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Dynamically Focused Fuzzy Learning Control

Waihon A. Kwong and Kevin M. Passino, Member, IEEE

Abstract— A “learning system” possesses the capability to
improve its performance over time by interacting with its en-
vironment. A learning control system is designed so that its
“learning controller” has the ability to improve the performance
of the closed-loop system by generating command inputs to
the plant and utilizing feedback information from the plant.
Learning controllers are often designed to mimic the manner
in which a human in the control loop would learn how to
control a system while it operates. Some characteristics of this
human learning process may include: (i) a natural tendency
for the human to focus their learning by paying particular
attention to the current operating conditions of the system since
these may be most relevant to determining how to enhance
performance; (ii) after learning how to control the plant for
some operating condition, if the operating conditions change,
then the best way to control the system may have to be re-
learned; and (iii) a human with a significant amount of experience
at controlling the system in one operating region should not
forget this experience if the operating condition changes. To
mimic these types of human learning behavior, we introduce
three strategies that can be used to dynamically focus a learning
controller onto the current operating region of the system. We
show how the subsequent ‘‘dynamically focused learning” (DFL)
can be used to enhance the performance of the ‘“fuzzy model
reference learning controller’” (FMRLC) [1]-[5] and furthermore
we perform comparative analysis with a conventional adaptive
control technique. A magnetic ball suspension system is used
throughout the paper to perform the comparative analyses, and
to illustrate the concept of dynamically focused fuzzy learning
control.

I. INTRODUCTION

N recent years, there has been a significant growth in

the commercial and industrial use of fuzzy logic systems.
Subway systems, automobile transmissions, air-conditioners,
washing machines, autofocus cameras and camcorders have
employed fuzzy control [6]-[8], and these products have
been advertised to have “intelligence” as compared to their
“nonfuzzy” counterparts. While there is significant marketing
hype about fuzzy systems being intelligent, in reality the fuzzy
controller is no more than a nonlinear controller. Hence, there
exists the same type of problems in design and implementation
of fuzzy controllers as exist in conventional control. For
instance, there is the need to specify a set of performance
objectives (e.g., stability, rise-time, overshoot etc.) and show
that these objectives are achieved. In addition, as with con-
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ventional fixed (i.e., nonadaptive) control, (i) it can be difficult
to tune the parameters of the controller and (ii) there always
exists the possibility that upon implementation plant parameter
variations will result in performance degradation. A multitude
of approaches to adaptive control have been introduced to
address these two problems. For instance, there exist many
approaches to model reference adaptive control (MRAC) that
seek to tune the parameters of a linear controller in response to
plant variations so that the behavior specified in a “reference
model” is achieved [9]. In an analogous fashion to MRAC, the
work in [1]-[5] shows how a fuzzy model reference learning
controller (FMRLC) can achieve and maintain the performance
specified in a reference model by synthesizing and tuning a
fuzzy controller. In this paper, we investigate the possibility
of enhancing the FMRLC learning capabilities via various
“dynamically focused learning” (DFL) strategies that seek to
optimally allocate the fuzzy controller rules to the operating
region of the system. In particular, we show that the DFL-
enhanced FMRLC can outperform the standard FMRLC and
an MRAC technique for a magnetic ball suspension system
(this paper is an expanded version of [10]).

Fuzzy fuzzy set theory was originated by Lotfi A. Zadeh
[11], [12] at the University of California, Berkeley. Zadeh
proposed the possibility of using fuzzy set theory as a means of
analyzing some very complex real world dynamical systems.
However, it was the pioneering research by E. H. Mamdani and
his colleagues at Queen Mary College in England [13]-[15]
that introduced how fuzzy set theory could be employed in
control applications. Since then, most fuzzy controllers have
basically been based on the suggested model by Mamdani,
where the fuzzy logic rules are obtained from expert knowl-
edge, the laws of physics, and similar a priori information.
Regardless of the information used in their construction,
fuzzy controllers turn out to be nonlinear controllers. Design
procedures for fuzzy controllers often involve ad hoc tuning
of the fuzzy controller parameters. To address this problem,
Procyk and Mamdani [16] introduced the linguistic self-
organizing controller (SOC) where the fuzzy control laws are
automatically improved by modifying the knowledge-base so
that a given performance measure is minimized. The modifica-
tion basically uses a performance evaluation fuzzy system and
an inverse of the plant dynamics to change the fuzzy relations
in the controller knowledge-base so that the controller can
assess its own performance. The linguistic SOC framework
of Procyk and Mamdani was studied further by Shao in [17]
where a rule-base modification algorithm is designed to reduce
computation time and memory. Shao also demonstrated the
practical application of the linguistic SOC by employing it in
two applications which contained nonlinearities and large time
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lags. Other applications of Procyk and Mamdani’s linguistic
SOC framework were implemented by Scharf and Mandic
[18] and again by Tanscheit and Scharf [19] on a multiple
degree-of-freedom robot arm where the fuzzy performance
evaluator is optimized. Their design employs an improved
performance measure decision table which was proposed by
Yamazaki of London University [20]. Isaka et al. in [21]
demonstrate a practical application of SOC by employing it
as a blood pressure controller where the dynamic responses
of the human body vary greatly between various persons.
Daley and Gill in [22]-[24] describe the application of the
linguistic SOC algorithm proposed by Procyk and Mamdani
for a complex multi-variable process involving the attitude
control of a flexible satellite. In [25]-[27], the SOC approach is
further illustrated in various experiments with nonlinear plants.

