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A fuzzy system can be constructed to interpolate between input-output data to provide an approxima
tion for the function that is implicitly defined by the input-output data-pair associations. This paper 
begins by explaining how function approximation techniques can be used to solue nonlinear 
estimation and system identification problems. Next, several fundamental issues are discussed, related 
to how to choose the input-output data pairs so that accurate function approximation can be achieved 
with fuzzy systems. Using this insight a technique called "uniform training" is proposed, in which 
input sequences are chosen to produce good training data sets ("uniform training data sets"). Also, a 
new technique for function approximation via fuzzy systems called "modified learning from 
examples" is outlined, where membership functions are specified and rules are added to try to achieve 
a pre-specified function approximation accuracy. Uniform training and the modified learning from 
examples technique are then illustrated on a simple pendulum example. In addition, the use of the 
modified learning from examples approach is demonstrated in constructing a fuzzy system which can 
identify actuator failures on an F-16 aircraft. 

Keywords: Fuzzy systems, estimation, identification, failure identification. 

I. INTRODUCTION 

Fuzzy systems have been successfully applied in several 
areas within engineering including control, signal pro
cessing and pattern recognition. Some recent work has 
focused on the idea of constructing fuzzy systems from 
a finite set of input-output training data in order to 
perform function approximation. u This new focus is 
particularly important, due to the fact that many prob
lems in estimation and identification can be formulated 
as function-approximation problems. For instance, in 
conventional system identification, input-output data 
is gathered from a physical system and a least-squares 
approach can be used to provide the best approxima
tion for the linear function that maps the system inputs 
to its outputs. Similarly, in parameter estimation if one 
is given data that associates measurable system vari
ables with an internal system parameter, a functional 
mapping may be constructed that approximates the 
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process of estimation of the internal system parameter. 
This paper: 

(i) studies the problem of how to generate the 
input-output data so that good function approx
imation (and hence identification or estimation) 
can be achieved; 

(ii) introduces a novel technique to generate good 
input-output data called the "uniform training 
algorithm"; 

(iii) introduces a new technique, called "modified 
learning from examples" (MLFE) to construct 
fuzzy systems to approximate the mapping pres
ent in a set of input-output data (so that the 
fuzzy system can be used as an estimator or 
identifier); 

(iv) evaluates the performance of MLFE and the 
uniform training algorithm; and 

(v) shows how it can be used to identify actuator 
failures on an F-16 aircraft. 

The first step is to define precisely the function
approximation problem, where one seeks to synthesize 
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a function to approximate another function that is 
inherently represented via a finite number of input
output associations (i.e. one only knows how the func
tion maps a finite number of points in its domain to its 
range). Following this, the paper shows how the prob
lem of how to construct nonlinear system identifiers 
and nonlinear estimators is a special case of the prob
lem of how to perform function approximation. Next 
some theoretical issues are examined, associated with 
how to choose the input-output data so that good 
function approximation can be achieved. In particular, 
after explaining the relevance of the universal approxi
mation property1 it is shown that the accuracy with 
which approximation is achieved will depend on the 
structure of the input-output data in the sense that if 
the input-output data is "uniform" better approxima
tion can be expected. Using this insight a method is 
introduced to achieve a uniform training data set called 
the "uniform training algorithm". Basically, this algor
ithm generates a sequence of inputs to the system so 
that the training data that is gathered uniformly covers 
(in a sense to be defined more carefully later) the 
training data space. 

Next, a new technique is introduced to construct 
fuzzy systems from input-output training data. This is 
called "modified learning from examples". In this tech
nique, ideas from the approaches in Refs 3 and 4 are 
used to modify the "learning from examples" (LFE) 
technique in Ref. 5. In particular, for MLFE a unique 
and novel way is utilized to position input and output 
membership functions using the input-output data, (i) 
so that what is learned about the mapping from one 
training data pair is not destroyed by using information 
from other training data pairs; and (ii) so that a smooth 
interpolation is achieved between the training data 
pairs. In addition, for MLFE rules are added to a fuzzy 
system to try to achieve a pre-specified function 
approximation accuracy. This is done in a way that 
guarantees that no matter what input is put into the 
constructed fuzzy system, there will be a well-defined 
output. Techniques, in addition to those in Refs 3-5, 
that are related to the MLFE technique include those in 
Refs 2 and 6-9. It is important to note, however, that 
while the approaches in Refs 3, 4 and 5, and the related 
ones in Refs 2, 6, 7, 8 and 9 have been used successfully 
for a variety of identification and estimation problems, 
they have not addressed the problems in choosing good 
training data sets (i.e. how to choose the training data 
to improve approximation accuracy) as is done here. 

Following the introduction of the MLFE technique 
MLFE is evaluated, and it is shown how for a simple 
pendulum example (i) the uniform training algorithm 
can automatically generate a training data set that 
increases identification accuracy of both LFE and 
MLFE, and (ii) how MLFE can perform better than 
LFE while using fewer rules than LFE. To further 
investigate the MLFE approach, it is shown being used 
to construct a fuzzy system that can identify a class of 

y 

Fig. I. Function mapping with four known input-output data pairs. 

actuator failures on an F-16 aircraft (this seems to be 
the first application of fuzzy identification to failure 
detection and identification). An early version of this 
paper appeared in Ref. 10. 

Section 2 defines the function-approximation prob
lem, shows how identification and estimation problems 
are a special case of function-approximation problems, 
and investigates fundamental issues in the choice of the 
training data set. Section 3 introduces the uniform 
training algorithm. Section 4 introduces the MLFE 
approach, and Section 5 evaluates the MLFE and 
uniform training algorithms for a simple pendulum 
example. Section 6 shows how to use the MLFE for 
constructing a fuzzy system that can identify actuator 
failures on an F-16 aircraft. Section 7 contains some 
concluding remarks and future research directions. 

2. BACKGROUND 

Given some function f: 2r c ~n-o_y c ~ where o_y is a 
bounded set, the objective is to construct a fuzzy 
system g: X c 2l:---+ Y c o_y, where X and Y are some 
domain and range of interest, by choosing a parameter 
vector 6 E 0 so that 

f(x) = g(x; 6) + e(x) (1) 

for all x EX where e(x), the error in approximation, is 
as small as possible. It is assumed that all that is 
available to choose the parameters 6 of the fuzzy 
system g(x; 9) is some part of the function fin the form 
of a finite set of input-output data pairs. The ith input
output data pair for the system f is denoted by (x;, Y;) 
where X;EX, y;E Y and y;=f(x;). The set of input
output data pairs is referred to as the training data set, 
and denoted by 

F={(x1,Y1), ... , (x,,,r,YmJ}cXX Y (2) 

where mF denotes the number of 1/0 data pairs con
tained in F (see Fig. 1). Therefore, the problem being 
considered here is how to construct a fuzzy system 
g(x; 9) so that f(x) =g(x; 9) for all x EX when only 
limited information is available about f in the form of 
the training set F. 

