
Engng App/ic. Arllf. Intel/. Vol. 8, No. 3, pp. 261-269. 1995
Copyright © 1995 Elsevier Science Ltde Pergamon Printed in Great Britain. All rights reserved

0952-1976(95)00007-0 0952-1976195 $9.50 + 0.00

Contributed Paper

Genetic Adaptive Observers

LA MOYNE L. PORTER II
The Ohio State University, U.S.A.

KEVIN M. PASSINO
The Ohio State University, U.S.A.

(Received September 1994)

A genetic algorithm (GA) uses the principles of evolution, natural selection, and genetics to offer a
method for the parallel search ofcomplex spaces. This paper shows how to utilize GAs to perform on­
line adaptive state estimation for nonlinear systems. First, it shows how to construct a genetic adaptive
observer (GAO) where a GA evolves the gains in a state observer in real time so that the state
estimation error is driven to zero. Next, several examples are used to illustrate the operation and
performance of the GA 0. The paper starts by showing how the GAO can pick the observer gains for
a linear state estimation problem. Following this it demonstrates how the GAO performs in estimating
the state of a nonlinear, chaotic system for various inputs, noise, and model mismatches.

Keywords: State estimators, observers, adaptation, genetic algorithms.

1. INTRODUCTION actual closed-loop eigenvalues and desired eigenvalues,
as well as actual and desired eigenvectors. Michalewicz

Since the inception of the genetic algorithm concept by
et al. 6 use the GA to solve certain optimal control

Holland1 in 1975 it has been useful in solving a wide
problems. Ishibuchi et al. 1 design fuzzy controllers for

variety of problems. Economics, game theory, and the
pattern classification, with the GA attempting to mini­

traveling salesman problem are just a few instances of
mize the number of rules while maximizing the number

situations where the GA has been used to prize an
of correct classifications. Katai et al. 8 present a tech­

optimal solution from a complex, nonlinear search
2 nique which utilizes a GA and a fuzzy controller to

space. •
3 The GA has also found application in the area

reduce the error between a model of the system and the
of design automation for conventional and intelligent

actual system over a time window. Karr and Gentry9

controllers. Typically, for this, a controller is decom­
use a GA to design a fuzzy controller to control the pH

posed into a set of parameters which the GA attempts
of an acid-base system. Park, Kandel and Langholz10

to optimize by using a simulation-based fitness evalu­
optimize a fuzzy reasoning model via a genetic algor­

ation of candidate controllers in the closed-loop
ithm to control a direct current series motor. Varsek et

system. For instance, Lee and Takagi4 designed a fuzzy
al. 11 use a GA to derive and subsequently optimize

system using a genetic algorithm, for the inverted
rules for the control of an inverted pendulum. Nomura

pendulum. Controller fitness evaluation is based upon
et al. 12 present a method for GA tuning of a fuzzy

simulation of the system over a variety of initial con­
controller that fits input-output data. They utilize a

ditions to obtain a fuzzy controller capable of handling
gradient descent method coupled with rule minimiza­

a variety of operating conditions. Their GA manipu­
tion to obtain optimal input membership functions.

lates strings which represent input and output member­
It is important to note that approaches similar to

ship functions. Their fitness evaluation incorporates a
these GA-based computer-aided control-system design

strategy to minimize the number of rules, and "scores"
techniques can be used for the off-line design of state

the ability of the fuzzy controller to balance the pendu­
estimators, since the design of observers closely paral­

lum. Porter and Borairi5 use the GA in an eigenstruc­
lels that of controllers. This, however, is not the focus

ture assignment technique. Their GA chooses values of
of this paper, which investigates whether GAs can be a linear feedback matrix to minimize the error between
used for the on-line synthesis/tuning of observers. In
work which is closely related, Das and Goldberg, 13

Correspondence should be sent to: Dr K. M. Passino, Department of
Maclay and Dorey/4 Kristinsson and Dumont, 15 andElectrical Engineering, The Ohio State University, 2015 Neil

Avenue, Columbus, OH 43210, U.S.A. Etter et al. 16 use the GA for system identification (i.e. to

261

262 LA MOYNE L. PORTER II and KEVIN M. PASSINO: GENETIC ADAPTIVE OBSERVERS

identify a process model of a plant using input-output
data). Yao and Sethares 17 use the GA for nonlinear
parameter estimation. Here they use a GA to find the
parameters of a partially known nonlinear system by
matching input-output data. Using an elitism-type
operator they are able to prove convergence of the
algorithm.