Despite the many advantages and successes of the linguistic
SOC algorithm, several drawbacks do exist. For example,
the performance measure employed in the linguistic SOC
only characterizes some compromise between rise time and
overshoot. For some control problems, the fastest possible
rise time with some overshoot may not be a desirable process
characteristic. Another potential problem involves the assump-
tion that incremental relationships between process inputs and
outputs are monotonic when generating the inverse process
model. In general this assumption does not always hold true.

These problems are avoided via the fuzzy model reference
learning control (FMRLC) introduced by Layne and Passino
in [1]-[5]. The FMRLC framework adopts ideas from con-
ventional MRAC [28] by introducing a reference model for
improved performance feedback and definition of the desired
process characteristic. The problem associated with the inverse
of the plant is solved by the use of a fuzzy inverse model,
which contains qualitative information about desired changes
in process outputs and maps this to a necessary change in
the process inputs for improvements in the control laws. The
FMRLC is later successfully implemented in [29], [30] for
endpoint positioning of a flexible-link robot and has been
studied in simulation for a cargo ship steering problem [2],
an inverted pendulum [1], anti-skid braking systems [3], [4],
a rocket velocity control problem and a rigid robot [5], and
reconfigurable control for aircraft [31].

Other alternatives to FMRLC and SOC are contained in
[26], [32], [33]; however, all of the adaptive fuzzy conirol
techniques discussed up to this point fit into the class of
adaptive systems often referred to as “direct adaptive con-
trol,” where the controller is directly updated without first
identifying the plant parameters. Alternatively, information
about the process may be obtained indirectly by utilizing
system identification, and then the controller can be updated
based on the identification results; this is often referred to
as “indirect adaptive control.” Rhee er al. [34] present a
knowledge-based fuzzy control system, which is constructed
off-line. Another example of indirect adaptive fuzzy control
presented by Graham and Newell in [35], [36] uses a fuzzy
identification algorithm developed by Czogala and Pedrycz
[37], [38] to identify a “fuzzy process model” that is then
used to determine the control actions. Batur and Kasparian [39]
present a methodology to adapt the initial knowledge-base of a

fuzzy controller to changing operating conditions. The output
membership functions of their fuzzy controller are adjusted
in response to the future or past performance of the overall
system, where the prediction is obtained through a linear
process model updated by on-line identification. In addition
to using the direct SOC framework or the indirect approach,
there are many other adaptive fuzzy system applications, to
name a few, that chose to use neural network for identification
and reinforcement learning [40]-[42], or genetic algorithms
for natural selection of controller parameters [43]-[46] as the
learning mechanism.

Recent work on adaptive fuzzy systems has focused on
merging concepts and techniques from conventional adaptive
systems into a fuzzy systems framework. Most notable is the
work of Wang that is gathered in [47] where he shows how to
construct: (i) fuzzy estimators/identifiers using, for example,
least squares, back-propagation, and clustering techniques; (ii)
stable (direct and indirect) adaptiVe fuzzy controllers; and (iii)
fuzzy adaptive filters. Our approach is significantly different
from Wang’s since we seek to characterize general ways in
which humans might learn to control a process and utilize
these in adaptive control; his focus is on the design and
nonlinear analysis of adaptive fuzzy systems. Next, we explain
the organization of this paper.

In Section II, we describe the nonlinear model of the mag-
netic ball suspension system which will be used to illustrate
the concepts and techniques in the paper. Then we develop a
conventional adaptive controller and a standard FMRLC for
the magnetic ball suspension system and demonstrate how the
FMRLC fails to achieve the control objectives. Via the failure
of the FMRLC, we motivate the need for the dynamically
focused learning (DFL). In Section III, we introduce three
types of DFL sirategies and evaluate their performance relative
to MRAC and FMRLC. Section IV contains some concluding
remarks and future research directions.

11. CONVENTIONAL ADAPTIVE CONTROL AND FMRLC
FOR A MAGNETIC BALL SUSPENSION SYSTEM

In this section we develop a conventional adaptive controller
and FMRLC for a magnetic ball suspension system and
perform a comparative analysis to assess the advantages and
disadvantages of each approach. At the end of this section, we
highlight certain problems that can arise with the FMRLC and
use these as motivation for the dynamically focused learning
enhancement to the FMRLC.

