness)  In this case there are r(N s + M s ) rules in the FMRLC  As is the case with standard 

fuzzy control, increasing the number of inputs causes an exponential increase in the number of rules  It 

is important to note that if one assumes that the membership functions are uniformly distributed across 

the input universes of discourse so that at most two overlap for any point (this is in fact what we do in 

all the applications in this paper), then at most r(2s + 2s ) rules will be on at one time and hence the 

code implementing the FMRLC is much less complex than one might think at first glance  It is in fact 

this characteristic that we exploit when we implemented the FMRLC for the flexible robotic system in [22] 
where the FMRLC had 1150 rules and operated with a sampling interval of 15 milliseconds on a 386-based 

computer  

III Applications 

A. Ro ket Velo ity Control 

In this section we illustrate the performance of a FMRLC which is employed to control the velocity of 
a single stage rocket  A mathematical model for this process is presented by Barrére et al. in [42] and 

Mandell et al. in [43] and is expressed by the following differential equation: � � � � � � 
d v(t) m R ρa A Cd = c(t) − go − 0.5 v 2(t) , (13)
dt M − m t  R + y(t) M − m t  

where v(t) is the rocket velocity at time t, y(t) is the altitude of the rocket (above sea level), c(t) is  the  

velocity of the exhaust gases, and for our simulation: (i) M = 15000.0 kg - initial mass of the rocket and 
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fuel, (ii) m = 100.0 kg - exhaust gases mass flow rate (approximately constant for some solid propellant s 
meters rockets), (iii) A = 1.0 meter2 - maximum cross sectional area of the rocket, (iv) go = 9.8 - the 
s2 

acceleration due to gravity at sea level, (v) R = 6.37 × 10  meters - radius of the earth, (vi) ρa = 1.21 kg 
3m 

- density of air, and (vii) Cd = 0.3 - drag coefficient for the rocket  
The mathematical model in Equation 13 was developed based on the simple dynamics of a point mass  

However, in general, rockets dynamics are studied in the realm of exterior ballistics  This type of analysis 

often tends to be very complex and falls outside the scope of this paper  However, even in this restricted 

context the modeled dynamics have characteristics which make for difficult control  For example, due to 

the loss of fuel resulting from combustion and exhaust the rocket has a time-varying mass  Furthermore, 
it can be determined by inspection of Equation 13 that the system is a non-linear process  Indeed, the 

primary purpose for considering this control application is to investigate the capability of the FMRLC 

algorithm for controlling non-linear time-varying processes  
As stated before, the control objective is to control the velocity of the rocket  To accomplish this task 

the rocket is assumed to have one input, namely the velocity of the exhaust gases c(t)  In general, the 

exhaust gas velocity is proportional to the cross-sectional area of the nozzle  Consequently, the exhaust 

gases may be controlled by changing this cross sectional area  However, for this controller implementation, 
we assume that the dynamics of the actuators which change the nozzle area and the dynamics of the 

exhaust gases are fast relative the rocket velocity dynamics and therefore may be eliminated from the 

model  

1. FMRLC Design 

The inputs to the fuzzy controller are the velocity error and change in error and the controller output is 

the velocity of the exhaust gases  In this fuzzy controller design, 11 fuzzy sets are defined for each controller 

input (using the structure of Figure 1) such that the membership functions are triangular shaped and evenly 

distributed on the appropriate universe of discourse (of course the outer-most membership functions are 

trapezoidal)  The normalizing controller gains for the error, change error, and the controller output are 
1 1chosen to be ge = , gc = , and  g  = 10000, respectively  The fuzzy sets for the fuzzy controller 4000 2000 

output are also assumed to be triangular shaped with a width of 0.4 on the normalized universe of discourse  
The knowledge-base array was initially chosen with all zero entries  The fuzzy controller sampling period 

was chosen to be T = 100 milliseconds  
The reference model for this process was chosen to represent somewhat realistic performance specifica-

tions and is expressed by the following differential equation 

d ym(t) 
= −0.2 ym(t) + 0.2 yr(t), (14)

dt 

where ym(t) specifies the desired system performance for the rocket velocity v(t) and the input to the 

reference model yr(t) is equal to the desired rocket velocity  
The inputs to the fuzzy inverse model include the error and change in error between the reference model 

and the rocket velocity expressed as ye(kT ) =  ym(kT ) − v(kT ), and yc(kT ) =  ye(kT )−ye(kT −T ) , respectively  T 

