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Abstract 

Frequently expert systems are being developed to operate in dynamic environments where they must reason about time-

varying information and generate hypotheses, conclusions, and process inputs that can drastically influence the 
environment within which they operate. For instance, expert systems used for fault diagnosis and fault accomodation in 
nuclear power plants reason over sensor data and operator inputs, form fault hypotheses, make recommendations 
pertaining to safe process operation, and in crisis situations could generate command inputs to the process to help 
maintainsafe operation. Clearly, there is a pressing need to verify and certify that such expert systems are dependable in 
their operation and can reliably maintain adequate performance levels. In this paper we develop a mathematical 
approach to verifying qualitative properties of rule-based expert systems that operate in dynamic and uncertain 
environments. First, we provide mathematical models for the expert system (including the knowledge-base and 

inference engine) and for the mechanism for interfacing to the user inputs and the dynamic process. Next, using these 
mathematical models we show that while the structure and interconnection of information in the knowledgebase 
influence the expert system’s ability to react appropriately in a dynamic environment, the qualitative properties of the 
full knowledge-base/inference engine loop must be considered to fully characterize an expert system’s dynamic 
behavior. To illustrate the verification approach we show how to model and analyze the qualitative properties of rule-

based expert systems that solve a water-jug filling problem and a simple process control problem. Finally, in our 
concluding remarks we highlight some limitations of our approach and provide some future directions for research. 

Index Terms: Expert Systems, Knowledge-Based Systems, Knowledge-Base Verification, Dependability, Reliability 

Introduction 

Enhanced computing technology and the growing popularity of applied artificial intelligence (AI) have resulted in the 

construction and implementation of extremely complex “rule-based” expert systems [1, 2, 3, 4]. Often such expert 

systems are being utilized in critical environments where hazards can occur, safety of humans is an issue, and hard real-

time constraints must be met. For instance, some expert systems for aircraft applications are used for mission planning, 

others have been used for closed-loop control of dynamical systems, while in industrial processes they can be used for 

diagnosing failures [5]. Most often such expert systems are constructed and implemented without any formal analysis 

of the dynamics of how they interface to their environment (e.g., to users and process data) and how the inference 

mechanism dynamically reasons over the information in the knowledge-base. Currently many expert systems are 

evaluated either (i) in an empirical manner by comparing the expert system against human experts, (ii) by studying 

reliability and user friendliness, (iii) by examining the results of extensive simulations, and/or (iv) by using software 

engineering approaches [6, 1, 3, 4, 7, 8, 9, 10, 11, 12]. While it is recognized that these approaches play an important 

1 This work was supported in part by National Science Foundation Grant IRI-9210332. Please address all correspondence to Kevin Passino ((614) 
292-5716; email: passino@ee.eng.ohio-state.edu). Bibliographic information for this paper: Lunardhi A.D., Passino K.M., “Verification of 

Qualitative Properties of Rule-Based Expert Systems”, Int. Journal of Applied Artificial Intelligence, Vol. 9, No. 6, pp. 587–621, Nov./Dec. 1995. 
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role in expert system verification, it is also important to recognize the importance of investigating the possibility of 

mathematically verifying the qualitative properties of general rule-based expert systems that interface to a user and a 

dynamical process that behaves in an unpredictable manner. The focus of this paper is to conduct such a mathematical 

investigation. Our approach to mathematical analysis does not obviate the need for the past approaches to expert system 

verification; generally speaking it augments their abilities (i) by considering expert systems that operate in dynamic and 

uncertain environments, (ii) by characterizing and analyzing more general properties of expert systems, and (iii) by 

showing how techniques from nonlinear analysis of dynamical systems can be applied to the study of properties of 

dynamical expert systems. As with the past techniques, our goal is to enhance our confidence that such expert systems 

will behave properly upon implementation. 

The expert system, which consists of the inference engine and knowledge-base, is shown in Figure 1. The inputs to 

the expert system come from the user (typically a human) and from data or information generated by the dynamic 

process that the expert system is connected to. The outputs of the expert system represent hypotheses, conclusions, or 

command inputs to change some process variable (i.e., “process command inputs”)2. In this paper we focus on the class 

of expert systems that has a knowledge-base which consists of rules that characterize strategies on how to perform the 

task at hand. The inference engine is designed to emulate a human expert’s decision-making process in collecting user 

inputs and process outputs and in reasoning about what process input to generate. In this paper we focus on the use of 

relatively standard conflict resolution strategies in our inference engine such as those used in [2]. 

ed 

eoeu 

eu 
c 

ed 
c 

e 
c 
o 

Expert 
Controller 

( C ) 

Plant 

( )G 

k k k 

k 

k 

k 

Figure 1: Expert System 

The verification of the dynamic properties of of certain very general AI reasoning systems is beyond the scope of this 
work. For example, while the expert system we consider can be designed to exhibit some learning capabilities since it 

has variables in its working memory, because the number of rules is fixed, certain types of automatic rule synthesis are 
not possible (e.g., it can learn to pick between what rule is most appropriate to fire, but it cannot synthesize an 
indeterminant number of completely new rules). Our expert system can synthesize a finite number of rules that seek to 
enhance its performance based on its past experience and it can adapt its working memory and inference mechanism. 
It is also important to note that the expert system considered here cannot plan ahead an indeterminant number of steps 

into the future, taking into account what might happen as the result of its actions. Our expert system can, however, plan 
ahead a finite number of steps into the future to ensure that it takes the proper action. Finally, we note that while we use 
the AI terminology for expert systems, we question the validity of the standard AI models in representing the actual 

2 While it is clear that the expert system can generate process inputs, hypotheses, conclusions, or recommendations we will, for convenience, in 

the remainder of this paper refer to all such quantities as expert system outputs or process inputs. In this sense we consider the human user that 

interfaces to the expert system and a dynamical system (such as an industrial process), to both be a part of the “environment” of the expert system. 

2 



             
               

                
 

            

              

            

             

                

            

     

            

          

          

            

          

             

              

           

               

           

              

              

            

         

             

             

               

          

        
             

               
              

            
            

 

              

              

            

 

 

human cognitive structure and processes. Regardless, the focus here is not on whether we have a good model of the 
human expert (as it is in, e.g., [12]), but rather on whether the expert system performs adequately and dependably. The 
first step in formally verifying the qualitative properties of the expert system is to develop appropriate mathematical 
models. 

Section 2 shows how a mathematical model can be utilized to represent the inference engine and knowledge-base 

shown in Figure 1. Our approach to modeling the rule-base is related to the work in [13] where the authors show how 

to model rule-based AI systems with a high-level Petri net [14]. The approach in this paper is similar to the one advocated 

in [15] where we utilize separate models for the inference engine and knowledge-base and view their interconnection 

(i.e., the inference loop) as a special type of closed-loop control system. In Section 2 we introduce a single model that can 

represent both the inference engine and the knowledge-base, and an interface to user inputs and the dynamic process 

(something that was not considered in [15]). 

In Section 3 we show that while the structure and interconnection of information in the knowledge-base influence 

its completeness and consistency properties [16, 17, 18, 19, 20] and the expert system’s ability to react appropriately 

within its environment, certain “qualitative properties” of the full knowledge-base/inference engine loop (along with 

the interface to the user inputs and dynamic process) must be considered to fully characterize an expert system’s 

behavior. In addition, in Section 3 we show how to characterize and analyze the following qualitative properties of rule-

based expert systems that interface to users and a dynamic process: (i) reachability, (ii) cyclic behavior, and (iii) stability. 

Verification of certain reachability properties can ensure that the expert system will be able to infer appropriate 

conclusions from certain information in its knowledge-base and process outputs and user inputs. Testing for cyclic 

behavior checks that the expert system will not get stuck in an inappropriate infinite loop (e.g., exhibit circular reasoning 

before it reaches its goal). Verification of certain stability properties can ensure that the expert system can stay focused 

on the task at hand and not exhibit certain types of detrimental cyclic behavior. The authors emphsize that while (i) 

certain stability properties must be satisfied for all expert systems to ensure their proper behavior upon implementation 

(e.g., to ensure that variables in working memory will not become unbounded), and (ii) the nonlinear dynamical systems 

analysis community has performed extensive stability analysis for the verification and certification of real-world 

systems, this seems to be the first work that focuses on stability analysis of expert systems (which are in fact nonlinear 

systems). Finally, we note that the work in this paper and the work in [15] is related to the work presented in [21, 22] 

on a system-theoretic characterization and analysis of qualitative properties of AI planning systems (the work in [21] 

was developed for use in modeling and analysis of qualitative properties of AI subsystems in advanced aircraft). 

To illustrate the application of the results, in Sections 4 and 5 we perform modeling and reachability and stability 

analysis of an expert system that solves a water-jug filling problem (where there is no interface to user inputs or a 
dynamic process) and a simple process control problem where user inputs and dynamic process information are used 
in the expert system’s reasoning process. In Section 6 we overview some problems that can be encountered in 
conducting a formal mathematical verification of qualitative properties of expert systems and we highlight some 
research directions that will seek to address some of the deficiencies with the approach reported in this paper. 

The Expert System 

We begin by specifying the dynamical system that will interface to the expert system. The dynamic process has a set of 

inputs eu ∈ Eu that can be manipulated by the expert system (call these “command input events” where we use “u” as a 

subscript since in the study of nonlinear systems “u” is standard notation for this input), a set of disturbances ed ∈ Ed 
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that occur randomly and unpredictably (call these “disturbance input events”), and a set of process outputs eo ∈ Eo that 

can be observed by an expert system (call these “output events”). We will use euk, edk, and eok to denote such input and 

output events at time k. Let 

E = Eu ∪ Ed ∪ Eo (1) 

and let ek ∈ P(E)−{∅} denote an event at time k (where P(E) denotes the power set of E). The dynamical behavior of the 

process evolves by the occurrence of events ek over time. For convenience, we assume that there is always an output 

event in ek and at most one command input event and disturbance input event in ek for all k ≥ 0. Define E to be the set of 

all infinite and finite length event trajectories (sequences of events) that can be formed from events ek ∈ P(Eu ∪ Ed ∪ Eo) 

− {∅}. The set Ev ⊂ E is the set of all physically possible event trajectories for the dynamical process that the expert system 

is connected to (i.e., “valid trajectories”). Note that: (i) the disturbance input events characterize random and 

unpredictable behavior in the process, and (ii) typically, certain sequences of command inputs and disturbance inputs 

will generate certain sequences of output events. We must emphasize that this is a unique and very general way to 

specify the dynamical system that interfaces to the expert system. It actually allows us to represent any dynamical 

system that can be represented with Petri nets, automata, and general nonlinear difference equations. Note that the 

above model for the dynamical system is quite appropriate since it provides a general input-output model and it is only 

via these inputs and outputs that the expert system interfaces to it. It is for this reason that from here till the end of the 

paper, to discuss the effects of the dynamical system on the expert system we only need to use the dynamical system’s 

input and output events. In Section 5 we provide an example to illustrate the use of our formalization for representing 

the dynamic process that an expert system is connected to (for this example we use an automata-like description of the 

dynamical process that interfaces to the expert system to generate the event trajectories that the expert system 

observes). Next, we will specify a mathematical model for the expert system. 

The expert system, which is denoted by “C”, shown in Figure 1 has two inputs; the user input events ecd ∈ Edc 

(where we use the superscript “c” to indicate that it is an input associated with the expert system C and the subscript “d” 

is used to indicate that the user input is a “disturbance” in the sense that the expert system does not know what the user 

will request next) and the output events of the process eo ∈ Eo. Based on its state (to be defined below) and these inputs, 

the expert system generates command input events to the process eco ∈ Eoc (and/or hypotheses and recommendations). 

We will often speak of the interactions between the inference engine and knowledge-base shown in the expert system 

in Figure 1 as forming an “inference loop”. This inference loop constitutes the core of the expert system where 

information in the knowledge-base is interpreted by the inference engine, actions are taken, the knowledge-base is 

updated, and the process repeats (i.e., “loops”). The full expert system shown in Figure 1 is modeled by C where 

) (2) 

where 

Xc = Xb × Xi is a set of expert system states xc, where Xb is the set of knowledge-base states xb and Xi is 

the set of inference engine states xi to be defined below, is the set of events of the 
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gc : x b x X i--+ P (£! U R)- {0} 
Ji : x b x X i --+ x b x X i for e E P(£! u R ) - {0} 
oc : x b x X i--+ £g for e E P(£! U R)- {0} 

C 

is the enable function for C, 

are the output maps 

expert system C where is the set of sets of user input (Edc) and process output 

events (Eo) 

that can occur for which the expert system will have to know how to respond to 

(the superscript “” is used to indicate that is the list 
of all input events, i.e., both process input and user input events) R is 

the set of rules in the knowledge-base of the expert system, 

Eoc ⊂ P(Eu) − {∅} is a set of output events of the expert system 

are the state transition maps for C, 

which specify the outputs of the expert system C, 

Ecv ⊂ Ec is the set of valid inference loop (expert system) trajectories 

(expert system event trajectories that are physically possible, i.e., 

valid trajectories for the expert system) 

Note that we use “c” to denote that each of the above elements of the tuple in (2) are associated with the expert system 

In this framework, it is assumed that an occurrence of an input event to the expert system is always 

accompanied by a firing of an enabled rule r ∈ R, so that the inference loop can be updated accordingly3. Similarly, a rule 

r ∈ R cannot fire alone, since the inference loop is updated only if there is a change in the process reflected via its output 

or a change in the user input event (this does not mean that the expert system cannot reason in between updates to the 

inference loop). Hence, each has at most one process output event eo ∈ Eo and user input event ecd ∈ Edc contained in 

it. Events ek ⊂ g(xck) are said to be enabled. If ek ⊂ g(xck) and ek occurs, then the next state 

); hence, the dynamical behavior of the expert system evolves by the occurrence of sequences of events 

(i.e., event trajectories corresponding to the firing of rules) which result in the generation of state trajectories (i.e., state 

sequences). Let Ec denote the set of event sequences that can occur based on the definition of fec and gc for the expert 

system C and let Ecv ⊂ Ec denote the set of event trajectories that are physically possible (i.e., valid) for the expert system 

C. The expert system can control the generation of command input events for the process; however, it does not have any 

capabilities to control the process disturbance input events. The full specification of C is achieved by defining the rule-

base and inference engine for the expert system, i.e., by defining the components of the inference loop. 

3 Note that without loss of generality in our framework only one rule fires at each time instant. If one wants to fire more than one rule at a time, 

one can define another rule that represents the combined effects of any number of rules. Alternatively, one can simply redefine our model so that it 

can represent the firing of many rules at each time step (by redefining f so that it maps sets of fired rules and the current state to the next state) 

5 
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2.1 Modeling a Rule-Base 

It is important to note that although the focus in this paper is on rule-based systems, we are not restricted to modeling 

only rule-based systems; other AI knowledge representation formalisms can also easily be represented. To see this first 

note that any system that can be represented with the General, Extended, or High-Level Petri Net [14] can be represented 

with C. Then the Petri Net can be used to represent, for instance, semantic nets, frames, or scripts. Alternatively, one could 

directly model such knowledge representation schemes with C. Also note that in [23] the authors show that the rule-

base and fuzzy inference mechanism of a general multiple-input multiple-output fuzzy system [24] can be represented 

with the model C. Next, we model the rule-base. 

Let A = {a1,a2,...,an} be a set of facts that can be true or false (and their truth values can change over time). 

Let 

T : A → {0,1} (3) 

where T(ai) = 1(= 0) indicates that ai is true (false). Let denote the real numbers, V , and v ∈ V denote an m-

dimensional column vector of variables. We are thinking here of facts and variables in “working memory” [2]. 

Let where x denotes transpose) and let 

denote the ith component of xb at time k and Tk(ai) denote the truth value of ai at time k. Let Pi,i = 1,2,...,p denote a set of 

p premise functions, i.e., 

(4) 

and ) = 1(= 0) indicates that ) is true (false) at time k. The Pi will be used in the premises of the rules 
to state the conditions under which a rule is enabled (i.e., they model the left-hand sides of rules). Let the antecedent 
formulas, denoted by Φ, be defined in the following recursive manner: 

1. T(a) for all a ∈ A, and Pi,i = 1,2,...,p are antecedent formulas. 

2. If Φ and Φ are antecedent formulas then so are , (where ¬ (not), ∧ (and), ∨ 

(or), ⇒ (implies) are the standard Boolean connectives). 

3. Nothing else is an antecedent formula unless it is obtained via finitely many applications of 1-2 above. 

antecedent formula (where <,≥ and = take on their standard meaning). Let Ci,i = 1,2,...,q denote the set of q consequent 

functions, where 

(5) 

will be used in the representation of the consequents of the rules (the right-hand sides of the rules), i.e., to represent 

what actions are taken to the knowledge-base when a rule is fired. Let the consequent formulas, denoted with Ψ, be 

defined in the following recursive manner: 

1. For any Ci,i = 1,2,...,q,Ci is a consequent formula. 

, and Φ 

For example, if , and P1 tests “ tests “ and eok are 

real numbers, and P3 tests “( 2)”, then Φ )) is a valid 

6 
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2. For any Ci,Cj, Ci ∧ Cj is a consequent formula. 

3. Nothing else is a consequent formula unless it is obtained via finitely many applications of 1-2 above. 

Following the above example for the premise formula, C1 may be ) := 1 (make a1 true), C2 may mean let 

may mean let 2, and Ψ makes a1 true ( := 1), increments 

) and assigns . Notice that we could also define the Ci such that Ci : 

so that the rules could characterize changes made to the inference strategy based 

on the state of the knowledge-base and/or the user input (i.e., the inference strategy could be changed based on the 

current objectives stated in the user input). Similar, more general definitions could be made for the Pi above (for example, 

Xi could be used in the domain of the Pi). In this paper we will not consider such possibilities and hence we will focus 

solely on the use of the Pi and Ci defined in Equations (4) and (5) above. The rules in the knowledge-base r ∈ R are given 

in the form of 

r = IF Φ THEN Ψ (6) 

where the action Ψ can be taken only if Φ evaluates to true. Formally for (6), ) can possibly occur 

(the inference engine may not let it occur) only if Φ evaluates to true at time k for the given state xbk and the command 

input event . Note that many rules can be enabled at each time step and some rules can have their premises satisfied 

in possibly an infinite number of ways; hence for a given , the size of ) can be infinite even though there are only 

a finite number of rules (e.g., if Φ = x > 2.2 there are an infinite number of values of x that will make Φ true and therefore 

make rule r enabled). If ek ⊂ gc(xck) occurs, then the next state is given by: (i) the application of Ψ to the 

state xbk ∈ Xb to produce xbk+1, and (ii) updating the inference engine state xi ∈ Xi which will be discussed in Section 2.2. 

