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Brief Papers______________ _ 
Fault Detection and Isolation for an Experimental 

Internal Combustion Engine via Fuzzy Identification 
E.G. Laukonen, K. M. Passino, V. Krishnaswami, G.-C. Luh, and G. Rizzoni 

Abstract- Certain engine faults can be detected and isolated 
by examining the pattern of deviations of engine signals from 
their nominal unfailed values. In this brief paper, we show how 
to construct a fuzzy identifier to estimate the engine signals nec­
essary to calculate the deviation from nominal engine behavior, 
so that we may determine if the engine has certain actuator and 
sensor "caUbration faults." We compare the fuzzy identifier to a 
nonlinear ARMAX technique and provide experimental results 
showing the effectiveness of our fuzzy identification based failure 
detection and identification strategy. 

I. INTRODUCTION 

IN recent years, more attention has been given to reducing 
exhaust gas emissions produced by internal combustion 

engines. In addition to overall engine and emission system 
design, correct or fault-free engine operation is a major factor 
determining the amount of exhaust gas emissions produced in 
internal combustion engines. Hence, there has been a recent 
focus on the development of on-board diagnostic systems 
which monitor relative engine health [l), [2]. Although on­
board vehicle diagnostics can often provide detection and 
isolation of some major engine faults, due to widely varying 
driving environments they may be unable to detect minor faults 
which may affect engine performance. Minor engine faults 
warrant special attention because these faults do not noticeably 
hinder engine performance but may increase exhaust gas 
emissions for a long period of time without the problem 
being corrected. The minor faults we consider in this paper 
include "calibration faults" (for our study, the occurrence of a 
calibration fault means that a sensed or commanded signal is 
multiplied by a gain factor not equal to one, and in the no fault 
case the sensed or commanded signal is multiplied by one) 
in the throttle and mass fuel actuators, in the engine speed, 
and mass air sensors (we can also consider "bias" type faults 
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Fig. 1. The experimental engine test cell. 

even though we do not do so in this paper). The reliability 
of these actuators and sensors is particularly important to the 
engine controller, since their failure can affect the performance 
of the emissions control system. Next, we overview the 
experimental engine testbed and testing conditions that we use 
for developing failure detection and isolation (FDI) systems. 
Following this, we briefly overview the relevant literature and 
contents of this paper. 

A. Experimental Engine and Testing Conditions 

All investigations into the development of (FDI) strategies 
in this paper were performed utilizing the experimental engine 
test cell shown in Fig. l that is located within The Department 
of Mechanical Engineering at The Ohio State University [3], 
[4]. The experimental setup in the engine test cell consists of 
a Ford 3.0 L V-6 engine coupled to an electric dynamometer 
through an automatic transmission. An air charge temperature 
sensor (ACT), a throttle position sensor (TPS), and a mass air 
flow sensor (MAF) are installed in the engine to measure the 
air charge temperature, throttle position, and air mass flow 
rate. Two heated exhaust gas oxygen sensors (HEGO) are 
located in the exhaust pipes upstream of the catalytic converter. 
The resultant airflow information and input from the various 
engine sensors are used to compute the required fuel flow 
rate necessary to maintain a prescribed air/fuel ratio for the 
given engine operation. The CPU (EEC-IV) determines the 
needed injector pulse width and spark timing and outputs a 
command to the injector to meter the exact quantity of fuel. 
An electronic control module (ECM) break-out box is used to 
provide external connections to the EEC-IV controller and the 
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data acquisition system. The angular velocity sensor system 
consists of a digital magnetic zero-speed sensor and a specially 
designed frequency-to-voltage converter [3], [4] which con­
verts frequency signals proportional to the rotational speed into 
an analog voltage. Data is sampled at every engine revolution. 
A variable load is produced through the dynamometer which 
is controlled by a DYN-LOC IV speed/torque controller in 
conjunction with a DTC-1 throttle controller installed by Dy­
neSystems Company. The load torque and dynamometer speed 
are obtained through a load cell and a tachometer, respectively. 
The throttle and the dynamometer load reference inputs are 
generated through a computer program and sent through a 
RS-232 serial communication line to the controller. Physical 
quantities of interest are digitized and acquired utilizing a 
National Instruments AT-MI0-16F-5 AID timing board for a 
personal computer. 