For these inputs, 11 fuzzy sets are defined with triangular shaped membership functions which are evenly 

distributed on the appropriate universes of discourse  The normalizing controller gains associated with 
1 1 ye(kT ), yc(kT ), and p(kT ) are  chosen  to  be  gye = , gyc = , and  gp = 10000, respectively  For 4000 2000 
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the rocket process, for an increase in the exhaust gas velocity we would generally expect an increase in 

the process output  Consequently, the knowledge-base array shown in Table 1 was employed for the fuzzy 

inverse model  

2. Simulation Results 

The simulation results for the FMRLC of the rocket are shown below in Figure 2  Note that the system 
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Figure 2: Simulation results for FMRLC control of the rocket system  

exhibits “good” tracking with the reference model even after the mass of the rocket has been reduced 

significantly from the initial mass due to fuel loss (note that lower amounts of exhaust gas velocity, the 

control input, are needed as more fuel is used)  This application clearly illustrates the effectiveness of the 

FMRLC algorithm for controlling a nonlinear time varying process  
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B. Two-Degree of Freedom Robot Manipulator 

Figure 3 illustrates the physical model of a two degree of freedom manipulator  It consists of two links 

where link #1 is mounted on a rigid base by means frictionless hinge and link #2 is mounted at the end 

of link #1 by means of a frictionless ball bearing  This control problem is provided to illustrate the 
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Figure 3: Graphical representation of a 2-link robot  

application of the FMRLC to a nonlinear MIMO system  The inputs to the process are the torques τ1 

and τ2 which are applied to the links at joints #1 and #2  The outputs are the joint positions θ1 and θ2  
The model for the robotic system was developed using the well-known Lagrangian equations in classical 
dynamics and is expressed by the following matrix differential equation [44, 8]: 

� � � � � � � � � � � � 
¨ H11 H12 θ1 −hθ̇ 

2 −hθ̇ 
1 − hθ̇ 

2 θ̇ 
1 g1 τ1+ + = (15)¨ H21 H22 θ2 hθ̇ 

1 0 θ̇ 
2 g2 τ2 

where 

H11 = m1lc 
2 
1 

+ I1 + m2[l1
2 + lc 

2 
2 

+ 2l1lc2 cos(θ2)] + I2 (16) 

H22 = m2l
2 + I2 (17)c2 

H12 = H21 = m2l1lc2 cos(θ2) +  m2l
2 + I2 (18)c2 

h = m2l1lc2 sin(θ2) (19) 

g1 = m1lc1 g cos(θ1) +  m2g[lc2 cos(θ1 + θ2) +  l1 cos(θ1)] (20) 

g2 = m2lc2 g cos(θ1 + θ2), (21) 
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and where θ = [θ1 θ2]T are the two joint angles, τ = [τ1 τ2]T are the input joint torques  For purpose of 
our simulation the robot parameters are given by: (i) m1 = 1.0 kg - mass of link #1, (ii) m2 = 1.0 kg 

- mass of link #2, (iii) l1 = 1.0 meters - length of link #1, (iv) l2 = 1.0 meters - length of link #2, 
(v) lc1 = 0.5 meters - distance from joint #1 to the center of gravity of link #1, (vi) lc2 = 0.5 meters -

2distance from joint #2 to the center of gravity of link #2, (vi) I1 = 0.2 kg − m - lengthwise centroidal 
inertia of link #1, and (vii) I2 = 0.2 kg − m2 - lengthwise centroidal inertia of link #2  

1. FMRLC Design 

For this application, the process contains two inputs, namely τ1 and τ2  Consequently, two MISO fuzzy 

controllers are needed for this process (one for each process input)  The inputs to the fuzzy controller are 

the robot joint position error e = [e1 e2]T and change in error c = [c1 c2]T   The fuzzy controllers have 

outputs τ1 for the first controller and τ2 for the second controller  For both fuzzy controller designs, 11 

fuzzy sets are defined for each controller input such that the membership functions are triangular shaped 

(with base widths of 0.4) and evenly distributed on appropriate universes of discourse (the outer-most 

membership functions are trapezoidal)  Also, the normalizing controller gains for the error, change error, 
1 1and the controller output are chosen to be g = [  1 ]T , g = [  1 ]T , and  g = [100 25]T , respectively  

e 2π 2π c 20 20   

The knowledge-base array for both fuzzy controllers was initially chosen with all zero entries  The fuzzy 

controller sampling period was chosen to be T = 5 milliseconds  
The reference model for this FMRLC design is given by the following differential equation � � � � �  � � � � � 

ẏm1 (t) −0.75 0.0 ym1 (t) +0.75 0.0 yr1 (t)= + , (22) 
ẏm2 (t) 0.0 −1.5 ym2 (t) 0.0  +1.5 yr2 (t) 

where ym1 and ym2 specify the system performance for θ1 and θ2, respectively  For FMRLC implementation, 
the inputs to the reference model yr1 and yr2 are equal to the desired position of joints #1 and #2, 
respectively  

For this FMRLC design, two fuzzy inverse models are needed, one for each fuzzy controller  In general, 
both process inputs will affect both process outputs  However, for this fuzzy inverse model design we will 
assume that the cross-coupling between the inputs is negligible (i e , τ1 affects only θ1 and τ2 affects only 