A. Magnetic Ball Suspension System

The model of the magnetic ball suspension system! shown
in Fig. 1 is given by

dyt) P
a7 o} "
o(t) = Ri(t) + L%l

! An experimental magnetic ball suspension system is described in [48]. It
is interesting to note that the system parameters of their experimental setup
are quite similar to those used in our model.
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Fig. 1. Magnetic ball suspension system.

where y(t) is the ball position in meters, M = 0.1 kg is
the ball mass, g = 9.8 m/s? is the gravitational acceleration,
R = 50 Q is the winding resistance, L = 0.5 H is the winding
inductance, v(t) is the input voltage, and () is the winding
current. The position of the ball is detected by a position sensor
(e.g. an infra-red or microwave sensor) and is assumed to be
fully detectable over the entire range between the magnetic
coil and the ground level. In state-space form (1) becomes

f'{x—‘j}lft—) = x2(t)

de‘Q(t) . Ez(t)

a9 M—il-(t—) .
da:;t(t) _ _%xg(t) + %v(t)

where [z1(t) z2(t) zs(8)] = [y(t) iﬁ’% i(t)] (where «”

. denotes matrix transpose). Notice that the nonlinearities are
induced by the z2(t) and —L=< terms in the dmjt(t) equation.
By linearizing the plant model in (2), assuming that the ball
is initially located at z1(0) = y(0), a linear system can be
found by calculating the Jacobian matrix at y(0). The linear
state-space form of the magnetic ball suspension system is
given as

d!l?l(t)

= z2(1)
d””;ft) = (90) n1(t) - 2,/ j( es(t) 3)
dl‘;t(t) = —%:Dg(t) + %’U(t)‘ ‘

Since the ball position y(¢) is the only physical output of
the plant, by assuming all initial conditions are zero, the model
can be rewritten as a transfer function

i) __ LYo )
o) (*—5t5) (s + £)

(in this section, we adopt the convention that if z(¢) is a time
function, £(s) is its Laplace transformation). Note that there
are three poles (two stable and one unstable) and no zeros in
the transfer function in (4). Two poles (one stable and one
unstable) and the dc gain change based on the initial position
of the ball (i.e., the system dynamics will vary significantly

Imag Axis

-50 0 50
Real Axis

Fig. 2. Pole-zero map of the magnetic ball suspension system (third order
linear model with all possible initial conditions).

depending on the location of the ball). From Fig. 1, the total
distance between the magnetic coil and the ground level is
0.3 m, and the diameter of the ball is 0.03 m. Thus, the total
length of the suspension system is 0.27 m, and the initial
position of the ball y(0) can be anywhere between 0.015 m
(touching the coil) and 0.285 m (touching the ground) For
this range the numerator of the transfer function — My My (O)

varies from —323.3 (ball at 0.015 m) to —74.17 (ball at 0.285
m), while the two poles move from +25.56 to £5.864 as
shown in the pole-zero map in Fig. 2. Clearly then the position
of the ball will affect our ability to control it. If it is close to
the coil it may be difficult to control since the unstable pole
moves further out into the right half plane, while if it is near
the ground level it is easier to control. The effect of the ball
position on the plant dynamics can cause problems with the
application of fixed linear controllers (e.g. ones designed with
root locus or Bode techniques that assume the plant parameters
are fixed). It is for this reason that we investigate the use of
a conventional adaptive controller and the FMRLC for this
control problem. We emphasize, however, that our primary
concern is not with the determination of the best control
approach for the magnetic ball suspension system; we simply
use this system as an example to compare control approaches
and to illustrate the ideas in this paper.

B. Conventional Adaptive Control

In this section a model reference adaptive controller
(MRAC) is designed for the magnetic ball suspension system.
The particular type of MRAC we use is described in [9]
(on p. 125) and it uses the so called “indirect” approach to
adaptive control where the updates to the controller are made
by first identifying the plant parameters. The MRAC controller
structure is shown in Fig. 3, for which every component is
discussed next (it is assumed that the reader is familiar with
the concepts and techniques in conventional adaptive control).

To design the MRAC, a linear model is required. To make
the linear model most representative of the range of dynamics
of the nonlinear plant we assume that the ball is initialized
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Fig. 3. 'Model reference adaptive controller (MRAC) structure.

at the middle between the magnetic coil and the ground level
where y(0) = 0.15 m to perform our linearization. In order to
simplify the MRAC design, we will assume the plant is second
order by neglecting the pole at —100 since its dynamics are
much faster then the remaining roots in the plant (see Fig. 2).
We found via simulation that the use of this second order linear
model has no significant affect on the low frequency responses
compared to the original third order linear model. Hence, the
transfer function of the system is rewritten as (note that the dc
gain term k&, is changed accordingly)

kp
52 + apas + ap

i) _ _ Eyiy(s)
o(s) dp(s)
where kp = —1.022, fi,(s) = 1, dp = 8%+ apas + ap =

— 65.33. The reference model M (s) in Fig. 3 is used to
spe01fy the desired closed-loop system behavior. Here, the
reference model is chosen to be

P(s)

®

~ km km Mo (8
M(s) = = fntnls) )
5%+ am2s + am1 dm(8)
where k,, = —25, fi,(s) = 1, A = 8% + amas + Am1 =

52+ 10s + 25 (ie., there are two poles at —5). This choice
reflects our desire to have the closed-loop response with
minimal overshoot, zero steady-state error, and yet a stable,
fast response to a reference input. Moreover, to ensure that
the “matching equality” is achieved (i.e., that there will exist
a set of controller parameters that can achieve the behavior
specified in M ) [9] we choose the order of the reference model
to be the same as that of the plant.