In this paper a GA is applied to estimate the state
vector of a possibly nonlinear system. The estimation
scheme closely mimics that of the technique described
in Ref. 18, with the objective function similar to those
of Refs 15 and 17. Receiving process input and output
information, the GA manipulates an observer structure
(i.e. the observer gains) in order to reduce the state
estimation error to zero. The problem differs from the
one studied for conventional adaptive observers19 in
that it is assumed here that there exists a known
mathematical model of the process, and hence that
parameter estimation for the model used in the
observer is not necessary. The adaptive nature of this
technique is expressed in the adaptation of the observer
gains by the GA, and the main focus is on the develop­
ment of adaptive observers for nonlinear systems,
rather than for linear systems as in Ref. 19.

Section 2 provides some background information on
the base-10 GA that is used. Section 3 describes the
"genetic adaptive observer" (GAO) that was used for
state estimation, and Section 4 illustrates the operation
and performance of the GAO for a linear and nonlinear
state-estimation problem. Section 5 gives some con­
cluding remarks, and a critique of the technique.

2. BACKGROUND: A BASE-IO GENETIC
ALGORITHM

The GA performs a parallel search of a parameter
space by using genetic operators (e.g. selection, cross­
over and mutation) to manipulate a set of encoded
strings which represent system parameters.* These
genetic operators combine the strings in different
arrangements where the optimal configuration being
sought is one which maximizes a user-specified objec­
tive function (also called a "fitness function"). The
parallel nature of this search is realized by the algor­
ithm's repetitive processing of a population (set) of
strings, beginning with an initial population. This initial
population is either a set of guesses at potential solu­
tions to the optimization problem, or a random set of
strings generated by the computer. A subsequent popu­
lation is created via evaluation of the objective func­
tion, and the use of genetic operators to form a new
generation of strings which hopefully comprise the best
characteristics of the previous set. Ideally, the strings of
the new generation are either as capable or more
capable of maximizing the value of the objective func­
tion than those of the previous population. Typically,

* While a brief overview is provided, it is assumed that the reader has
a familiarity with the conventional base-2 GA for which many
excellent tutorial introductions exist (see e.g. Refs 2, 3 and 20).

the strings that maximize the objective function at the
time of termination of the GA are taken to be solutions
to the optimization problem. A string is composed of
digits (genes), each of which can take on different
values (alleles). In the artificial genetic environment
described here, alphabets of any desired cardinality can
be used in order to encode these values. In a binary
environment, an allele can be represented by a Oor 1.
The reproduction operation merely copies selected
strings from the old generation into the new gene­
ration. Strings are selected for reproduction, based
upon their fitness values; thus strings with higher than
average fitnesses are preferentially copied into the new
generation. Goldberg (see Ref. 2, p. 11) cites the ana­
logy of spinning a roulette wheel partitioned according
to the fitness of each individual string with respect to
the average fitness of the entire population. Thus,
strings with large fitness values occupy a greater portion
of the wheel, and are more likely to be selected. The
crossover operation is the primary vehicle for develop­
ing new structures. Crossover qualifies as a genetic
operator since it allows for the exchange of chromo­
some building blocks (genes), which readily occurs in
natural genetics. Once two strings are selected by the
reproduction operation, crossover will occur with a
probability, p 0 which is specified by the user during
initialization of the routine. If crossover occurs, a
"cross site" is randomly determined. This cross site is a
number between 1 and p - 1, where p is the length of
the string, which determines how much genetic mat­
erial will be exchanged between the two selected
strings. Once the cross site, k, is determined, crossover
dictates that the two strings simply exchange the alleles
between the k + 1 position and the end of the string.

The mutation operator is the secondary method for
introducing new structures into the population. The
mutation operation is performed on a digit-by-digit
basis: each digit (position) of the string has an equal
probability of mutation, Pm, against which it is tested.
When mutation occurs, the string position is changed to
a different allele selected from the set of possible digits.
Mutation should be used sparingly (by choosing Pm to
be small), as increased use results in a random walk
through the search space.

In addition to the three GA operators selection,
crossover, and mutation, an operator called elitism see
(Ref. 2, p. 115) will also be utilized. Elitism ensures
that the string with the largest fitness value will propa­
gate to the next generation without manipulation by
other GA operators. Elitism is used since it is likely
that within a sufficiently small time range (i.e. a small
number of generations), one set of observer gains will
be better than any other set. To perturb the parameters
of the best observer unnecessarily may result in an
unsatisfactory performance for which no genetic tech­
nique can adapt. Hence, by using the elitism operator,
over a certain time range the best set of observer gains
will consistently determine the state estimate. The

263 LA MOYNE L. PORTER II and KEVIN M. PASSINO: GENETIC ADAPTIVE OBSERVERS

string which defines the best set of observer gains is
given a number of copies in proportion to i~s fitness
relative to the average fitness of the population. The
remaining slots, if any, are chosen via selection, cross­
over and mutation.