The first step is to develop a criterion to evaluate how 
closely a fuzzy system g(x; 9) approximates the func
tion f(x) for all x EX for a given of 6. It is necessary to 
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determine a bound on the approximation error. For 
example, 

sup {lf(x) - g(x; O)I} (3) 
xeX 

is such a bound. Such an expression requires that the 
function f: 31:-qlj be completely known; however, as it 
is stated above, only a part off, given by the finite set F 
is known. Therefore, it is only possible to evaluate the 
accuracy in approximation by evaluating the error 
betweenf(x) and g(x; 0) at certain points x EX given by 
the available 1/0 data. This set of I/0 data is referred 
to as the test set, and denoted as f, where 

f={(x1,Y1), ... , (Xm 1,YmJ}cXX Y. (4) 

Here, mr denotes the number of known I/0 data pairs 
contained within the test set. It is important to note that 
the 1/0 data pairs (xi, y;) contained in r may not be 
contained in F, or vice versa. It also might be the case 
that the test set is equal to the training set (F= f). An 
evaluation of the error in approximation between f and 
a fuzzy system g(x; 0) based on a test set f may or may 
not be a true measure of the error between f and g for 
every x EX, but it is the only evaluation that can be 
made, based on known information. Either 

1 
e2 = 2 I (f(x;)- g(xi, 0))2 (5) 

(x,, Y1)EI' 

or 

(6) 

will be used to measure the approximation error. 
Accurate function approximation requires that some 
expression of this nature be small. 

Many applications exist in the control and signal
processing areas which may utilize nonlinear function 
approximation. One such application is system identifi
cation. System identification is the process of construct
ing a mathematical model of a dynamic system using 
experimental data from that system. Let f denote the 
physical system to be identified. The training set F is 
defined by the experimental input-output data. In 
linear system identification an autoregressive with exo
genous inputs (ARX) model is often used where 

y(k) = L
q 

0ay(k- i) + L
p 

0b,u(k- i) (7) 
i=l i=O 

and u(k) and y(k) are the system input and output at 
time k. In this case g(x; 0), which is not a fuzzy system, 
is defined by equation (7) where 

x=[y(k-1)· • ·y(k-q)u(k)· • ·u(k-p}r (8) 

(9) 

System identification amounts to adjusting O using 
information from F so that g(x; 0) =f(x) for all x EX. 

Clearly, restricting g(x; 0) to be linear may often make 
it difficult to achieve accurate identification (i.e. func
tion approximation), especially if f(x) is highly non
linear. 

This paper will investigate the possibility of con
structing a fuzzy system g(x; 0) by choosing Obased on 
available training data F so that e(k) is small for all k. 
Similar to conventional system identification an appro
priately defined "regression vector" x, as specified in 
equation (8), will be utilized. Hopefully, since the fuzzy 
system g(x; 0) has more functional capabilities than the 
linear map defined in equation (7), it will be possible to 
achieve more accurate identification for highly nonli
near systems by an appropriate adjustment of its para
meters 0. 

A system which exhibits universal approximation is 
capable of approximating any real continuous function 
on a compact set to any arbitrary accuracy. Certain 
classes of fuzzy systems have the property of universal 
approximation. One common class of fuzzy systems 
considered here (for consideration of others see Ref. 2) 
with singleton fuzzification, product inference, 
Gaussian membership functions, and centroid defuzzi
fication is governed by the parameter set 

[N
0= 

and has 

t bi IT exp ( -1 (~)2)
g(x; 0) (11)t IT exp (-1(:tr) 

(see Ref. 2 for a more detailed explanation of fuzzy 
systems). The size of O is governed by the number of 
fuzzy rules N and the number of inputs to the fuzzy 
system n. For the fuzzy system (11) the output member
ship function for the ith rule is represented by the scalar 
point bi (a "singleton"), the input membership function 
for the ith rule and jth input is a Gaussian type input 
membership function with a point of maximum c{ and a 
relative width term a{>O. This form for a fuzzy system 
has the property of universal approximation, is conti
nuously differentiable, and has nonzero input member
ship values over the domain of interest X: 

Theorem 1. For any given real continuous function 
f (x): X c !Rn- Y c IR, where X and Y are compact, and 
an 
g(x

arbitrary 
; O):X-Y 

E > 0, there exists a 
with a fixed O (11) such t

fuzzy 
hat 

system 

sup lg(x; 0)-f(x)I < E 
XEX 

(12) 

The proof of Theorem 1 is given in Ref. 1. Note that 
many other classes of fuzzy systems other than equation 
(11) exhibit the property of universal approximation. In 
order for a class of fuzzy systems to be a universal 
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approximator it is necessary that the class of fuzzy 
systems meet the conditions of the Stone-Weierstrass 
Theorem. 

The property of universal approximation guarantees 
that there exists a way of choosing 6 for (11) so that the 
resulting fuzzy system can approximate any nonlinear 
continuous mapping to any specified accuracy. The 
means to choose the size of the fuzzy system, or 
necessary parameter set 6 are not stated, as Theorem 1 
is not constructive. No knowledge off is available for 
points x EX such that (x, y)ftF. Therefore, even though 
a fuzzy sytem may be determined which satisfies a 
chosen E for f over the training set F, this may not 
provide a good approximation for those points x EX 
such that (x, y)ftF. Figure 2 illustrates this point for the 
one-dimensional case where the dotted line denotes the 
output of the fuzzy system g(x; 6) and the solid line is 
f(x) for all x E (x1, x 2]. Although the error in approxi
mation at the training points x 1 and x2 is within E., the 
error in approximation within the interval is certainly 
not within E.. This analysis stresses the importance of 
obtaining an appropriate training set F, and leads to the 
following theorem. 

Theorem 2. Given a function f:X c IR"~ Y c IR and a 
fuzzy system g: Xx - Y with a fixed 6, both conti
nuously differentiable, and two points x 1, x2 E IR" such 
that lf(x)-g(x; 6)l<Efor x=x1 and x=x2 with E>O 
and x2*x1. Then for the neighborhood 

/1(x1, X2) ={XE X: llx - x1llz,;;; llx2 - xdl2} (13) 

where 11 •llz is the Euclidean norm, the approximation 
error is bounded such that 

sup {lf(x) - g(x; 6)1 < 
XE/J(XJ, Xz) 

Proof. See Appendix. 

y 

X 

Fig. 2. Universal approximation property interpretation. 