The control has the form,

)

v = cgT +

where A(s) = Ao(8)fm(s) = 82 + Aas + A = (s +20)2 i

a monic function (where the value 20 is chosen since )\—(1;3
filters v and y and a cut-off of 20 rad/sec will not attenuate
most frequencies of interest). From the matching equality in [9].
the values of the controller parameter ¢y and the polynomials

é(s) and d(s) that result in the reference model response being

achieved are ¢, &*(s), and d*(s) where
cy = Em
(i kp ’
& = X\— ghy, ®)
. 1 .+ o s
dr = ?(qdp e /\Odm)

Aodm , and the nominal controller

where ¢ is the quotient of
parameters are (based on the matchmg equalities)

Ak

g
<

5% 4 50s + 890.33,
94.45,

& =cis® F s+,

d* = ds® + dis + dr

®

where [c] ¢; df d3] = [-490.33 — 10 66673.9 8085.43] := §*
and § denotes the controller parameters that are tuned.
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Using the “certainty equivalence principle” (i.e., that the
estimates of the plant parameters should be taken as the
true values of the plant parameters and used to specify the
controller) [9], the plant parameters are used, along with (8)
to compute the controller parameters (see Fig. 3). Assume
that the “identifier model” (i.e., the model that is adjusted
so that it behaves like the plant) is

(8) 123 + bzl
82 + a;28 + a4

_ 1(s)
di(s)’
In order to share the signals between the identifier and the
controller, the identifier model can be re-written as (see [9],
Section II-A for more details)
R bias + bi1 , (A2 —ai2)s + (M1 —aa) ,
i(8) = - v(8) + = s).
9i(s) o) (s) Ae) 9(s)
(11

Notice that ¢(s) is the input to the plant and §(s) is the output
of the plant. The identifier structure is

(10)

5i(s) = 2 (s) + ' (s) (12)
where 8 = [bi1 bia]', & = [(M — ai1) (A2 — a2))/, 2(s) =
[(sI = M)7*balf(s), 2P (s) = [(sT — A)~2ba]§(s), and

1 —_ s 0 1
[(sI = A)~1h,] = [A(s) G ] in which A = [_)‘1 Y
and by = (1) . Further simplification will give the identifier
output as
§i(s) = z'ib(s) (13)
where 7' = [o/ 8], and @'(s) = [@D'(s) @@ ®). It is

assumed that the initial conditions of the “observer” (i.e., the
box labeled “filter” in Fig. 3) are chosen to be zero. Note that
@ contains the parameters that will be determined through the
identifier, and based on the plant model it is expected that
the unknown parameters m converge to 7* = [k, 0 (A —
ap1) (A2 — ap2)] = [24.45 0 465.33 40]. The adaptation
mechanism will use the identifier output error e¢; = y; — y in
the “normalized gradient algorithm with projection” to update
the parameter 7 so that

e (14)

= —g—
T T
where g > 0 is an adaptation gain, v > 0 is a scaling factor,
and the projection rule is

If b;1 = kpin and bﬂ > 0, then let bu =

where kunin is chosen to be —0.001. For each new estimate
of the plant parameters 7, the controller parameter § is then
updated by using the matching equality as shown in Fig. 3.
The parameter error is denoted by ¢ = m — 7* and it is
expected to approach zero as ¢ — co. As the parameter error
¢ goes to zero, it is expected the output error e, approaches
zero provided that the plant is exactly the second order linear
plant?, as proven in [9].

2Note that when this MRAC is used on a nonlinear model, there is no
guarantee of convergence.

Since the plant is assumed to be second order, based
on the theory of persistency of excitation [9], the identifier
parameters will converge to their true values if an input which
is “sufficiently rich” of at least to the order of twice the order
of the system. Therefore, an input composed as the sum of
two sinusoids will be used to obtain richness of order four
according to the theory. In order to pick the two sinusoids
as the input, it would be beneficial to study the frequency
response of the plant model. The way to pick the inputs is
that the frequency selected should be able to excite most
of the frequency range we are interested in. A Bode plot
of -the third order linear system suggested that the cut-off
frequency (3 dB cut-off) of the plant is about 6 %. Hence,
we picked two sinusoids (1 %24 and 10 2d) to cover the
most critical frequency range. The amplitude of the input is
chosen to force the system, as well as the reference model, to
swing approximately between +0.05 m around the initial ball
position (i.e., at 0.15 m, where the total length of the system
is 0.3 m); hence, we choose r(t) = 0.05(sin(1¢) + sin(10t)).
Note that this input will drive the system into different
operating conditions where the plant behavior will change due
to the nonlinearities.

Next, the adaptive controller will be simulated with two
different plant models to demonstrate the closed-loop perfor-
mance. The two plant models used are: (i) the second order
linear model, and (ii) the original nonlinear system (i.e., (2)).

