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A genetic algorithm (GA) uses the principles of evolution, natural selection, and genetics to offer a 
method for the parallel search ofcomplex spaces. This paper shows how to utilize GAs to perform on­
line adaptive state estimation for nonlinear systems. First, it shows how to construct a genetic adaptive 
observer (GAO) where a GA evolves the gains in a state observer in real time so that the state 
estimation error is driven to zero. Next, several examples are used to illustrate the operation and 
performance of the GA 0. The paper starts by showing how the GAO can pick the observer gains for 
a linear state estimation problem. Following this it demonstrates how the GAO performs in estimating 
the state of a nonlinear, chaotic system for various inputs, noise, and model mismatches. 
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1. INTRODUCTION actual closed-loop eigenvalues and desired eigenvalues, 
as well as actual and desired eigenvectors. Michalewicz

Since the inception of the genetic algorithm concept by 
et al. 6 use the GA to solve certain optimal control

Holland1 in 1975 it has been useful in solving a wide 
problems. Ishibuchi et al. 1 design fuzzy controllers for 

variety of problems. Economics, game theory, and the 
pattern classification, with the GA attempting to mini­

traveling salesman problem are just a few instances of 
mize the number of rules while maximizing the number 

situations where the GA has been used to prize an 
of correct classifications. Katai et al. 8 present a tech­

optimal solution from a complex, nonlinear search 
2 nique which utilizes a GA and a fuzzy controller to 

space. • 
3 The GA has also found application in the area 

reduce the error between a model of the system and the 
of design automation for conventional and intelligent 

actual system over a time window. Karr and Gentry9 

controllers. Typically, for this, a controller is decom­
use a GA to design a fuzzy controller to control the pH

posed into a set of parameters which the GA attempts 
of an acid-base system. Park, Kandel and Langholz10 

to optimize by using a simulation-based fitness evalu­
optimize a fuzzy reasoning model via a genetic algor­

ation of candidate controllers in the closed-loop 
ithm to control a direct current series motor. Varsek et

system. For instance, Lee and Takagi4 designed a fuzzy 
al. 11 use a GA to derive and subsequently optimize

system using a genetic algorithm, for the inverted 
rules for the control of an inverted pendulum. Nomura

pendulum. Controller fitness evaluation is based upon 
et al. 12 present a method for GA tuning of a fuzzy

simulation of the system over a variety of initial con­
controller that fits input-output data. They utilize a

ditions to obtain a fuzzy controller capable of handling 
gradient descent method coupled with rule minimiza­

a variety of operating conditions. Their GA manipu­
tion to obtain optimal input membership functions. 

lates strings which represent input and output member­
It is important to note that approaches similar to

ship functions. Their fitness evaluation incorporates a 
these GA-based computer-aided control-system design 

strategy to minimize the number of rules, and "scores" 
techniques can be used for the off-line design of state

the ability of the fuzzy controller to balance the pendu­
estimators, since the design of observers closely paral­

lum. Porter and Borairi5 use the GA in an eigenstruc­
lels that of controllers. This, however, is not the focus 

ture assignment technique. Their GA chooses values of 
of this paper, which investigates whether GAs can be a linear feedback matrix to minimize the error between 
used for the on-line synthesis/tuning of observers. In 
work which is closely related, Das and Goldberg, 13 
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Maclay and Dorey/4 Kristinsson and Dumont, 15 andElectrical Engineering, The Ohio State University, 2015 Neil 

Avenue, Columbus, OH 43210, U.S.A. Etter et al. 16 use the GA for system identification (i.e. to 
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identify a process model of a plant using input-output 
data). Yao and Sethares 17 use the GA for nonlinear 
parameter estimation. Here they use a GA to find the 
parameters of a partially known nonlinear system by 
matching input-output data. Using an elitism-type 
operator they are able to prove convergence of the 
algorithm. 