Since the case where f(x) is not known completely is 
being considered, the usage of Theorem 2 is somewhat 
limited. Although this is the case, Theorem 2 does lead 
to the following observations (and it is these obser
vations that the theorem leads to, that show the value 
of the theorem): 

1. If the conditions of the theorem are satisfied and a 
fuzzy system is constructed so that good approxi
mation is achieved at known points (E small), then 
the approximation error in the neighborhood of 
two known points is bounded by an expression 
which is governed by the Euclidean distance 
between those two points multiplied by the mag
nitude of the gradient expression. Therefore, the 
nearness of training points contained in F may 
improve the approximation error within the 
neighborhood associated with those points 
(Theorem 2 quantifies the meaning of this intui
tive idea). 

2. This theorem helps to clarify the limitations of the 
universal approximation property when applied to 
the nonlinear function approximation problem 
being addressed in this paper. 

3. This theorem introduces one additional con
straint, namely that both f(x) and g(x; 6) be 
continuously differentiable, to guarantee that the 
error "in the neighborhood" of two points is 
bounded. In some cases the assumption that the 
functions be continuously differentiable is restric
tive but the development of the ideas of the next 
section are not dependent on the technical con
ditions of the theorem. 

Motivated by these observations, the ideas of 
uniform training and a uniform training algorithm are 
introduced. 

3. UNIFORM TRAINING 

The discussion of fuzzy systems and nonlinear func
tion approximation given above illustrates a need for a 
uniform set of input-output training data F. A uniform 
training data set is characterized according to the fol
lowing definition (note that this definition is meant to 
appeal to intuition on the type of training data set that is 
good for training fuzzy systems). 

Uniform training data set 

An input-output training data set F (2) is "uniform" if 
the points given by X; EX, where (x;, y;) E F for i = 
1, ... , mf-: 

1. sufficiently cover the domain of interest X, 
2. are evenly distributed over the domain of interest 

X, and 
3. are sufficiently many, or mFis large enough, so that 

for any x EX the Euclidean distance between x and 
the nearest training data point is sufficiently small. 
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•f{J 
(a) (b) (c) (d) 

Fig. 3. Examples of not uniform (a, b, c) and uniform (d) training 
data sets. 

The first item of the definition addresses the need to 
include training data which reflects the unknown func
tional relationship for the entire domain of interest X. 
The second item of the definition states that no region 
in the domain X contains significantly more training 
data points than other regions for a uniform training 
data set, as this might bias the construction of a fuzzy 
system g(x; 0) to approximate the unknown function 
f(x) for a specific region in X. The final item in the 
above definition is based on Theorem 2. That is, if the 
conditions of Theorem 2 are satisfied, training points 
are sufficiently close, and good approximation is 
achieved at those points, then the approximation error 
"in the neighborhood" of those training data points 
may be small. 

The definition of a uniform training data set can be 
illustrated through a graphical example for X c IR 2 

where training points X; are denoted by "•" (Fig. 3). 
Figure 3(a) shows a training data set which does not 
sufficiently cover the domain X, (b) shows a training 
data set which is not evenly distributed, ( c) shows a 
training data set which may not contain a sufficient 
number of training data points and ( d) is an example of 
a uniform training data set. 

A uniform training data set is desirable, as it may 
provide for the construction of a fuzzy system g(x; 0) 
which accurately represents the functional mapping 
f(x) over the domain X. If input-output training data 
pairs are generated experimentally by injecting input 
sequences u(k) into an unknown system f(x) where 
u(k) and its delayed values are elements in the regres
sion vector x, then the question arises as to the proper 
choice of input sequences u(k) which will produce a 
uniform training data set. Note that for practical appli
cations the data that one would get for training a fuzzy 
system is not likely to be uniform in the sense described 
above; the focus of this section is on the development 
of an algorithm that will generate inputs into a system 
that will seek to produce this uniform set. 

Most standard system-identification techniques uti
lize a random input sequence or some other persistently 
exciting signal for system excitation. Although a 
random input may produce sufficient information for 
effective identification, it may not prove to be the best 
excitation signal when one is concerned with the con
struction of fuzzy systems for nonlinear function 

approximation. Since fuzzy systems approximate an 
unknown nonlinear mapping based on known points in 
the space, accurate function approximation is depen
dent on training data which reflects the functional 
mapping over the domain of interest X. If an input 
could be constructed which systematically produced 
experimental training data (x;, y;) where the X; suffi
ciently covered the domain X, then it is possible that a 
more accurate model may be identified when compared 
to a model produced with random excitation. An algor
ithm is proposed here for constructing input sequences 
which may approximate specified points for the input 
portion of an input-output training data for a class of 
unknown nonlinear systems. This is achieved by way of 
a "uniform training algorithm". 

3.1. Uniform training algorithm 

1. Class of systems 

The class of systems considered for uniform training 
are single-input-single-output discrete-time systems 
described by some function y(k) = f(x(k)) at a 
discrete-time k where x(k)=[y(k-l)···y(k-q) 
u(k)· · ·u(k- p)V E !Rq+p+I_ Moreover, the class of 
systems contain one and only one limit point x, EX. 
The characteristics of the limit point x, are such that 
when x(k0)EX and u(k)=u, for k~ke>O and some 
known constant ue 

lim lx(k)-x,I = 0 (15) 
k~ke, k-'>oc• 

where lxl = \/xix (note that this condition does not 
imply that the systems being considered must be 
asymptotically stable as x is formed from input-output 
data, not necessarily the state of the system). 

2. Quantized set 

First, a set of regression points is chosen, based on 
the definition of a uniform training data set. This set is 
named a quantized set. A quantized set includes those 
points which are needed as the input portion of a 
training data set, where the "input portion" of the 
training data set F refers to X; such that (x;, y;) E F. 
These quantized points are a finite subset of the domain 
X. Although there may be many choices for a quan
tized set (e.g. a uniform grid), a quantized set given by 

21 = {x EX: x= C;( qdxf) + Xe i = 1, ... , 11,i, C; = l, ... , n,.J 

(16) 

is chosen where xf are unit direction vectors indexed by 
i, qd is a scalar quantization level which represents the 
distance between quantized points in each direction, n,, 
is the number of quantized points in the ith direction, 
and nd is the number of unit direction vectors. As an 
example, suppose a given function is only known at a 
finite number of points f(x) with X c IR 2 and Xe= [O OV. 
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If qd= L nd=8, nc,=2 for all i, and directions x1 are 
chosen as 

quantized points as shown in Fig. 4 are obtained. The 
information (e.g. using the relative magnitude of the 
gradient of/iJx) may be known, or it may be chosen to 
reflect a desired number of input-output training data 
points. 