The operation of the GA changes slightly, depending
on the base of the numbers to which the genetic
operators are applied. Traditionally GAs have been
designed to operate over binary numbers (referred to
as "GA2") and more recently several base-10 GAs
("GA 10") have been developed. 1 To avoid the ne~d for
encoding and decoding of strings, a GAw algonthm,
will be employed that operates similarly to the GA 2

described in Ref. 2, except that:

(i) its digits vary over the numbers 0, 1, 2, ... , 9
and there is an extra digit for the "+ " or " - "
sign;

(ii) the strings are split into a portion to the left
and to the right of the decimal point; and

(iii) its genetic mutation operator randomly per­
turbs the digits to any value in 0, 1, 2, ... , 9
or toggles between " + " and ·' - " for the sign
digit with probability, p,,,.

If strings outside the domain are generated by the
mutation and crossover operators then another candi­
date is generated via these operations. For pathological
cases, a limit is placed upon the number of successive
mutations allowed and in violation of this limit, the
parameter (and string) are reset to the maximum or
minimum value (whichever is closest to the actual value
of the string). It is important to note that the GAO
approach presented in this paper does not depend in
any critical way on using GAw. The standard GA 2

method works in a similar manner (some simulation­
based investigations to verify this for the maximization
problem are reported by the authors in Ref. 3, p. 18).
GA 10 is used simply to avoid issues in coding and
decoding strings and to make an algorithm for which it
is easy to gain insight into its search procedure. For
instance, it seems easier to gain intuition about the
operation of the GAO since the underlying GA oper­
ates over base-10 numbers rather than long binary
strings.

A GENETIC ADAPTIVE OBSERVER

3.1. Problem statement

Suppose a given, continuous-time process

x=f(x,u) (1)

y =g(x) (2)

with a discrete-time representation

x(k + 1) = /(x(k), u(k))

y(k) =g(x(k)). (3)

The equations

x(k + l) =<l>x(k) + fu(k)

y(k) = Hx(k) (4)

may be used to denote (3) if the process is linear. A
discrete-time, possibly nonlinear, observer

i(k+ 1) =/(i(k), u(k)) + /i(L, y(k), i(k)) (5)

y(k) =g(i(k))

can be defined, where i(k) is an estimate of x(k). As is
standard, it is assumed in the design of the observer
that a model of the process is available [i.e. equa_tion
(3)], and it is necessary to show how to pick f, to
complete the specification of the observer. If the pro­
cess is linear with equation (4), the observer in equa­
tion (5) becomes

i(k + 1) = <l>i(k) + fu(k) + L(y(k) - Hx(k)) (6)

y(k) = Hx(k)

with n states, p inputs and q outputs. <I> 1: r;nnxn' r E

r;nnxp, HE<Jlqxn, and LE<Jl"x 1,2 1 SO that f1(L, y(k),
x(k)) = L(y(k) - Hx(k)). In conventional linear
observer design one can use, e.g. pole-placement tech­
niques to specify the observer gain L. Normally, such _a
design process is completed off-line. Here, the GA 1s
used to manipulate the observer L so that t~e estima­
tion error x(k)-x(k) goes to zero. In fact, fi(L, y(k),
x(k)) =L(y(k)- Hx(k)) will be used to specify the
observer structure even if the underlying process is
nonlinear. Hence, when the process is nonlinear the
problem becomes significantly more challenging,
because of the adaptation of an observer structure
where the error signal enters linearly so that it performs
well for a nonlinear system.