In this paper a GA is applied to estimate the state 
vector of a possibly nonlinear system. The estimation 
scheme closely mimics that of the technique described 
in Ref. 18, with the objective function similar to those 
of Refs 15 and 17. Receiving process input and output 
information, the GA manipulates an observer structure 
(i.e. the observer gains) in order to reduce the state 
estimation error to zero. The problem differs from the 
one studied for conventional adaptive observers19 in 
that it is assumed here that there exists a known 
mathematical model of the process, and hence that 
parameter estimation for the model used in the 
observer is not necessary. The adaptive nature of this 
technique is expressed in the adaptation of the observer 
gains by the GA, and the main focus is on the develop­
ment of adaptive observers for nonlinear systems, 
rather than for linear systems as in Ref. 19. 

Section 2 provides some background information on 
the base-10 GA that is used. Section 3 describes the 
"genetic adaptive observer" (GAO) that was used for 
state estimation, and Section 4 illustrates the operation 
and performance of the GAO for a linear and nonlinear 
state-estimation problem. Section 5 gives some con­
cluding remarks, and a critique of the technique. 

2. BACKGROUND: A BASE-IO GENETIC 
ALGORITHM 

The GA performs a parallel search of a parameter 
space by using genetic operators (e.g. selection, cross­
over and mutation) to manipulate a set of encoded 
strings which represent system parameters.* These 
genetic operators combine the strings in different 
arrangements where the optimal configuration being 
sought is one which maximizes a user-specified objec­
tive function (also called a "fitness function"). The 
parallel nature of this search is realized by the algor­
ithm's repetitive processing of a population (set) of 
strings, beginning with an initial population. This initial 
population is either a set of guesses at potential solu­
tions to the optimization problem, or a random set of 
strings generated by the computer. A subsequent popu­
lation is created via evaluation of the objective func­
tion, and the use of genetic operators to form a new 
generation of strings which hopefully comprise the best 
characteristics of the previous set. Ideally, the strings of 
the new generation are either as capable or more 
capable of maximizing the value of the objective func­
tion than those of the previous population. Typically, 

* While a brief overview is provided, it is assumed that the reader has 
a familiarity with the conventional base-2 GA for which many 
excellent tutorial introductions exist (see e.g. Refs 2, 3 and 20). 

the strings that maximize the objective function at the 
time of termination of the GA are taken to be solutions 
to the optimization problem. A string is composed of 
digits (genes), each of which can take on different 
values (alleles). In the artificial genetic environment 
described here, alphabets of any desired cardinality can 
be used in order to encode these values. In a binary 
environment, an allele can be represented by a Oor 1. 
The reproduction operation merely copies selected 
strings from the old generation into the new gene­
ration. Strings are selected for reproduction, based 
upon their fitness values; thus strings with higher than 
average fitnesses are preferentially copied into the new 
generation. Goldberg (see Ref. 2, p. 11) cites the ana­
logy of spinning a roulette wheel partitioned according 
to the fitness of each individual string with respect to 
the average fitness of the entire population. Thus, 
strings with large fitness values occupy a greater portion 
of the wheel, and are more likely to be selected. The 
crossover operation is the primary vehicle for develop­
ing new structures. Crossover qualifies as a genetic 
operator since it allows for the exchange of chromo­
some building blocks (genes), which readily occurs in 
natural genetics. Once two strings are selected by the 
reproduction operation, crossover will occur with a 
probability, p 0 which is specified by the user during 
initialization of the routine. If crossover occurs, a 
"cross site" is randomly determined. This cross site is a 
number between 1 and p - 1, where p is the length of 
the string, which determines how much genetic mat­
erial will be exchanged between the two selected 
strings. Once the cross site, k, is determined, crossover 
dictates that the two strings simply exchange the alleles 
between the k + 1 position and the end of the string. 

The mutation operator is the secondary method for 
introducing new structures into the population. The 
mutation operation is performed on a digit-by-digit 
basis: each digit (position) of the string has an equal 
probability of mutation, Pm, against which it is tested. 
When mutation occurs, the string position is changed to 
a different allele selected from the set of possible digits. 
Mutation should be used sparingly (by choosing Pm to 
be small), as increased use results in a random walk 
through the search space. 