3. Supervisory algorithm (picking desired point xd) 

The supervisory algorithm picks a sequence of points 
xd E !!! that the trajectory control algorithm (see Step 4 
below) tries to drive the system to (note that xd is not a 
state but a regression vector). The sequence of points it 
picks is best explained by using the simple 
2-dimensional example from above. For this example 
(see Fig. 4) it will first choose xd= [0.5 or. then xd= 
(1 or (this choice is arbitrary; beginning in a different 
direction may be just as satisfactory). After this it will 
successively choose xd to lie along the +45° line with 
increasing distance from the origin. Next, it rotates to 
+90° and picks points of increasing distance from the 

-1 -1/2 1/2 

-1 

Fig. 4. Example of a quantized set. 

origin, and so on. The supervisory algorithm proceeds 
in this manner until it has selected each and every point 
in the quantized set !!!. In between the selection of 
successive xd other processing occurs, as explained 
next. 

Suppose that at some step xd is chosen. The trajec
tory control algorithm (see Step 4 below) will generate 
an input sequence denoted by u(k) of length T1 (where 
Ta~ T1~ Ta and Ta and Tb are design parameters) to 
drive the system to xd. XJ can be considered to be 
reached if the system can be driven to within a distance 
Ed of xd (i.e. within an Erneighborhood of xd). Suppose 
that the system reaches xd. In this case the actual values 
of x and y are recorded to form a training data pair 
(x, y), which is put in F. Next, an input ue (usually zero) 
is applied to the system until it reaches an 
£,-neighborhood of x,, and then the process is repeated 
by choosing the next point in the quantized space. If the 
point xd cannot be reached by Th seconds, then u, is 
input to the system until the £,-neighborhood of x, is 
reached. In either case (reaching or not reaching xd) as 
time progresses x is monitored. If it comes near any 
point in the quantized set, the corresponding values of 
x and y are used to form a training data pair, which is 
put in F. The algorithm allows the trajectory-control 
algorithm up to C tries to generate a u(k) that will drive 
the system to xd. If it fails each and every time, then the 
supervisory control algorithm moves to the next point. 

4. Trajectory control algorithm (picking inputs to drive 
the system to xd) 

The trajectory control algorithm steers x(k) to the xd 
chosen by the supervisory algorithm by applying an 
input sequence u(k). The class of input sequences 
chosen to construct follows the form of a finite Fourier 
series given by 

u(k)=</)0 + L
Q 

{¢2;-, sin(k(iy))+¢2;cos(k(iy))} (17) 
i~I 

where Q is a measure of the number of terms in the 
Fourier series, y is a parameter denoting the fundamen
tal frequency, and ¢=[¢0• • ·¢2or is a vector of free 
parameters which are the coefficients of the Fourier 
series. The finite Fourier series input allows a wide 
range of possible inputs within an expression which is 
easy to manipulate. Note also, that as long as ll«!>lb is 
bounded then the input u(k) is bounded. Therefore, to 
ensure a bounded input the constraint 

(18) 

is imposed for some M>O. The input sequence (17) is 
fixed, based on the values for (j> and is applied to the 
system over some discrete-time window W 

(19) 
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where Tf is a parameter denoting the input window 
duration. The training algorithm treats T1 as a free 
parameter which is bounded according to fixed values 
Ta and Tb so that TrE {Ta, T(/ +I, ... ' Th}. These 
bounds on the free parameter T1 ensure a more trac
table algorithm by allowing the input window duration 
to be in some specified range given by Ta and Th. The 
update of T1 and (j> is explained next. 

The supervisory-level algorithm injects the calcu
lated input sequences u(k) over the discrete-time win
dow W. Parameter updates for (j> are calculated using a 
gradient-descent technique based on x(k) generated by 
the previous input sequence. Let 

z(k) = ~ (x(k)-xdf(x(k)- xd) 

=½[(x,(k)-xdY+· • ·+(x,Jk)-x"Jl (20) 

The optimization technique we utilized is based on a 
performance measure given by 

J= inf {z(k)}=z(kf)- (21) 
kew 

To define the performance measure the ordered set of 
discrete time points at which the inf is achieved is 
denoted as 'Jl, so that 

'J{=arg inf {z(k)}. (22) 
kEW 

A single element ktE 'J{ c W which is the minimum in 'J{ 
is chosen, or 

(23) 

In other words, the minimum z(k) is found over the 
window given by W. If more than one minimum exists 
then the first occurrence of the minimum and J = z(k1) 
is picked as the performance. 

It is desired to minimize (21) based on a gradient 
descent method. Specifically, the idea is to compute the 
gradient of the cost function with respect to the free 
parameter set, (j>. The gradient is used to iteratively 
construct an input sequence so that z(kf) becomes small 
after successive tries with the constraint that II(!> 11 2 ,s M. 
Specifically, an input u(k) is applied for all k= 
1, ... , Tf (17) (k= 1 means the current point in time) 
based on the parameters (j>. (j> is then updated, based on 
the gradient of the cost function (21), and once the 
system is settled near x, the new input sequence based 
on the updated parameter set is applied. 

The parameter update utilizing the gradient of J is 
computed with respect to the parameter set (j>. The new 
coefficients for the finite Fourier series become (j>: = 
(j>+~(j> where 

(24) 

EAAI 8-5-C 

where rJ is the step size chosen by the designer. Using 
the chain rule, 

az(kt) ax,(k1) au(k1) 
iii:-= (x,(kr) - xd) au(kr) ~ + ••• + 

ax,,(k1) au(k1) . 
(xn(k1)-xd,) au(k1) ~l= 1, ..• , 2Q 

(25) 

and 

The term x is measured and the term xd is given. The 
term au(k1)/a</); is easily computed by finding the gradi
ent of the finite Fourier series, 

1 
au(k1) { . . ~=O (27) 
--.-= sm(kf1y) 1= 1, 3, ... , 2Q-1 

a¢, cos(k1iy) i=2,4, ... ,2Q. 

The remammg term ax;(k1)/au(k1) represents the 
change in the output vector with respect to the change 
in input between iterations. The expression is approxi
mated by computing the finite difference between suc
cessive iterations in the windowing sequence. 

x(kf) -x((k-1 )1) 
(28)

u(k1)- u((k-1)1) 

where (k - 1)1 denotes kf from the previous input 
sequence. These expressions are combined together 
with the constraint that ll(!>lb ,s M to form an overall 
expression representing the update algorithm for the 
parameter set (j>: 

az(kf)
-rJ--

a(j> 

az(k1) (29)~(j>= 
a(j>

-M--
az(k1) 
ll~b 

T1, is updated based on k1, and the bounds Ta and Tb. 
Since J may be minimized fork near k1an input window 
duration is chosen which places k1 in the center of the 
discrete-time window provided certain conditions are 
met with kf with regard to Ta and Tb. Specifically, the 
final time for the next applied input is chosen according 
to the equation 

Ta 2k1< Ta 
(30)

T1= 2kr Ta=S2k1=S Tb. 