Also, in this case the output of the expert system (input to the dynamic process) is . The inclusion of input 

events in the rule-base allows the expert system designer to incorporate the process output information and the user 

input variables directly as parts of the rules. This is analogous to the use of variables in conventional rule-based expert 

systems (e.g., see the description of the OPS5 rule grammar in [2]). 

2.2 Modeling the Inference Engine 

To model the inference engine one must be able to represent its three general functional components [2]: 

1. Match Phase: The premises of the rules are matched to the current facts and data stored in the knowledgebase 
and to the user input and process output. 

2. Select Phase: One rule is selected to be fired, and 

3. Act Phase: The actions indicated in the consequents of the fired rule are taken on the knowledge-base, the 
inference engine state is updated, and the input to the process is generated. 

Here, the characteristics of the “match phase” of the inference mechanism are inherently represented in the 
knowledge-base. In AI terminology 

7 



           

               

           

          

             
                

 

            
              

               

               
            

            

           
 

          

        
               

                
           

                 
            

             
                

            
          

             

               

             

                   

         

               

           

              

      

              

            

                  

 

) so that the Φ of rule r ∈ R evaluates to true for (7) 

is actually the knowledge-base “conflict set” at time k (the set of enabled rules in terms of the knowledge-base only). The 

select phase (which picks one rule from Γk to fire) is composed of “conflict resolution strategies” (heuristic inference 

strategies [2, 25, 26]) of which a few representative ones are listed below: 

1. Refraction: All rules in the conflict set that were fired in the past are removed from the conflict set. However, if firing 

a rule affects the matching data of the other rules’ antecedents, those rules are allowed to be considered in the conflict 
resolution. 

2. Recency: Use an assignment of priority to fire rules based on the “age” of the information in the knowledge-base 
that matches the premise of each rule. The “age” of the data that matches the premise of a rule is defined as the 
number of rule firings since the last firing of the rule which allows it to be considered in the conflict set. 

3. Distinctiveness: Fire the rule that matches the most (or most important) data in the rule-base (many different types 
of distinctiveness measures are used in expert systems). Here, we will count the number of different terms used in 
the antecedent of a rule and use this as a measure of its distinctiveness. 

4. Priority Schemes: Assign a priority ranking of the rules then choose from the conflict set the highest priority rule 
to fire. 

5. Arbitrary: Pick a rule from the conflict set to fire at random. 

It is understood that the distinctiveness conflict resolution strategy is actually a special case of a priority scheme but 

we include both since distinctiveness has, in the past, been found to be useful in the development of expert systems. 

Note that in a particular expert system any number of the above conflict resolution strategies (in any fixed, or perhaps 
variable order) may be used to determine which rule from the conflict set is to be fired. Normally, these conflict 

resolution strategies are used to “prune” the size of the knowledge-base conflict set Γk until a smaller set of enabled rules 
is obtained. These rules are the “enabled rules” in the model C of the combined knowledge-base and inference engine 
after the conflict resolution pruning. If all the conflict resolution strategies are applied and more than one rule remains, 
then (5) above (“Arbitrary”) is applied to randomly fire (not according to any particular statistics) one of the remaining 

rules. The act phase will be modeled by the operators which represent the actions taken on the knowledge-base and 

inference engine if a rule with the corresponding input event to the inference loop occurs. 

The priority and distinctiveness of a rule in the knowledge-base are fixed for all time, but the refraction and recency 

vary with time. Thus, the inference engine state xi has to carry the information regarding both refraction and recency. 

Assume that the knowledge-base has nr rules and the rules are numbered from 1 to nr. Define a function Π(i) to be 1 if 

the rule i is deleted from the conflict set, and 0 if rule i is allowed to be considered in conflict resolution. This function is 

used for representing the refraction component of the select phase. Let p = [Π(1)Π(2)Π(3)...Π(nr)]t be an nr-vector whose 

components represent whether a rule can be included in the conflict set when it is enabled in state xb. Let the nr-vector 

s = [s1 s2 s3 ... snr]t where si is an integer representing the age of information in the knowledge-base which matches the 

premise of rule i (to be fully defined below). We will use s to help represent the recency conflict resolution strategy. The 

inference engine state is defined as xi = [pt st]t ∈ Xi. 

cTo complete the model of the expert system we need to fully define gc and fe . The state transitions that occur to 

update p and s are based on the refraction and recency of the information represented by the components of xi. A matrix 

A is used to specify how to update p and s and is defined to have a dimension of nr × nr and its ijth component, aij = 1(0) if 
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firing rule i (does not) affects the matching data of rule j. Essentially, A contains static information about the 

interconnecting structure of the rule-base which is automatically specified once the rules are loaded into the knowledge-

base and before the dynamic inference process is started. It provides a convenient way to model the recency and 

refraction schemes. 

We use variables ̃ ei,di, and pi, for i,1 ≤ i ≤ nr to define the update process for x , and s where ̃ ei = 1(0) indicates that 

rule i is enabled (disabled), di holds the distinctiveness level of rule i (the higher the value is, the more distinctive the 

rule is), and pi holds the priority level of rule i (the priority is proportional to the pi value). The di and pi components are 

specified when the knowledge-base is defined and they remain fixed. The values of si,e˜i, and Π(i) change with time k, so 

we use , and Πk(i) respectively to denote their values at time k. 

The inference loop in the expert system can be executed in the following manner: First, through “knowledge 

acquisition” the knowledge-base is defined; then p,s, and ˜ei,1 ≤ i ≤ nr are initialized to 0. The inference step from k to k 

+1 is obtained by executing the three following steps (we list this in a “psuedocode” form to help clarify how we have 

done our analysis for our applications in Sections 4 and 5): 

1. Match Phase 
FOR rule r = 1 TO rule r = nr DO: 

IF r ∈ Γk THEN ˜ekr := 1 { Finds the enabled rules } 

IF there is just one r such that ˜ = 1 THEN GOTO the Act Phase 

IF there are no r such that ˜ = 1 THEN STOP { expert system not 

properly defined, i.e., it cannot properly react to all possible process output/user input conditions. } 

2. Select Phase 

FOR rule r = 1 TO rule r = nr DO: { Pruning based on refraction } 

IF ˜ekr = 1 THEN 

IF Πk(r) = 1 THEN ˜ekr := 0 

IF there is just one r such that ˜ = 1 THEN GOTO the Act Phase 

IF there are no r such that ˜ := 1 THEN STOP { Expert system not properly defined } LET s = 

−∞{Pruning based on recency } 

FOR j = 1 TO 2 DO: { Search for rule(s) with the lowest age value(s) } FOR rule r = 

1 TO rule r = nr DO: 

IF ˜ekr = 1 THEN 

IF −skr < s THEN ˜ekr := 0 

ELSE s:=−skr 

IF there is just one r such that = 1 THEN GOTO the Act Phase 
LET d = 0 {Pruning based on distinctiveness } 

FOR j = 1 TO 2 DO: { Search for rule(s) with the highest distinctiveness value(s) } FOR rule r = 1 

TO rule r = nr DO: 

IF ˜ekr = 1 THEN 

IF dr < d THEN ˜ekr := 0 
ELSE d:=dr 

IF there is just one r such that ˜ = 1 THEN GOTO the Act Phase 
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LET p = 0 {Pruning based on priority } 

FOR j = 1 TO 2 DO: { Search for rule(s) with the highest priority } FOR rule r = 

1 TO rule r = nr DO: 

IF ˜ekr = 1 THEN 

IF pkr < p THEN ˜ekr := 0 

ELSE p:=pr 

LET r be any r such that ˜ {Pruning based on “arbitrary” } 

3. Act Phase 

Let 

Let (x {Update the knowledge-base state; the state xik+1 is defined below} 

{Remove rule r from the conflict set based on refraction} 

FOR rule r = 1 to rule r = nr DO 

IF r ∈ Γk THEN skr r + 1 {Increment the matching age for all rules +1 := sk 

that were in the conflict set (for recency)} 

FOR r=1 TO r=nr DO 

IF = 1 THEN Πk+1(r) := 0 and skr +1 := 0 {Allow the rules affected by the firing of rule r to be 

considered in the conflict set and reset ages of these rules to 0} 

In the step “pruning based on refraction” where it says “STOP” (i) the condition can be true since even though the 

rules are enabled, refraction pruning could reduce the size of the set of enabled rules to zero, and (ii) one could change 

this to “Reset the ̃ ekr values to the values they had before entering pruning based on refraction and continue” so that the 

expert system uses the refraction conflict resolution strategy only if it reduces the size of the conflict set. 

, is the action defined by the consequent formula of rule r taken on 

the action defined for updating the inference engine state xik. In the steps 

discussed above, the conflict resolution is done based on refraction, recency, and distinctiveness followed by priority 
(with “arbitrary” making any final decisions if there is more than one rule). In other cases, the conflict resolution 
strategies may have a different order (the choice of the order being dictated by the application at hand). 

To summarize, the operation of the expert system proceeds by: 

1. Acquisition of , the process output eok and user input events at time k, 

2. Forming the conflict set Γk in the match phase from the set of rules in the knowledge-base and based on , the 

current status of the truth of various facts, and the current values of variables in the knowledge-base (i.e., xbk), 

3. The use of conflict resolution strategies (refraction, recency, distinctiveness, priority, and arbitrary) in the 

selectphase to find one rule to fire (this defines ), and 

4. Executing the actions characterized by the consequent of rule r in the act phase. This involves updating the 

knowledge-base and inference engine state (i.e., finding ) and generating the process input and/or 

conclusions (characterized by 

The timing of the event occurrences in the expert system is such that the expert system is synchronous with the 
process (i.e., if a disturbance or command input event occurs in the process it causes a process output event to occur 
which will cause a rule to fire) and with the user input (i.e., if a user input event occurs, the expert system will 

Note that in the act phase ), where 

the current knowledge-base state x 
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immediately react to it also). Hence, in repsonse to process output and user input events, the expert system fires rules 
to generate process inputs (sets of enabled command input events). It is important to note that such synchronization is 

often used in systems and control applications. To maintain such synchronization one senses not only the event values 
but also the time at which they change. For some processes the switching times of the events are automatically sensed 

by measuring the event values. For others, special threshold detection and logic circuitry must be employed to obtain 
the switching times. 

2.3 The Reasoning Capabilities of the Expert System 

In this Section we will further clarify what class of expert systems we are considering by explaining what types of 

reasoning they can achieve. The expert system C can learn since it can evaluate its own performance (e.g., in terms of 

what resources it is utilizing), can remember what it has done in the past (in its state), and can modify it future decisions 

to ensure that it will enhance its future performance. The type of learning possible is, however, not the most general 

possible since under the current formulation we cannot automatically synthesize an arbitrary number of completely 

new rules r ∈ R. This is not a significant limitation on the learning capabilities of the expert system C since: 

1. The rule-base R of C can be partitioned into a finite set of “standard rules” Rs as they are defined above and a finite 

set of rules Rt that act as “templates”4. The expert system can use rules r ∈ Rs to evaluate its performance and take 

actions to fill in the meaning of the rule templates by changing their premises and consequents. In this way 

the expert system can, in a structured way, synthesize a finite number of new rules to improve the performance of 

the system (and this is in fact the way that most current expert learning systems operate). 

2. The expert system can use the elements in working memory as parameters in a learning algorithm to adapt,for 
example, the applicability of subsets of rules, or with simple changes to the inference mechanism, to adapt the 
priorities and distinctiveness of the rules. 

We see that the expert system has very general capabilities to learn since it can adapt its rule-base, working memory, 

and inference mechanism. 

Next, note that the expert system C can plan since it can predict a finite number of steps into the future what will 

happen as the result of its actions and it can reformulate what plan should be taken by monitoring the progress of the 

execution of the current plan. This type of planning is, however, not the most general possible since under the current 

formulation we cannot plan into the future an arbitrary number of steps. This is not a significant limitation on our expert 

system C since practical considerations dictate that most often one should only plan ahead a relatively small number of 

steps (especially for very uncertain environments). Note that to plan into the future we define the knowledge base state 

where xb is the standard knowledge-base state defined above and xbp is a vector of state trajectories that 

are generated by simulating plans under consideration into the future from time k to time k + N (where N is the maximum 

number of steps we can simulate into the future)5. To keep the dimensions of xb finite one must require that the expert 

system only conducts a finite number of simulations into the future; however, all practical planning applications will 

4 The only reason for requiring that the number of rules in the expert system is finite is to ensure that the process of making an inference step is 

computable. 

5 Note that with these planning capabilities our expert system can in fact perform a significant amount of reasoning at each time step k before it 

takes actions and the next time step is taken. This can be done by simulating into the future, making an assessment of the 

best actions to take (rules to fire), setting a flag, and using this flag to enable the best rules to fire at time k 

11 



                   

         

 

   

         

           

         

    

            

              

               

               

           

          

         

  

           

                 
           

            
                 
            

                

        

         

               

             

                

                

                

      

         
       

    

            

            

 

dictate that only a finite amount of time is used in plan generation so that only a finite number of simulations can be 

conducted. We see that in addition to general learning capabilities, the expert system C has very general planning 

capabilities. 

3 Properties of Expert Systems 

There are extensive studies addressing the analysis of consistency and completeness properties of knowledge-bases (i.e., 

the static properties - the structure and interconnection of the information in the knowledge-base). In particular, in [16, 

17, 18, 19, 20] the authors develop algorithms to check that the knowledge engineering process used to produce the 

knowledge-base has not produced conflicting rules, redundant rules, circular rules, subsumed rules, etc.; hence, these 

methods are sometimes referred to as “knowledge-base debugging tools” or methods for “static analysis”. Such 

consistency and completeness characteristics of a knowledge-base will affect the overall behavior of the expert system 

and in fact the studies in [16, 17, 18, 19, 20] provide the first step towards performing a verification of the qualitative 

properties of the expert system. In this Section we will show that if one were to only analyze the static properties of the 

knowledge-base, one would not be performing a complete analysis of the dynamics of the full rule-based expert system. 

In addition, we will explain the importance of reachability, cyclic behavior, and stability properties and show how to 

characterize and analyze such properties in the mathematical framework of Section 2. 

3.1 Static Properties of Knowledge-Bases 

In this Subsection we discuss the verification of properties of an isolated rule-based expert system. Hence, we assume 

that there are no user input events and process output events that influence the inference loop ( ). We discuss how 
static properties influence the dynamics of the inference process to illustrate how the analysis approach in [16, 17, 18, 

19, 20] ignores several important properties of dynamical rule-based expert system operation. Essentially this requires 
relating properties of the interconnection of the syntax of the rules to the state trajectories (sequences of states resulting 

from the firing of rules) representing knowledge and information flow in the rule-base and inference engine. 

In order to study the effects of static properties of rule-bases on the dynamics of the inference process it is helpful to 

introduce the notion of Consequent-Antecedent Compatibility. A consequent formula is said to be 

“consequentantecedent-compatible (CAC) with an antecedent formula at time k” if the actions taken by the consequent 

formula at time k will result in the antecedent formula being true at time k + 1 (note that we are using the convention 

that a rule fires at time k). For example, if C1 makes a1 true, i.e., Tk+1(a1) := 1, C2 is defined as x4k+1 := x4k + 5 where x4k = 2, P1 

tests x4 < 10, the consequent formula Ψ = C1 ∧ C2, and the antecedent formula is Φ = T(a1) ∧ P1, then Ψ is CAC to Φ at time 

k. Notice, however, that due to the dynamic behavior of the expert system, Ψ is not necessarily CAC to Φ for all k. Logical 

truth in the study of the dynamic inference process depends on the state of the expert system. In the above example, if 

= 6 at time , Ψ is not CAC to Φ at time k. 

Next, we will clarify the relationships between several consistency and completeness properties of rule-bases and 

the dynamics of the inference process in expert systems. 

3.1.1 Logical Consistency Issues in Rule-Bases 

In [16, 17, 18, 19, 20] the authors investigate “Redundant Rules”, “Redundant Rule Chains”, “Conflicting Rules”, 

“Conflicting Rule Chains”, “Subsumed Rules”, “Unnecessary IF Conditions”, and “Circular Rules” all with the intent of 
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checking whether the knowledge in the rule-base is inconsistent. Their analysis provides for “warnings” about possible 

inconsistencies but does not take into consideration the effects of the inference engine. Moreover, as we will show next, 

such static analysis of the syntax of the rules can ignore the underlying qualitative properties of the dynamical inference 

process (especially if user inputs and process outputs are considered). 

Redundant Rules and Redundant Rule Chains 

Two or more rules which have logically equivalent antecedents at a specific time (the antecedents have the same 

conditions whose order is not important) and equivalent consequent formulas (same actions taken when the rules fire) 

are called “redundant rules”. A “rule chain” is a sequence of rules which produces a state trajectory. Two or more rule 

chains which have equivalent antecedents and consequent formulas for each rule are called redundant rule chains. For 

example, let Φ1 = T(a1)∧P1 ∧P2,Φ2 = P1 ∧T(a1)∧P2,Φ3 = P1 ∧P2 ∧T(a1),Ψ1 = [T(a2) := 1]∧[x5 := x5 +2], and Ψ2 = [x5 := x5 

+2]∧[T(a2) := 1]. Then IF Φ1 THEN Ψ1, IF Φ2 THEN Ψ2 and IF Φ3 THEN Ψ1 are redundant rules. The rule chains IF Φ4 

THEN Ψ4, IF Φ5 THEN Ψ5 and IF Φ6 THEN Ψ6, IF Φ7 THEN Ψ7 are redundant rule chains if Φ4 and Φ6, Φ5 and Φ7, Ψ4 and 

Ψ6, Ψ5 and Ψ7 are equivalent, and Ψ4 is CAC to Φ5 and Ψ6 is CAC to Φ7. 

Redundant rules affect the dynamical behavior of the expert system. Once one of the redundant rules fires, it may be 
removed from the conflict resolution by refraction. However, the other redundant rule can still be considered in the 
conflict resolution. The static analysis as in [16, 17, 18, 19, 20] can be used to detect, then remove such rules if needed. 

Conflicting Rules 

Two or more rules which have logically equivalent antecedents at a specific time but their consequent formulas have 

at least one component that results in contradictory logical value or inconsistent actions upon a variable when the rules 

fire are called “conflicting rules”. “Conflicting rule chains” occur when two or more rule chains have logically equivalent 

antecedents for each rule but the firing actions of the chains cause at least one inconsistency in at least one variable in 

the state sequence. For example, let Φ1 = T(a1)∧P1,Φ2 = P1 ∧T(a1),Ψ1 = [T(a2) := 1]∧[x2 := x1 +1], and Ψ2 = [T(a2) := 0] ∧ 

[x2 := x1 + 1]; then IF Φ1 THEN Ψ1, and IF Φ2 THEN Ψ2 are conflicting rules. The rule chains IF Φ4 THEN Ψ4, IF Φ1 THEN 

Ψ1 and IF Φ4 THEN Ψ5, IF Φ2 THEN Ψ2 are conflicting rule chains if Ψ4 is equivalent to Ψ5, Ψ4 is CAC to Φ1, and Ψ5 is CAC 

to Φ2. 