Due to government mandates, periodic inspections and 
maintenance for engines are becoming more common. One 
such test developed by the Environmental Protection Agency 
(EPA) is the Inspection and Maintenance (IM) 240 cycle. The 
EPA/IM240 cycle (see Fig. 2) represents a driving scenario 
developed for the purpose of testing compliance of vehicle 
emissions systems for contents of carbon monoxide (CO), 
unburned hydrocarbons (HC), and nitrogen oxides (NOx)- The 
IM240 cycle is designed to be performed under laboratory 
conditions with a chassis dynamometer and is patterned after 
the Urban Dynamometer Driving Schedule (UDDS) which 
approximates a portion of a morning commute within an 
urban area. This test is designed to evaluate the emissions 
of a vehicle under real world conditions. In [5], Rizzoni 
and Krishnaswami have proposed an additional diagnostic 
test to be performed during the IM240 cycle to detect and 
isolate a class of minor engine faults which may hinder 
vehicle performance and increase the level of exhaust emis­
sions. Since the EPA proposes to make the test mandatory 
for all vehicles, performing an additional diagnostic analy­
sis in parallel would provide a controlled test which may 
allow for some minor faults to be detected and corrected 
thus reducing overall exhaust emissions in a large number 
of vehicles. We also use the IM240 cycle in this paper 
and take the same basic approach to FDI for minor engine 
faults as in [5], except that we utilize a fuzzy identification 
approach rather than the nonlinear ARMAX approach as 
in [5]. Related work on the use of nonlinear ARMAX is 
given in [4]. 

B. Relevant Literature and Paper Overview 

In this paper, we investigate the use of fuzzy systems for 
use in FDI for the internal combustion engine described in the 
previous section. Specifically, we use a fuzzy clustering and 
optimal output predefuzzification technique outlined in [6] to 
model the dynamics of the experimental internal combustion 
engine and utilize these models together with a fault detection 
and isolation strategy given in [5] to identify a class of 
faults. Fuzzy systems have already been successfully applied 
in several areas within engineering including control, signal 
processing, and pattern recognition. Some recent work has 
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Fig. 2. The EPA IM240 engine cycle. 

focused on the idea of constructing fuzzy systems from a finite 
set of input-output training data to perform system identifica­
tion (e.g., the learning from examples, backpropagation, and 
clustering techniques in [71). This is, however, what seems to 
be the first application of a fuzzy identification technique to 
FDI in an experimental setting. Moreover, since we provide a 
comparative analysis with a conventional nonlinear identifica­
tion technique, we help to provide a more realistic assessment 
of the capabilities of the fuzzy methodology. 

Following [6], in Section II we introduce the Takagi-Sugeno 
fuzzy system model [8], outline a fuzzy clustering technique 
called "Fuzzy c-Means" [9], and show how it can be applied 
to form the premise portion of the rules in a fuzzy system. We 
also explain a procedure for optimal output predefuzzification 
from [6] in which the output portion of the training data set, 
together with the cluster information, is used to perform a 
weighted least-squares approximation to construct appropriate 
output functions to represent the consequent portion of the 
rules in a fuzzy system. We apply the technique to perform 
modeling of various physical quantities associated with the 
emissions system for the experimental internal combustion 
engine described above. In Section IV we use the subsequent 
fuzzy system and a fault decoupling strategy given in [5] 
to implement a fault detection and isolation strategy for a 
class of calibration faults on the sensors and actuators ("in­
put-output faults") which may occur in an internal combustion 
engine during the standard EPA/IM240 engine cycle. Analysis 
and discussion is included, and comparisons to a Nonlinear 
ARMAX technique from [10] are given. 