Tb 2k1> Tb1 
Such a choice is ad hoc, but it allows flexibility in the 
input duration which may improve efficiency of the 
algorithm. 

In order to implement the uniform training algor-
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ithm, a set of design parameters must be chosen. 
Although these parameters may be chosen in an ad hoc 
fashion, in many cases choices for parameters may be 
based on implementation concerns. Some parameter 
values may be chosen on the basis of knowledge about 
the system and the actuator dynamics. For instance, 
based on the actuator dynamics Qy is a term associated 
with the bandwidth of the finite Fourier series. If the 
bandwidth of the actuator used for excitation is known, 
then the quantity Qy can be chosen to match the 
actuator bandwidth. Additionally, the actuator will 
generally contain hard limits in signal amplitude. If 
these limits are known, then M can be chosen properly. 
Additionally, if the relative magnitude of the gradient 
in the system is known, then qd can be chosen small 
enough and the directions xf can be chosen to specify 
an appropriate quantized set. Also, if the domain of 
interest Xis known then n,, may be chosen to specify an 
appropriate quantized set. The values of E, and Ed can 
be chosen on the basis of the spacing in the quantized 
set. The remaining parameters, C, and Y/ can be chosen 
via trial and error to achieve a uniform training data 
set. 

4. MODIFIED LEARNING FROM EXAMPLES 

This section utilizes some of the insight from the 
analysis performed in the previous section to propose a 
simple method for constructing a fuzzy system for 
nonlinear function approximation based on a training 
data set F defined by (2). The method proposed is an 
extension of other techniques proposed for nonlinear 
function approximation via fuzzy systems. Namely, a 
technique given in Ref. 5, entitled "learning from 
examples", is utilized, with some ideas from Refs 3 and 
4, to develop a new method to construct a fuzzy system 
for nonlinear function approximation. First, the metho
dology is developed, and then the function
approximation algorithm is presented. 

Given the parameterized fuzzy system (11) the para
meters in O and the number of rules N are chosen to 
approximate a nonlinear function f: X c IR"- Y c IR 
based on input-output data pairs generated via experi
ment or simulation. 

The first question be addressed in the construction of 
a fuzzy system is the choice of the number of fuzzy rules 
N. More fuzzy rules means increased computational 
complexity in implementation. Therefore specific appli
cations may limit the number of rules which may be 
utilized in implementation. On the other hand, the use 
of many fuzzy rules may produce a fuzzy system with 
more functional capability available for approximation. 
Therefore, a tradeoff exists between computational 
complexity and functional capability based on the 
number of fuzzy rules N. 

First the quantity Et, which characterizes the desired 
accuracy with which the fuzzy system performs function 
approximation is defined. Specifically, the output of the 

current fuzzy system is compared to the output portion 
of the input-output training data pointy;. If this com
parison is greater then Et then the current fuzzy system 
is augmented with an additional rule so that: 

lg(x;, 0) - Y;I >Er ⇒ modify 

lg(x;; 0)- Y;I ,s; Et ⇒ do not modify. (31) 

The choice for Et determines the number of fuzzy rules, 
where a smaller value for ft generally means more fuzzy 
rules for a given training data set, and vice versa. 
Employment of Et in the function approximation algor
ithm is outlined below. 

4.1. MLFE Algorithm to construct fuzzy system 

1. Construct an initial fuzzy system 

Assume some input-output training data pairs given 
by ( X;, Y;) E F, where i = 1, ... , mF· An initial value is 
also chosen for the input membership associated with 
the first fuzzy rule given by a'1 = a 0 for all j = 1, ... , n. 
The initial choice a0 has little effect on the resulting 
fuzzy system as training progesses, but it is necessary to 
initialize the fuzzy system. The first step in the algor
ithm is to form a fuzzy rule according to the first input
output training data pair (x 1, y1) and the initial fuzzy 
system by 

bti exp [ -(~)2]
g(x;O) (32)Dexp [-Ci;trJ , 

where c~ =x1i, b1= y 1, and O) = a0 for j= 1, ... , n. Once 
the initial fuzzy system is constructed, the function
approximation algorithm forms additional fuzzy rules 
and chooses parameters () for the fuzzy system based on 
the remaining input-output training data pairs and the 
desired approximation accuracy Et in Steps 2 and 3. 

2. Evaluate new training data point 

For each additional training data point (x;, y;) E F, for 
i=2, ... ,mF, evaluate (31) with the current fuzzy 
system. If an additional rule is necessary then go to 
Step 3, otherwise return to the start of Step 2 to 
evaluate the next training data point according to (31). 

3. Augment current fuzzy system 

Modify some of the parameters of the original fuzzy 
system, namely a1, to account for the new information 
contained in (x;, y;) that passed the test in (31). A new 
rule is added to the fuzzy system so that the new fuzzy 
parameter set O is given by 

N:=N+l (33) 

(34) 

(35) 

Moreover, modify a; for j= L ... , n to adjust the 
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u 

mg 

Fig. 5. Ideal pendulum. 

spacing between the membership functions for the rules 
in the augmented fuzzy system so that: (i) the added 
rule does not distort what has already been learned; 
and (ii) a smooth interpolation betwen training points is 
achieved. Modification of a; is carried out by determin
ing for each rule a nearest neighbor. Modify a; for the 
ith rule according to the computed nearest neighbor, 
denoted by the index i* 

i* = arg min{llci' -c,112 : i' = 1, ... , N, i' * i} (36) 

where ci=[c}, ... ,c;'f. Update for j=l, ... ,n: 

(37) 

where W is a weighting term which governs the input 
membership overlap between nearest neighbor rules. A 
larger W means less overlap of membership functions, 
and vice versa. Once Step 3 is complete go to Step 2 for 
the next training data point, until the number of train
ing data points are exhausted. 

5. EXAMPLE: SIMPLE PENDULUM 

To illustrate the MLFE algorithm with and without 
the uniform training algorithm. system identification is 
performed for a simple pendulum system to estimate 
the pendulum angular position y(k), based on previous 
torque inputs and angular position outputs. The dyna
mics of an ideal pendulum (Fig. 5) can be modeled by a 
differential equation written as 

mly = - mg sin y - bly + l
1 

u (38) 

where y is the angle subtended from the centerline, mis 
the mass of the bob, l is the length of the massless 
connection between the pivot point and the bob. g is 
the acceleration due to gravity, b represents a damping 
coefficient, and u is an input torque at the pivot point. 
Additionally, the subtended angle y is constrained 
between ±n/2 and the input is constrained between 
±10. 