For the model C, conflicting rules are allowed as they simply characterize the possibility of a diversity of reasoning 

approaches. If one is concerned about the presence of conflicting rules/conflicting rule chains, the static analysis in [16, 

17, 18, 19, 20] can be used to detect their presence; however, this type of analysis can flag some rule chains as “conflicting” 
where they really merely represent the different possible ways of reasoning about the same problem. 

Subsumed Rules 

Two or more rules which have equivalent consequent formulas but with one which has more restricted antecedent 

conditions than the others are called “subsumed rules”. In other words, the truth value of a rule’s antecedent at a specific 

time implies the truth of the ones of the other rules. For example, let Φ1 = T(a1) ∧ P1 ∧ T(a2),Φ2 = T(a1
) ∧ P1,Φ3 = T(a1

) ∧ 

T(a2), IF Φ1 THEN Ψ1 (rule 1), IF Φ2 THEN Ψ1 (rule 2), and IF Φ3 THEN Ψ1 (rule 3). Hence rule 1 has more restricted 

antecedent conditions than rules 2 and 3; hence, rule 1 is logically subsumed by rule 2 and 3. 
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Subsumed rules affect the dynamic behavior of the system since the firing of a rule depends on distinctiveness of the 
antecedent. In terms of the model C, erasing the more restricted rules from the knowledge-base will affect the selection 
of which rule to fire. For example, if there is another rule (rule 4) which has three conditions in the example above, the 
inference mechanism will select rule 1 and 4 after pruning the enabled rules using distinctiveness strategy. Then it will 
use the next conflict resolution strategy to select which rule to fire. However, if rule 1 is erased, the inference mechanism 

will only have rule 4 to fire after the distinctiveness pruning, so erasing the more restrictive rule changes the conflict 
resolution pruning of certain enabled rules which will produce different results. Hence, static analysis may recommend 
removing a rule but for the study of the dynamics of the inference process such rules may be needed for inference control. 

Unnecessary IF Conditions 

Two or more rules with the same consequent formulas but with at least one condition of their antecedents in 
complement with one of the other rule’s are called “unnecessary IF conditions”. For example, if 

• Rule 1 : IF T(a1) ∧ T(a2) THEN Ψ1 

• Rule 2 : IF T(a1) ∧ ¬T(a2) THEN Ψ1 

• Rule 3 : IF T(a1) ∧ [x4 ≤ 4] THEN Ψ2 

• Rule 4 : IF T(a1) ∧ [x4 > 4] THEN Ψ2 

then Rules 1 and 2 have unnecessary IF conditions as do Rules 3 and 4. 

Unnecessary IF conditions may affect the dynamic behavior of the system in terms of selecting which rule to fire. 

Eliminating the unnecessary conditions of the rules changes their distinctiveness; hence, such modifications must be 
done in such a way so that conflict resolution in the inference engine leads to a desirable dynamic behavior (in certain 
cases, the unnecessary IF conditions can be kept if they are important to achieve proper inference). 

Circular Rules 

“Circular rules” can occur if there is a set of rules which has CAC properties. Such a circular chain of rules creates 

circular chain of states in terms of model C. For example, IF Φ1 THEN Ψ1, IF Φ2 THEN Ψ2 and IF Φ3 THEN Ψ3 are circular 

rules if Ψ1 is CAC to Φ2, Ψ2 is CAC to Φ3 and Ψ3 is CAC to Φ1. Circular rules affect the dynamic behavior of the system and 

may lead to a circular reasoning (but not necessarily so, since the inference mechanism may be able to reason around it) 

which is not desirable in most cases. Circular rules create state cycles, but the existence of state cycles does not always 

imply that all rules forming state cycles are circular rule chains as defined in [20]. Here is an example to illustrates that 

behavior: 

• Rule 1 : IF T(a1) THEN T(a3) := 1 

• Rule 2 : IF T(a3) THEN T(a4) := 1 

• Rule 3 : IF T(a4) ∧ ¬T(a2) THEN [T(a3) := 0] ∧ [T(a4) := 0] 

Notice that those rules are not necessarily all CAC so that they do not form a circular rule chain as defined in 
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[16, 17, 18, 19, 20], yet they form a circular sequence of states. Let the state xb = [T(a1) T(a2) T(a3) T(a4)]t, then 
we get the following sequence of states: 

10 Rule1 

00 −→ 

10 

10 

Rule2−→ 

10 

11 

Rule3−→ 

10 

00 

. 

This shows that static analysis as in [16, 17, 18, 19, 20] will not always detect circular reasoning; this motivates the 
importance of performing analysis of the dynamic behavior of the full expert system. 

3.1.2 Logical Completeness Issues in Rule-Bases 

In [16, 17, 18, 19, 20] the authors investigate “Unreferenced Antecedent Conditions”, “Illegal Antecedent Conditions”, 

“Unreachable Conclusions”, and “Deadend Goal and Deadend State” all with the intent of checking whether or not there 
is enough information in the knowledge-base connected in the proper fashion to ensure that from the initial knowledge, 
a goal state can always be reached. Their work provides for warnings that the goal states may not be reachable but does 
not provide for a complete analysis of the reachability of the goal states when the inference engine is added (i.e., their 
analysis is only on the knowledge-base and not on the complete inference loop which includes the inference mechanism). 

Unreferenced Antecedent Conditions 

A state where there is no enabled rule is referred to as an “Unreferenced Antecedent Condition” state. This is similar 

to the notion of “Unreferenced Attribute Values” in [16, 17, 18, 19, 20]. In static properties, this implies some values in 

the set of possible values of an object’s attribute are not covered by any rule’s IF conditions [20]. In terms of the model 

C, this situation may lead to a state/states where there is no rule whose antecedent conditions match the information in 

that/those state(s). This affects the dynamic behavior represented by the model C, since there will be no rule to fire 

which leads to another state. In computer science this state is often called a dead-lock state; essentially we would say 

that the expert system is not properly defined so that it can react to all possible situations. 

A dead-lock state is undesirable in most cases, since it may affect the reachability of a certain set of goal states. 

However, dead-lock states may not cause problems if they are goal states. 
Illegal Antecedent Conditions 

An illegal antecedent condition occurs when a rule is never enabled in any state, because its antecedent conditions 
are never all true. This type of rule merely wastes memory in the knowledge-base so one may want to use static analysis 

to detect and remove such rules. From a dynamical systems perspective it may be hard to verify that a rule will never be 
enabled since in this case one must also consider the unpredictable behavior of the user and dynamic process and all 
possible states that the expert system can enter. 

Unreachable Conclusion 

In static analysis, a conclusion of a rule should either match a goal or match an IF condition of another rule in order 

to guarantee the goal is reachable [20]. In terms of model C, firing a rule must lead to a state where there must be at least 

one enabled rule; otherwise, the last rule fired causes dead-lock. Note, however, that two consecutive rules do not have 

to be CAC. For example, if we only have two rules: 
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• Rule 1 : IF T(a1) THEN T(a2) := 1 

• Rule 2 : IF T(a2) ∧ ¬T(a3) THEN [T(a2) := 0] ∧ [T(a3) := 1] 
then the state sequence may be of the form: 

Rule1−→ Rule2−→ 

Note that the conclusion of the second rule is reachable from [1 0 0]t even though the consequent formula of rule 1 is 

not necessarily CAC to the antecedent of the second rule. If static analysis says that the consequent of rule 1 is CAC with 

rule 2 then [1 0 1]t would appear to be reachable; however, if initially we start at [1 1 1]t, the state [1 0 1]t is not reachable. 

If static analysis says that the consequent of rule 1 is not CAC with the antecendent of rule 2 then if we start at [1 0 0]t it 

will also appear that [1 0 1]t is not reachable. This shows that static analysis as in [16, 17, 18, 19, 20] is insufficient for 

analyzing reachability of conclusions (especially when one also considers the dynamics of the inference mechanism, the 

user inputs, and the inputs from a dynamic process). 

Dead-end Goal and Dead-end State 

Syntactically, to achieve a goal, it is required that the goal is matched by a conclusion of at least one of the rules; 

otherwise, the goal cannot be achieved and is referred to as “dead-end goal”. Similarly, the IF conditions of a rule must 

meet this requirement; otherwise, it is a “dead-end IF” condition [20]. Notice that this is only an ad-hoc test to determine 

if a goal state is reachable from the initial state. 

In terms of the model C, reachability of a state is determined by the presence of an inference path corresponding to 

a sequence of states from the initial state to the goal state. If not all the inference trajectories originating from the initial 
state end up in the set of goal states, then it is possible that the expert system may succeed, but not guaranteed. For 
analysis of qualitative properties we need to show that all paths from the initial state reach a goal state and thereby 

perform a complete reachability analysis to verify whether the goals can be obtained. 

To summarize, in developing a rule-base expert system it is important to study the static structure of the rules and 
their interconnections. Debugging Programs can help in structuring and eliminating some unnecessary rules and in 
detecting certain consistency and completeness problems with the knowledge-base. However, the analysis of the 
dynamics of the inference process still needs to be performed since the static analysis cannot detect/predict some of the 
properties of the dynamical expert system. The key properties/issues that are ignored or treated inadequately by the 
analysis of knowledge-bases in [16, 17, 18, 19, 20] are: 

• the presence of the inference engine, 

• user inputs and information inputs from a dynamical process, 

• circular reasoning (a logical inconsistency), 

• reachability (logical completeness property), and hence 

• stability (to be defined in the next Section). 
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In the next Section we show how to characterize and analyze qualitative properties (i.e., what some people would call 
“dynamic properties”) of the full expert system that interfaces to a user and a dynamic process. 

3.2 Characterization and Analysis of Qualitative Properties of Expert Systems 

In this Section we characterize, and introduce methods to analyze, three different types of behavior that expert systems 
are often designed to achieve. 

3.2.1 Reachability Properties 

The results in [13] showed the relationship between performing chains of inference and reachability. In particular, the 
authors define reachability in the context of inference processes as the ability to fire a sequence of rules to derive a 
specific conclusion from some specific initial knowledge. In system-theoretic terms this is a standard definition for 
reachability that one might call a “state-to-state” property. Here we consider a slightly more general reachability 

property for studying inference processes in expert systems. For ) denote the set of all finite 
length state trajectories of C that begin at and end in Xm. 

Definition 3.1 A system C is said to be “ ” if there exists a sequence of events to occur that produces a 
state trajectory s ∈ X(C,xc0,Xm). 

Note that Xm can represent the desired operating conditions (goals) of the expert system with as its initial state. 

Hence, we will consider what could be called a “point-to-set” reachability problem for expert systems. This general type 

of reachability is needed when it is possible that there are several valid states that can be reached from one initial state 

(or in the situation where it is known that at least one state in a set of states Xm is reachable). 

To automate testing of the property in Definition 3.1 we use a shortest path algorithm to find the state trajectory 

) when it exists (we will assign a cost of one to firing a rule, i.e., the occurrence of an event). Note 

that while the use of the shortest path algorithm on a metric space (to be defined below) offers several advantages with 

regard to computational complexity so that exhaustive search is not necessary [27], unless the state-space is finite we 

will not be able to conclude anything about unreachability (i.e., we cannot easily determine that the system does not 

possess a specified reachability property unless the state-space is finite). Moreover, we note that if the state-space is 

finite the complexity of testing the reachability property is O(n2), i.e., polynomial. 

3.2.2 Cyclic Properties 

In the verification of the qualitative properties of the expert system, the study of cyclic behavior is of paramount 

importance. This is due to the fact that if cycles exist, the expert system could get “trapped” in a circular argument so 

that there is no way it can achieve its ultimate task. This cyclic characteristic will be particularly problematic for expert 

systems that operate in time-critical environments (e.g., in a failure diagnosis problem). Let Xy ⊂ Xc denote a subset of 

the states such that each xy ∈ Xy lies on a cycle of states that is in Xy. 

Definition 3.2 A system C is said to be “ ” if there exists a sequence of events to occur that produces a state 

trajectory . 
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It is a hard problem to detect the presence of cyclic behavior, since one may not be able to find Xy without studying 

all system trajectories. To help automate the testing of the property in Definition 3.2 we can use a two step approach. 

First we specify a set Xy (which can be found with a search algorithm described in [28] if the state-space is finite), then 

we use a search algorithm to find the inference path that starts at and ends in Xy (if one exists) [28]. Note that if Xy is 

the null set then we have determined that the system has no cycles while if Xy is not the null set then we know it has 

cycles; hence for some classes of systems we can explicitly test if they are cyclic or not. Note that the complexity of finding 

Xy is polynomial if the state-space is finite so that the overall complexity of testing for cyclic properties is polynomial in 

terms of the size of the state-space. In our applications in Sections 4 and 5 we will actually verify that the expert system 

does not contain undesirable cycles by verifying certain stability properties to be defined next (and thereby avoid 

problems with computational complexity). 

3.2.3 Stability Properties 

In terms of characterizing human cognitive functions, Lyapunov stability [29, 30, 23, 31] for the expert system can be 
viewed as a mathematical characterization of an expert system’s ability to concentrate (i.e., to focus, to pay attention) 
on the task at hand. Clearly then verification of stability is critical since without stability the expert system can, for 
example, wander aimlessly not achieving the goals that it is supposed to achieve. From an engineering or scientific 
standpoint, rather than pyschological standpoint, stability of an expert system is of fundamental importance due to the 
fact that guarantees of stability often ensure that the system variables will stay in safe operating regions (e.g., variables 
in working memory stay bounded) and that other performance objectives (e.g., reachability or optimal use of resources) 
can be met. Below, we briefly overview some recent results in Lyapunov stability analysis [29, 30] that apply to the model 

, and {Xc;ρ} a metric space. Denote the distance from point x to the set 

where Xz ⊂ Xc. The “r-neighborhood” of an arbitrary set Xz ⊂ Xc is denoted by 

the set S(Xz;r) = {x ∈ Xc : 0 < ρ(x,Xz) < r} where r > 0. Define E ) to be the finite and infinite length physically possible 

event trajectories of C which start at and let ) be the state of C reached from after the occurrence of event 

sequence Ek = e0e1 ...ek−1. The set Xm ⊂ Xc is called “invariant with respect to (w.r.t.) C” if from it follows that 

for all Ek such that ) and k ≥ 0. 

Definition 3.3 An invariant set Xm ⊂ Xc of C is called “stable in the sense of Lyapunov w.r.t. Ecv” if for any 

) > 0 it is possible to find a quantity δ > 0 such that when we have for all Ek such that 

and k ≥ 0. If furthermore, for all Ek such that as k → ∞, then the 

invariant set Xm of C is called “asymptotically stable w.r.t. Ec v”. 

Definition 3.4 If the invariant set Xm ⊂ Xc of C is asymptotically stable in the sense of Lyapunov w.r.t. Ecv, then the set Xv of 

all states having the property for all Ek such that as k → ∞ is called the 

“region of asymptotic stability of Xm w.r.t. Ev”. 

used here for the expert system. 

Let denote a metric on Xc 
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X (x0, Ek, k) of C x8 E x c 

p(X (x3, Ek , k), Xb) < (3 EkE E E~(x0) 
xg E x c X (x0, Ek, k) 

V (X(x0, Ek, k)) is a 

V(X (x0, Ek, k)) ---+ 0 as k ---+ oo 

Definition 3.5 The invariant set Xm ⊂ Xc of C with region of asymptotic stability Xv w.r.t. Ecv is called “asymptotically stable 

in the large w.r.t. Ecv” if Xv = Xc. 

Definition 3.6 The motions which begin at are bounded w.r.t Ecv and the bounded set X ⊂ Xc if 

there exists a β > 0 such thatfor all Ek such thatand for all b 

k ≥ 0. C is said to possess Lagrange Stability w.r.t. Ecv and the bounded set Xb ⊂ Xc if for each the motions 

for all Ek such that and all k ≥ 0 are bounded w.r.t. Ecv and Xb. 

The following Theorems provide the necessary and sufficient conditions for the analysis of any system represented 

via C (the proofs are contained in [29, 30]). 

Theorem 3.1 In order for an invariant set Xm ⊂ Xc of C to be stable in the sense of Lyapunov w.r.t. Ecv it is necessary and 

sufficient that in a sufficiently small neighborhood S(Xm;r) of the set Xm there exists a specified functional V with the 

following properties: (1) For all sufficiently small c1 > 0, it is possible to find a c2 > 0 such that V (x) > c2 for x ∈ S(Xm;r) and 

ρ(x,Xm) > c1, (2) For all c4 > 0 as small as desired, it is possible to find a c3 > 0 so small that when ρ(x,Xm) < c3 for x ∈ S(Xm;r) 

we have V (x) ≤ c4, and (3) 

non-increasing function for k ≥ 0, for , for all k ≥ 0, as long as for all Ek such that 

. 

Theorem 3.2 In order for an invariant set Xm ⊂ Xc of C to be asymptotically stable in the sense of Lyapunov 

w.r.t. Ev it is necessary and sufficient that in a sufficiently small neighborhood S(Xm;r) of the set Xm there exists a specified 

functional V having properties 1, 2 and 3 of Theorem 3.1 and furthermore for all Ek such 

that for all k ≥ 0 as long as . 

An important advantage of the Lyapunov approach in the study of stability properties is that it is often possible to 

intuitively define an appropriate Lyapunov function V (years of use have shown this - see the extensive literature in the 

area of nonlinear analysis) and we will illustrate how this is done in the examples. However, specifying the Lyapunov 

function is sometimes problematic for certain applications. Motivated by the difficulties in specifying a Lyapunov 

function, we next discuss how one can sometimes use search algorithms to study stability properties. The study of 

asymptotic stability in the large or of regions of asymptotic stability Xv using search methods involves finding the 

invariant set Xm and showing that all paths which originate from any state in Xv will end up in Xm (one must be careful 

with the imposition of the constraints specified by Ecv when using a search algorithm). The complexity of showing that a 

particular system is asymptotically stable in the large for a finite state-space is polynomial in terms of the size of the 

state-space; however, for real-world problems using the algorithmic approach can be computationally prohibitive. It is 

for this reason that we will rely on (i) the choice of an appropriate Lyapunov function and an analytical proof when such 

a function is easy to define, and (ii) the use of an algorithmic approach when the definition of the Lyapunov function is 
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not evident. In fact, in Section 4 we will use the search algorithm approach to stability analysis, while in Section 5 we 

will choose an appropriate Lyapunov function and prove that an expert system possesses certain stability properties. 