Second Order Linear Plant: In this section, the adaptive
controller will be simulated with the second-order linear model
of the ball suspension system which was used to design the
MRAC. The initial position of the ball'is at 0.15 m. In order to
speed up the adaptation, the initial condition of the identifier
is chosen to be m = [—1 1 460 40] (i.e., we assume that apy
is known to be zero, that we have a good guess of the value
of ay1, but that we have no good idea of the value of k).
With these initial parameters, after some tuning we chose the
adaptation gain ¢ = 10000 and v = 1. The time required
for the adaptive mechanism to track the reference model is
approximately 100 s; hence we did not include plots showing
the results. This time lag is definitely not acceptable for such
a fast dynamical system (i.e., it is expected that the adaptive
system should be able to change in at most a few seconds). But
this slow adaptation only happens on one of the parameters
a;; (where af; = 465.33). Therefore, a vector adaptation
gain is used to force the parameter a;; to change faster.
After some simulation-based investigations, it was found that
a vector gain g’ = [10000 10000 100000000 10000]" (such
that ¢’e;w/(1 4+ yw'w) is used in (14)) would significantly
enhance the speed of the adaptive system. As shown in Fig. 4,
the identifier error e; is approaching zero in 0.5 seconds,
while the plant output error e, is still slowly converging
after 20 s (i.e., swinging between +0.005 m) but y(¢) is
capable of matching the response specified by the reference
model in about 15 s. Notice that there is a fairly large
transient period in the first 2 s when both the identifier and
the controller parameters are varying widely. We see that
the system response is approaching the one specified by the
reference model, but the convergence rate is quite slow even
with relatively large adaptation gains in the vector g. Note
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Fig. 4. Responses using MRAC design (reduced order linear model, sinusoidal input sequence).
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that the voltage input v in Fig. 4 is of acceptable magnitude
compared with the implementation in [48]; in fact all control
strategies studied in this paper produced acceptable voltage
control inputs to the plant compared to [48].

Non-Linear System: In this section, the adaptive controller
will be simulated with the nonlinear model of the ball suspen-
sion system with the same controller and initial conditions so
that the ball starts at 0.15 m. Fig. 5 shows the responses for
the nonlinear model. It is observed that the ball first drops to
the ground level since the adaptation mechanism is slow and
it cannot keep up with the fast-moving system. After about 2.5
s, the system starts to recover and fries to keep up with the
plant. The identifier error e; dies down after about 5 s where
it swings -between +0.001 m; however, the plant output error
swings between £0.03 m and appears to maintain at the same
level (i.e., the plant output never perfectly matches that of the
reference model). The plant output is not capable of matching
the one specified by the reference model mainly because the
indirect adaptive controller is not designed for the nonlinear

.model. It is also observed that the ball position reacts better in
the range where the ball is close to the ground level (0.3 m),
whereas the response gets worse in the range where the ball
is close to the magnetic coil (0 m) (i.e., the nonzero identifier
error is found and the control input is more oscillatory in the
instant when the ball position is closer to 0 m). This behavior
is due to the nature of the nonlinear plant, where the system
dynamics vary significantly with the ball position, and the
adaptive mechanism is not fast enough to adapt the controller
parameters with respect to the system dynamics.

. In order to keep the ball from falling to the ground level or
lifting up to the coil, one approach is to apply the previously
adapted controller parameters to initialize the adaptive con-

Responses for MRAC design (nonlinear model, sinusoidal input sequence).

troller. It is hoped that this initialization process would help
the adaptation mechanism to keep up with the plant dynamics
at the beginning of the simulation. As shown in Fig. 6 when -
this approach is employed, the ball does not fall to the ground
level (compared to Fig. 5). Despite the fact that the system
appears to be stable, the identifier error does not approach
zero and swings between £0.001 m and the plant output error
swings between +0.03 m (i.e., the closed-loop response of the
plant is still not matching that of the reference model).

Note that from all the simulations, due to the use of the
gradient type update the MRAC seems to be slow in general?,
Although it is faster with the use of very large adaptation gains,
it is obvious that large adaptation gains will be problematic be-
cause of sensitivity to noise. In addition, the MRAC designed
with a linear, second order model does not perform adequately
with the nonlinear plant, which is due to the variation in plant
dynamics. If other input sequences are used, such as those
with higher order of richness (more sinusoidal components
at different frequencies), the convergence of the control may
be improved. However, a complicated reference input for a
nonlinear plant may result in excess plant variations such that
it is even harder for the plant to follow a reference model.
If a step input sequence is used as the reference input to the
nonlinear plant as shown in Fig. 7, the MRAC does a very
poor job of following the reference model.

3We also investigated MRAC with different adaptation algorithms, such as
normalized least squares algorithm with convariance resetting [9]. Although
the simulation results for this least squares type MRAC show a slightly faster
adaptation speed for the linear plant model, the simulation results. appear
to be less satisfactory than those of the gradient update method when the
nonlinear plant model is used. It is for this reason, and due to space constraints,
that we did not include our results for the MRAC with least squares update
mechanism.
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Fig. 6. Responses for MRAC design after “training” (nonlinear model, sinusoidal input sequence).

Ball Position (y) Voltage Input (v) Identifer & Output Error (¢;&e,)
Plart aofF 002 = ‘
----- Ref. Model &
02 B - -3
0
.l
B o0
3 2
10 | -0.04
——— identifier Error
O Output Error
oL L . . I i i L
0 5 10 15 20 0 5 10 15 20
Second Second

Fig. 7. Responses for MRAC (nonlinear model, step input sequence).’

Also note that since the magnetic ball suspension system
is feedback linearizable, it is possible to design a stable
adaptive controller for this nonlinear system (see Ch. 7 in
[91). However, since the nonlinear model of the magnetic ball
suspension system has a “relative degree” of three, using the
approach in Section 7.3 of [9] results in an adaptive controller
of significant complexity (with a high dimension regressor and
parameter vectors). In addition, the approach in [9] only works
for a very special structure for the nonlinear plant that restricts
the unknown parameters to enter linearly. It is for these reasons
that we investigate the use of fuzzy model reference learning
control (FMRLC) for the magnetic ball suspension system.