3.2. Genetic adaptive observers

In the GAO a form of the discrete-time observer
structure in equation (5) is used to obtain an estimate of
the process states. The GAO structure utilizes an
objective function which determines the fitness of each
set of L gains. Let 0; denote the ith observer (a string
of digits parameterizing the L gains) in the population
of observers O and assume that the size of the popula­
tion IOI is m. The objective function utilized in the
GAO is of the form, f;= I,;-'1 1 a1pJ, where Pi is a
parameter used to evaluate the "goodness" of 0,, NP is
the number of those parameters, and the ai are scaling
factors. For example, Pi might represent the amount of
error between the estimate of the process output and
the process output. f; should approach zero as the
algorithm operates, so -1; is used, and maximized. For
selection purposes, the value of -1; is mapped to a
fitness value, l; > 0 as follows:

l;*0
(7)

l;=0

where i= 1,2, ... , m and mis the population size.
In the rather unlikely event that a -l; has a fitness of

zero, the second equation in equation (7) identifies this

264 LA MOYNE L. PORTER II and KEVIN M. PASSINO: GENETIC ADAPTIVE OBSERVERS

-J, as the "elite" string by mapping it to the largest
fitness value. The quantity 2 * max was chosen here
more or less arbitrarily. Assigning a fitness value that is
too large would result in the next generation completed
being dominated by this "zero" fitness valued string.
This may not be desirable in all cases, so the 2*max
represents an acceptable trade-off. Once al; has been
assigned to all strings, selection proceeds normally,
with f; used as the fitness value.

Suppose that the value of NP= 2 so that -J(i) will be
derived from a weighting of two quantities. The first
term, p 1, is an error term on the current state estimate
using

x(k) = f(x(k- l), u(k-1)) +L(y(k-1)- Hx(k-1))

y(k) =g(x(k)) (8)

Pi= y(k)-y(k)

(where x= 0) and the second term, p 2) is a error term
on the future estimate of the state:

x(k+ 1) =f(x(k), u(k)) + L(y(k)-Hx(k))

y(k + 1) =g(x(k + 1)) (9)

P2 =y(k+ 1)-y(k).

Using this structure for fitness assignment, the GA
chooses L based upon the amount of error between the
estimation of the process output and the actual output.
As the GAO has no direct information about the n
elements of the state vector, and L; gains, i =
1,2, ... , n, change merely to suit minimization of this
output error. It was found via simulations that this
change in L gains can result in unsatisfactory fluctua­
tions in the estimation error of the n - l states. There
are many methods of alleviating this penchant for the
GA to change the L gains unnecessarily. Three candi­
dates are:

(1) restructuring the objective function to place a
penalty on the change of L gains;

(2) using a reference model and controller scheme
(similar to that in Ref. 18) to dictate a closed­
loop system resonse that mitigates the fre­
quency of L changes; or

(3) employing an averaging of the L; gains for
smoothing.

Of the three proposed schemes, (3) is used, because
of its ease in implementation and due to the fact that
for the applications in hand, it was found easier to
design genetic adaptive observers with this approach.

This method is implemented merely by taking the
average of the last N, chosen values of the L; gains,
i = 1,2, ... , n (chosen by the GA at each time k

because L displayed maximum fitness), which are
denoted by

k-1

LL;

avg{L;(k)}=i~k;, . (10)
t

So as to not use a set of average L gains that would
produce clearly unacceptable behavior, the set of aver­
age values (avg{L;(k)}) is used only if its fitness value is
within a certain user-defined tolerance of the fitness
value of the L gains with maximum fitness.
Mathematically, the avg{L;(k)}, i=l,2, ... ,n is only
used if

(11)

where ILm(k)I is the absolute value of the fitness of the
L gains with maximum fitness at time k, IL"(k)I is the
absolute value of the fitness of avg{L;(k)}, i=
1,2, ... , n, and y>0 is the user-defined tolerance.
Once the condition in equation (11) is met, the
avg{L;(k)}, i= 1,2, ... , n is used after that time.
Hence, they tolerance specifies a termination condition
for the adaptation in the GAO (clearly if one expects
significant process parameter variations one could keep
the adaptation mechanism on so that the system conti­
nually adapts). If y is chosen to be small then the
maximally fit members of the population produces a
behavior that is similar to the behavior generated by
the average L;. Essentially, the y tolerance forces a
convergence to an algorithm which would not necessar­
ily converge by itself.

The GAO proceeds according to the following
pseudo-code:

(1) Initialize the GA. Initialize population. Set
initial L gains to acceptable values. This could
be either a random choice within specified
limits or perhaps the designer has an idea of
what L gains to choose (e.g. via conventional
observer design guidelines). Set the crossover
and mutation probabilities. Set the string
length. Select a;s. Select y. Set N,. Set k = 0.

(2) Collect y(k) and u(k).
(3) Assign a fitness to each O;, i = 1,2, ... , m.

Calculate p 1 and p 2 from equations (8) and (9).

(4) The maximally fit O; is compared with the
fitness of the average L; gains. If the y toler­
ance equation (11) is met, then the state esti­
mate is provided by the average L gains from
this time onward; otherwise, the maximally fit
O; provides the state estimate at time k.