In addition to the three GA operators selection, 
crossover, and mutation, an operator called elitism see 
(Ref. 2, p. 115) will also be utilized. Elitism ensures 
that the string with the largest fitness value will propa­
gate to the next generation without manipulation by 
other GA operators. Elitism is used since it is likely 
that within a sufficiently small time range (i.e. a small 
number of generations), one set of observer gains will 
be better than any other set. To perturb the parameters 
of the best observer unnecessarily may result in an 
unsatisfactory performance for which no genetic tech­
nique can adapt. Hence, by using the elitism operator, 
over a certain time range the best set of observer gains 
will consistently determine the state estimate. The 
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string which defines the best set of observer gains is 
given a number of copies in proportion to i~s fitness 
relative to the average fitness of the population. The 
remaining slots, if any, are chosen via selection, cross­
over and mutation. 

The operation of the GA changes slightly, depending 
on the base of the numbers to which the genetic 
operators are applied. Traditionally GAs have been 
designed to operate over binary numbers (referred to 
as "GA2") and more recently several base-10 GAs 
("GA 10") have been developed. 1 To avoid the ne~d for 
encoding and decoding of strings, a GAw algonthm, 
will be employed that operates similarly to the GA 2 

described in Ref. 2, except that: 

(i) its digits vary over the numbers 0, 1, 2, ... , 9 
and there is an extra digit for the "+ " or " - " 
sign; 

(ii) the strings are split into a portion to the left 
and to the right of the decimal point; and 

(iii) its genetic mutation operator randomly per­
turbs the digits to any value in 0, 1, 2, ... , 9 
or toggles between " + " and ·' - " for the sign 
digit with probability, p,,,. 

If strings outside the domain are generated by the 
mutation and crossover operators then another candi­
date is generated via these operations. For pathological 
cases, a limit is placed upon the number of successive 
mutations allowed and in violation of this limit, the 
parameter (and string) are reset to the maximum or 
minimum value (whichever is closest to the actual value 
of the string). It is important to note that the GAO 
approach presented in this paper does not depend in 
any critical way on using GAw. The standard GA 2 

method works in a similar manner (some simulation­
based investigations to verify this for the maximization 
problem are reported by the authors in Ref. 3, p. 18). 
GA 10 is used simply to avoid issues in coding and 
decoding strings and to make an algorithm for which it 
is easy to gain insight into its search procedure. For 
instance, it seems easier to gain intuition about the 
operation of the GAO since the underlying GA oper­
ates over base-10 numbers rather than long binary 
strings. 

A GENETIC ADAPTIVE OBSERVER 

3.1. Problem statement 

Suppose a given, continuous-time process 

x=f(x,u) (1) 

y =g(x) (2) 

with a discrete-time representation 

x(k + 1) = /(x(k), u(k)) 

y(k) =g(x(k)). (3) 

The equations 

x(k + l) =<l>x(k) + fu(k) 

y(k) = Hx(k) (4) 

may be used to denote (3) if the process is linear. A 
discrete-time, possibly nonlinear, observer 

i(k+ 1) =/(i(k), u(k)) + /i(L, y(k), i(k)) (5) 

y(k) =g(i(k)) 

can be defined, where i(k) is an estimate of x(k). As is 
standard, it is assumed in the design of the observer 
that a model of the process is available [i.e. equa_tion 
(3)], and it is necessary to show how to pick f, to 
complete the specification of the observer. If the pro­
cess is linear with equation (4), the observer in equa­
tion (5) becomes 

i(k + 1) = <l>i(k) + fu(k) + L(y(k) - Hx(k)) (6) 

y(k) = Hx(k) 