II. THEORETICAL BACKGROUND 

In system identification, which forms the basis for our FDI 
technique, we wish to construct a model of a dynamical system 
using input-output data from the system [11]. Suppose that a 
system has input ;r_ = [x1, · · ·, xnf (T denotes transpose), 
output y, and that we can gather a set of mp input-output 
training data pairs in the set 

F = {(;r_;, y;) : i = 1, .. • , m F} (1) 
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where Yi is the output generated by the system at time k 

when the input is ;r_i at time k (hence x 1 is an input, and 
xi is a specified first component of the input portion of 
the first input-output training data pair). Conventional system 
identification techniques (such as least squares) are used to 
fit the best possible linear model to the data F so that i) it 
faithfully generates Yi when ;r_i is input to the system and 
(;r_i, Yi) E F, and ii) properly interpolates when an ;r_~ is 
input to the system where (;r_~, Yi) ff. F. If input-output data 
from F truly represents a linear mapping, then conventional 
techniques often perform very well; however, if F represents a 
nonlinear mapping, the identification problem becomes more 
challenging. 

The types of engine faults which the FDI strategy is 
designed to detect include calibration faults given in Table I. 
These faults directly affect the resulting fuel/air ratio and spark 
timing in combustion which subsequently effects the level 
of exhaust gas emissions. The fault detection and isolation 
strategy relies on estimates of w (engine speed, rev/min), ma 
(mass rate of air entering the intake manifold, lbm/sec), a 
( actuated throttle angle, expressed as a percentage of a full 
scale opening), m f (mass of fuel entering the combustion 
chamber, lbm), and TL (the load torque on the engine, lb-ft) 
(which we denote by w,ma, &, 'mj, and TL, respectively) 
by identifying models f w, f ma , fa, f m1, and frL of how the 
engine operates. In particular, we have 

W= fw(~) (2) 

'ma = f ma (;r_ma) (3) 

& = f a(;r_a) (4) 

mf = f mf (;r_m f ) (5) 

TL= frL(;r_TJ (6) 

where the inputs are given in (7)-(11) (k is a discrete-time in 
the crankshaft domain where physical quantities are sampled 
every tum of the engine crankshaft) 

~ = [w(k - 1), w(k - 2), w(k - 3), a(k - 1), 

o:(k - 2), a(k - 3), m1(k - 1), m1(k - 2), 

m1(k - 3), TL(k - 2)f (7) 

;r_ma = [ma(k - 1), ma(k - 2), ma(k - 3), o:(k - 1), 

o:(k - 2),m1(k - l),m1(k - 2),m1(k - 3), 

TL(k - 1), TL(k - 3}f (8) 

;r.0 = [&(k - 1), &(k - 2), &(k - 3), ma(k - 1), 

ma(k - 2), ma(k - 3), Wdy(k - 1), Wdy(k - 2}f(9) 

;r.m1 = [m1(k - l),m1(k- 2),m1(k- 3),ma(k -1), 

ma(k - 2),ma(k- 3),w(k - l),w(k- 2), 

w(k - 3}f (10) 

;r_TL = [TL(k - 1), TL(k - 2), TL(k - 3), o:(k - 1), 

o:(k - 2),m1(k - l),ma(k - l),ma(k - 3), 

Wdy(k - l),Wdy(k - 3}f (11) 

where Wdy is an output of the dynamometer. These regression 
vectors were chosen using simulation and experimental studies 
to determine which variables are useful in estimating others 

TABLE I 
TYPES OF FAULTS DETECTABLE WITH FDI STRATEGY 

Fault Location Type of Fault Description 

m. sensor calibration Measures amount of air intake for combustion 

w sensor calibration Measures engine speed 

actuator calibration Actuates the throttle angle" 
m, actuator calibration Actuates the amount of fuel for combustion 

and how many delayed values must be used to get accurate 
estimation. 