Using a backward-looking difference approximation 

for the dervative the continuous-time system is approxi
mated by a discrete-time system 

ml(y(k)- 2y(k- 1) + y(k-2)) 
-mg sin y(k-2) 

bl(y(k-1)-y(k-2)) 1 
----1).-t----+1u(k - 2). 

(39) 

This discrete-time approximation produces an expres
sion for y(k) where 

y(k) == f(x(k)) (40) 

x(k)=[y(k-I),y(k-2),u(k-2)r. (41) 

Such a system satisfies the assumptions necessary to 
implement the uniform training algorithm. Namely, the 
system contains one and only one limit point xe = 
[O OO] TEX where the domain of interest is 

x(k)EX=[-i,i]x[-i,i]x[-10,10]. (42) 

For simulation purposes, m = 0.50, g = 9.81, l = 1.00 
and b = 0.6 are chosen; also, a sampling time /).t = 
0.10 s. 

First, different training scenarios are tried out, to 
give an insight into the effects of the choice of design 
parameters on training. For comparison purposes, the 
LFE algorithm is implemented, and the approximation 
accuracy is compared for the cases trained with band
limited white-noise input and with training data pro
duced by the uniform training algorithm. 

5.1. MLFE algorithm with different choices in design 
parameters 

In this section the MLFE algorithm is used to con
struct a fuzzy system for various training scenarios. The 
training scenarios investigated include: 

• Training for different numbers of training data 
points mF; 

• Training for different input membership overlap 
(W); and 

• Training with different specified accuracies (tj)-

For these tests the chosen input for training is band
limited white noise, generated by injecting a Gaussian 
white-noise signal through a third-order Butterworth 
filter with a cutoff frequency of 7n/10. This signal is 
utilized to generate a training data set F which consists 
of the training data pairs (x,, yJ for i =I, ... , mF. 
System identification accuracy is tested by comparing 
the pendulum angular position output with the output 
of the fuzzy system for a step input. The duration of the 
test chosen is 5 s. It is important to note that the step 
input is different from the input used in training and 
comparisons are done by evaluating e2 in equation (5) 
and e~ in equation (6). The size of the resulting fuzzy 
systems is also evaluated by the number of rules N. 
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Table 1. MLFE training for the simple pendulum 

Scenario mF w El N f2 ex 

Varying mF 50 2 0.20 27 0.2945 0.1583 
100 2 0.20 43 0.2725 0.1554 
500 2 0.20 147 (l.0915 0.0931 

Varying W 200 I 0.20 45 0.2230 0.1299 
200 3 0.20 57 0.3528 0.1686 
200 s 0.20 63 0.6804 0.1486 

Varying Er 200 2 0.30 30 0.6736 0.2429 
200 2 0.10 85 0.3077 0.2077 
200 2 0.05 143 0.4946 0.1834 

The training scenarios given in Table I illustrate 
some effects of parameter choice on the resulting fuzzy 
system. By increasing the number of training data 
points mF the error in approximation, in this case, 
decreases as more information is included in training, 
while the number of rules N increases. When W is 
increased the relative amount of overlap between fuzzy 
sets is decreased and the accuracy, in this case, is 
degraded. With increased W the resulting fuzzy system 
contains narrower input membership functions, and 
accuracy with respect to the training data set is 
improved, but the ability of the fuzzy system to genera
lize for other inputs may be degraded as is illustrated in 
the results. The relative number of rules remains about 
the same for the case where W is varied. In a similar 
way, decreasing the desired error Er increases the accur
acy with respect to the training data set, but accuracy in 
the presence of other inputs different than the training 
data set is degraded, as shown in Table 1. These tests 
also demonstrate a need to obtain a uniform training 
data set which may enable the MLFE algorithm to train 
a fuzzy system to perform accurate function approxima
tion for a wide class of inputs. 

5.2. Comparison between LFE and MLFE 
For the uniform training algorithm, M = 10, Q= 40, 

y=½i, T"=4, Ti,=400, C= 10, qd=0.I, E=0.025, Ed= 
0.025 and fJ = 0.20 were chosen. 26 evenly spaced 
direction vectors were chosen to represent the quan
tized set. A bandlimited white-noise signal is injected 
for 500 samples, and then supervised training is imple
mented. Once supervised training with noise is com
plete, the trajectory control algorithm is implemented 
to actively induce training in regions of the space that 
have not been trained. 

For implementation of the LFE algorithm three 
input universes of discourse were chosen, one for each 
input to the fuzzy system, with 31 input fuzzy sets with 
evenly spaced triangular membership functions. The 
universes of discourse for x 1 and x2 are defined over the 
interval [-n/2, n/2] and the universe of discourse for x, 
is defined over the interval [-10, 10]. The output 
universe of discourse contains 31 output fuzzy sets with 
triangular membership functions, with a universe of 
discourse defined over the interval [-n/2, n/2]. This 
configuration produced good function approximation 
for comparison. Moreover, the design parameters cho-

Table 2. Training for the simple pendulum with uniform training 
algorithm 

Technique Training Figure mF W NE1 

LFE noise 6 249 208 0.1667 0.1333 
MLFE noise 7 249 2 0. 10 202 0.1101 0. 1009 
LFE uniform 8 249 202 0. 1369 0.1169 

MLFE uniform 9 249 2 0. 10 97 0.0498 0.0585 

sen for the MLFE algorithm were chosen to provide 
good function approximation via experiment. 

Although the LFE and the MLFE algorithms pro
duce functionally different fuzzy systems, to make the 
comparisons fair an attempt was made to provide 
equivalent levels of training. Specifically, since the 
uniform training algorithm produces 249 training data 
points, the bandlimited white-noise cases were also 
trained with 249 training data points. 

The accuracy in system identification was evaluated 
by comparing the angular position output of the pendu
lum to the output of the fuzzy system for a step input 5 s 
in duration. It is important to note that the step input is 
different than the input used in training, and compari
sons were made by evaluating e2 in equation (5) and eoo 

in equation (6). The size of the resulting fuzzy systems 
was also evaluated by the number of rules N. The 
results are summarized in Table 2. The results are 
shown graphically in Figs 6-9. 

As the results illustrate, the MLFE algorithm per
forms better than the LFE training algorithm and 
MLFE uses fewer rules*. More importantly, utilizing 
the uniform training algorithm to produce the training 
data set for the MLFE algorithm increases system
identification accuracy, while at the same time the 
number of fuzzy rules for the fuzzy estimator is reduced 

0.35 
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0.25 

¥ 0.2 

0.15 

0.1 

0.05 

00'--'-o'--_5_ _,.____1.1....s_ _,.____2-'-.s---'---3-'-_5---'---4-'-_5--...J 

time, s 

Fig. 6. LFE (dotted= real) (solid= estimate) for noise. 