Finally, it is important to note that while we are able to characterize and analyze more general properties than the 

static properties examined in the past (see Section 3.1), if we use an algorithmic approach to the verification of the 

properties, the complexity of verification of the qualitative properties discussed above is generally higher than that of 

the static properties. For instance, the complexity of studying most static properties is bounded by the number of rules 

where the complexity of testing each of the qualitative properties (reachability, cyclic behavior, and stability) is bounded 

in terms of the size of the state-space. Since it is often the case that there will be significantly more states than rules 

verification of our qualitative properties will generally be more complex than that of the static properties. It is for this 

reason that the Lyapunov approach to verification of stability properties is so important. The problem of computational 

complexity can be completely avoided if one can find an appropriate 

Lyapunov function and show that it satisfies certain properties listed above. We see that as with the nonlinear analysis 
of more conventional dynamical systems one of the primary advantages of the Lyapunov approach lies in the lack of 
dependence on explicitly enumerating all possible system trajectories in the study of stability properties (i.e., the 
Lyapunov approach allows us to prove stability properties without running the rule-based system for all possible 
scenarios - which can be particularly problematic for expert systems that interface to a dynamic and uncertain 
environment). 

Water-Jug Example 

In this Section we study reachability and stability properties of a rule-based expert system that solves a water-jug filling 

problem. It is given that there is a 4-gallon jug and a 3-gallon jug named “jug1” and “jug2”, respectively. Neither has any 

measuring markers on it. There is a pump that can be used to fill the jugs with water. The goal is to get exactly 2 gallons 

of water into the 4-gallon jug and 3 gallons into the 3-gallon jug. In some situations we can dump the water out of the 

jugs. Let jug1 and jug2 denote the number of gallons of water in the jugs. The operations that can be performed are 

constrained as follows: 

1. Fill the 4-gallon jug. After this operation, jug1=4 and jug2 remains the same. This operation is not applicable if 
the 4-gallon jug is already full. 

2. Fill the 3-gallon jug. After this operation, jug2=3 and jug1 remains the same. This operation is not applicable if 
the 3-gallon jug is already full. 

3. Dump all the water out of the 4-gallon jug. After this operation, jug1=0 and jug2 remains the same. 

This operation is not applicable if jug1 is already empty. 

4. Dump all the water out of the 3-gallon jug. After this operation, jug2=0 and jug1 remains the same. This 

operation is not applicable if jug2 is already empty. 

5. Move water from the 4-gallon jug to the 3-gallon jug until either the 4-gallon jug is empty or the 3-gallon 

jug is full. This operation is not applicable if jug1 is empty or jug2 is full. 

6. Move water from the 3-gallon jug to the 4-gallon jug until either the 3-gallon jug is empty or the 4-gallon 

jug is full. This operation is not applicable if jug2 is empty or jug1 is full. 
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Next, we specify the model C for an expert system that solves this problem. As there are no inputs or outputs for the 

expert system we have Ec = ∅. The knowledge-base has xb = [x1 x2 x3 ... x42]t (with m = 42, n = 0) where x1 and x2 represent 

the contents of jug1 and jug2, respectively, and x3 through x42 represent the states x1 and x2 (liquid levels of jug1 and jug2) 

that have already been visited. The components x3 and x4 hold the initial conditions of x1 and x2, respectively, the 

components x5 and x6 hold the next x1 and x2 which have been visited and so on. At most 20 states will be visited before 

the goal is reached for any path from the initial to the goal state. This corresponds to all combinations of x1 and x2 where 

x1 can take a value among 0, 1, 2, 3, 4 and x2 among 0, 1, 2, 3. Initially, x5 through x42 are initialized to 10 (a value which 

never be reached) and x3 = x1,x4 = x2. The history of state components x1 and x2 which have already been visited is included 

in the knowledge-base state xb to avoid circular reasoning. Hence, there is an inherent mechanism imbedded in the 

knowledge-base for avoiding circular reasoning. 

The premise functions are defined as: 

P1 tests “0 ≤ x1 < 4”, 

P2 tests “0 ≤ x2 < 3”, 

P3 tests “x1 > 0”, 

P4 tests “x2 > 0”, 

P5 tests “x1 > 3 − x2”, 

P6 tests “x1 ≤ 3 − x2”, 

P7 tests “x2 > 4 − x1”, 

P8 tests “x2 ≤ 4 − x1”, 

P9 tests “x1 < 4”, 

P10 tests “x2 < 3”, 

P11 tests “[(x3 = 4) ∧ (x4 = x2)] ∨ [(x5 = 4) ∧ (x6 = x2)] ∨ ... ∨ [(x41 = 4) ∧ (x42 = x2)]”, P12 tests “[(x3 

= x1) ∧ (x4 = 3)] ∨ [(x5 = x1) ∧ (x6 = 3)] ∨ ... ∨ [(x41 = x1) ∧ (x42 = 3)]”, P13 tests “[(x3 = 0) ∧ (x4 = x2)] 

∨ [(x5 = 0) ∧ (x6 = x2)] ∨ ... ∨ [(x41 = 0) ∧ (x42 = x2)]”, P14 tests “[(x3 = x1) ∧ (x4 = 0)] ∨ [(x5 = x1) ∧ 

(x6 = 0)] ∨ ... ∨ [(x41 = x1) ∧ (x42 = 0)]”, P15 tests “[(x3 = (x1 − (3 − x2))) ∧ (x4 = 3)] ∨ [(x5 = (x1 − (3 

− x2))) ∧ (x6 = 3)] 

∨ ... ∨ [(x41 = (x1 − (3 − x2))) ∧ (x42 = 3)]”, 

P16 tests “[(x3 = 0) ∧ (x4 = (x1 + x2))] ∨ [(x5 = 0) ∧ (x6 = (x1 + x2))] ∨ ... ∨ 

[(x41 = 0) ∧ (x42 = (x1 + x2))]”, 

P17 tests “[(x3 = 4) ∧ (x4 = (x2 − (4 − x1)))] ∨ [(x5 = 4) ∧ (x6 = (x2 − (4 − x1)))] 

∨ ... ∨ [(x41 = 4) ∧ (x42 = (x2 − (4 − x1)))]”, 

P18 tests “[(x3 = (x1 + x2)) ∧ (x4 = 0)] ∨ [(x5 = (x1 + x2)) ∧ (x6 = 0)] ∨ ... ∨ 
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[(x41 = (x1 + x2)) ∧ (x42 = 0)]”, 

P19 tests “x1 = 3”, 

P20 tests “x2 = 3”, 

P21 tests “x3 = 3”, 

P22 tests “x4 = 3”, and P23 

tests “x1 = 2”. 

Note that P11 through P18 check if the next state components of x1 and x2 have been visited. The consequent formula 

C1 is defined to insert the current x1 and x2 to the proper spots in x5 through x42. 

The rules r ∈ R are: 
Rule 1: IF P1 ∧ ¬P11 THEN (x1 := 4) ∧ C1 

Rule 2: IF P2 ∧ ¬P12 THEN (x2 := 3) ∧ C1 

Rule 3: IF P3 ∧ ¬P13 THEN (x1 := 0) ∧ C1 

Rule 4: IF P4 ∧ ¬P14 THEN (x2 := 0) ∧ C1 

Rule 5: IF P5 ∧ P3 ∧ P10 ∧ ¬P15 THEN (x1 := x1 − (3 − x2)) ∧ (x2 := 3) ∧ C1 

Rule 6: IF P6 ∧ P3 ∧ P10 ∧ ¬P16 THEN (x2 := x1 + x2) ∧ (x1 := 0) ∧ C1 

Rule 7: IF P7 ∧ P4 ∧ P9 ∧ ¬P17 THEN (x2 := x2 − (4 − x1)) ∧ (x1 := 4) ∧ C1 

Rule 8: IF P8 ∧ P4 ∧ P9 ∧ ¬P18 THEN (x1 := x1 + x2) ∧ (x2 := 0) ∧ C1 

Rule 9: IF P19 ∧ P20 ∧ P21 ∧ P22 THEN (x2 := 0) ∧ C1 

Rule 10: IF P23 ∧ P20 ∧ P1 ∧ P3 ∧ P4 THEN (x1 := x1) ∧ (x2 := x2) ∧ C1 

The valid inference trajectories Ecv consist of all possible trajectories which can be produced by rule-base and the 

conflict resolution strategy. 

We use all the conflict resolution strategies introduced in Section 3. Therefore, the expert system state xc = 

) where p and s are 10×1 vectors. Since every time a rule fires the state changes and all the antecedents 

check all components of the state the matrix A is 110×10 where 110×10 is a 10-by-10 matrix of ones for this problem. This 

means that the refraction and the recency do not prune rules from the conflict set so that the expert system for this 

problem can be reduced such that there is no state associated with the inference engine. However, for completeness of 

the design illustration, p and s are included as the state of the inference engine. The distinctiveness level of each rule is 

dependent upon the conditions of its antecedent. The assigned priority to the rules is: p1 = 

2,p2 = 1,p3 = 3,p4 = 4,p5 = 5,p6 = 5,p7 = 1,p8 = 1,p9 = 6 and p10 = 6. A shortest path algorithm with the cost of firing a rule set 
to be 1 is used to find all possible paths from any initial state. 

From the system definition, the initial knowledge-base states are x 

i ≤ 42, x1 ∈ {0,1,2,3,4},x2 ∈ {0,1,2,3}}. Furthermore, the initial state of the inference engine must be such that the vectors 

p = s = 0. Thus, the initial expert system states x where 
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Xo = {xc E x c : X3 = X1,X4 = X2,Xi = 10 for 5 ::;; i::;; 42, xi E {O, 1, 2, 3, 4} ,x2 E {O, 1, 2,3} , p = s = O}. (8) 

(xo, Xm) 
s E X(C,x3, X,,.) 

5 

The invariant set (set of goal states) for the water jug is defined to be 

Xm = {xc ∈ Xc,x1 = 2,x3 = 3}. (9) 

The results of using our search algorithm show that for any given initial water level in jug1 and jug2, the goal (jug1 and 
jug2 contain 2 and 3 gallons of water, respectively) can be achieved. Once jug1 and jug2 have 2 and 3 gallons of water, 
respectively, the levels are maintained by firing rule 10. The results of our analysis can be stated formally in the following 
Theorem. 

Theorem 4.1 The above water jug problem is since there exists a sequence of events 

to occur that produces a state trajectory 

We have, however, not shown that the expert system will actually achieve the goal. We have just shown that there 

exist inference sequences that the expert system will follow that will succeed. Up till now our analysis does not guarantee 

that the expert system will definitely succeed (i.e., it may follow an improper inference sequence). Next, we show that it 

will always succeed by verifying certain stability properties. For the water jug problem, the distance between a point xc 

∈ Xc to another point is defined to be 

- reachable for all 

for any . 

. (10) 

Using a search algorithm we have verified the following result: 

Theorem 4.2 For the above water jug problem, the region of asymptotic stability of Xm w.r.t. E 

Theorem 4.2 shows that no matter what the initial liquid levels are in the jugs, our expert system can reason 

appropriately so that it can succeed in achieving the goal. Notice that this stability result inherently depends on the 

reachability result in Theorem 4.1, and that the validity of Theorem 4.2 guarantees that the expert system will exhibit 

no circular reasoning outside the invariant set (i.e., outside the goal set). 

Process Control Example 

An expert system that is used to perform control activities is called an “expert controller” and the system that results 

from connecting an expert controller to a dynamical process is called an “expert control system” (ECS) [32, 33]. 

Application of the mathematical framework in this paper to the verification of the qualitative properties of ECS can be 

found in [23, 31]. In this Section we study the expert control of a simple dynamic process called a “surge tank”; however, 

unlike the work in [23, 31] we focus here on the verification of the qualitative properties of an isolated expert controller 

that interfaces to both user inputs and the outputs of the dynamical process. 

The surge tank, which is shown in Figure 2, holds liquid and has a sensor which provides a measurement h(k) of the 

amount of liquid in the tank at uniformly spaced discrete times. The resolution of the sensor is such that it can distinguish 

between seven different liquid levels, i.e., h(k) ∈ {1,2,3,4,5,6,7}. Valve A is used for filling the tank, while Valve B is used 

for emptying the tank. It is known that if Valves A and B are turned on (off) at time k, they stay on (off) till time k + 1 

. 
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(where their status may change again). Valve B is controlled by customers that siphon off various amounts of liquid in an 

unpredictable fashion. It is known, however, that our customers will persistently open the empty valve (i.e., there exists 

a finite amount of time between the times that the empty valve is opened). Valve A has a greater flow capacity than Valve 

B so that even if a customer turns on Valve B for all time, if Valve A is on the liquid level in the tank will rise. The expert 

system will use the measurement h(k) of the liquid level in the tank, together with the user input, to decide whether to 

open or close Valve A to regulate the liquid level in the tank about some desired values (specified in the user input) so 

that the tank always has some liquid in it (so that customers are always supplied) and so that the tank never overfills 

(an unsafe situation). 
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Figure 2: Surge Tank 
We begin by specifying the dynamics of the surge tank process using Ev as it is explained at the beginning of Section 

2. We have Eu = {eAon,eAoff}, where euk = eAon (eAoff) means “open (close) Valve A at time k”; Ed = {eBon,eBoff}, where edk = eBon 

(eBoff) means “a customer turns on (off) Valve B at time k”; and Eo = {1,2,3,4,5,6,7}, the measured liquid level in the tank 

at time k is eok = h(k). Next, we define how the liquid level in the tank will react to valves being turned on and off. Recall 

that we denote a process event by ek = {euk,edk,eok} where for us eok = h(k), the height of the liquid level in the tank when 

the event occurs (the updated liquid level will appear in the next event that occurs). For the liquid levels h(k) ∈ {2,3,4,5}: 

• If ek = {eAoff,eBoff,h(k)} occurs at time k, h(k + 1) = h(k), 

• If ek = {eAoff,eBon,h(k)} occurs at time k, h(k + 1) = h(k) − 1, 

• If ek = {eAon,eBoff,h(k)} occurs at time k, h(k + 1) = h(k) + 2, and 

• If ek = {eAon,eBon,h(k)} occurs at time k, h(k + 1) = h(k) + 1. 

For h(k) = 1 (i.e., the tank is empty): 

• If ek = {eAoff,eBoff,h(k)} occurs at time k, h(k + 1) = 1, 

• If ek = {eAoff,eBon,h(k)} occurs at time k, h(k + 1) = 1, 

• If ek = {eAon,eBoff,h(k)} occurs at time k, h(k + 1) = 3, and 
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b = [xt xt E {1, 2,3,4,5, 6, 7} 

• If ek = {eAon,eBon,h(k)} occurs at time k, h(k + 1) = 2. 

For h(k) = 6 (i.e., the tank is almost full): 

• If ek = {eAoff,eBoff,h(k)} occurs at time k, h(k + 1) = 6, 

• If ek = {eAoff,eBon,h(k)} occurs at time k, h(k + 1) = 5, 

• If ek = {eAon,eBoff,h(k)} occurs at time k, h(k + 1) = 7, and 

• If ek = {eAon,eBon,h(k)} occurs at time k, h(k + 1) = 7. 

For h(k) = 7 (i.e., the tank is full): 

• If ek = {eAoff,eBoff,h(k)} occurs at time k, h(k + 1) = 7, 

• If ek = {eAoff,eBon,h(k)} occurs at time k, h(k + 1) = 6, 

• If ek = {eAon,eBoff,h(k)} occurs at time k, h(k + 1) = 7, and 

• If ek = {eAon,eBon,h(k)} occurs at time k, h(k + 1) = 7. 

Hence, for the surge tank the following event trajectories (all infinite length event sequences) are in E: 

1. {eAoff,eBoff,3},{eAoff,eBoff,3}, {eAon,eBon,3},{eAoff,eBoff,4}, ... 

2. {eAon,eBoff,3},{eAon,eBon,5}, {eAon,eBoff,6},{eAon,eBoff,7}, ... 

3. {eAoff,eBoff,3}, {eAoff,eBoff,4}, {eAoff,eBoff,5}, ... 

However, only event trajectories that are physically possible are in Ev ⊂ E. For example, in sequence (3) above the event 

trajectory is not physically possible since if both fill valves are off, it is not possible that the liquid level rises. Sequence 

(2) above is a possible sequence for the dynamical process, but the expert system that is used for liquid level regulation 

below will not allow this sequence of events since it does not represent good regulation properties. The set Ev contains 

all physically possible infinite length event trajectories that can be generated by the dynamical process as it is defined 

above. This completes the definition of the dynamical process; next we define the expert controller. 

The model C for the expert controller for the surge tank has: 

• m = 2, n = 0, Xi = ∅, and x represents the most recently measured liquid level 

in the tank (where we assume that initially the expert controller knows the tank liquid level), 

where = 3 indicates that the user would like the liquid level regulated around level 3 (allowing 

], where 
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• £! = {{3,1},{3, 2} , ... ,{3, 7}, {5, 1} , {5, 2}, ... , {5, 7}} 

e0 ,, = 3 /\ edk 

e0 k = 4 /\ edk 

ec ·- {e } /\ xb ·- 3 Ok .- Aon l . -

e0 k = 4 /\ edk e~k := { eAon } I\ x~ := 4 

e~k := { eAoff } /\ xt := 5 

e~k := { eAoff } /\ xt := 6 

ec · - {e } /\ xb ·- 7 Ok .- Aoff 1 . -

X m = {xt: xt E {2, 3, 4, 5,6}} 

X m3 = {xi : xt E {2 , 3, 4}} 

Xms = {xt : xt E {4, 5, 6}} 

deviations only to levels 2 and 4) and = 5 indicates that the user would like the liquid level regulated around 

level 5 (allowing deviations only to levels 4 and 6), 

represents the set of sets of input events to the expert 

controller that can occur (e.g., the occurrence of {5,2} happens when the liquid level is 2 and the user would like 

to regulate the liquid level around level 5), 

gc c• , fe , and δec are defined by the rules r ∈ R in the rule-base of the expert controller: 

– Rule 1: IF eok = 1 THEN ecok := {eAon} ∧ xb1 := 1 

– Rule 2: IF eok = 2 THEN 

– Rule 3: IF = 3 THEN 

– Rule 4: IF = 3 THEN ecok := {eAoff} ∧ xb1 := 4 

– Rule 5: IF = 5 THEN 

– Rule 6: IF = 5 THEN 

– Rule 7: IF eok = 5 THEN 

– Rule 8: IF eok = 6 THEN 

– Rule 9: IF eok = 7 THEN 

There are no particular restrictions placed on Ecv. This completes the definition of the expert controller. 

Notice that the inference engine is particularly simple for the expert controller. There is no need for the complex 
conflict resolution strategies such as refraction and recency presented in Section 2. The expert controller simply fires 
one of its nine rules in response to the fourteen different possible combinations of user inputs and process outputs. 