with n states, p inputs and q outputs. <I> 1: r;nnxn' r E 

r;nnxp, HE<Jlqxn, and LE<Jl"x 1,2 1 SO that f1(L, y(k), 
x(k)) = L(y(k) - Hx(k)). In conventional linear 
observer design one can use, e.g. pole-placement tech­
niques to specify the observer gain L. Normally, such _a 
design process is completed off-line. Here, the GA 1s 
used to manipulate the observer L so that t~e estima­
tion error x(k)-x(k) goes to zero. In fact, fi(L, y(k), 
x(k)) =L(y(k)- Hx(k)) will be used to specify the 
observer structure even if the underlying process is 
nonlinear. Hence, when the process is nonlinear the 
problem becomes significantly more challenging, 
because of the adaptation of an observer structure 
where the error signal enters linearly so that it performs 
well for a nonlinear system. 

3.2. Genetic adaptive observers 

In the GAO a form of the discrete-time observer 
structure in equation (5) is used to obtain an estimate of 
the process states. The GAO structure utilizes an 
objective function which determines the fitness of each 
set of L gains. Let 0; denote the ith observer (a string 
of digits parameterizing the L gains) in the population 
of observers O and assume that the size of the popula­
tion IOI is m. The objective function utilized in the 
GAO is of the form, f;= I,;-'1 1 a1pJ, where Pi is a 
parameter used to evaluate the "goodness" of 0,, NP is 
the number of those parameters, and the ai are scaling 
factors. For example, Pi might represent the amount of 
error between the estimate of the process output and 
the process output. f; should approach zero as the 
algorithm operates, so -1; is used, and maximized. For 
selection purposes, the value of -1; is mapped to a 
fitness value, l; > 0 as follows: 

l;*0 
(7) 

l;=0 

where i= 1,2, ... , m and mis the population size. 
In the rather unlikely event that a -l; has a fitness of 

zero, the second equation in equation (7) identifies this 
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-J, as the "elite" string by mapping it to the largest 
fitness value. The quantity 2 * max was chosen here 
more or less arbitrarily. Assigning a fitness value that is 
too large would result in the next generation completed 
being dominated by this "zero" fitness valued string. 
This may not be desirable in all cases, so the 2*max 
represents an acceptable trade-off. Once al; has been 
assigned to all strings, selection proceeds normally, 
with f; used as the fitness value. 

Suppose that the value of NP= 2 so that -J(i) will be 
derived from a weighting of two quantities. The first 
term, p 1, is an error term on the current state estimate 
using 

x(k) = f(x(k- l), u(k-1)) +L(y(k-1)- Hx(k-1)) 

y(k) =g(x(k)) (8) 

Pi= y(k)-y(k) 

(where x= 0) and the second term, p 2 ) is a error term 
on the future estimate of the state: 

x(k+ 1) =f(x(k), u(k)) + L(y(k)-Hx(k)) 

y(k + 1) =g(x(k + 1)) (9) 

P2 =y(k+ 1)-y(k). 

Using this structure for fitness assignment, the GA 
chooses L based upon the amount of error between the 
estimation of the process output and the actual output. 
As the GAO has no direct information about the n 
elements of the state vector, and L; gains, i = 
1,2, ... , n, change merely to suit minimization of this 
output error. It was found via simulations that this 
change in L gains can result in unsatisfactory fluctua­
tions in the estimation error of the n - l states. There 
are many methods of alleviating this penchant for the 
GA to change the L gains unnecessarily. Three candi­
dates are: 

(1) restructuring the objective function to place a 
penalty on the change of L gains; 

(2) using a reference model and controller scheme 
(similar to that in Ref. 18) to dictate a closed­
loop system resonse that mitigates the fre­
quency of L changes; or 

(3) employing an averaging of the L; gains for 
smoothing. 

Of the three proposed schemes, (3) is used, because 
of its ease in implementation and due to the fact that 
for the applications in hand, it was found easier to 
design genetic adaptive observers with this approach. 