One approach to nonlinear system identification that has 
been found to be particularly useful for our experimental 
testbed [10], [12] and which we will employ in the current 
study is the NARMAX (Nonlinear AutoRegressive Moving 
Average model with exogenous inputs) method which is 
an extension of the linear ARMAX system identification 
technique. The general model structure for NARMAX uses 
scaled polynomial combinations of the arguments contained 
in the regression vector; here we use the NARMAX model 
structure given by 

n n n 

fj(k) = L,BiXi + LL,BiJXiXJ (12) 
i=l i=l J=l 

where ,Bi, ,BiJ E J]Rn are parameters to be adjusted so that 
fj(k) is as close as possible to y(k) for all ;r_ E ]Rn (i.e., 
we only use one second-order polynomial term in our model 
structure). As is usual, in this paper we will use the standard 
batch least-squares approach to adjust the ,Bi, ,BiJ since they 
enter linearly (see [11] for details). 

The primary focus of this paper, however, is to evaluate the 
use of a fuzzy identification technique as the basis for our FDI 
system. The particular fuzzy identification technique we study 
employs the Takagi-Sugeno model for a fuzzy system [8] as 
the model structure for identification and a clustering technique 
[9] combined with "optimal output predefuzzification" [6] to 
adjust the fuzzy system parameters, so that it generates a good 
estimate fj for all ;r_ E JRn. 

Takagi and Sugeno's fuzzy system is composed of fuzzy 
IF-THEN rules of the form 

If HJ Then i)J = do+ c{ X1 + · · · + c!,xn (13) 

j = 1, • • •, N (N is the number of rules) where input fuzzy 
set HJ= {(;r_,µHJ(;r_)) : ;r_ E U1 x .. • x Un}, Ui is the ith 
input universe of discourse, ;r_ = [x1 , • • • , xnf is the vector of 
fuzzy system inputs, µHJ (;r_) is the membership function for 
HJ, i)J =rJ [j;_ is a crisp output that is a linear function of the 

inputs given by the real-valued parameters r.J = [do,···, c!JT, 

and [j;_ = [1, ;r_TJT. The output of the Takagi-Sugeno fuzzy 
system is a weighted average of i)J for j = 1, • • • , N given by 

.,_...N ·( )'J 
, ( 0) L-J=l µHJ ;r_ Y 
y = g ;r_;_ = N (14) 

EJ=l µHJ (;r_) 

where B_ is a vector of parameters which characterize the fuzzy 
system (given later). 

In [6], Sin and Difigueiredo develop an algorithm to con­
struct a Takagi-Sugeno fuzzy system that approximates the 
functional mapping represented in the input-output data F. 
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The algorithm contains two distinct steps for constructing a 
fuzzy system: first, fuzzy clustering is used to identify N 
cluster centers 'll.j E JRn, j = 1, • • • , N where each cluster 
center represents the center of an input space fuzzy partition 
(i.e., the cluster centers are chosen as the center points for input 
membership functions), second, the consequent portion of each 
fuzzy rule is determined by calculating the coefficients £j for 
N linear functions via a weighted least-squares computation 
that uses the output portion of the training data set. 

A. Fuzzy Clustering 

To specify the premise portion of the rules, we use the Fuzzy 
c-Means clustering algorithm [9], [13], [14] which employs 
a quantitative measure of similarity within data to determine 
the clustering partitions and degrees of membership associated 
with each partition. In our case, the similarity measure we use 
is a distance measure between points given by the input portion 
;i-;_ of the training data in F. For Fuzzy c-Means we wish to 
minimize the objective function given by 

mp N 

1 = :E :E(µijr(;i-;_i - 'Jl.jf (!fi - Y.1) (15) 
i=l j=l 

where m > 1 is a design parameter, N is the number of 
clusters (and the number of rules), mp is the number of 
training data points, ;i-;_i for i = 1, • • · , mp is the input 
portion of the training data set F, 'll.j for j = 1, • • • , N are 
the "prototypes" (cluster centers), and µij is the grade of 
membership for !£i in the jth cluster. In [9], Bezdek gives 
a set of necessary conditions for µij and 'll.j to minimize (15) 
when Il;i-;_; - Y.111 ~ > 0 for all j. This is given by 