Notice that one could easily improperly define the expert controller so that it will fail to achieve its task. For instance, it 

is easy to define the expert controller so that circular reasoning could occur and the goals of regulation specified by the 
user input would not be achieved. Next, we perform reachability and stability analysis of the expert controller specified 

above to verify that it behaves correctly. 

For reachability analysis let Xm ⊂ Xc, and 

(11) 

be the set of goal states that represent our desire to regulate the liquid level between 2 and 6 no matter what the user 

inputs are. We will also have occasion to use the sets Xm3,Xm5 ⊂ Xm where 

(12) 

and 

. (13) 

A search algorithm can be used to show the following result: 

Theorem 5.1 The expert controller C is (xc0
,Xm)-reachable, (xc0

,Xm3)-reachable, and (xc0
,Xm5)-reachable for all 
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V(x1;) ...... 0 as k ...... oo 

k' > k 
V(xZ,) = 0. If xz 

k' > k, V(xU = 0. ■ 

V ( x1;) ...... 0 as k ...... oo 

6 

For stability analysis let the distance between two states of the expert controller be 

. (14) 

Notice that the set Xm is an invariant set for the expert controller since if the state of the expert controller starts in Xm it 

will stay in Xm for all time. 

Theorem 5.2 The invariant set Xm for the expert controller C is asymptotically stable in the large w.r.t. Ecv. 

Proof: Let . From Equation (14) we have 

. (15) 

Define the Lyapunov function V (xc) = ρ(xc,Xm) so that choosing c1 = c2 = 1 we get satisfaction of conditions (1) and (2) 

of Theorem 3.1. We want to show that for all initial states, V (xc) is a nonincreasing function of k and that 

for the rules that the expert system will fire. Notice that if = 7 (full), ) = 1, the 

fill 

valve is off (by rule 9), and since we know that eBon will occur in a finite amount of time eventually = 6 for some 

so that = 1 (empty), V (xck) = 1, and the fill valve is on (by rule 1) so we know that no 

matter whether Valve B is opened or closed, the liquid level will rise so that for some 

Theorem 5.3 If the user input sequence ) for all k ≥ 0 then Xm3 (Xm5) is asymptotically stable in the large w.r.t. 

Ecv. 

The proof of Theorem 5.3 is similar to that of Theorem 5.2 except that additional dynamics of the surge tank process 

must be considered in showing that . Theorem 5.2 shows that the expert system will achieve its 

regulation task. Moreover, it shows that the expert system will not exhibit cyclic behavior outside the invariant set (goal 

set) Xm. Theorem 5.3 shows that the expert system will appropriately respond to user inputs that specify the level around 

which the user would like the tank liquid level regulated. In other words, it verifies that the user-specified goals will be 

achieved. 

Concluding Remarks 

We have shown that conventional knowledge-base debugging tools can ignore important dynamic behavior that can 
result from connecting the full expert system (i.e., with an inference engine) to user inputs and a dynamic process. We 
have introduced the idea of characterizing and analyzing reachability, cyclic behavior, and stability of expert systems. 
Moreover, we have illustrated the results by modeling and analyzing expert systems that solve a water-jug filling problem 

and a simple process control problem. 

Below we summarize some of the difficulties in performing a formal verification of the dynamical operation of rule-

based expert systems that this investigation has uncovered: 

1. The rule-base can represent complex situations that were encountered in the distant past (e.g., sometimes 
thepremises of rules depend on past components of the state vector for backtracking and cycle avoidance as in the 
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example in Section 4) and can represent complex predictions of what can happen in the future as the result of its 

actions. 

2. The inference engine utilizes strategies that depend on the path of inferences that were executed up to thecurrent 

state (e.g., for recency and refraction and other more complex inference strategies). 

3. The recency strategy in the inference mechanism can result in some of the components of the state vector 

tobecome unbounded as k → ∞ (the “ages”, si) [23]. 

4. Notice that 1 and 2 make the analysis of the qualitative properties of rule-based expert systems relativelycomplex 

(this is not surprising since the dynamics of these systems, even for simple examples like the ones studied in 
Sections 4 and 5, are relatively complex). 

5. Also, 1 and 2 typically cause any graph algorithm used for the analysis of qualitative properties of rule-basedexpert 
systems to be computationally prohibitive for complex realistic applications. 

6. Notice that 1-3 cause significant problems if one is interested in implementing rule-based expert systems forreal-

time applications. 

In light of such problems with performing verification of expert system dynamics, it is clear that several of the more 

empirical/simulation-based expert system verification approaches outlined in the Introduction must play a significant 

role in the verification of more complex rule-based expert systems. However, as with the engineering/scientific analysis 

of any complex dynamical system, there is clearly a role for empirical/simulation-based investigations and formal 

mathematical approaches. The mathematical approaches are certainly in their infancy. As we indicate next, a significant 

amount of work needs to be performed to enhance our understanding of mathematical analysis of the dynamics of AI 

systems. 

There are many important future directions for this work including: (i) characterizing and analyzing additional 

properties of expert systems (e.g., to show that a given system is unstable or to illustrate the ability of an expert system 

to meet hard real-time constraints), (ii) investigating the dynamics of AI reasoning systems that utilize learning and 

planning in various complex applications, (iii) studying computational complexity issues relative to conflict resolution 

strategies and knowledge representation, and (iv) modeling and analyzing realistic industrial applications that involve 

expert systems (unlike the academic examples considered in this paper). We emphasize that these research directions 

help to point out the deficiencies with the approach to expert system verification reported on in this paper. 

Finally, we note that overall, it is hoped that this work takes steps towards establishing a foundation for the 

mathematical verification and certification of the dynamics of rule-based expert systems that operate in critical 

environments. 

Acknowledgement: The authors would like to thank the reviewers for their helpful comments. 
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	Introduction 
	Enhanced computing technology and the growing popularity of applied artificial intelligence (AI) have resulted in the construction and implementation of extremely complex “rule-based” expert systems [1, 2, 3, 4]. Often such expert systems are being utilized in critical environments where hazards can occur, safety of humans is an issue, and hard real-time constraints must be met. For instance, some expert systems for aircraft applications are used for mission planning, others have been used for closed-loop c
	role in expert system verification, it is also important to recognize the importance of investigating the possibility of mathematically verifying the qualitative properties of general rule-based expert systems that interface to a user and a dynamical process that behaves in an unpredictable manner. The focus of this paper is to conduct such a mathematical investigation. Our approach to mathematical analysis does not obviate the need for the past approaches to expert system verification; generally speaking i
	The expert system, which consists of the inference engine and knowledge-base, is shown in Figure 1. The inputs to the expert system come from the user (typically a human) and from data or information generated by the dynamic process that the expert system is connected to. The outputs of the expert system represent hypotheses, conclusions, or command inputs to change some process variable (i.e., “process command inputs”). In this paper we focus on the class of expert systems that has a knowledge-base which c
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	Figure 1: Expert System 
	The verification of the dynamic properties of of certain very general AI reasoning systems is beyond the scope of this work. For example, while the expert system we consider can be designed to exhibit some learning capabilities since it has variables in its working memory, because the number of rules is fixed, certain types of automatic rule synthesis are not possible (e.g., it can learn to pick between what rule is most appropriate to fire, but it cannot synthesize an indeterminant number of completely new
	human cognitive structure and processes. Regardless, the focus here is not on whether we have a good model of the human expert (as it is in, e.g., [12]), but rather on whether the expert system performs adequately and dependably. The first step in formally verifying the qualitative properties of the expert system is to develop appropriate mathematical models. 
	Section 2 shows how a mathematical model can be utilized to represent the inference engine and knowledge-base shown in Figure 1. Our approach to modeling the rule-base is related to the work in [13] where the authors show how to model rule-based AI systems with a high-level Petri net [14]. The approach in this paper is similar to the one advocated in [15] where we utilize separate models for the inference engine and knowledge-base and view their interconnection (i.e., the inference loop) as a special type o
	In Section 3 we show that while the structure and interconnection of information in the knowledge-base influence its completeness and consistency properties [16, 17, 18, 19, 20] and the expert system’s ability to react appropriately within its environment, certain “qualitative properties” of the full knowledge-base/inference engine loop (along with the interface to the user inputs and dynamic process) must be considered to fully characterize an expert system’s behavior. In addition, in Section 3 we show how
	To illustrate the application of the results, in Sections 4 and 5 we perform modeling and reachability and stability analysis of an expert system that solves a water-jug filling problem (where there is no interface to user inputs or a dynamic process) and a simple process control problem where user inputs and dynamic process information are used in the expert system’s reasoning process. In Section 6 we overview some problems that can be encountered in conducting a formal mathematical verification of qualita
	The Expert System 
	We begin by specifying the dynamical system that will interface to the expert system. The dynamic process has a set of 
	u ∈Eu that can be manipulated by the expert system (call these “command input events” where we use “u” as a 
	inputs e

	d ∈Ed 
	subscript since in the study of nonlinear systems “u” is standard notation for this input), a set of disturbances e

	o ∈Eo that uk, edk, and eok to denote such input and output events at time k. Let 
	that occur randomly and unpredictably (call these “
	d
	isturbance input events”), and a set of process outputs e
	can be observed by an expert system (call these “
	o
	utput events”). We will use e

	E = Eu ∪Ed ∪Eo (1) 
	k ∈ P(E)−{∅} denote an event at time k (where P(E) denotes the power set of E). The dynamical behavior of the k over time. For convenience, we assume that there is always an output k and at most one command input event and disturbance input event in ek for all k ≥ 0. Define E to be the set of k ∈ P(Eu ∪Ed ∪Eo) v ⊂ E is the set of all physically possible event trajectories for the dynamical process that the expert system is connected to (i.e., “alid trajectories”). Note that: (i) the disturbance input events
	and let e
	process evolves by the occurrence of events e
	event in e
	all infinite and finite length event trajectories (sequences of events) that can be formed from events e
	− {∅}. The set E
	v

	The expert system, which is denoted by “C”, shown in Figure 1 has two inputs; the user input events ed ∈Ed
	c
	c 

	(where we use the superscript “c” to indicate that it is an input associated with the expert system C and the subscript “d” is used to indicate that the user input is a “isturbance” in the sense that the expert system does not know what the user o ∈Eo. Based on its state (to be defined below) and these inputs, the expert system generates command input events to the process eo ∈Eo(and/or hypotheses and recommendations). We will often speak of the interactions between the inference engine and knowledge-base s
	d
	will request next) and the output events of the process e
	c
	c 

	) (2) where 
	Figure

	XX×Xis a set of expert system states xXis the set of knowledge-ase states xand Xis 
	c 
	= 
	b 
	i 
	c
	, where 
	b 
	b
	b 
	i 

	the set of nference engine states xto be defined below, is the set of events of the 
	i
	i 
	Figure

	is the enable function for C, are the output maps 
	expert system C where is the set of sets of user input (Ed) and process output events (Eo) 
	Figure
	c

	that can occur for which the expert system will have to know how to respond to 
	(the superscript “” is used to indicate that is the ist 
	Figure
	l

	of all input events, i.e., both process input and user input events) R is 
	the set of rules in the knowledge-base of the expert system, 
	Eo⊂ P(Eu) − {∅} is a set of output events of the expert system 
	c 

	are the state transition maps for C, 
	which specify the outputs of the expert system C, 
	Ev ⊂ Eis the set of valid inference loop (expert system) trajectories 
	c
	c 

	(expert system event trajectories that are physically possible, i.e., 
	alid trajectories for the expert system) 
	v

	Note that we use “c” to denote that each of the above elements of the tuple in (2) are associated with the expert system 
	In this framework, it is assumed that an occurrence of an input event to the expert system is always accompanied by a firing of an enabled rule r ∈ R, so that the inference loop can be updated accordingly. Similarly, a rule r ∈ R cannot fire alone, since the inference loop is updated only if there is a change in the process reflected via its output or a change in the user input event (this does not mean that the expert system cannot reason in between updates to the 
	Figure
	3

	o ∈Eo and user input event ed ∈Edcontained in k ⊂ g(xk) are said to be enabled. If ek ⊂ g(xk) and ek occurs, then the next state 
	inference loop). Hence, each has at most one process output event e
	Figure
	c
	c 
	it. Events e
	c
	c

	); hence, the dynamical behavior of the expert system evolves by the occurrence of sequences of events (i.e., event trajectories corresponding to the firing of rules) which result in the generation of state trajectories (i.e., state sequences). Let Edenote the set of event sequences that can occur based on the definition of feand gfor the expert system C and let Ev ⊂ Edenote the set of event trajectories that are physically possible (i.e., alid) for the expert system 
	Figure
	c 
	c 
	c 
	c
	c 
	v

	C. The expert system can control the generation of command input events for the process; however, it does not have any capabilities to control the process disturbance input events. The full specification of C is achieved by defining the rule-base and inference engine for the expert system, i.e., by defining the components of the inference loop. 
	2 While it is clear that the expert system can generate process inputs, hypotheses, conclusions, or recommendations we will, for convenience, in the remainder of this paper refer to all such quantities as expert system outputs or process inputs. In this sense we consider the human user that interfaces to the expert system and a dynamical system (such as an industrial process), to both be a part of the “environment” of the expert system. 
	2 While it is clear that the expert system can generate process inputs, hypotheses, conclusions, or recommendations we will, for convenience, in the remainder of this paper refer to all such quantities as expert system outputs or process inputs. In this sense we consider the human user that interfaces to the expert system and a dynamical system (such as an industrial process), to both be a part of the “environment” of the expert system. 

	3 Note that without loss of generality in our framework only one rule fires at each time instant. If one wants to fire more than one rule at a time, one can define another rule that represents the combined effects of any number of rules. Alternatively, one can simply redefine our model so that it can represent the firing of many rules at each time step (by redefining f so that it maps sets of fired rules and the current state to the next state) 
	3 Note that without loss of generality in our framework only one rule fires at each time instant. If one wants to fire more than one rule at a time, one can define another rule that represents the combined effects of any number of rules. Alternatively, one can simply redefine our model so that it can represent the firing of many rules at each time step (by redefining f so that it maps sets of fired rules and the current state to the next state) 

	2.1 Modeling a Rule-Base 
	2.1 Modeling a Rule-Base 
	It is important to note that although the focus in this paper is on rule-based systems, we are not restricted to modeling only rule-based systems; other AI knowledge representation formalisms can also easily be represented. To see this first note that any system that can be represented with the General, Extended, or High-Level Petri Net [14] can be represented with C. Then the Petri Net can be used to represent, for instance, semantic nets, frames, or scripts. Alternatively, one could directly model such kn
	,a,...,an} be a set of facts that can be true or false (and their truth values can change over time). 
	Let A = {a
	1
	2

	Let 
	T : A → {0,1} (3) 
	i) = 1(= 0) indicates that ai is true (false). Let denote the real numbers, V , and v ∈ V denote an m-
	where T(a
	Figure

	dimensional column vector of variables. We are thinking here of facts and variables in “working memory” [2]. 
	Let where x denotes transpose) and let denote the ith component of xat time k and Tk(ai) denote the truth value of ai at time k. Let Pi,i = 1,2,...,p denote a set of p premise functions, i.e., 
	Figure
	b 

	Figure
	(4) 
	Figure

	i will be used in the premises of the rules to state the conditions under which a rule is enabled (i.e., they model the left-hand sides of rules). Let the antecedent formulas, denoted by Φ, be defined in the following recursive manner: 
	and ) = 1(= 0) indicates that ) is true (false) at time k. The P
	Figure
	Figure

	1. 
	1. 
	1. 
	i,i = 1,2,...,p are antecedent formulas. 
	T(a) for all a ∈ A, and P


	2. 
	2. 
	If Φ and Φ are antecedent formulas then so are , (where ¬ (not), ∧ (and), ∨ 

	3. 
	3. 
	Nothing else is an antecedent formula unless it is obtained via finitely many applications of 1-2 above. 


	(or), ⇒ (implies) are the standard Boolean connectives). 
	i,i = 1,2,...,q denote the set of q consequent 
	antecedent formula (where <,≥ and = take on their standard meaning). Let C

	functions, where 
	(5) 
	Figure

	will be used in the representation of the consequents of the rules (the right-hand sides of the rules), i.e., to represent what actions are taken to the knowledge-base when a rule is fired. Let the consequent formulas, denoted with Ψ, be defined in the following recursive manner: 
	1. 
	1. 
	1. 
	i,i = 1,2,...,q,Ci is a consequent formula. 
	For any C


	2. 
	2. 
	i,Cj, Ci ∧ Cj is a consequent formula. 
	For any C


	3. 
	3. 
	Nothing else is a consequent formula unless it is obtained via finitely many applications of 1-2 above. 


	, and Φ 
	For example, if , and P1 tests “ tests “ and eok are real numbers, and P3 tests “( 2)”, then Φ )) is a valid 
	Following the above example for the premise formula, C1 may be 
	Following the above example for the premise formula, C1 may be 
	Following the above example for the premise formula, C1 may be 
	) := 1 (make a1 true), C2 may mean let 

	TR
	may mean let 
	2, and Ψ 
	makes a1 true ( 
	:= 1), increments 

	) 
	) 
	and 
	assigns 
	. 
	Notice 
	that 
	we 
	could 
	also 
	define 
	the 
	Ci 
	such 
	that 
	Ci 
	: 


	so that the rules could characterize changes made to the inference strategy based on the state of the knowledge-base and/or the user input (i.e., the inference strategy could be changed based on the i above (for example, Xcould be used in the domain of the Pi). In this paper we will not consider such possibilities and hence we will focus i and Ci defined in Equations (4) and (5) above. The rules in the knowledge-base r ∈ R are given in the form of 
	current objectives stated in the user input). Similar, more general definitions could be made for the P
	i 
	solely on the use of the P

	r = IF Φ THEN Ψ (6) 
	where the action Ψ can be taken only if Φ evaluates to true. Formally for (6), ) can possibly occur (the inference engine may not let it occur) only if Φ evaluates to true at time k for the given state xk and the command 
	b

	input event . Note that many rules can be enabled at each time step and some rules can have their premises satisfied in possibly an infinite number of ways; hence for a given , the size of ) can be infinite even though there are only a finite number of rules (e.g., if Φ = x> 2.2 there are an infinite number of values of x that will make Φ true and therefore 
	k ⊂ g(xk) occurs, then the next state is given by: (i) the application of Ψ to the state xk ∈Xto produce xk+1, and (ii) updating the inference engine state x∈Xwhich will be discussed in Section 2.2. 
	make rule r enabled). If e
	c
	c
	b
	b 
	b
	i 
	i 

	Also, in this case the output of the expert system (input to the dynamic process) is . The inclusion of input events in the rule-base allows the expert system designer to incorporate the process output information and the user input directly as parts of the rules. This is analogous to the use of variables in conventional rule-based expert systems (e.g., see the description of the OPS5 rule grammar in [2]). 
	variables 


	2.2 Modeling the Inference Engine 
	2.2 Modeling the Inference Engine 
	To model the inference engine one must be able to represent its three general functional components [2]: 
	1. 
	1. 
	1. 
	Match Phase: The premises of the rules are matched to the current facts and data stored in the knowledgebase and to the user input and process output. 