θ2)  As a result, the input to a given fuzzy inverse model includes the error and change in error between 

the associated reference model output and robot position  Therefore, for the ith fuzzy inverse model, these 
yei (kT )−yei (kT −T )inputs may expressed as yei (kT ) =  ymi (kT ) − θi(kT ) and  yci (kT ) =  respectively  For T 

these inputs, 11 fuzzy sets are defined with triangular shaped membership functions which are evenly 

distributed on the appropriate universe of discourse  The normalizing fuzzy system gains associated with 
1 y (kT ), y (kT ), and p(kT ) are  chosen  to  be  g = [  1 ]T , g = [1  1 ]T , and  g = [100 25]T , respectively  

e c ye 2π 2π yc 2 p 

For the robot process for an increase in the torque τ1 we would generally expect an increase in the process 

output θ1  Likewise, for an increase in the torque τ2 we would generally expect an increase in the process 

output θ2  Consequently, the knowledge-base array shown in Table 1 was employed for both fuzzy inverse 

models  
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2. Simulation Results 

The simulation results for the FMRLC of the two degree-of-freedom robot manipulator are shown 

below in Figure 4 for joint #1 and Figure 5 for joint #2  Once again the FMRLC provided good 
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Figure 4: Simulation results for joint #1 of FMRLC controlled robot system  
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Figure 5: Simulation results for joint #2 of FMRLC controlled robot system  

system tracking with respect to the reference model  As a result, the system exhibits good steady state 

and transient response  In fact, the response for joint #1 in Figure 4 was so close to the response of the 

reference model that the two almost perfectly overlap  

IV Conclu ing Remarks 

The principal objectives of this paper were to: (i) introduce the FMRLC, (ii) provide a design  ethod-
ology for the FMRLC, (iii) design a FMRLC for a nonlinear time-varying rocket velocity control problem, 
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and (iv) develop a MIMO FMRLC for a nonlinear two degree-of-freedom robot manipulator  The key 

advantages that the FMRLC seems to offer as a learning controller may be summarized as follows: 

• A detailed analytical model of the process is not needed to develop the FMRLC  

• The FMRLC provides an automatic method to synthesize a portion of the knowledge-base (specif-
ically, the right-hand-sides of the rules) for the direct fuzzy controller while at the same time it 

ensures that the system will behave in a desirable fashion (in particular, there is no need to “learn 

from drastic failures” as is often the case for other learning control techniques - e g , as is often done 

for the inverted pendulum)  

• The learning/adaptation mechanism in the FMRLC dynamically and continually updates the rule-
base in the direct fuzzy controller in response to process parameter variations and/or disturbances 

(e g , see the rocket velocity control application)  In this way if unpredictable changes occur within 

the plant, the FMRLC can make on-line adjustments to a direct fuzzy controller to maintain adequate 

performance levels  

Basically, by combining learning/adaptive control concepts with fuzzy system theory, we have developed 

a control scheme which often has a fast rate of convergence and often provides an appropriate nonlinear 

mapping between controller inputs and outputs (i e , it automatically performs “function approximation” 

[40] to achieve learning control)  
Despite these apparant advantages of the FMRLC algorithm, several drawbacks do exist: (1) the design 

procedure (e g , selection of the normalizing gains) tends to be somewhat ad hoc,  (2)  there have been  no  

investigations for the FMRLC (or any other fuzzy adaptive technique) to theoretically show that the fuzzy 

controller can in fact be tuned so that the performance specified in the reference model can be achieved 

(this problem is very well studied in conventional adaptive control where linear controllers are tuned so 

that performance specified in linear reference models is achieved), (3) conditions for stability and conver-
gence of the FMRLC algorithm are yet to be found, (4) persistent excitation [7, 8] issues  for the  FMRLC  

need to be mathematically investigated (since the reference input affects the ability of the fuzzy controller 

parameters to converge to values that result in the reference model behavior being achieved), and (5) 

although it provides certain improvements over SOC (as shown in [12]), the FMRLC algorithm is still 
computationally intensive  These disadvantages provide several future research directions  For example, 
future research involving the FMRLC algorithm should include a mathematical analysis of the controller to 

better quantify the effect of controller design parameters  Perhaps the most important research direction is 

to perform stability and convergence analysis in the spirit of the extensive and significant contributions in 

stability analysis of conventional adaptive control [7, 8] and the important recent (actually yet to appear) 

results in [38]  Such stability analysis can be quite involved as the learning mechanism for the FMRLC ad-
justs a nonlinear (fuzzy) controller as opposed to the conventional adaptive control case where often linear 

controllers are adjusted (there is, however, a growing body of literature on adapting nonlinear controllers)  
Finally, research must be directed towards developing faster algorithms for FMRLC computations to en-
sure that the FMRLC can be employed in real world applications (along the same lines as was done in [22])  
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