* This is not. however. considered to he conclusive evidence of the 
superiority of MLFE over LFE. It is clear that a significant amount 
of future work (beyond the scope of this study) on theoretical and 
experimental analysis would have to he performed to make such a 
conclusion. See the comments in the concluding remarks of this 
paper. 
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when compared to fuzzy estimators with similar accur
acy trained with strictly bandlimited white noise. In a 
similar way, accuracy is increased for the LFE algor
ithm when the uniform training algorithm is utilized 
instead of training with bandlimited white noise. By 
utilizing the uniform training algorithm the fuzzy esti
mator has been enabled to perform accurately for some 
inputs in which the system has not been trained, like 
the step input. Notice also that the uniform training 
algorithm in this case improves system identification 
accuracy for both training methods, meaning that the 
uniform training algorithm may be useful for any algor
ithm that is used to construct the fuzzy system. 

6. FUNCTION APPROXIMATION EXAMPLE: 
F-16 AIRCRAFT 

In this example, the function approximation algor
ithm is used to construct an estimator that can detect 
and identify actuator failures by using measurable F-16 
aircraft data. The presence of an actuator failure is 
detected by comparing the actuator's commanded 
position and the estimated position. A failure is 
detected if the commanded position and the estimated 
position differ by more than some threshold for some 
window of time. 

6.1. F-16 aircraft model and failure modes 

The F-16 aircraft model used in this example is based 
on a set of five linear perturbation models (that are 
extracted from a non-linear model* at the five operat
ing conditions); (A;, B;, C;, D;), i E {l, 2, 3, 4, 5}: 

x116 =A;x116 + B;u 

y = C;x1,6 + D;u (43) 
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Fig. 7. MLFE (dotted= real) (solid= estimate) for noise. 

* All information about the F-16 aircraft models was provided by 
Wright Laboratories. 
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Fig. 8. LFE (dotted= real) (solid= estimate) with uniform training. 

where the variables are defined as follows: 

• Inputs u = [oe <)de <)(l 6,)1: 
-6,,=elevator deflection (degrees) 
-6de= differential elevator deflection (degrees) 
-6"= aileron deflection (degrees) 
-6,= rudder deflection (degrees) 

• System State Xn 6 = [a q </J /3 p r]1: 
-a= angle of attack (degrees) 
-q = body axis pitch rate (degrees/s) 
-<p = Euler roll angle (degrees) 
-/3 = sideslip angle (degrees) 
-p=body axis roll rate (degrees/s) 
-r= body axis yaw rate (degrees/s) 

• Outputs y = [x[i 6 A2]
7

: 

-A 2 = normal acceleration (g) 
• System matrices (A;, B;, C;, D;): Provided by 

Wright Laboratories. 

The nominal control laws for the F-16 aircraft that 
were provided by the Wright Laboratories consist of 
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Fig. 9. MLFE (dotted= real) (solid= estimate) with uniform 
training. 
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two parts, one for the longitudinal channel and the 
other for the lateral channel. The inputs to the con
troller are the pilot commands and the F-16 system 
feedback signals. For the longitudinal channel, the pilot 
command is the desired pitch Au1, and the system 
feedback signals are normal acceleration A2 , angle of 
attack a, and pitch rate q. Likewise, for the lateral 
channel, the pilot commands are the desired roll rate pd 
as well as the desired yaw /3<1, and the system feedback 
signals are the roll rate p, yaw angle r, and sideslip /3. 
The controller gains for the longitudinal and for the 
lateral channels are scheduled as a function of different 
dynamic pressures. The dynamic pressure at all five 
perturbation models is fixed at 499.24 psf. which is 
based on an assumption that the F-16 aircraft will 
operate with constant speed and altitude. Hence, a gain 
schedule table, which is provided by Wright 
Laboratories, is used to determine the controller gains. 

The transfer function 20/s + 20 is used to represent 
the actuator dynamics for each of the aircaft control 
surfaces, and the actuators have physical saturation 
limits so that: -21°,ec_:_;oe,ec_:_;21°, -2} 0 ,ec_:_;ode,ec_:_::21°, -23°,ec_:_; 
b",ec_:_::20°, and -3()0 ,ec_:_;o,,ec_:_;30°. The actuator rate satu
ration is ±60°/s for all the actuators. The closed-loop 
system is simulated by interpolating between the five 
perturbation models based on the value of a. For all the 
simulations, a special "loaded roll command 
sequence", provided by Wright Laboratories, is used. 
For this command sequence: at time t= 0.0, a 60°/s roll 
rate command (pd) is held for 1 s; at time t= 1.0, a 3g 
pitch command (A 2 c1) is held for 9s; at time t=4.5, a 
-60°/s roll rate command (pd) is held for 1.8 s; and at 
time t= 11.5, a 60°/s roll rate command (Pc1) command 
is held for 1 s. The sideslip command f3c1 is held at zero 
throughout the sequence. 

While many different failures can occur on a high
performance aircraft such as the F-16 (e.g. perfor
mance degradation or structural damage), this study 
will focus on FOi for aileron and differential elevator 
stuck failures. 

6.2. Failure models and training 

In order to implement a fuzzy estimator for FOi on 
the F-16 aircraft it is necessary to determine those 
signals from the aircraft which enable one to deduce the 
position of the aileron and differential elevator. 
Specifically, it is first necessary to determine the inputs 
X; (i = 1, ... , n) so that a fuzzy system ( 11) may pro
duce accurate estimates (ct and bde) for the aileron and 
differential elevator positions(<\, and ode)- This is done 
by examining the structure of the F-16 aircraft model 
and understanding the effect of the controller on the 
actuator positions. Specifically, if a failure in the 
aileron actuator occurs, the controller compensates via 
the differential elevator and vice versa. Also, the roll 
command input pd affects both the aileron and differen
tial elevator positions. Therefore these signals are uti
lized as inputs to the fuzzy estimator to deduce the 

position of the aileron and differential elevator. In 
particular, the aircraft responses are sampled, and 

(44) 

is chosen, where o~ and o;;" are the signals commanded 
by the controller. The vector x (n == 3) is used in the 
estimation of both the aileron position and the position 
of the differential elevator. Next, fa and fde are used to 
denote the unknown functional mapping between the 
aircraft variables and the estimates of the actuator 
positions, so that 

6a(k) =fa(x) (45) 

and 

(46) 

Note that the choice of the inputs in ( 44) intuitively 
represents signals which may contribute to the func
tional mapping fa or fd, in order to construct the fuzzy 
estimator. For instance, during no-fault operation the 
aileron and differential elevator positions are related 
linearly to the roll command Pd· Basically, the estima
tor construction problem involves training the fuzzy 
system to approximate f,, and another to approximate 
f,1,,. With this, one fuzzy system will estimate the 
position of the aileron, and one the position of the 
differential elevator. 