	2. 
	2. 
	Select Phase: One rule is selected to be fired, and 

	3. 
	3. 
	Act Phase: The actions indicated in the consequents of the fired rule are taken on the knowledge-base, the inference engine state is updated, and the input to the process is generated. 


	Here, the characteristics of the “match phase” of the inference mechanism are inherently represented in the knowledge-base. In AI terminology 
	) so that the Φ of rule r ∈ R evaluates to true for (7) 
	Figure
	Figure

	is actually the knowledge-base “conflict set” at time k (the set of enabled rules in terms of the knowledge-base only). The k to fire) is composed of “conflict resolution strategies” (heuristic inference strategies [2, 25, 26]) of which a few representative ones are listed below: 
	select phase (which picks one rule from Γ

	1. 
	1. 
	1. 
	Refraction: All rules in the conflict set that were fired in the past are removed from the conflict set. However, if firing a rule affects the matching data of the other rules’ antecedents, those rules are allowed to be considered in the conflict resolution. 

	2. 
	2. 
	Recency: Use an assignment of priority to fire rules based on the “age” of the information in the knowledge-base that matches the premise of each rule. The “age” of the data that matches the premise of a rule is defined as the number of rule firings since the last firing of the rule which allows it to be considered in the conflict set. 

	3. 
	3. 
	Distinctiveness: Fire the rule that matches the most (or most important) data in the rule-base (many different types of distinctiveness measures are used in expert systems). Here, we will count the number of different terms used in the antecedent of a rule and use this as a measure of its distinctiveness. 

	4. 
	4. 
	Priority Schemes: Assign a priority ranking of the rules then choose from the conflict set the highest priority rule to fire. 

	5. 
	5. 
	Arbitrary: Pick a rule from the conflict set to fire at random. 


	It is understood that the distinctiveness conflict resolution strategy is actually a special case of a priority scheme but we include both since distinctiveness has, in the past, been found to be useful in the development of expert systems. Note that in a particular expert system any number of the above conflict resolution strategies (in any fixed, or perhaps variable order) may be used to determine which rule from the conflict set is to be fired. Normally, these conflict k until a smaller set of enabled ru
	resolution strategies are used to “prune” the size of the knowledge-base conflict set Γ
	Figure

	The priority and distinctiveness of a rule in the knowledge-base are fixed for all time, but the refraction and recency vary with time. Thus, the inference engine state xhas to carry the information regarding both refraction and recency. r rules and the rules are numbered from 1 to nr. Define a function Π(i) to be 1 if the rule i is deleted from the conflict set, and 0 if rule i is allowed to be considered in conflict resolution. This function is r)]be an nr-vector whose components represent whether a rule 
	i 
	Assume that the knowledge-base has n
	used for representing the refraction component of the select phase. Let p = [Π(1)Π(2)Π(3)...Π(n
	t 
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	s = [s
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	c
	To complete the model of the expert system we need to fully define gand fe . The state transitions that occur to update p and s are based on the refraction and recency of the information represented by the components of x. A matrix r × nr and its ijcomponent, aij = 1(0) if 
	To complete the model of the expert system we need to fully define gand fe . The state transitions that occur to update p and s are based on the refraction and recency of the information represented by the components of x. A matrix r × nr and its ijcomponent, aij = 1(0) if 
	c 
	i
	A is used to specify how to update p and s and is defined to have a dimension of n
	th 

	firing rule i (does not) affects the matching data of rule j. Essentially, A contains static information about the interconnecting structure of the rule-base which is automatically specified once the rules are loaded into the knowledge-base and before the dynamic inference process is started. It provides a convenient way to model the recency and refraction schemes. 

	Figure
	i,di, and pi, for i,1 ≤ i ≤ nr to define the update process for x , and s where ˜ei = 1(0) indicates that i holds the distinctiveness level of rule i (the higher the value is, the more distinctive the i holds the priority level of rule i (the priority is proportional to the pi value). The di and pi components are i,e˜i, and Π(i) change with time k, so 
	We use variables ˜e
	Figure
	rule i is enabled (disabled), d
	rule is), and p
	specified when the knowledge-base is defined and they remain fixed. The values of s

	k(i) respectively to denote their values at time k. 
	we use , and Π
	Figure

	The inference loop in the expert system can be executed in the following manner: First, through “knowledge i,1 ≤ i ≤ nr are initialized to 0. The inference step from k to k +1 is obtained by executing the three following steps (we list this in a “psuedocode” form to help clarify how we have done our analysis for our applications in Sections 4 and 5): 
	acquisition” the knowledge-base is defined; then p,s, and ˜e

	1. 
	1. 
	1. 
	1. 
	Match Phase FOR rule r = 1 TO rule r = nr DO: IF r ∈ Γk THEN ˜ekr := 1 { Finds the enabled rules } IF there is just one r such that ˜ = 1 THEN GOTO the Act Phase 

	IF there are no r such that ˜ = 1 THEN STOP { expert system not properly defined, i.e., it cannot properly react to all possible process output/user input conditions. } 

	2. 
	2. 
	Select Phase FOR rule r = 1 TO rule r = nr DO: { Pruning based on refraction } IF ˜ekr = 1 THEN IF Πk(r) = 1 THEN ˜ekr := 0 IF there is just one r such that ˜ = 1 THEN GOTO the Act Phase IF there are no r such that ˜ := 1 THEN STOP { Expert system not properly defined } LET s = −∞{Pruning based on recency } FOR j = 1 TO 2 DO: { Search for rule(s) with the lowest age value(s) } FOR rule r = 1 TO rule r = nr DO: 
	Figure
	Figure



	IF ˜ekr = 1 THEN IF −skr < s THEN ˜ekr := 0 
	ELSE s:=−skr IF there is just one r such that = 1 THEN GOTO the Act Phase LET d = 0 {Pruning based on distinctiveness } FOR j = 1 TO 2 DO: { Search for rule(s) with the highest distinctiveness value(s) } FOR rule r =1 TO rule r = nr DO: IF ˜ekr = 1 THEN IF dr < d THEN ˜ekr := 0 ELSE d:=dr IF there is just one r such that ˜ = 1 THEN GOTO the Act Phase 
	Figure
	Figure

	LET p = 0 {Pruning based on priority } FOR j = 1 TO 2 DO: { Search for rule(s) with the highest priority } FOR rule r = 1 TO rule r = nr DO: IF ˜ekr = 1 THEN IF pkr < p THEN ˜ekr := 0 ELSE p:=pr LET r be any r such that ˜ {Pruning based on “arbitrary” } 
	Figure

	3. 
	Act Phase 

	Let Let (x 
	{Update the knowledge-base state; the state xik+1 is defined below} {Remove rule r from the conflict set based on refraction} 
	Figure
	FOR rule r = 1 to rule r = nr DO IF r ∈ Γk THEN skr r + 1 {Increment the matching age for all rules 
	+1 := sk 
	that were in the conflict set (for recency)} 
	FOR r=1 TO r=nr DO IF =1THEN Πk+1(r) := 0 and skr +1 := 0 {Allow the rules affected by the firing of rule r to be considered in the conflict set and reset ages of these rules to 0} 
	Figure

	In the step “pruning based on refraction” where it says “STOP” (i) the condition can be true since even though the rules are enabled, refraction pruning could reduce the size of the set of enabled rules to zero, and (ii) one could change this to “Reset the ˜er values to the values they had before entering pruning based on refraction and continue” so that the expert system uses the refraction conflict resolution strategy only if it reduces the size of the conflict set. 
	k

	, is the action defined by the consequent formula of rule r taken on the action defined for updating the inference engine state xk. In the steps discussed above, the conflict resolution is done based on refraction, recency, and distinctiveness followed by priority (with “arbitrary” making any final decisions if there is more than one rule). In other cases, the conflict resolution strategies may have a different order (the choice of the order being dictated by the application at hand). To summarize, the oper
	i

	ok and user input events at time k, 
	ok and user input events at time k, 
	1. Acquisition of , the process output e
	Figure
	Figure

	k in the match phase from the set of rules in the knowledge-base and based on , the current status of the truth of various facts, and the current values of variables in the knowledge-base (i.e., xbk), 
	2. Forming the conflict set Γ
	Figure

	3. 
	3. 
	The use of conflict resolution strategies (refraction, recency, distinctiveness, priority, and arbitrary) in the selectphase to find one rule to fire (this defines ), and 
	Figure
	Figure


	4. 
	4. 
	Executing the actions characterized by the consequent of rule r in the act phase. This involves updating the 


	knowledge-base and inference engine state (i.e., finding ) and generating the process input and/or conclusions (characterized by 
	Figure

	Figure
	The timing of the event occurrences in the expert system is such that the expert system is synchronous with the process (i.e., if a disturbance or command input event occurs in the process it causes a process output event to occur which will cause a rule to fire) and with the user input (i.e., if a user input event occurs, the expert system will 
	The timing of the event occurrences in the expert system is such that the expert system is synchronous with the process (i.e., if a disturbance or command input event occurs in the process it causes a process output event to occur which will cause a rule to fire) and with the user input (i.e., if a user input event occurs, the expert system will 
	immediately react to it also). Hence, in repsonse to process output and user input events, the expert system fires rules to generate process inputs (sets of enabled command input events). It is important to note that such synchronization is often used in systems and control applications. To maintain such synchronization one senses not only the event values but also the time at which they change. For some processes the switching times of the events are automatically sensed by measuring the event values. For 

	Note that in the act phase ), where the current knowledge-base state x 

	2.3 The Reasoning Capabilities of the Expert System 
	2.3 The Reasoning Capabilities of the Expert System 
	In this Section we will further clarify what class of expert systems we are considering by explaining what types of reasoning they can achieve. The expert system C can learn since it can evaluate its own performance (e.g., in terms of what resources it is utilizing), can remember what it has done in the past (in its state), and can modify it future decisions to ensure that it will enhance its future performance. The type of learning possible is, however, not the most general possible since under the current
	1. 
	1. 
	1. 
	The rule-base R of C can be partitioned into a finite set of “standard rules” Rs as they are defined above and a finite set of rules Rt that act as “templates”. The expert system can use rules r ∈Rs to evaluate its performance and take actions to fill in the meaning of the rule templates by changing their premises and consequents. In this way the expert system can, in a structured way, synthesize a finite number of new rules to improve the performance of the system (and this is in fact the way that most cur
	4
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	2. 
	2. 
	The expert system can use the elements in working memory as parameters in a learning algorithm to adapt,for example, the applicability of subsets of rules, or with simple changes to the inference mechanism, to adapt the priorities and distinctiveness of the rules. 

	4 The only reason for requiring that the number of rules in the expert system is finite is to ensure that the process of making an inference step is computable. 
	4 The only reason for requiring that the number of rules in the expert system is finite is to ensure that the process of making an inference step is computable. 


	We see that the expert system has very general capabilities to learn since it can adapt its rule-base, working memory, and inference mechanism. Next, note that the expert system C can plan since it can predict a finite number of steps into the future what will happen as the result of its actions and it can reformulate what plan should be taken by monitoring the progress of the execution of the current plan. This type of planning is, however, not the most general possible since under the current formulation 
	where xis the standard knowledge-base state defined above and xis a vector of state trajectories that are generated by simulating plans under consideration into the future from time k to time k + N (where N is the maximum number of steps we can simulate into the future). To keep the dimensions of xfinite one must require that the expert system only conducts a finite number of simulations into the future; however, all practical planning applications will 
	Figure
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	dictate that only a finite amount of time is used in plan generation so that only a finite number of simulations can be conducted. We see that in addition to general learning capabilities, the expert system C has very general planning capabilities. 
	5 Note that with these planning capabilities our expert system can in fact perform a significant amount of reasoning at each time step k before it takes actions and the next time step is taken. This can be done by simulating into the future, making an assessment of the best actions to take (rules to fire), setting a flag, and using this flag to enable the best rules to fire at time k 
	5 Note that with these planning capabilities our expert system can in fact perform a significant amount of reasoning at each time step k before it takes actions and the next time step is taken. This can be done by simulating into the future, making an assessment of the best actions to take (rules to fire), setting a flag, and using this flag to enable the best rules to fire at time k 



	3 Properties of Expert Systems 
	3 Properties of Expert Systems 
	There are extensive studies addressing the analysis of consistency and completeness properties of knowledge-bases (i.e., the static properties -the structure and interconnection of the information in the knowledge-base). In particular, in [16, 17, 18, 19, 20] the authors develop algorithms to check that the knowledge engineering process used to produce the knowledge-base has not produced conflicting rules, redundant rules, circular rules, subsumed rules, etc.; hence, these methods are sometimes referred to 
	3.1 Static Properties of Knowledge-Bases 
	3.1 Static Properties of Knowledge-Bases 
	In this Subsection we discuss the verification of properties of an isolated rule-based expert system. Hence, we assume that there are no user input events and process output events that influence the inference loop ( ). We discuss how static properties influence the dynamics of the inference process to illustrate how the analysis approach in [16, 17, 18, 19, 20] ignores several important properties of dynamical rule-based expert system operation. Essentially this requires relating properties of the intercon
	Figure
	that a rule fires at time k). For example, if C
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	tests x
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	k. Notice, however, that due to the dynamic behavior of the expert system, Ψ is not necessarily CAC to Φ for all k. Logical 
	truth in the study of the dynamic inference process depends on the state of the expert system. In the above example, if 
	= 6 at time , Ψ is not CAC to Φ at time k. 
	Figure
	Figure

	Next, we will clarify the relationships between several consistency and completeness properties of rule-bases and 
	the dynamics of the inference process in expert systems. 
	3.1.1 Logical Consistency Issues in Rule-Bases 
	3.1.1 Logical Consistency Issues in Rule-Bases 
	In [16, 17, 18, 19, 20] the authors investigate “Redundant Rules”, “Redundant Rule Chains”, “Conflicting Rules”, “Conflicting Rule Chains”, “Subsumed Rules”, “Unnecessary IF Conditions”, and “Circular Rules” all with the intent of 
	checking whether the knowledge in the rule-base is inconsistent. Their analysis provides for “warnings” about possible inconsistencies but does not take into consideration the effects of the inference engine. Moreover, as we will show next, such static analysis of the syntax of the rules can ignore the underlying qualitative properties of the dynamical inference process (especially if user inputs and process outputs are considered). 
	Redundant Rules and Redundant Rule Chains 
	Two or more rules which have logically equivalent antecedents at a specific time (the antecedents have the same conditions whose order is not important) and equivalent consequent formulas (same actions taken when the rules fire) are called “redundant rules”. A “rule chain” is a sequence of rules which produces a state trajectory. Two or more rule chains which have equivalent antecedents and consequent formulas for each rule are called redundant rule chains. For 
	1 = T(a)∧P1 ∧P,Φ2 = P1 ∧T(a)∧P,Φ3 = P1 ∧P2 ∧T(a),Ψ1 = [T(a) := 1]∧[x5 := x5 +2], and Ψ2 = [x5 := x5 
	example, let Φ
	1
	2
	1
	2
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	) := 1]. Then IF Φ1 THEN Ψ, IF Φ2 THEN Ψ2 and IF Φ3 THEN Ψ1 are redundant rules. The rule chains IF Φ4 
	+2]∧[T(a
	2
	1

	, IF Φ5 THEN Ψ5 and IF Φ6 THEN Ψ, IF Φ7 THEN Ψ7 are redundant rule chains if Φ4 and Φ, Φ5 and Φ, Ψ4 and 
	THEN Ψ
	4
	6
	6
	7

	, Ψ5 and Ψ7 are equivalent, and Ψ4 is CAC to Φ5 and Ψ6 is CAC to Φ. 
	Ψ
	6
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	Redundant rules affect the dynamical behavior of the expert system. Once one of the redundant rules fires, it may be removed from the conflict resolution by refraction. However, the other redundant rule can still be considered in the conflict resolution. The static analysis as in [16, 17, 18, 19, 20] can be used to detect, then remove such rules if needed. 
	Conflicting Rules 
	Two or more rules which have logically equivalent antecedents at a specific time but their consequent formulas have at least one component that results in contradictory logical value or inconsistent actions upon a variable when the rules fire are called “conflicting rules”. “Conflicting rule chains” occur when two or more rule chains have logically equivalent antecedents for each rule but the firing actions of the chains cause at least one inconsistency in at least one variable in 1 = T(a)∧P,Φ2 = P1 ∧T(a),Ψ
	the state sequence. For example, let Φ
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	2
	[x
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	For the model C, conflicting rules are allowed as they simply characterize the possibility of a diversity of reasoning approaches. If one is concerned about the presence of conflicting rules/conflicting rule chains, the static analysis in [16, 17, 18, 19, 20] can be used to detect their presence; however, this type of analysis can flag some rule chains as “conflicting” where they really merely represent the different possible ways of reasoning about the same problem. 
	Subsumed Rules 
	Two or more rules which have equivalent consequent formulas but with one which has more restricted antecedent conditions than the others are called “subsumed rules”. In other words, the truth value of a rule’s antecedent at a specific 
	1 = T(a) ∧ P1 ∧ T(a),Φ2 = T(a∧ P,Φ3 = T(a∧ 
	time implies the truth of the ones of the other rules. For example, let Φ
	1
	2
	1
	) 
	1
	1
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	), IF Φ1 THEN Ψ1 (rule 1), IF Φ2 THEN Ψ1 (rule 2), and IF Φ3 THEN Ψ1 (rule 3). Hence rule 1 has more restricted antecedent conditions than rules 2 and 3; hence, rule 1 is logically subsumed by rule 2 and 3. 
	T(a
	2

	Subsumed rules affect the dynamic behavior of the system since the firing of a rule depends on distinctiveness of the antecedent. In terms of the model C, erasing the more restricted rules from the knowledge-base will affect the selection of which rule to fire. For example, if there is another rule (rule 4) which has three conditions in the example above, the inference mechanism will select rule 1 and 4 after pruning the enabled rules using distinctiveness strategy. Then it will use the next conflict resolu
	Unnecessary IF Conditions 
	Two or more rules with the same consequent formulas but with at least one condition of their antecedents in complement with one of the other rule’s are called “unnecessary IF conditions”. For example, if 
	• 
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	) ∧ T(a) THEN Ψ
	Rule1 :IF T(a
	1
	2
	1 
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	) ∧ ¬T(a) THEN Ψ
	Rule2 :IF T(a
	1
	2
	1 