(5) Produce the next generation using GA opera­
tors (i.e. use the GA operators selection,
crossover, mutation, and elitism in the

265 LA MOYNE L. PORTER II and KEVIN M. PASSINO: GENETIC ADAPTIVE OBSERVERS

standard manner to generate a new population
of observer gains).

(6) Let k: = k + 1. Go to Step 2.

Prior to satisfying the y tolerance requirement, the
GA picks the set of L gains at each time k which will:
(1) minimize the error between the current estimate of
the process output and the actual process output [equa­
tion (8)] and; (2) minimize the difference between the
estimate of the process output one time step in the
future and the current process output [equation (9)).
Choice of the a;s determines the amount of "future"
error to be allowed while attempting to keep the
quantity in (1) small. The adaptive nature of the algor­
ithm, which is achieved by the genetic operators in Step
5, ceases when the y tolerance is satisfied in Step 4.

4. EXAMPLES

This section considers a linear and nonlinear example
in order to contrast the differences in difficulty between
the two problems, and to show how the GAO can
perform for a challenging state-estimation problem. In
both examples the average L gains are calculated over
the last 200 samples (N, = 200). The L; averages are not
available for consideration until 200 samples of data
have been collected, and until that the time maximally
fit L gains are used.

4.1. Linear example

Consider the second-order linear continuous-time
state equations

x 1(t) = -2.25x 1(t)-4.5xi(t) (12)

xz(t) = - 5.5xz(t) + u(t) (13)

which have poles at -2.25 and -5.5. Using a sampling
period of 0.01 s and a forward difference rule, a dis­
crete equivalent of

x 1(k+ 1) = 0.9775x 1(k)-0.045xz(k) (14)

xz(k + 1) =0.945xz(k) + 0.0lu(k) (15)

is obtained.
Given the state x 1 (i.e. y =x 1), it is desired to esti­

mate the state x2 using the GAO. An input u(k) is
chosen to be the sum of two sinusoids

u(k) =0.999+0.42 cos(l.75k) + 0.32 cos(4.5k). (16)

The process state is initialized at x 1=x2 = 1.5. The
observer is initialized with i 1 = i 2 = 0 to represent the
possibility that the initial process state is not known.
Crossover and mutation probabilities are chosen as 0.6
and 0.4, respectively (on the basis of past experience
with GAs). A string length of 16 digits is chosen (eight
to represent each L gain), each of which is initialized to
a random number between 9.9 and -9.9. They value is
set at 5 x 10-6

. The values of a 1 and a 2 are 5 and 40,

Time (s)

~<ib= ; ; ; ; I
0 I 2 3 4 6 7 9 IO

Time (s)

Fig. I. x1 and x 2 estimation errors: linear system.

Note that relatively good tracking performance is
achieved in Fig. 1, and Fig. 2 shows that at t =3.5
seconds, the y tolerance in equation (11) is satisfied.
Note that for this linear case one could design, a priori,
observer gains that would result in better performance.
This example merely illustrates that the off-line design
procedure for linear observers can be automated via an
on-line GA for this example. The next example shows
how the GAO can evolve the L gains for a nonlinear
state-estimation problem that does not have a simple
procedure for observer design.

4.2. A nonlinear example

This nonlinear equation is taken from Ref. 22 and for
a certain choice of input u(t) describes a chaotic,
glycolytic oscillator:

x 1(t) = -x1(t)x~(t) + u(t)
(17)

x 2(t) =x1(t)x~(t)-xz(t).

Using a sampling period, Ts= 0.01 s and a forward
difference rule a discrete equivalent of

x 1(k + 1) = x 1(k)- T,(x 1(k)xi(k) + u(k))
(18)

xz(k+ 1) =xz(k) + Ts(x 1(k)xi(k)-xz(k))

is obtained.

,_:R-------1
0 1 2 3 4 6 7 9

Time (s)

,]~~I
0 I 2 3 4 6 9 10

respectively. Figure 1 shows the estimation errors for x 1
Time (s)

and x2. Figure 2 shows the L gains. Fig. 2. L gains: linear system.

https://cos(4.5k
https://0.999+0.42

266 LA MOYNE L. PORTER II and KEVIN M. PASSINO: GENETIC ADAPTIVE OBSERVERS

~-!:1--1 ~::~I;-0;------1;:I
0 2 3 4 6 7 9 10 0 1 2 3 4 5 6 7 8 9 10

Time (s)

~_f; ;;;; :;1
0 1 3 4 6 7 9 IO

Time (s)

Fig. 3. x1 and x, estimation errors.