(16) 

for each j = 1, • • • , N, and the scalars 

(17) 

for each i = 1, ···,mp andj = 1, • • •, N (llzll 2 = (zT z) 112). 
If, however, jj;i-;_; - Y.111~ = 0 for some j, then µ;1 are any 

nonnegative numbers satisfying :Ef=1 µij = 1 and µij = 0 if 
jj;i-;_i - Y.1II~ -f. 0. The Fuzzy c-Means algorithm is an iterative 
algorithm based on (15), (16), and (17) which is given by the 
following steps: 

1) Choose clustering parameters and initial cluster centers. 
We choose a "fuzziness factor" m > 1 which deter­
mines degree of fuzziness associated with the resulting 
membership functions in determining cluster centers. 
When m is close to 1, the clustering is determined with 
very "crisp" input membership functions, and with larger 
m, cluster centers are determined with more overlap 
between clusters. We also choose N or the number of 

clusters to calculate. The number of clusters, N, must 
be less than or equal to the number of input training data 
points (N ~ mp). N will end up being the number of 
rules in our fuzzy system. We also choose Ee > 0 which 
is the error tolerance in calculating cluster centers as 
outlined in Step 2 below. To initialize the algorithm, 
we must choose initial cluster centers Y.J, j = 1, • • • , N. 
This choice is somewhat arbitrary and may affect the 
final solution, but as is standard we choose initial cluster 
centers via a random number generator based on the 
interval present in the input data. That is we choose 
Y.J as a random vector based on the range of the input 
portion of the training data so that 

v 0 E [ min {x1} max {x1}]
-J 1::,;;::,;mF i '1::;i::;mF i 

X .. • X [ min {xf}, max {xn] (18)
1::;i::;mp 1::;i::;mF 

for all j = 1, • • •, N. 
2) Compute cluster centers. 

In Step 2 we compute new cluster centers based on those 
computed in the previous iteration. In particular, we let 

(19) 

for each i = 1, • • • , mp and for each j = 1, · · · , N and 
also let 

(20) 

for each j = 1, • • • , N. 
3) Compare to the tolerance. 

In Step 3 we compute the Euclidean distance between 
the new cluster centers and those calculated in the 
previous iteration. The next step in the algorithm is 
determined by (for all j = 1, • • •, N) 

IIY.rw - 'll.jldll2 > Ee ⇒ Go to Step 2 (21) 

I!Y.rw - 'll.jld !12 ~ Ee ⇒ Terminate Algorithm. (22) 

The results obtained using the Fuzzy c-Means algorithm given 
above may calculate a local minimum or may not converge. 
Recent work has addressed some of these problems [13]-[15]. 

The Fuzzy c-Means algorithm requires three design param­
eters to be chosen to perform fuzzy clustering. These are 
the number of clusters (rules) N, the fuzziness factor m, 

and the tolerance Ee- These are chosen to suit the particular 
application. For instance, the number of clusters, N, increases 
the functional capability of the resulting fuzzy system but 
also increases the computational complexity in the clustering 
algorithm and the overall fuzzy system. The fuzziness factor, 
m, reflects the amount of overlap between clusters. If the 
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system to approximate behaves very differently for different 
clusters, then m should be chosen small. Otherwise, if the 
system to approximate is rather smooth, then m can be chosen 
larger. The tolerance Ee provides a measure which is used to 
terminate the Fuzzy c-Means clustering algorithm. A smaller 
value of Ee may result in more iterations of the clustering 
algorithm, but may result in obtaining more accurate cluster 
centers. In Section III, more details on the choice of N, m, 
and Ee are provided for our application. 