	• 
	• 
	) ∧ [x4 ≤ 4] THEN Ψ
	Rule3 :IF T(a
	1
	2 


	• 
	• 
	) ∧ [x4 > 4] THEN Ψ
	Rule4 :IF T(a
	1
	2 



	then Rules 1 and 2 have unnecessary IF conditions as do Rules 3 and 4. 
	Unnecessary IF conditions may affect the dynamic behavior of the system in terms of selecting which rule to fire. Eliminating the unnecessary conditions of the rules changes their distinctiveness; hence, such modifications must be done in such a way so that conflict resolution in the inference engine leads to a desirable dynamic behavior (in certain cases, the unnecessary IF conditions can be kept if they are important to achieve proper inference). 
	Circular Rules 
	“Circular rules” can occur if there is a set of rules which has CAC properties. Such a circular chain of rules creates 1 THEN Ψ, IF Φ2 THEN Ψ2 and IF Φ3 THEN Ψ3 are circular 1 is CAC to Φ, Ψ2 is CAC to Φ3 and Ψ3 is CAC to Φ. Circular rules affect the dynamic behavior of the system and may lead to a circular reasoning (but not necessarily so, since the inference mechanism may be able to reason around it) which is not desirable in most cases. Circular rules create state cycles, but the existence of state cycl
	circular chain of states in terms of model C. For example, IF Φ
	1
	rules if Ψ
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	) THEN T(a) := 1 
	Rule1 :IF T(a
	1
	3


	• 
	• 
	) THEN T(a) := 1 
	Rule2 :IF T(a
	3
	4


	• 
	• 
	) ∧ ¬T(a) THEN [T(a) := 0] ∧ [T(a) := 0] 
	Rule3 :IF T(a
	4
	2
	3
	4



	Notice that those rules are not necessarily all CAC so that they do not form a circular rule chain as defined in 
	[16, 17, 18, 19, 20], yet they form a circular sequence of states. Let the state x=[T(a) T(a) T(a) T(a)], then we get the following sequence of states: 
	b 
	1
	2
	3
	4
	t

	10 Rule1 00 −→ 10 10 Rule2−→ 10 11 Rule3−→ 10 00 . 
	This shows that static analysis as in [16, 17, 18, 19, 20] will always detect circular reasoning; this motivates the importance of performing analysis of the dynamic behavior of the full expert system. 
	not 


	3.1.2 Logical Completeness Issues in Rule-Bases 
	3.1.2 Logical Completeness Issues in Rule-Bases 
	In [16, 17, 18, 19, 20] the authors investigate “Unreferenced Antecedent Conditions”, “Illegal Antecedent Conditions”, “Unreachable Conclusions”, and “Deadend Goal and Deadend State” all with the intent of checking whether or not there is enough information in the knowledge-base connected in the proper fashion to ensure that from the initial knowledge, a goal state can always be reached. Their work provides for warnings that the goal states may not be reachable but does not provide for a complete analysis o
	Unreferenced Antecedent Conditions 
	A state where there is no enabled rule is referred to as an “Unreferenced Antecedent Condition” state. This is similar to the notion of “Unreferenced Attribute Values” in [16, 17, 18, 19, 20]. In static properties, this implies some values in the set of possible values of an object’s attribute are not covered by any rule’s IF conditions [20]. In terms of the model C, this situation may lead to a state/states where there is no rule whose antecedent conditions match the information in that/those state(s). Thi
	Illegal Antecedent Conditions 
	An illegal antecedent condition occurs when a rule is never enabled in any state, because its antecedent conditions are never all true. This type of rule merely wastes memory in the knowledge-base so one may want to use static analysis to detect and remove such rules. From a dynamical systems perspective it may be hard to verify that a rule will never be enabled since in this case one must also consider the unpredictable behavior of the user and dynamic process and all possible states that the expert system
	Unreachable Conclusion 
	In static analysis, a conclusion of a rule should either match a goal or match an IF condition of another rule in order to guarantee the goal is reachable [20]. In terms of model C, firing a rule must lead to a state where there must be at least one enabled rule; otherwise, the last rule fired causes dead-lock. Note, however, that two consecutive rules do not have to be CAC. For example, if we only have two rules: 
	• ) THEN T(a) := 1 
	Rule1 :IF T(a
	1
	2

	• ) ∧ ¬T(a) THEN [T(a) := 0] ∧ [T(a) := 1] then the state sequence may be of the form: 
	Rule2 :IF T(a
	2
	3
	2
	3

	Figure
	Rule1−→ Rule2−→ 
	Figure
	Figure
	Note that the conclusion of the second rule is reachable from [1 0 0]even though the consequent formula of rule 1 is not necessarily CAC to the antecedent of the second rule. If static analysis says that the consequent of rule 1 is CAC with rule 2 then [1 0 1]would appear to be reachable; however, if initially we start at [1 1 1], the state [1 0 1]is not reachable. If static analysis says that the consequent of rule 1 is not CAC with the antecendent of rule 2 then if we start at [1 0 0]it will also appear t
	t 
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	t
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	t 
	t 

	Dead-end Goal and Dead-end State 
	Syntactically, to achieve a goal, it is required that the goal is matched by a conclusion of at least one of the rules; otherwise, the goal cannot be achieved and is referred to as “dead-end goal”. Similarly, the IF conditions of a rule must meet this requirement; otherwise, it is a “dead-end IF” condition [20]. Notice that this is only an ad-hoc test to determine if a goal state is reachable from the initial state. 
	In terms of the model C, reachability of a state is determined by the presence of an inference path corresponding to a sequence of states from the initial state to the goal state. If not all the inference trajectories originating from the initial state end up in the set of goal states, then it is possible that the expert system may succeed, but not guaranteed. For analysis of qualitative properties we need to show that all paths from the initial state reach a goal state and thereby perform a complete reacha
	To summarize, in developing a rule-base expert system it is important to study the static structure of the rules and their interconnections. Debugging Programs can help in structuring and eliminating some unnecessary rules and in detecting certain consistency and completeness problems with the knowledge-base. However, the analysis of the dynamics of the inference process still needs to be performed since the static analysis cannot detect/predict some of the properties of the dynamical expert system. The key
	• 
	• 
	• 
	the presence of the inference engine, 

	• 
	• 
	user inputs and information inputs from a dynamical process, 

	• 
	• 
	circular reasoning (a logical inconsistency), 

	• 
	• 
	reachability (logical completeness property), and hence 

	• 
	• 
	stability (to be defined in the next Section). 


	In the next Section we show how to characterize and analyze qualitative properties (i.e., what some people would call “dynamic properties”) of the full expert system that interfaces to a user and a dynamic process. 


	3.2 Characterization and Analysis of Qualitative Properties of Expert Systems 
	3.2 Characterization and Analysis of Qualitative Properties of Expert Systems 
	In this Section we characterize, and introduce methods to analyze, three different types of behavior that expert systems are often designed to achieve. 
	3.2.1 Reachability Properties 
	3.2.1 Reachability Properties 
	The results in [13] showed the relationship between performing chains of inference and reachability. In particular, the authors define reachability in the context of inference processes as the ability to fire a sequence of rules to derive a specific conclusion from some specific initial knowledge. In system-theoretic terms this is a standard definition for reachability that one might call a “state-to-state” property. Here we consider a slightly more general reachability property for studying inference proce
	Figure
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	Definition 3.1 A system C is said to be “ ” if there exists a sequence of events to occur that produces a state trajectory s ∈ X(C,x0,Xm). 
	Figure
	c

	Note that Xm can represent the desired operating conditions (goals) of the expert system with as its initial state. Hence, we will consider what could be called a “point-to-set” reachability problem for expert systems. This general type of reachability is needed when it is possible that there are several valid states that can be reached from one initial state (or in the situation where it is known that at least one state in a set of states Xm is reachable). 
	Figure

	To automate testing of the property in Definition 3.1 we use a shortest path algorithm to find the state trajectory ) when it exists (we will assign a cost of one to firing a rule, i.e., the occurrence of an event). Note that while the use of the shortest path algorithm on a metric space (to be defined below) offers several advantages with regard to computational complexity so that exhaustive search is not necessary [27], unless the state-space is finite we will not be able to conclude anything about unreac
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	3.2.2 Cyclic Properties 
	3.2.2 Cyclic Properties 
	In the verification of the qualitative properties of the expert system, the study of cyclic behavior is of paramount importance. This is due to the fact that if cycles exist, the expert system could get “trapped” in a circular argument so that there is no way it can achieve its ultimate task. This cyclic characteristic will be particularly problematic for expert systems that operate in time-critical environments (e.g., in a failure diagnosis problem). Let Xy ⊂ Xdenote a subset of 
	c 

	the states such that each xy ∈Xy lies on a cycle of states that is in Xy. 
	Definition 3.2 A system C is said to be “ ” if there exists a sequence of events to occur that produces a state trajectory . 
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	It is a hard problem to detect the presence of cyclic behavior, since one may not be able to find Xy without studying all system trajectories. To help automate the testing of the property in Definition 3.2 we can use a two step approach. First we specify a set Xy (which can be found with a search algorithm described in [28] if the state-space is finite), then we use a search algorithm to find the inference path that starts at and ends in Xy (if one exists) [28]. Note that if Xy is the null set then we have 

	3.2.3 Stability Properties 
	3.2.3 Stability Properties 
	In terms of characterizing human cognitive functions, Lyapunov stability [29, 30, 23, 31] for the expert system can be viewed as a mathematical characterization of an expert system’s ability to concentrate (i.e., to focus, to pay attention) on the task at hand. Clearly then verification of stability is critical since without stability the expert system can, for example, wander aimlessly not achieving the goals that it is supposed to achieve. From an engineering or scientific standpoint, rather than pyscholo
	, and {X;ρ} a metric space. Denote the distance from point x to the set 
	c

	where Xz ⊂ X. The “r-neighborhood” of an arbitrary set Xz ⊂ Xis denoted by the set S(Xz;r)= {x ∈X: 0 < ρ(x,Xz) < r} where r > 0. Define E ) to be the finite and infinite length physically possible event trajectories of C which start at and let ) be the state of C reached from after the occurrence of event k = ee1 ...ek−1. The set Xm ⊂Xis called “invariant with respect to (w.r.t.) C” if from it follows that k such that ) and k ≥ 0. 
	c
	c 
	c 
	sequence E
	0
	c 
	for all E

	Definition 3.3 An invariant set Xm ⊂Xof C is called “stable in the sense of Lyapunov w.r.t. Ev” if for any 
	c 
	c

	) > 0 it is possible to find a quantity δ > 0 such that when 
	) > 0 it is possible to find a quantity δ > 0 such that when 
	) > 0 it is possible to find a quantity δ > 0 such that when 
	we have 
	for all Ek such that 

	and k ≥ 0. If furthermore, 
	and k ≥ 0. If furthermore, 
	for all Ek such that 
	as k → ∞, then the 

	invariant set Xm of C is called “asymptotically stable w.r.t. Ec v”. 
	invariant set Xm of C is called “asymptotically stable w.r.t. Ec v”. 


	Definition 3.4 If the invariant set Xm ⊂ Xof C is asymptotically stable in the sense of Lyapunov w.r.t. Ev, then the set Xv of k such that as k →∞ is called the “region of asymptotic stability of Xm w.r.t. Ev”. 
	c 
	c
	all states having the property for all E

	used here for the expert system. Let denote a metric on Xc
	Definition 3.5 The invariant set Xm ⊂ Xof C with region of asymptotic stability Xv w.r.t. Ev is called “asymptotically stable in the large w.r.t. Ev” if Xv = X. 
	c 
	c
	c
	c

	Definition 3.6 The motions which begin at are bounded w.r.t Ev and the bounded set X⊂Xc if 
	Figure
	Figure
	c

	k such thatand for all b 
	there exists a β > 0 such thatfor all E
	Figure

	Figure
	k ≥ 0. C is said to possess Lagrange Stability w.r.t. Ev and the bounded set Xb ⊂ Xif for each the motions k such that and all k ≥ 0 are bounded w.r.t. Ev and Xb. 
	c
	c 
	Figure
	for all E
	Figure
	c

	Figure
	The following Theorems provide the necessary and sufficient conditions for the analysis of any system represented via C (the proofs are contained in [29, 30]). 
	Theorem 3.1 In order for an invariant set Xm ⊂ Xof C to be stable in the sense of Lyapunov w.r.t. Ev it is necessary and sufficient that in a sufficiently small neighborhood S(Xm;r) of the set Xm there exists a specified functional V with the 1 > 0, it is possible to find a c2 > 0 such that V (x) > c2 for x ∈ S(Xm;r) and ρ(x,Xm) > c, (2) For all c4 > 0 as small as desired, it is possible to find a c3 > 0 so small that when ρ(x,Xm) < c3 for x ∈ S(Xm;r) 
	c 
	c
	following properties: (1) For all sufficiently small c
	1

	, and (3) k such that 
	we have V (x) ≤ c
	4
	non-increasing function for k ≥ 0, for , for all k ≥ 0, as long as for all E
	Figure
	Figure

	Figure
	. 
	Figure

	Theorem 3.2 In order for an invariant set Xm ⊂ Xof C to be asymptotically stable in the sense of Lyapunov 
	c 

	w.r.t. v it is necessary and sufficient that in a sufficiently small neighborhood S(Xm;r) of the set Xm there exists a specified k such that for all k ≥ 0 as long as . 
	E
	functional V having properties 1, 2 and 3 of Theorem 3.1 and furthermore for all E
	Figure
	Figure
	Figure

	An important advantage of the Lyapunov approach in the study of stability properties is that it is often possible to intuitively define an appropriate Lyapunov function V (years of use have shown this -see the extensive literature in the area of nonlinear analysis) and we will illustrate how this is done in the examples. However, specifying the Lyapunov function is sometimes problematic for certain applications. Motivated by the difficulties in specifying a Lyapunov function, we next discuss how one can som
	c

	not evident. In fact, in Section 4 we will use the search algorithm approach to stability analysis, while in Section 5 we will choose an appropriate Lyapunov function and prove that an expert system possesses certain stability properties. 
	Finally, it is important to note that while we are able to characterize and analyze more general properties than the static properties examined in the past (see Section 3.1), if we use an algorithmic approach to the verification of the properties, the complexity of verification of the qualitative properties discussed above is generally higher than that of the static properties. For instance, the complexity of studying most static properties is bounded by the number of rules where the complexity of testing e
	Lyapunov function and show that it satisfies certain properties listed above. We see that as with the nonlinear analysis of more conventional dynamical systems one of the primary advantages of the Lyapunov approach lies in the lack of dependence on explicitly enumerating all possible system trajectories in the study of stability properties (i.e., the Lyapunov approach allows us to prove stability properties without running the rule-based system for all possible scenarios -which can be particularly problemat



	Water-Jug Example 
	Water-Jug Example 
	In this Section we study reachability and stability properties of a rule-based expert system that solves a water-jug filling problem. It is given that there is a 4-gallon jug and a 3-gallon jug named “jug1” and “jug2”, respectively. Neither has any measuring markers on it. There is a pump that can be used to fill the jugs with water. The goal is to get exactly 2 gallons of water into the 4-gallon jug and 3 gallons into the 3-gallon jug. In some situations we can dump the water out of the jugs. Let jug1 and 
	1. 
	1. 
	1. 
	Fill the 4-gallon jug. After this operation, jug1=4 and jug2 remains the same. This operation is not applicable if the 4-gallon jug is already full. 

	2. 
	2. 
	Fill the 3-gallon jug. After this operation, jug2=3 and jug1 remains the same. This operation is not applicable if the 3-gallon jug is already full. 

	3. 
	3. 
	Dump all the water out of the 4-gallon jug. After this operation, jug1=0 and jug2 remains the same. This operation is not applicable if jug1 is already empty. 

	4. 
	4. 
	Dump all the water out of the 3-gallon jug. After this operation, jug2=0 and jug1 remains the same. This operation is not applicable if jug2 is already empty. 

	5. 
	5. 
	Move water from the 4-gallon jug to the 3-gallon jug until either the 4-gallon jug is empty or the 3-gallon jug is full. This operation is not applicable if jug1 is empty or jug2 is full. 

	6. 
	6. 
	Move water from the 3-gallon jug to the 4-gallon jug until either the 3-gallon jug is empty or the 4-gallon jug is full. This operation is not applicable if jug2 is empty or jug1 is full. 