This method is implemented merely by taking the 
average of the last N, chosen values of the L; gains, 
i = 1,2, ... , n (chosen by the GA at each time k 

because L displayed maximum fitness), which are 
denoted by 

k-1 

LL; 

avg{L;(k)}=i~k;, . (10) 
t 

So as to not use a set of average L gains that would 
produce clearly unacceptable behavior, the set of aver­
age values (avg{L;(k)}) is used only if its fitness value is 
within a certain user-defined tolerance of the fitness 
value of the L gains with maximum fitness. 
Mathematically, the avg{L;(k)}, i=l,2, ... ,n is only 
used if 

(11) 

where ILm(k)I is the absolute value of the fitness of the 
L gains with maximum fitness at time k, IL"(k)I is the 
absolute value of the fitness of avg{L;(k)}, i= 
1,2, ... , n, and y>0 is the user-defined tolerance. 
Once the condition in equation (11) is met, the 
avg{L;(k)}, i= 1,2, ... , n is used after that time. 
Hence, they tolerance specifies a termination condition 
for the adaptation in the GAO (clearly if one expects 
significant process parameter variations one could keep 
the adaptation mechanism on so that the system conti­
nually adapts). If y is chosen to be small then the 
maximally fit members of the population produces a 
behavior that is similar to the behavior generated by 
the average L;. Essentially, the y tolerance forces a 
convergence to an algorithm which would not necessar­
ily converge by itself. 

The GAO proceeds according to the following 
pseudo-code: 

(1) Initialize the GA. Initialize population. Set 
initial L gains to acceptable values. This could 
be either a random choice within specified 
limits or perhaps the designer has an idea of 
what L gains to choose (e.g. via conventional 
observer design guidelines). Set the crossover 
and mutation probabilities. Set the string 
length. Select a;s. Select y. Set N,. Set k = 0. 

(2) Collect y(k) and u(k). 
(3) Assign a fitness to each O;, i = 1,2, ... , m. 

Calculate p 1 and p 2 from equations (8) and (9). 

(4) The maximally fit O; is compared with the 
fitness of the average L; gains. If the y toler­
ance equation (11) is met, then the state esti­
mate is provided by the average L gains from 
this time onward; otherwise, the maximally fit 
O; provides the state estimate at time k. 

(5) Produce the next generation using GA opera­
tors (i.e. use the GA operators selection, 
crossover, mutation, and elitism in the 
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standard manner to generate a new population 
of observer gains). 

(6) Let k: = k + 1. Go to Step 2. 

Prior to satisfying the y tolerance requirement, the 
GA picks the set of L gains at each time k which will: 
(1) minimize the error between the current estimate of 
the process output and the actual process output [equa­
tion (8)] and; (2) minimize the difference between the 
estimate of the process output one time step in the 
future and the current process output [equation (9)). 
Choice of the a;s determines the amount of "future" 
error to be allowed while attempting to keep the 
quantity in (1) small. The adaptive nature of the algor­
ithm, which is achieved by the genetic operators in Step 
5, ceases when the y tolerance is satisfied in Step 4. 

4. EXAMPLES 

This section considers a linear and nonlinear example 
in order to contrast the differences in difficulty between 
the two problems, and to show how the GAO can 
perform for a challenging state-estimation problem. In 
both examples the average L gains are calculated over 
the last 200 samples (N, = 200). The L; averages are not 
available for consideration until 200 samples of data 
have been collected, and until that the time maximally 
fit L gains are used. 

4.1. Linear example 

Consider the second-order linear continuous-time 
state equations 

x 1(t) = -2.25x 1(t)-4.5xi(t) (12) 

xz(t) = - 5.5xz(t) + u(t) (13) 

which have poles at -2.25 and -5.5. Using a sampling 
period of 0.01 s and a forward difference rule, a dis­
crete equivalent of 

x 1(k+ 1) = 0.9775x 1(k)-0.045xz(k) (14) 

xz(k + 1) =0.945xz(k) + 0.0lu(k) (15) 

is obtained. 
Given the state x 1 (i.e. y =x 1), it is desired to esti­

mate the state x2 using the GAO. An input u(k) is 
chosen to be the sum of two sinusoids 

u(k) =0.999+0.42 cos(l.75k) + 0.32 cos(4.5k). (16) 