B. Optimal Output Predefuzzi.fication and 
the Resulting Fuzzy System 

Optimal output predefuzzification is a technique to choose 
the parameters of the crisp output function for each fuzzy rule 
in the Takagi-Sugeno fuzzy model so that the relation fits the 
training data in a weighted least-squares sense. Specifically, 
each cluster calculated in the Fuzzy c-Means algorithm forms 
the premise portion of a single fuzzy rule. For each rule, we 
wish to minimize the squared error weighted by the value 
of the cluster membership between the output portion of the 
training data set and a parameterized function of the input 
portion of the training data set. We wish to minimize the cost 

mp 

Ji = L, µii (r;ii - Yi) 2 (23) 
i=l 

for each j = 1, • • • , N where µii is the membership value 
of the input portion of the ith training data point for the 
jth cluster, Yi is the output portion of the ith training data 
point, and the multiplication of r; and ii defines the output 
fjl associated with the jth rule for the ith training point. The 
solution to this minimization problem is a well known result 
from elementary linear algebra, can be found in [16], and is 
given by 

(24) 

for j 1, • • • ,N where 

x l ] Y = [Y1 • • • Ymp f, 
-mp 

and µmpj]), (25) 

To avoid numerical problems associated with computing the 
inverse in (24), we actually used weighted recursive least 
squares [11], [17] to compute the values for £j in (24). 

The techniques of fuzzy clustering and optimal output 
predefuzzification are combined to construct a fuzzy system in 
the following manner. First, cluster centers '1!..j, j = 1, •• • , N 
are calculated via Fuzzy c-Means clustering. These centers, 
together with the fuzziness factor m, determine the input 
membership functions given by 

(26) 

Next, the technique of optimal output defuzzification is applied 
to the training data to calculate the linear function which 
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Fig. 3. Mass air-(solid) measured, (dotted) estimate. The data shown are 
voltage signals from the sensor so that the units for the vertical axes are 
in volts for both cases. Suppose that x denotes the voltage signal from the 
sensor. The actual value of ma = -4.2073 x 10-4 + (5.2296 X 10-3 )x+ 

3 33 2 

.(1.3396 x 10- x +(2.1860 x 10- x) ) 

defines the crisp output for each rule fjl = £]i- The resulting 
fuzzy system is given by (14) with 

(27) 

Ill. IDENTIFICATION AND FAULT 

DETECTION AND ISOLATION STRATEGY 

For training purposes, data were collected to calculate 
the necessary models f w' f ma , f Q, f m f, and f TL • Due to 
mechanical constraints on the electric dynamometer, we cut the 
IM240 cycle short to only 7000 engine revolutions for the tests 
that we ran. In addition, a uniformly distributed random signal 
was added to the throttle and torque inputs to excite the system. 
The data generated was utilized to construct five multi-input 
single-output fuzzy systems, one for each of (2H6). In fuzzy 
clustering, we choose 10 clusters (N = 10), a fuzziness factor 
m = 2, and tolerance Ee = 0.01 for each of the constructed 
fuzzy systems. These were derived via experimentation until 
desired accuracy was achieved (e.g., increasing N to more 
than 10 did not provide improved estimation accuracy). For 
comparison purposes, we also calculated models utilizing the 
Nonlinear ARMAX technique based on the same experimental 
data. Then the experimental test cell was run and the models 
derived through fuzzy clustering and the nonlinear ARMAX 
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Fig. 4. Engine speed-(solid) measured, (dotted) estimate. The data shown 
are voltage signals from the sensor so that the units for the vertical axes are 
in volts for both cases. Suppose that x denotes the voltage signal from the 
sensor. The actual value of w = -1990.5 + 1044.7x. 

technique were validated by collecting data for similar tests run 
on different days. The results in identification with the valida­
tion data (not the training data) for both techniques are given 
in Figs. 3-7. We measure approximation error by evaluating 
the squared error between the real and estimated value (which 
we denote by Lk e2 where k ranges over the entire simulation 
time). As the results show, both techniques approximate the 
real system fairly well; however, for the mass air and engine 
speed estimates the ARMAX technique performed slightly 
better than the clustering technique. For the throttle, load 
torque, and the mass fuel estimates, the clustering technique 
estimated slightly better than the NARMAX technique. 