The same u(t) is chosen as in the previous example.
Receiving the state x 1 as the process output (y =x1), it is
necessary to estimate x2 . The observer structure is
initialized with i 1 = i 2 = 0. The process state is initia­
lized at x 1 = x 2 = 1.5. Crossover and mutation probabili­
ties are chosen as 0.6 and 0.4, respectively. A string
length of 16 digits is chosen (eight to represent each L
gain). Using the standard observer design procedure,21
linearizations of the system around the initial con­
ditions (x 1 = 1.5, x 2 = 1.5) indicate that L 1 should be
positive and L2 should be negative. The GA is ''smart''
enough to isolate the correct sign choices in the linear
case but for the nonlinear case, it must be helped in its
choice of L by providing a good initial population and
reasonable limits on the maximum and minimum values
of L. It is for this reason that L 1 is initialized to a
random number between 9.9 and 0.0, and L2 is initia­
lized to a random number between -0.01 and -9.9.
The y value is set at 5 x 10~5

_ After some simulation
studies, the values of a 1 and a 2 are chosen to be 5 and
80, respectively. Figure 3 shows the estimation errors
for x 1 and x2. Figure 4 shows the L gains. At t= 3.0 s,

Time (s)

~-I;
O I 2 3

::;
4 5 6

;;1
9 10

Time (s)

Fig. 5. x1 and x, estimation errors: chaotic input.

they tolerance in equation (11) is satisfied. Overall. the
GAO performs quite well.

The nonlinear example is continued with four more
test cases, with the same GA parameters as the pre­
vious case:

(1) Input u(t)=0.999+0.42cos(l.75t) which
makes the system chaotic (Figs 5 and 6)

(2) Input from (1) with noise 0.1 sin (2n3t) added
to the sensed process output (Figs 7 and 8)

(3) White, Gaussian noise (mean= 1.25,
SD= 0.5) as an input to the system (Figs 9 and
10),

(4) Model mismatch where the actual process ts
described by

x1(t) = -0.8x 1(t)x~(t) + u(t)

.xi(t) = X1(t)x~(t) - xi(t)

but the model of the process used by the GAO remains
as in equation (18) (Figs 11 and 12). The input to the
system is the same as in (3). This case represents the

~ I:~---------1::I ~ :~~------,00 I
0 1 2 3 4 6 7 9 10 O 1 2 3 4 5 9 10

Time (s) Time (s)

Time (s) Time (s)

Fig. 4. L gains. Fig. 6. L gains: chaotic input.

267 LA MOYNE L. PORTER II and KEVIN M. PASSINO: GENETIC ADAPTIVE OBSERVERS

i!I===I======I0 2 4 6 8 9 10

~ :
0 1 2 3 4 5 6 7 8 9 10

Time (s)

Fig. 7. x, and x2 estimation errors: chaotic input with noise.

more realistic situation, where the model of the process
used in the GAO is not an accurate representation of
the true process.

In all of these figures, reasonable estimates of x 1 and
x2 are obtained. The added noise to the sensed output
and the model mismatch test cases show the largest
amount of estimation error (see Figs 7 and 11). The
technique seems to be highly dependent upon the
accuracy of the process model, but for these examples
did not seem to be as dependent upon the process
input. For the input which makes the system chaotic
(Figs 5 and 6), good estimation accuracy is still
obtained. In fact, it was found that merely exciting the
process with a constant input [u(t) =0.999] still resulted
in the reduction of the error to zero for the linear and
nonlinear systems. Finally, note that the final L; gains
found in each case were different, since the behavior of
the nonlinear system changes significantly for the
different cases studied. In addition the GAO is stochas­
tic in operation and different L; gains could be found
for the same input to the process. As an interesting
aside it was found that fixing the L 1 gain using the y
tolerance, but allowing L2 to be picked by the GAO,

·;; =
Oil

....r :~ : : :: I
0 1 2 3 4 s 6 8 9 10

Time (s)