C. Fuzzy Model Reference Learning Control

In this section, the FMRLC shown in Fig. 8, which was
introduced in [1]-[5], will be designed for the magnetic ball
suspension system. Note that the design of FMRLC does not
require the use of a linear plant model, and thus from now on
we will always use the nonlinear model of the magnetic ball
suspension system. The fuzzy controller in Fig. 8 uses the error
signal* e(kT) = r(kT) — y(kT) and the change in error of the
ball position c¢(kT) = ﬂw to decide what voltage
to apply so that y(kT) — r(kT) as k — oo. The learning
mechanism in Fig. 8 is used to (i) observe data from the
fuzzy control system, (ii) characterize its current performance,
and (iii) automatically synthesize and/or adjust the fuzzy
controller so that some pre-specified performance objectives
are met. These performance objectives are characterized via
the reference model shown in Fig. 8. In a manner analogous to
conventional adaptive control, where conventional controllers

4Notice that we use sampled versions of all signals as the operation of the
FMRLC is easier to explain and visualize in discrete-time.

are adjusted, the learning mechanism seeks to adjust the fuzzy
controller so that the closed-loop system (the map from r(kT)
to y(kT) where T is the sampling period) acts like a pre-
specified reference model (the map from r(kT) to ym, (kT)).
Next we describe each component of the FMRLC in Fig. 8.
The Fuzzy Controller: In fuzzy control theory, the range of
values for a given controller input or output is often called the
“universe of discourse” [47], [49]. Often, for greater flexibility
in fuzzy controller implementation, the universes of discourse
for each process input are “normalized” to the interval [—1,1]
by means of constant scaling factors. For our fuzzy controller
design, the gains g., g., and g, were employed to normalize
the universe of discourse for the error e(kT'), change in error
c(kT), and controller output v(kT), respectively. The gain
ge is chosen so that the range of values of g.e(kT) lie on
[-1,1] and g, is chosen by using the allowed range of inputs
to the plant in a similar way. The gain g. is determined by
experimenting with various inputs to the system to determine
the normal range of values that ¢(kT") will take on; then g
is chosen so that this range of values is scaled to [—1,1].
According to this procedure, the universes of discourse of the
inputs to the fuzzy controller e(t) and c(t) are chosen to be
[-0.275,0.275] and [—2.0,2.0] respectively. This choice is
made based on the distance between the coil and ground level
of the magnetic ball suspension system and an estimate of
the maximum attainable velocity of the ball that we obtain
‘via simulations. Thus, the gains g. and g, are 5‘21? and %,
respectively. The output gain g, is then chosen to be 30, which
is the maximum voltage we typically would like to apply to
the plant. '
We utilize one multiple-input, single-output (MISO) fuzzy
controller, which has a knowledge-base of IF-THEN control
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rules of the form If & is £ and ¢ is C® Then & is VP,
where € and ¢ denote the linguistic variables associated with
controller inputs e(k7") and c¢(kT’), respectively, ¥ denotes
the linguistic variable associated with the controller output v,
E@ denotes the ath linguistic value associated with & and C?
denotes the bth linguistic value associated with ¢, respectively,
and V*? denotes the consequent linguistic value associated
with ¥. For example, one fuzzy control rule could be: If Error
is PositiveLarge and ChangelnError is NegativeSmall Then
PlantInput is PositiveBig, (in this case & = “Error,” E*
“PositiveLarge,” etc.). A set of such rules forms the “rule-
base” which characterizes how to control a dynamical system.
The above control rule may be quantified by utilizing fuzzy
set theory to obtain a fuzzy implication of the form: If E* and

Input-output universes of discourse and rule-base for the fuzzy controller.

C® Then V*®, where £, C®, and V% denote the fuzzy sets
that quantify the linguistic statements “¢ is E®) “¢ is Cb,”
and “9 is V*?,” respectively. We chose to use 11 fuzzy sets
(triangular membership function with base widths of 0.4) on
the normalized universes of discourse for e(kT") and c(kT) as
shown in Fig. 9(a). .

Assume that we use the same fuzzy sets on the c(kT)
normalized universes of discourse (ie., C° E%). The
membership functions on the output universe of discourse
are assumed to be unknown; they are what the FMRLC will
automatically synthesize. As shown in Fig. 9(a), we initialize
the fuzzy controller knowledge-base with 121 rules (using
all possible combinations of rules) where all the right-hand-
side membership functions are triangular with base widths
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of 0.2 and centers at zero. This is done to model the fact
that the fuzzy controller initially knows nothing about how
to control the plant. In conventional direct fuzzy controller
development the designer specifies a set of such control rules
where V% are also specified a priori; for the FMRLC, the
system will automatically specify and/or modify the fuzzy sets
V? to improve/maintain performance as is explained next.
Note that we use singleton fuzzification, minimum to quantify
the premise and implication, and the standard center-of-gravity
(COQG) defuzzification technique [47], [49].