We see that there is no clear overall advantage to using 
NARMAX or the fuzzy identifier, even though the fuzzy 
identifier performs better for estimating several variables. We 
would comment, however, that it took a significant amount of 
experimental work to determine where to truncate the polyno­
mial expansion in (12) for the NARMAX model structure. The 
parameters N, mp, and Ee for the fuzzy identifier construction 
were, however, quite easy to select. Moreover, the fuzzy 
identifier approach provides the additional useful piece of 
information that the underlying system seems to be adequately 
represented by interpolating between 10 linear systems, each 
of which is represented by the output of the 10 rules (N = 
10). Since the use of the NARMAX results for FDI system 
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1000 2000 3000 4000 5000 6000 7000 
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Fig. 5. Throttle-(solid) measured, (dotted) estimate. The data shown are 
voltage signals from the sensor so that the units for the vertical axes are 
in volts for both cases. Suppose that x denotes the voltage signal from the 
sensor. The actual value of a =-82.905 +124.70x -46.241x 2 +9.1047x 3 

-0.67342x4 . 

development were studied in [5], we will henceforth only use 
the fuzzy identifiers. 

The models identified through fuzzy clustering allow us to 
utilize system residuals (e.g. w- w, ma - ma, a - o:, and 
mf - m f) to detect and isolate failures. A specific fault may be 
isolated by referring to the fault isolation logic given in Table 
II that was developed by the "indirect decoupling method" 
outlined in [18]. In the body of Table II, we indicate a pattern 
of "zero," "nonzero," and "-" (don't care) residuals that will 
allow us to identify the appropriate failure. We use thresholds 
to define what we mean by "zero" and "nonzero" and explain 
how we choose these thresholds below. As an example, if the 
scaled values (we will explain how the residuals are scaled 
below) of lw-wl, lma-mal, and lm1-m1I are above some 
thresholds, and I& - o:I is below some threshold, then we say 
that there is a m f actuator calibration fault. For an ma sensor 
calibration fault the (scaled) value of lw-wl should be nonzero 
since this residual is not completely decoupled, but it is very 
weakly coupled through the load torque model. Therefore we 
have the "-" (don't care) term for the & - o: residual for an 
ma sensor calibration fault. 

The models developed via fuzzy clustering are only ap­
proximations of the real engine dynamics. Therefore, since 
the system residuals do not identically equal zero during 
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Fig. 6. Load torque-(solid) measured, (dotted) estimate. The data shown 
are voltage signals from the sensor so that the units for the vertical axes are 
in volts for both cases. Suppose that x denotes the voltage signal from the 
sensor. The actual value of TL = -2.5384 + 0.99857x. 

nominal no fault operation, it is necessary to perform some 
post processing of the residuals to detect and isolate the 
faults we consider. We perform a low-pass filtering of system 
residuals and a setting of thresholds to determine nonzero 
residuals. We implement a fourth-order Butterworth low-pass 
filter with a cutoff frequency of 1~ and pass the residuals0 
through this filter. Next, we take the filtered residual and scale 
it by dividing by the maximum value of the signal over the 
entire IM240 cycle. The filtered and scaled residual is then 
compared against a threshold, and if the threshold is exceeded, 
then a binary signal of one is given for that particular residual 
for the remainder of the test. The threshold values for each 
residual used in the FDI strategy are computed empirically by 
analyzing the deviation of the residuals from zero during no 
fault operation. These thresholds are given in Table III (e.g., 
from Table III, if the filtered and scaled residual for ma is 
greater than 0.3, then we say the ma - ma residual threshold 
has been exceeded, i.e., that it is "nonzero"). We perform tests 
utilizing the FDI strategy by simulating calibration faults and 
using the filtered residuals. Specifically, calibration faults are 
simulated by multiplying the experimental data for a specific 
fault by the desired calibration fault value. For instance, to 
obtain a 20% w calibration fault, we multiply w by 1.20. 
Through experimentation, we have found this to be an accurate 
representation of a true calibration fault. 