·;; =
Oil

N
"-l -~~ I

~~~I===::===;:I 
~" 

0 2 3 4 6 7 9 10

_:k:T;m;(•--=: ; J 

0 1 2 3 4 6 7 8 9 10 
Time (s) 

Fig. 9. x, and x2 estimation errors: white, Gaussian noise. 

still resulted in good performance, and fixing L2, but 
allowing L 1to change resulted in poor performance. 

5. CONCLUDING REMARKS 

While the results of this paper provide the first 
approach to using GAs for on-line state estimation and 
the simulation results indicate good performance for 
the applications studied, without a mathematical analy­
sis of the GAO, neither convergence of the estimation 
error nor stability are guaranteed. All of the GAO 
parameters have an effect on the amount of estimation 
error in the system, and while the investigation found 
the design parameters of the GAO easy to choose for 
the linear system, the nonlinear system example 
required more careful tuning. The linear system 
seemed more tolerant to observer gain changes, and 
the GAO was able to find a "good" set of observer 
gains with less-stringent assumptions on the initial and 
subsequent populations than for the nonlinear system. 
The nonlinear system was very dependent upon the 
choice of y and the a;s and large crossover/mutation 
probabilites were required to obtain good perfor-

·;; = 
Oil 

"-l- ~Wli I
0 1 2 3 4 6 8 9 10 

Time (s) 

·;; = 
Oil 

"-lN -~~ I 
0 1 2 3 4 6 9 10 0 1 2 3 4 s 6 9 10 

Time (s) Time (s) 

Fig. 8. L gains: chaotic input with noise. Fig. 10. L gains: white, Gaussian noise. 



268 LA MOYNE L. PORTER II and KEVIN M. PASSINO: GENETIC ADAPTIVE OBSERVERS 

Acknowledgement-This work was supported in part by National 
Science Foundation Grants !RI 9210332 and EEC 9315257. 

REFERENCES!~=I==;;II. Holland J. Adaptation in Natural and Artificial Systems. The 
0 2 4 5 6 7 8 9 10 University of Michigan Press, Ann Arbor (1975). 

-0.5 ,___....__~-~-----........--'--~-~~-------

Time (s) 

... 
0 
I:: 
0 

1-tN ,c~: ~==J
0 I 2 3 4 5 6 7 9 10 

Time (s) 

Fig. 11. x, and x, estimation errors: model mismatch. 

mance. Poor choice of these GA parameters sometimes 
resulted in unstable behavior. • 

Several directions seem fruitful for future research: 

(i) more-general observer structures should be 
employed rather than the simple linear struc­
ture used in this paper; 

(ii) other termination conditions besides equation 
(11) should be investigated; 

(iii) stability and convergence analysis must be 
performed; and 

(iv) experimental studies are needed to more fully 
evaluate the implementation issues associated 
with the technique. 

i~/; 0 0 0 0 0 0 I 
0 I 2 3 4 6 7 9 10 

Time (s) 

~-~~~~I O O O O O O I 
0 I 2 3 4 6 7 8 9 10 

Time (s) 

Fig. 12. L gains: model mismatch. 

2. Goldberg D. E. Genetic Algorithms in Search, Optimization, and 
Machine Learning. Addison-Wesley, New York (1989). 

3. Michalewicz Z. Genetic Algorithms+ Data Structures = 
Evolution Programs. Springer-Verlag, New York (1992). 

4. Lee M. A. and Takagi H. Integratng design stages of fuzzy 
systems using genetic algorithms. In Second IEEE International 
Conference on Fuzzy Systems, San Francisco, CA, pp. 612-617 
(1993). 

5. Porter B. and Borairi M. Genetic design of linear multivariable 
feedback control systems using eigenstructure assignment. Int. J. 
Systems Sci. 23, 1387-1390 (1992). 

6. Michelewicz Z. et al. Genetic algorithms and optimal control 
problems. In Proceedings of the 29th Conference on Decision and 
Control, Honolulu, HI, pp. 1664-1666 (1990). 

7. Ishibuchi H., Nozaki K. and Yamamoto N. Selecting fuzzy ruks 
by genetic algorithm for classification problems. In Second IEEE 
International Conference on Fuzzy Systems, San Francisco, CA, 
pp. 1119-1124 (1993). 

8. Katai 0., Ida M., Sawaragi T., Iwai S., Kohno S. and Kataoka 
T. Constraint-oriented fuzzy control schemes for cart-pole 
systems by goal decoupling and genetic algorithms. In Fuzzy 
Control Systems (Kandel A. and Langholz G. Eds), pp. 181-195. 
CRC Press, Boca Raton (1994). 

9. Karr C. and Gentry E. Fuzzy control of ph using genetic 
algorithms. IEEE Transact. Fuzzy Systems 1, 46-53 (1993). 

IO. Park D., Kandel A. and Langholz G. Genetic-based new fuzzy 