The fuzzy systems are trained for estimation by 
obtaining input-output trammg data developed 
through simulation with a sampling time of T = 0.02 s. 
The aileron and differential elevator actuators are 
alternately failed at various positions (no failure, 1 s, 
3 s, 5 s, 7 s) and sampled data is collected for x. The 
fuzzy systems are then constructed for estimation by 
means of the training algorithm which chooses values 
for N, b;, c; and a; to achieve an accuracy of ±1° on 
both the aileron and the differential elevator estimators 
during training (i.e. E1= 1). The width scaling term Wis 
3. The resulting fuzzy system for estimation of aileron 
position contains 108 rules, and the resulting fuzzy 
system for estimation of differential elevator position 
contains 224 rules. 

6.3. Results 

The fuzzy estimator provides a simple FOi system to 
detect and isolate failures for the aileron and differen
tial elevator actuators. Form the absolute value of the 
difference between the estimated value and the value 
commanded for the actuator. If one differs above some 
threshold for some period of time, this implies that a 
failure has occurred, and in this situation one may want 
to reconfigure the control laws (see Ref. 11). In this 
case the median of the residual is evaluated over 21 
samples. If the resulting median exceeds a threshold of 
3° for the aileron and 1 ° for the differential elevator, 
then the system is flagged that a specific actuator failure 
has occurred (these thresholds were chosen via a 
simulation-based analysis of the no-fault residuals). 
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Fig. 10. No failure case (--, estimate and residual; ..... , true value and threshold). 

Once a residual exceeds a threshold the failure flag is 
set for the entire test. The results are given in Figs 10-
12. Notice that in Fig. 10, if there is no actuator failure 
then the failure estimators for both the aileron and 
differential elevator provide an estimate of the actuator 
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positions that is reasonably close to the actual position. 
Clearly if a detection threshold of 3° had been chosen 
for the aileron residual and a detection threshold of 1 ° 
for the differential elevator, no failure would be indi
cated. Using the medial filter described above, failures 
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Fig. 11. Aileron failure at t = I s (--, estimate and residual; , , , .. , true value and threshold). 
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Fig. 12. Differential elevator failure at t= Is(--. estimate and residual; ...... true value and 
threshold). 

are correctly detected and determined for an aileron 
failure at 1 s (Fig. 11) into the loaded roll command 
sequence with the filtered aileron residuals exceeding 
the threshold and the filtered differential elevator resi
dual remaining below the threshold. Moreover, failures 
are correctly detected and determined for a differential 
elevator failure at 1 s into the loaded roll command 
sequence with the filtered differential elevator residuals 
exceeding the 1° threshold and the filtered aileron 
residuals remaining below the threshold ( see Fig. 12). 
It can be seen that the estimators provide an adequate 
estimate of the position at which the aileron and differ
ential elevator are stuck, and also properly indicate 
which actuator has not failed. The simulation results 
actually show that the fuzzy estimator can accurately 
discriminate between an aileron and differential eleva
tor failures for the training data set utilized. If failures 
occur other than the ones that have been trained for, or 
if a different aircraft maneuver is initiated. accurate 
estimation may not be achieved. 

7. CONCLUDING REMARKS 

This paper has concisely stated the function
approximation problem in the context of fuzzy systems, 
illustrated possible applications for nonlinear function 
approximation in the system identification and signal 
processing fields, discussed the functional capability of 
fuzzy systems in terms of the universal approximation 
property and discussed constraints associated with the 
input-output training data set. In addition, an algor-

ithm was introduced to obtain a uniform training data 
set using a uniform training algorithm. A method was 
also outlined to construct a fuzzy system for function 
approximation using a method of modified learning 
from examples. The uniform training algorithm and the 
modified learning from examples were used to con
struct fuzzy systems to perform system identification for 
a simple pendulum example. It was demonstrated that 
the MLFE outperformed LFE, and that both LFE and 
MLFE performed better when the uniform training 
algorithm was used to generate the training data set. 
Finally it was shown how the MLFE technique could be 
used to identify actuator failures on an F-16 aircraft. 

For future work it is important to address the prob
lems encountered with the computational complexity of 
the uniform training algorithm ( due to its complexity it 
was not used to generate training data for the F-16 
aircraft example). In addition, there is a significant 
need for both a mathematical and empirical compara
tive analysis of the various approaches to construct 
fuzzy systems to perform identification or estimation 
(e.g. as was demonstrated in Section 5, there is a need 
to compare MLFE and LFE in much more detail). For 
the aircraft example there is a need to consider the 
performance of the fuzzy estimator for a wider class of 
failures (including simultaneous failures) and for a 
more complex simulation testbed. 
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APPENDIX 

Proof of Theorem 2 

The set of points on the boundary of the neighbor
hood J3(x1, x2) is defined by 

X1={xEIR":llx-xd'2=llx2-xdb}c/3(x1, x2). (47) 

Next, the set of points along a line defined by some 
xb E Xb and x1, is defined: 

Here 

is the unit direction vector of the line. 
The problem is decomposed by considering the 

approximation error along the line X1. The approxima
tion error is rewritten as 

sup {lf(x) - g(x; 9)1} = max {sup {f(x) 
XEX/ XEX1 

-g(x; 9)}, !~f {g(x; 9)-f(x)}}· (49) 

If just the points along the line given by X 1 are con
sidered, then f(x) and g(x; 9) can be written as func-

tions of the scalar w. So for some xb E Xb and w E [O, 
llx2 - xdb] 

Moreover, the directional derivative along X1 is written 
as 

Now, using the fundamental theorem of calculus the 
first term in ( 49) is considered. First, the upper limit of 
the integral is defined as 

Then an expression which contains the first term of (49) 
can be written as 

(53) 

[Mw*)-gb(w*)]= t· (:/b(t)) dt+[M0)-gb(0)] 

(54) 

Since w* ,s: llx2 - xilb it is known that 

By definition, fb(O) - gb(O) < E. Given this, 
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Now substituting in the expression for the directional Now, considering every xbEXb, then 
derivative, 

sup {f(x)- g(x; O)}< 
xe/J(x,, xz) 

(59) 

(57) 
Similarly, considering the second term of ( 49) gives 

sup {g(x; 0)-f(x)}<
and using the Schwarz inequality xe/J(x1, xz) 

(60) 

Then combining these two expressions gives the result: 

sup {lf(x)- g(x; O)}< 
xe/J(x,, x2) 

---af agll} (58)c<:sup (61)
- xex, {ll ax ax • 

2 
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