0oc__1~000,--,------,2000~--,,aooo-"c--:---c4000"::=---=::sooo=----c6000=::---=,ooo 

Engine Revofutiona 

(a) 

Mass Fl.JIM 
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Fig. 7. Mass fuel-(solid) measured, (dotted) estimate. The data shown are 
voltage signals from the sensor so that the units for the vertical axes are in 
volts for both cases. Suppose that x denotes the voltage signal from the sensor. 
The actual value of m f = 5.3 x 10-6 ( -1.2015 + 3.3304x ). 

TABLE II 
CATALOG OF SYSTEM RESIDUALS AND CORRESPONDING FAULTS 

Fault Location W - w iha - ma a - a fn1 - m1 

ma sensor non-zero non-zero non-zero 

non-zero zero non-zero non-zero 

a input non-zero non-zero non-zero zero 

m, input non-zero non-zero zero non-zero 

TABLE III 
THRESHOLDS FOR SYSTEM RESIDUALS 

Residual Threshold 

ma - ma sensor ± 0.30 

W - w sensor ± 0.10 

a - a input ± 0.04 

m, - m, input ± 0.15 

We look at only a portion of the IM240 cycle when we 
test for faults. The portion we observe is between 3000 and 
5000 revolutions of the engine (about 1 minute). During this 
portion, the best model matching occurred. Fig. 8 shows the 
residuals lying within the thresholds for the duration of the 
test signaling a no fault condition. In the second test, a 20% 
calibration fault exists in the throttle actuator meaning that the 
throttle angle is 1.20 times the commanded value. As Fig. 9 
illustrates, all residuals exceed the threshold except the m f 
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Fig. 8. System residuals with no fault. (The vertical axes are dimensionless; Fig. 10. System residuals with 20% mass air calibration fault. (The vertical 

axes are dimensionless; they represent the size of the filtered residual divided
they represent the size of the filtered residual divided by the maximum value 

by the maximum value of the signal achieved over the IM240 cycle.)
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System residuals with 40% mass fuel calibration fault. (The vertical
Fig. 9. System residuals with 20% throttle calibration fault. (The vertical Fig. 11. 

axes are dimensionless; they represent the size of the filtered residual divided
axes are dimensionless; they represent the size of the filtered residual divided 

by the maximum value of the signal achieved over the IM240 cycle.)
by the maximum value of the signal achieved over the IM240 cycle.) 

residual which, by Table II, indicates that a throttle fault is the resulting residuals are not shown here as they were very 

present. In the third test, a 20% calibration fault exists in similar. Overall, we see that by combining the estimates from 

the mass air sensor meaning that the mass air sensor reads the fuzzy identifiers with the FDI logic in Table II, we were 

1-20 times the real value. As Fig. 10 illustrates, all residuals able to provide an effective FDI strategy for a class of minor 

exceed the thresholds except the engine speed residual which, engine failures. 

by Table II, indicates a ma sensor fault. In the fourth test, a 

40% calibration fault exists in the mass fuel actuator meaning 
IV. CONCLUSION

that the mass fuel actuator injects 1.40 times the commanded 

value. As Fig. 11 illustrates, all residuals exceed the thresholds In this brief paper, we have utilized a method of fuzzy 

except the throttle residual which, by Table II, indicates that clustering and optimal output predefuzzification in [6] to 

a m f fault occurred. In the final test, a 20% calibration fault perform identification of an experimental internal combustion 

exists in the engine speed sensor. As Fig. 12 illustrates, all engine to implement fault detection and isolation for a class 

residuals exceed the thresholds except the mass air residual of calibration faults during the IM240 testing cycle. We 

have demonstrated that fuzzy identification is one meanssignaling an engine speed sensor fault as shown in Table II. In 

a similar manner, engine failures can be detected utilizing the to perform effective fault detection and isolation for the 

models calculated via the nonlinear ARMAX model; however, engine faults we considered, and we showed that the fuzzy 
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Fig. 12. System residuals with 20% engine speed calibration fault. (The 
vertical axes are dimensionless; they represent the size of the filtered residual 
divided by the maximum value of the signal achieved over the IM240 cycle.) 

identification approach performed similarly to a nonlinear 
ARMAX technique utilized in [5]. 
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