The Reference Model: The reference model provides a
means for quantifying the desired performance. In general,
the reference model may be any type of dynamical system
(linear or nonlinear, time-invariant or time-varying, discrete
or continuous time, etc.). Here, we use a discretized version
of the same reference model as was used for the MRAC.
The performance of the overall system is computed with
respect to the reference model by generating error signals
Ye(KT) = ym(KT) — y(kT) and yo(kT) = 2ED=gLT2D0
shown in Fig. 8. Given that the reference model characterizes
design criteria such as rise time and overshoot, and that the
input to the reference model is the reference input r(kT),
the desired performance of the controlled process is met
if the learning mechanism forces y.(kT) and y.(kT) to
remain very small for all time; hence, y.(kT) and y.(kT')
provide a characterization of the extent to which the desired
performance is met at time k7. If the performance is met
(y(kT) 0) then the learning mechanism will not make
significant modifications to the fuzzy controller. On the other
hand if y.(kT) and y.(kT) are big, the desired performance
is not achieved and the learning mechanism must adjust

“the fuzzy controller. Next we describe the operation of the
learning mechanism.

The Learning Mechanism: As previously mentioned, the
learning mechanism performs the function of modifying
the knowledge-base of a direct fuzzy controller so that the
closed-loop system behaves like the reference model. These

~
~

Input-output universes of discourse and the rule-base for the fuzzy inverse model.

knowledge-base modifications are made by observing data
from the controlled process, the reference model, and the
fuzzy controller. The learning mechanism consists of two
parts: a fuzzy inverse model and a knowledge-base modifier.
The fuzzy inverse model performs the function of mapping
ye(kT) and y.(kT) (representing the deviation from the
desired behavior), to changes in the process input yz(kT)
that are necessary to force y.(kT) and y.(kT) to zero. The
knowledge-base modifier performs the function of modifying
the fuzzy controller’s knowledge-base to affect the necessary
changes in the process inputs.

The authors in [1]-[5] introduced the idea of using a fuzzy
system to map y.(kT) and y.(kT) (and possibly functions
of y.(kT), or process operating conditions), to the necessary
changes in the process inputs y#(kT"). This map is called the
fuzzy inverse model since information about the plant inverse
dynamics is used in its specification. Note that similar to the
fuzzy controller, the fuzzy inverse model shown in Fig. 8
contains normalizing scaling factors, namely g, ., gy., and
gg, for each universe of discourse. Given that g, y. and
9y.Ye are inputs to the fuzzy inverse model, the knowledge-
base for the fuzzy inverse model associated with the process
input is generated from fuzzy implications of the form If
Y2 and Y? Then Y]? b, where Y? denotes the ath fuzzy
set for the error y. and YC” denotes the bth fuzzy set for
the change in error y., respectively, and YJ? * denotes the
consequent fuzzy set for this rule describing the necessary
change in the process input. As with the fuzzy controller, we
often utilize membership functions for the normalized input
universes of discourse as shown in Fig. 10 (we use ch = YE“),
triangular membership functions for the output universe of
discourse, singleton fuzzification, minimum to quantify the
premise and implication, and COG defuzzification. The fuzzy
inverse model is then set up similar to the fuzzy controller
except that the membership function of the output is initialized
as shown in Fig. 10 to represent the inverse dynamics of
the plant. The rule-base is chosen so that it represents the
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Fig. 11. Responses for FMRLC (step input sequence).

knowledge of how to update the controller when the error,
change of error between the reference model, and the plant
output is given. The gains of the fuzzy inverse model are
then initially chosen to be g,, = 5375, gy. = 0.5, and
gr = 30. Note that all the gains are chosen based on the
physical properties of the plant, so that g,, = ge, gy. = Ge»
and g5 = g, (more details on the rationale and justification
for this choice for the gains is provided in [1]-[5]). Successful
design of the fuzzy inverse model has been performed for
many applications including a cargo ship steering problem [2],
an inverted pendulum [1], anti-skid braking systems [3], [41, a
rocket velocity control problem and a rigid robot [5], aircraft
control [31], and a flexible robot [29], [30].

Given the information about the necessary changes in the
input as expressed by ys(kT), the knowledge-base modi-
fier (as shown in Fig. 8) changes the knowledge-base of
the fuzzy controller so that the previously applied control
action will be modified by the amount ys(kT'). Therefore,
consider the previously computed control action v(kT — T'),
which ‘contributed to the present good/bad system perfor-
mance. Note that e(kT" — 1) and ¢(kT — T) would have
been the process error and change in error, respectively, at
that time. By modifying the fuzzy controller’s knowledge-
base we may force the fuzzy controller to produce a desired
output v(kT — T) + y¢(kT). Assume that only symmetric
membership functions are defined for the fuzzy controller’s
output so that v®®(kT) denotes the center value of the
membership function at time k7" associated with the fuzzy
set V%P (initially, all centers are at zero, vg’b(O) = 0).
Knowledge-base modification is performed by shifting centers
of the membership functions of the fuzzy sets V*° which are
associated with the fuzzy implications that contributed to the
previous control action v(5k7 —T'). The degree of contribution
for a particular fuzzy implication whose fuzzy relation is
denoted R*? is determined by its “activation level,” defined
as 6%°(t) = min {pg.(e(t)), ues (c(t))}, where pu denotes
the membership function of the fuzzy set A and ¢ = kT is the
current time. Only those rules with nonzero activation level
are modified; all others remain unchanged. This modification
involves shifting these membership functions by an amount

" specified by ys(kT) so that

02 (KT) = v@P (kT — T) + v (kT). (15)

Ssconds

10 15 20 ] 5 10 15 20
Seconds

It is important to note that our rule-base modification proce-
dure implements a form of Jocal learning and hence wutilizes
memory. In other words, different parts of the rule-base are
“filled in” based on different operating conditions for the
system, and when one area of the rule-base is updated, other
rules are not affected. Hence, the controller adapts to new
situations and also remembers how it has adapted to past
situations [1], [2], [50].