The process state is initialized at x 1=x2 = 1.5. The 
observer is initialized with i 1 = i 2 = 0 to represent the 
possibility that the initial process state is not known. 
Crossover and mutation probabilities are chosen as 0.6 
and 0.4, respectively (on the basis of past experience 
with GAs). A string length of 16 digits is chosen (eight 
to represent each L gain), each of which is initialized to 
a random number between 9.9 and -9.9. They value is 
set at 5 x 10-6

. The values of a 1 and a 2 are 5 and 40, 

Time (s) 

~<ib= ; ; ; ; I 
0 I 2 3 4 6 7 9 IO 

Time (s) 

Fig. I. x1 and x 2 estimation errors: linear system. 

Note that relatively good tracking performance is 
achieved in Fig. 1, and Fig. 2 shows that at t =3.5 
seconds, the y tolerance in equation (11) is satisfied. 
Note that for this linear case one could design, a priori, 
observer gains that would result in better performance. 
This example merely illustrates that the off-line design 
procedure for linear observers can be automated via an 
on-line GA for this example. The next example shows 
how the GAO can evolve the L gains for a nonlinear 
state-estimation problem that does not have a simple 
procedure for observer design. 

4.2. A nonlinear example 

This nonlinear equation is taken from Ref. 22 and for 
a certain choice of input u(t) describes a chaotic, 
glycolytic oscillator: 

x 1(t) = -x1(t)x~(t) + u(t) 
(17) 

x 2(t) =x1(t)x~(t)-xz(t). 

Using a sampling period, Ts= 0.01 s and a forward 
difference rule a discrete equivalent of 

x 1(k + 1) = x 1(k)- T,(x 1(k)xi(k) + u(k)) 
(18) 

xz(k+ 1) =xz(k) + Ts(x 1(k)xi(k)-xz(k)) 

is obtained. 

,_:R-------1 
0 1 2 3 4 6 7 9 

Time (s) 

,]~~I
0 I 2 3 4 6 9 10 

respectively. Figure 1 shows the estimation errors for x 1 
Time (s) 

and x2. Figure 2 shows the L gains. Fig. 2. L gains: linear system. 

https://cos(4.5k
https://0.999+0.42
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~-!:1--1 ~::~I;-0;------1;:I
0 2 3 4 6 7 9 10 0 1 2 3 4 5 6 7 8 9 10 

Time (s) 

~_f; ;;;; :;1 
0 1 3 4 6 7 9 IO 

Time (s) 

Fig. 3. x1 and x, estimation errors. 

The same u(t) is chosen as in the previous example. 
Receiving the state x 1 as the process output (y =x1), it is 
necessary to estimate x2 . The observer structure is 
initialized with i 1 = i 2 = 0. The process state is initia­
lized at x 1 = x 2 = 1.5. Crossover and mutation probabili­
ties are chosen as 0.6 and 0.4, respectively. A string 
length of 16 digits is chosen (eight to represent each L 
gain). Using the standard observer design procedure,21 
linearizations of the system around the initial con­
ditions (x 1 = 1.5, x 2 = 1.5) indicate that L 1 should be 
positive and L2 should be negative. The GA is ''smart'' 
enough to isolate the correct sign choices in the linear 
case but for the nonlinear case, it must be helped in its 
choice of L by providing a good initial population and 
reasonable limits on the maximum and minimum values 
of L. It is for this reason that L 1 is initialized to a 
random number between 9.9 and 0.0, and L2 is initia­
lized to a random number between -0.01 and -9.9. 
The y value is set at 5 x 10~5

_ After some simulation 
studies, the values of a 1 and a 2 are chosen to be 5 and 
80, respectively. Figure 3 shows the estimation errors 
for x 1 and x2. Figure 4 shows the L gains. At t= 3.0 s, 

Time (s) 

~-I;
O I 2 3 

::;
4 5 6 

;;1 
9 10 

Time (s) 

Fig. 5. x1 and x, estimation errors: chaotic input. 

they tolerance in equation (11) is satisfied. Overall. the 
GAO performs quite well. 