reasoning models with application to fuzzy control. IEEE 
Transact. Systems, Man Cybernetics 24, 39-47 (1994). 

11. Varsek A., Urbanicic T. and Filipic B. Genetic algorithms in 
controller design and tuning. IEEE Transact. Systems, Man 
Cybernetics 23, 1330-1339 (1993). 

12. Nomura H., Hayashi I. and Wakami N. A self-tuning method of 
fuzzy reasoning by genetic algorithm. In Fuzzy Control Systems 
(Kandel A. and Langholz G. Eds), pp. 338-354. CRC Pres,, 
Boca Raton (1994). 

13. Das R. and Goldberg D. Discrete-time parameter estimation 
with genetic algorithms. In Proceedings 19th Annual Pittsburgh 
Conf. Modeling Simulation, Pittsburgh, PA, pp. 2391-2395 
(I 988). 

14. Maclay D. and Dorey R. Applying genetic search techniques to 
drivetrain modeling. IEEE Control Systems, 13, 50-55 (1993). 

15. Kristinsson K. and Dumont G. System identification and control 
using genetic algorithms. IEEE Transact. Systems, Man, 
Cybernetics 22, 1033-1046 (1992). 

16. Etter D., Hicks M. and Cho K. Recursive adaptive filter design 
using adaptive genetic algorithm. In Proc. IEEE Int. Conf 
Acoustics, Speech, Signal Processing 2, 635-638 (1982). 

17. Yao L. and Sethares W. A. Nonlinear parameter estimation via 
the genetic algorithm. IEEE Transact. Signal Processing 42, 927-
935 (1994). 

18. Porter II L. L. and Passino K. M. Genetic model reference 
adaptive control. In Proc. IEEE Int. Symp. Intelligent Control, 
Columbus, OH, pp. 219-224, 16-18 August (1994). 

19. Narendra K. S. and Annaswamy A. M. Stable Adaptive Systems, 
pp. 140-180. Prentice-Hall, New Jersey (1989). 

20. Srinivas M. and Patnaik L. M. Genetic algorithms: A survey. 
IEEE Comput. pp. 17-26 (1994). 

21. Frankliin G. F., Powell J. D. and Workman M. L. Digitul 
Control of Dynamic Systems, p. 252. Addison Wesley, Reading, 
MA (1990). 

22. Holden A. V. Chaos. Princeton University Press, New Jersey 
(1986). 



269 LA MOYNE L. PORTER II and KEVIN M. PASSINO: GENETIC ADAPTIVE OBSERVERS 

AUTHORS' BIOGRAPHIES 

La Moyne L. Porter II received a B.S. in Chemical Engineering and Electrical Engineering at Stanford University in 1991 and 
an M.S. in Electrical Engineering at The Ohio State University in 1994. He has worked at British Petroleum Research 
configuring a graphical interface for control of a chemical reactor, and at Intel doing research in a manufacturing environment. 
He is currently a graduate student at Stanford University pursuing a Ph.D. His interests include English literature, nonlinear 
systems, adaptive control and intelligent control. 
Kevin M. Passino received his M.S. and Ph.D. in Electrical Engineering from the University of Notre Dame in 1989 and his 
B.S.E.E. from Tri-State University in 1983. He has worked in the control systems group at Magnavox Electronic Systems Co., 
Ft Wayne, IN, on research in missile control and at McDonnell Aircraft Co., St Louis, MI, on research in flight control. He 
spent a year at Notre Dame as a Visiting Assistant Professor and is currently an Assistant Professor in the Department of 
Electrical Engineering at The Ohio State University. He is an Associate Editor for the IEEE Transactions on Automatic 
Control; served as the Guest Editor for the /993 IEEE Control Systems Magazine Special Issue on Intelligent Control; is 
currently a Guest Editor for a special track of papers on Intelligent Control for IEEE Expert Magazine; and is on the Editorial 
Board of the International Journal for Engineering Applications of Artificial Intelligence. He was a Program Chairman for the 
8th IEEE Int. Symp. on Intelligent Control, 1993 and he is serving as the General Chair for the 11th IEEE Int. Symp. on 
lntelliigent Control. He is co-editor (with P. J. Antsaklis) of the book An Introduction to Intelligent and Autonomous Control, 
Kluwer Academic Press, 1993. He is a member of the IEEE Control Systems Society Board of Governors. His research 
interests include intelligent and autonomous control techniques, nonlinear analysis of intelligent control systems, failure 
detection and identification systems, and scheduling and stability analysis of flexible manufacturing systems. 