	Next, we specify the model C for an expert system that solves this problem. As there are no inputs or outputs for the expert system we have E= ∅. The knowledge-base has x= [x1 x2 x3 ... x](with m = 42, n = 0) where x1 and x2 represent 3 through x42 represent thestates x1 and x2 (liquid levels of jug1 and jug2) 3 and x4 hold the initial conditions of x1 and x, respectively, the 5 and x6 hold the next x1 and x2 which have been visited and so on. At most 20 states will be visited before 1 and x2 where 1 can ta
	c 
	b 
	42
	t 
	the contents of jug1 and jug2, respectively, and x
	that have already been visited. The components x
	2
	components x
	the goal is reached for any path from the initial to the goal state. This corresponds to all combinations of x
	x
	never be reached) and x
	1
	2
	b 

	The premise functions are defined as: 1 tests “0 ≤ x1 < 4”, 
	P

	2 tests “0 ≤ x2 < 3”, 
	P

	3 tests “x1 > 0”, 4 tests “x2 > 0”, 5 tests “x1 > 3 − x”, 
	P
	P
	P
	2

	6 tests “x1 ≤ 3 − x”, 7 tests “x2 > 4 − x”, 
	P
	2
	P
	1

	8 tests “x2 ≤ 4 − x”, 9 tests “x1 < 4”, 
	P
	1
	P

	10 tests “x2 < 3”, 11 tests “[(x3 = 4) ∧ (x4 = x)] ∨ [(x5 = 4) ∧ (x6 = x)] ∨ ... ∨ [(x41 = 4) ∧ (x42 = x)]”, P12 tests “[(x3 = x) ∧ (x4 = 3)] ∨ [(x5 = x) ∧ (x6 = 3)] ∨ ... ∨ [(x41 = x) ∧ (x42 = 3)]”, P13 tests “[(x3 = 0) ∧ (x4 = x)] 5 = 0) ∧ (x6 = x)] ∨ ... ∨ [(x41 = 0) ∧ (x42 = x)]”, P14 tests “[(x3 = x) ∧ (x4 = 0)] ∨ [(x5 = x) ∧ 6 = 0)] ∨ ... ∨ [(x= x) ∧ (x42 = 0)]”, P15 tests “[(x3 =(x1 − (3 − x))) ∧ (x4 = 3)] ∨ [(x5 = (x1 − (3 ))) ∧ (x6 = 3)] 
	P
	P
	2
	2
	2
	1
	1
	1
	2
	∨ [(x
	2
	2
	1
	1
	(x
	41 
	1
	2
	− x
	2

	41 = (x1 − (3 − x))) ∧ (x42 = 3)]”, 16 tests “[(x3 = 0) ∧ (x4 = (x1 + x))] ∨ [(x5 = 0) ∧ (x6 = (x1 + x))] ∨ ... ∨ 
	∨ ... ∨ [(x
	2
	P
	2
	2

	41 = 0) ∧ (x42 = (x1 + x))]”, 
	[(x
	2

	17 tests “[(x3 = 4) ∧ (x4 = (x2 − (4 − x)))] ∨ [(x5 = 4) ∧ (x6 = (x2 − (4 − x)))] 41 = 4) ∧ (x42 = (x2 − (4 − x)))]”, 18 tests “[(x3 =(x1 + x)) ∧ (x4 = 0)] ∨ [(x5 = (x1 + x)) ∧ (x6 = 0)] ∨ ... ∨ 
	P
	1
	1
	∨ ... ∨ [(x
	1
	P
	2
	2

	41 = (x1 + x)) ∧ (x42 = 0)]”, 
	[(x
	2

	19 tests “x1 = 3”, 20 tests “x2 = 3”, 21 tests “x3 = 3”, 
	P
	P
	P

	22 tests “x4 = 3”, and P1 = 2”. 
	P
	23 
	tests “x

	11 through P18 check if the next state components of x1 and x2 have been visited. The consequent formula 1 is defined to insert the current x1 and x2 to the proper spots in x5 through x. 
	Note that P
	C
	42

	The rules r ∈ R are: 1 ∧ ¬P11 THEN (x1 := 4) ∧ C
	Rule 1: IF P
	1 

	2 ∧ ¬P12 THEN (x2 := 3) ∧ C
	Rule 2: IF P
	1 

	3 ∧ ¬P13 THEN (x1 := 0) ∧ C
	Rule 3: IF P
	1 

	4 ∧ ¬P14 THEN (x2 := 0) ∧ C
	Rule 4: IF P
	1 

	5 ∧ P3 ∧ P10 ∧ ¬P15 THEN (x1 := x1 − (3 − x)) ∧ (x2 := 3) ∧ C
	Rule 5: IF P
	2
	1 

	6 ∧ P3 ∧ P10 ∧ ¬P16 THEN (x2 := x1 + x) ∧ (x1 := 0) ∧ C
	Rule 6: IF P
	2
	1 

	7 ∧ P4 ∧ P9 ∧ ¬P17 THEN (x2 := x2 − (4 − x)) ∧ (x1 := 4) ∧ C
	Rule 7: IF P
	1
	1 

	8 ∧ P4 ∧ P9 ∧ ¬P18 THEN (x1 := x1 + x) ∧ (x2 := 0) ∧ C
	Rule 8: IF P
	2
	1 

	19 ∧ P20 ∧ P21 ∧ PTHEN (x2 := 0) ∧ C
	Rule 9: IF P
	22 
	1 

	23 ∧ P20 ∧ P1 ∧ P3 ∧ P4 THEN (x1 := x) ∧ (x2 := x) ∧ C
	Rule 10: IF P
	1
	2
	1 

	The valid inference trajectories Ev consist of all possible trajectories which can be produced by rule-base and the conflict resolution strategy. We use all the conflict resolution strategies introduced in Section 3. Therefore, the expert system state x= ) where p and s are 10×1 vectors. Since every time a rule fires the state changes and all the antecedents 
	c
	c 

	Figure
	×10 where 1×10 is a 10-by-10 matrix of ones for this problem. This means that the refraction and the recency do not prune rules from the conflict set so that the expert system for this problem can be reduced such that there is no state associated with the inference engine. However, for completeness of the design illustration, p and s are included as the state of the inference engine. The distinctiveness level of each rule is 1 = 2 = 1,p3 = 3,p4 = 4,p5 = 5,p6 = 5,p7 = 1,p8 = 1,p9 = 6 and p= 6. A shortest pat
	check all components of the state the matrix A is 1
	10
	10
	dependent upon the conditions of its antecedent. The assigned priority to the rules is: p
	2,p
	10 

	to be 1 is used to find all possible paths from any initial state. 
	From the system definition, the initial knowledge-base states are x 1 ∈ {0,1,2,3,4},x2 ∈ {0,1,2,3}}. Furthermore, the initial state of the inference engine must be such that the vectors p = s = 0. Thus, the initial expert system states x where 
	From the system definition, the initial knowledge-base states are x 1 ∈ {0,1,2,3,4},x2 ∈ {0,1,2,3}}. Furthermore, the initial state of the inference engine must be such that the vectors p = s = 0. Thus, the initial expert system states x where 
	i ≤ 42,x
	Figure

	The invariant set (set of goal states) for the water jug is defined to be 

	Figure
	Figure
	Xm = {x∈X,x1 = 2,x3 = 3}. (9) 
	c 
	c

	The results of using our search algorithm show that for any given initial water level in jug1 and jug2, the goal (jug1 and jug2 contain 2 and 3 gallons of water, respectively) can be achieved. Once jug1 and jug2 have 2 and 3 gallons of water, respectively, the levels are maintained by firing rule 10. The results of our analysis can be stated formally in the following Theorem. 
	Theorem 4.1 The above water jug problem is since there exists a sequence of events to occur that produces a state trajectory 
	We have, however, not shown that the expert system will actually achieve the goal. We have just shown that there exist inference sequences that the expert system will follow that will succeed. Up till now our analysis does not guarantee that the expert system will definitely succeed (i.e., it may follow an improper inference sequence). Next, we show that it will always succeed by verifying certain stability properties. For the water jug problem, the distance between a point x∈Xto another point is defined to
	c 
	c 
	Figure

	-reachable for all for any . 
	. (10) 
	Using a search algorithm we have verified the following result: 
	Theorem 4.2 For the above water jug problem, the region of asymptotic stability of Xm w.r.t. E 
	Theorem 4.2 shows that no matter what the initial liquid levels are in the jugs, our expert system can reason appropriately so that it can succeed in achieving the goal. Notice that this stability result inherently depends on the reachability result in Theorem 4.1, and that the validity of Theorem 4.2 guarantees that the expert system will exhibit no circular reasoning outside the invariant set (i.e., outside the goal set). 
	Process Control Example 
	An expert system that is used to perform control activities is called an “expert controller” and the system that results from connecting an expert controller to a dynamical process is called an “expert control system” (ECS) [32, 33]. Application of the mathematical framework in this paper to the verification of the qualitative properties of ECS can be found in [23, 31]. In this Section we study the expert control of a simple dynamic process called a “surge tank”; however, unlike the work in [23, 31] we focu
	The surge tank, which is shown in Figure 2, holds liquid and has a sensor which provides a measurement h(k) of the amount of liquid in the tank at uniformly spaced discrete times. The resolution of the sensor is such that it can distinguish between seven different liquid levels, i.e., h(k) ∈ {1,2,3,4,5,6,7}. Valve A is used for filling the tank, while Valve B is used for emptying the tank. It is known that if Valves A and B are turned on (off) at time k, they stay on (off) till time k + 1 
	The surge tank, which is shown in Figure 2, holds liquid and has a sensor which provides a measurement h(k) of the amount of liquid in the tank at uniformly spaced discrete times. The resolution of the sensor is such that it can distinguish between seven different liquid levels, i.e., h(k) ∈ {1,2,3,4,5,6,7}. Valve A is used for filling the tank, while Valve B is used for emptying the tank. It is known that if Valves A and B are turned on (off) at time k, they stay on (off) till time k + 1 
	(where their status may change again). Valve B is controlled by customers that siphon off various amounts of liquid in an unpredictable fashion. It is known, however, that our customers will persistently open the empty valve (i.e., there exists a finite amount of time between the times that the empty valve is opened). Valve A has a greater flow capacity than Valve B so that even if a customer turns on Valve B for all time, if Valve A is on the liquid level in the tank will rise. The expert system will use t

	. 
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	Figure 2: Surge Tank v as it is explained at the beginning of Section 
	We begin by specifying the dynamics of the surge tank process using E

	2. We have Eu = {eAon,eAoff}, where euk = eAon (eAoff) means “open (close) Valve A at time k”; Ed = {eBon,eBoff}, where edk = eBon Boff) means “a customer turns on (off) Valve B at time k”; and Eo = {1,2,3,4,5,6,7}, the measured liquid level in the tank ok = h(k). Next, we define how the liquid level in the tank will react to valves being turned on and off. Recall k = {euk,edk,eok} where for us eok = h(k), the height of the liquid level in the tank when the event occurs (the updated liquid level will appear
	(e
	at time k is e
	that we denote a process event by e

	• 
	• 
	• 
	k = {eAoff,eBoff,h(k)} occurs at time k, h(k + 1) = h(k), 
	If e


	• 
	• 
	k = {eAoff,eBon,h(k)} occurs at time k, h(k + 1) = h(k) − 1, 
	If e


	• 
	• 
	k = {eAon,eBoff,h(k)} occurs at time k, h(k + 1) = h(k) + 2, and 
	If e



	• 
	• 
	• 
	• 
	k = {eAon,eBon,h(k)} occurs at time k, h(k + 1) = h(k) + 1. For h(k) = 1 (i.e., the tank is empty): 
	If e


	• 
	• 
	• 
	k = {eAoff,eBoff,h(k)} occurs at time k, h(k + 1) = 1, 
	If e


	• 
	• 
	k = {eAoff,eBon,h(k)} occurs at time k, h(k + 1) = 1, 
	If e


	• 
	• 
	k = {eAon,eBoff,h(k)} occurs at time k, h(k + 1) = 3, and 
	If e




	• 
	• 
	• 
	k = {eAon,eBon,h(k)} occurs at time k, h(k + 1) = 2. For h(k) = 6 (i.e., the tank is almost full): 
	If e


	• 
	• 
	• 
	k = {eAoff,eBoff,h(k)} occurs at time k, h(k + 1) = 6, 
	If e


	• 
	• 
	k = {eAoff,eBon,h(k)} occurs at time k, h(k + 1) = 5, 
	If e


	• 
	• 
	k = {eAon,eBoff,h(k)} occurs at time k, h(k + 1) = 7, and 
	If e




	• 
	• 
	• 
	k = {eAon,eBon,h(k)} occurs at time k, h(k + 1) = 7. For h(k) = 7 (i.e., the tank is full): 
	If e


	• 
	• 
	• 
	k = {eAoff,eBoff,h(k)} occurs at time k, h(k + 1) = 7, 
	If e


	• 
	• 
	k = {eAoff,eBon,h(k)} occurs at time k, h(k + 1) = 6, 
	If e


	• 
	• 
	k = {eAon,eBoff,h(k)} occurs at time k, h(k + 1) = 7, and 
	If e


	• 
	• 
	k = {eAon,eBon,h(k)} occurs at time k, h(k + 1) = 7. 
	If e





	Hence, for the surge tank the following event trajectories (all infinite length event sequences) are in E: 1. {eAoff,eBoff,3},{eAoff,eBoff,3}, {eAon,eBon,3},{eAoff,eBoff,4}, ... 
	2. {eAon,eBoff,3},{eAon,eBon,5}, {eAon,eBoff,6},{eAon,eBoff,7}, ... 
	3. {eAoff,eBoff,3}, {eAoff,eBoff,4}, {eAoff,eBoff,5}, ... 
	v ⊂ E. For example, in sequence (3) above the event trajectory is not physically possible since if both fill valves are off, it is not possible that the liquid level rises. Sequence 
	However, only event trajectories that are physically possible are in E

	(2) above is a possible sequence for the dynamical process, but the expert system that is used for liquid level regulation v contains all physically possible infinite length event trajectories that can be generated by the dynamical process as it is defined above. This completes the definition of the dynamical process; next we define the expert controller. 
	below will not allow this sequence of events since it does not represent good regulation properties. The set E

	The model C for the expert controller for the surge tank has: 
	• m = 2, n = 0, X= ∅, and x represents the most recently measured liquid level 
	i 

	in the tank (where we assume that initially the expert controller knows the tank liquid level), where = 3 indicates that the user would like the liquid level regulated around level 3 (allowing 
	Figure

	Figure
	], where 
	Figure
	deviations only to levels 2 and 4) and = 5 indicates that the user would like the liquid level regulated around level 5 (allowing deviations only to levels 4 and 6), 
	Figure

	represents the set of sets of input events to the expert controller that can occur (e.g., the occurrence of {5,2} happens when the liquid level is 2 and the user would like 
	to regulate the liquid level around level 5), 
	c c
	g

	•, e , and δeare defined by the rules r ∈ R in the rule-base of the expert controller: 
	f
	c 

	– 
	– 
	– 
	Rule 1: IF eok = 1 THEN eok := {eAon}∧ x1 := 1 
	c
	b


	– Rule 2: IF eok = 2 THEN 
	Figure

	– 
	– 
	Rule3: IF = 3 THEN 

	– 
	– 
	Rule4: IF = 3 THEN eok := {eAoff} ∧ x1 := 4 
	c
	b


	– 
	– 
	Rule5: IF = 5 THEN 

	– 
	– 
	Rule6: IF = 5 THEN 

	– 
	– 
	Rule 7: IF eok = 5 THEN 

	– 
	– 
	Rule 8: IF eok = 6 THEN 

	– 
	– 
	Rule 9: IF eok = 7 THEN 


	There are no particular restrictions placed on Ev. This completes the definition of the expert controller. 
	c

	Notice that the inference engine is particularly simple for the expert controller. There is no need for the complex conflict resolution strategies such as refraction and recency presented in Section 2. The expert controller simply fires one of its nine rules in response to the fourteen different possible combinations of user inputs and process outputs. Notice that one could easily improperly define the expert controller so that it will fail to achieve its task. For instance, it is easy to define the expert 
	For reachability analysis let Xm ⊂X, and 
	c

	(11) 
	Figure

	be the set of goal states that represent our desire to regulate the liquid level between 2 and 6 no matter what the user inputs are. We will also have occasion to use the sets Xm3,Xm5 ⊂Xm where 
	(12) 
	Figure

	and . (13) A search algorithm can be used to show the following result: 
	Figure
	Theorem 5.1 The expert controller C is (x0Xm)-reachable, (x0Xm3)-reachable, and (x0Xm5)-reachable for all 
	c
	,
	c
	,
	c
	,

	Figure
	For stability analysis let the distance between two states of the expert controller be 
	. (14) 
	Figure

	Notice that the set Xm is an invariant set for the expert controller since if the state of the expert controller starts in Xm it 
	will stay in Xm for all time. 
	Theorem 5.2 The invariant set Xm for the expert controller C is asymptotically stable in the large w.r.t. Ev. 
	c

	Proof: Let . From Equation (14) we have 
	Figure

	. (15) 
	Figure

	Define the Lyapunov function V (x)= ρ(x,Xm) so that choosing c1 = c2 = 1 we get satisfaction of conditions (1) and (2) 
	c
	c

	of Theorem 3.1. We want to show that for all initial states, V (x) is a nonincreasing function of k and that 
	c

	for the rules that the expert system will fire. Notice that if = 7 (full), ) = 1, the 
	Figure
	Figure
	Figure

	fill Bon will occur in a finite amount of time eventually = 6 for some so that = 1 (empty), V (xk) = 1, and the fill valve is on (by rule 1) so we know that no matter whether Valve B is opened or closed, the liquid level will rise so that for some 
	valve is off (by rule 9), and since we know that e
	Figure
	Figure
	c

	Figure
	Figure
	Theorem 5.3 If the user input sequence ) for all k ≥ 0 then Xm3 (Xm5) is asymptotically stable in the large w.r.t. 
	Figure

	Ecv. 
	The proof of Theorem 5.3 is similar to that of Theorem 5.2 except that additional dynamics of the surge tank process must be considered in showing that . Theorem 5.2 shows that the expert system will achieve its regulation task. Moreover, it shows that the expert system will not exhibit cyclic behavior outside the invariant set (goal set) Xm. Theorem 5.3 shows that the expert system will appropriately respond to user inputs that specify the level around which the user would like the tank liquid level regula
	Figure

	Concluding Remarks 
	We have shown that conventional knowledge-base debugging tools can ignore important dynamic behavior that can result from connecting the full expert system (i.e., with an inference engine) to user inputs and a dynamic process. We have introduced the idea of characterizing and analyzing reachability, cyclic behavior, and stability of expert systems. Moreover, we have illustrated the results by modeling and analyzing expert systems that solve a water-jug filling problem and a simple process control problem. 
	Below we summarize some of the difficulties in performing a formal verification of the dynamical operation of rule-based expert systems that this investigation has uncovered: 
	1. 
	1. 
	1. 
	1. 
	The rule-base can represent complex situations that were encountered in the distant past (e.g., sometimes thepremises of rules depend on past components of the state vector for backtracking and cycle avoidance as in the 

	example in Section 4) and can represent complex predictions of what can happen in the future as the result of its actions. 

	2. 
	2. 
	The inference engine utilizes strategies that depend on the path of inferences that were executed up to thecurrent state (e.g., for recency and refraction and other more complex inference strategies). 

	3. 
	3. 
	The recency strategy in the inference mechanism can result in some of the components of the state vector i) [23]. 
	tobecome unbounded as k → ∞ (the “ages”, s


	4. 
	4. 
	Notice that 1 and 2 make the analysis of the qualitative properties of rule-based expert systems relativelycomplex (this is not surprising since the dynamics of these systems, even for simple examples like the ones studied in Sections 4 and 5, are relatively complex). 

	5. 
	5. 
	Also, 1 and 2 typically cause any graph algorithm used for the analysis of qualitative properties of rule-basedexpert systems to be computationally prohibitive for complex realistic applications. 

	6. 
	6. 
	Notice that 1-3 cause significant problems if one is interested in implementing rule-based expert systems forrealtime applications. 
	-



	In light of such problems with performing verification of expert system dynamics, it is clear that several of the more empirical/simulation-based expert system verification approaches outlined in the Introduction must play a significant role in the verification of more complex rule-based expert systems. However, as with the engineering/scientific analysis of any complex dynamical system, there is clearly a role for empirical/simulation-based investigations and formal mathematical approaches. The mathematica
	There are many important future directions for this work including: (i) characterizing and analyzing additional properties of expert systems (e.g., to show that a given system is unstable or to illustrate the ability of an expert system to meet hard real-time constraints), (ii) investigating the dynamics of AI reasoning systems that utilize learning and planning in various complex applications, (iii) studying computational complexity issues relative to conflict resolution strategies and knowledge representa
	Finally, we note that overall, it is hoped that this work takes steps towards establishing a foundation for the mathematical verification and certification of the dynamics of rule-based expert systems that operate in critical environments. 
	Acknowledgement: The authors would like to thank the reviewers for their helpful comments. 
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