The nonlinear example is continued with four more 
test cases, with the same GA parameters as the pre­
vious case: 

(1) Input u(t)=0.999+0.42cos(l.75t) which 
makes the system chaotic (Figs 5 and 6) 

(2) Input from (1) with noise 0.1 sin (2n3t) added 
to the sensed process output (Figs 7 and 8) 

(3) White, Gaussian noise (mean= 1.25, 
SD= 0.5) as an input to the system (Figs 9 and 
10), 

(4) Model mismatch where the actual process ts 
described by 

x1(t) = -0.8x 1(t)x~(t) + u(t) 

.xi(t) = X1(t)x~(t) - xi(t) 

but the model of the process used by the GAO remains 
as in equation (18) (Figs 11 and 12). The input to the 
system is the same as in (3). This case represents the 

~ I:~---------1::I ~ :~~------,00 I 
0 1 2 3 4 6 7 9 10 O 1 2 3 4 5 9 10 

Time (s) Time (s) 

Time (s) Time (s) 

Fig. 4. L gains. Fig. 6. L gains: chaotic input. 
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i!I===I======I0 2 4 6 8 9 10 

~ : 
0 1 2 3 4 5 6 7 8 9 10 

Time (s) 

Fig. 7. x, and x2 estimation errors: chaotic input with noise. 

more realistic situation, where the model of the process 
used in the GAO is not an accurate representation of 
the true process. 

In all of these figures, reasonable estimates of x 1 and 
x2 are obtained. The added noise to the sensed output 
and the model mismatch test cases show the largest 
amount of estimation error (see Figs 7 and 11 ). The 
technique seems to be highly dependent upon the 
accuracy of the process model, but for these examples 
did not seem to be as dependent upon the process 
input. For the input which makes the system chaotic 
(Figs 5 and 6), good estimation accuracy is still 
obtained. In fact, it was found that merely exciting the 
process with a constant input [u(t) =0.999] still resulted 
in the reduction of the error to zero for the linear and 
nonlinear systems. Finally, note that the final L; gains 
found in each case were different, since the behavior of 
the nonlinear system changes significantly for the 
different cases studied. In addition the GAO is stochas­
tic in operation and different L; gains could be found 
for the same input to the process. As an interesting 
aside it was found that fixing the L 1 gain using the y 
tolerance, but allowing L2 to be picked by the GAO, 
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Fig. 9. x, and x2 estimation errors: white, Gaussian noise. 

still resulted in good performance, and fixing L2, but 
allowing L 1to change resulted in poor performance. 

5. CONCLUDING REMARKS 

While the results of this paper provide the first 
approach to using GAs for on-line state estimation and 
the simulation results indicate good performance for 
the applications studied, without a mathematical analy­
sis of the GAO, neither convergence of the estimation 
error nor stability are guaranteed. All of the GAO 
parameters have an effect on the amount of estimation 
error in the system, and while the investigation found 
the design parameters of the GAO easy to choose for 
the linear system, the nonlinear system example 
required more careful tuning. The linear system 
seemed more tolerant to observer gain changes, and 
the GAO was able to find a "good" set of observer 
gains with less-stringent assumptions on the initial and 
subsequent populations than for the nonlinear system. 
The nonlinear system was very dependent upon the 
choice of y and the a;s and large crossover/mutation 
probabilites were required to obtain good perfor-
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mance. Poor choice of these GA parameters sometimes 
resulted in unstable behavior. • 

Several directions seem fruitful for future research: 

(i) more-general observer structures should be 
employed rather than the simple linear struc­
ture used in this paper; 

(ii) other termination conditions besides equation 
(11) should be investigated; 

(iii) stability and convergence analysis must be 
performed; and 

(iv) experimental studies are needed to more fully 
evaluate the implementation issues associated 
with the technique. 
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