Continuing with our example above, assume that all the
normalizing gains for both the direct fuzzy controller and
the fuzzy inverse model are unity and that the fuzzy inverse
model produces an output y,(kT") = 0.5 indicating that the
value of the output to the plant at time &7 — T should
have been v(k7 — T') + 0.5 to improve performance (i.e.,
to force y. ~ 0). Next, suppose that e(kT — T') = 0.75 and
c(kT — T) = —0.2. Then, the rules If £ and C~! Then -
V3~land If E* and C~! Then V4! are the only rules with
nonzero activation levels (6>~! = 0.25 and &1 = 0.75).
Hence, these are the only rules that have their consequent fuzzy
sets (V=1 V%~1) modified (see Fig. 9(b)). To modify these
fuzzy sets we simply shift their centers according to (15). Next,
we apply the FMRLC to the ball-suspension control problem.

According to the design procedure in [1]-[5], a step input
can be used to tune the gains g, and g, of the FMRLC. Here,
we chose a step response sequence. Notice in the ball position
plot in Fig. 11-that the FMRLC design was quite successful in
generating the control rules such that the ball position tracks
the reference model almost perfectly. It is important to note
that the FMRLC design here required no iteration on the design
process. This is not necessarily true in general and some tuning
is often needed for different applications (see the applications
in [1}-[5] and [29], [30]).

Up to this point, the FMRI.C seems to be a very efficient -
control algorithm for a wide variety of nonlinear systems
(see, [1]-[5]). However, there currently exists no mathematical
evaluation of the robustness and stability properties of the
FMRLC. It is possible that there exists an input sequence
which will cause the FMRLC to fail since stability of the
FMRLC depends on the input (as it does for all nonlinear
systems). For example, if the sinusoidal input sequence 7(t) =
0.05(sin(1¢) +sin(10¢)) is used (as it was used in the adaptive
controller design), the plant response is unstable as shown in
Fig. 12. Although exhaustive tuning of the ‘gains (except g.,
9v, 9y, and gy since we consider these to be set by the physical
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Fig. 12. Responses for FMRLC (sinusoidal input sequence).
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Fig. 13. Rule-base of the learned fuzzy controller (step input sequence).

system) are performed to improve the FMRLC, Fig. 12 indeed
shows one of the best responses we can obtain.

D. Motivation for Dynamically Focused Learning (DFL)

With the results as shown in Fig. 12, one would ask: What
are the effects of different reference inputs? In the conventional
adaptive controller design for linear plants with unknown but
constant coefficients, the theory of persistence of excitation
provides some guidelines for selecting an input with “sufficient
richness™ so that the adaptive controller will be fully excited
and hence capable to identify the appropriate parameters.
There is no such theory established for the FMRLC. As was
found in [1]-[5] the quality of the design of the FMRLC
depends on the successful tuning of the gains g., g. and g,, for
the controller and g, , g,, and gy for the fuzzy inverse model.
Moreover, there is an underlying assumption that the premises
of the rules totally cover the operating range of the system
and have a sufficient number and appropriate distribution of
membership functions on the input universes of discourse. As
was shown in [5], performance of the FMRLC depends on
the number of rules used in the fuzzy controller where if
too few rules are used then oscillatory behavior can result.
To gain better insight into why the FMRLC fails, in Fig. 13
we show the learned rule-base of the fuzzy controller in the
FMRLC (after the step input sequence® in Fig. 11 is applied to
the system for 20 seconds). The rule-base is zero everywhere

5The rule-base of the fuzzy controller for the sinusoidal input sequence is
not used since it is filled with extreme values as the system is unstable.

except the center nine rules. For better visualization of the
rule-base, Fig. 14(a) and (b) show two different graphical
representations of the rule-base in Fig. 13. Fig. 14(a) is a
“density plot” of the rule-base, where the shade of gray
indicates the value of the center of the output membership
functions. This density plot or “rule-base map” shows that the
fuzzy controller actually only utilized 9 of the 121 possible
rules. In fact, if the rule-base is sub-divided into 9 sections
as shown in Fig. 14(a), the 9 rules that are learned lie within
the center section. With such a small number of rules, the
learning mechanism of the FMRILC performed inadequately
because the resulting control surface can only capture very
approximate control actions. In the other words, for more
complicated control actions, such a rule-base may not be able
to force the plant to follow the reference model closely.

Fig. 14(b) is a 3-D surface plot of the same rule-base
(which is similar to the nonlinear “control surface” of the
fuzzy controller), since it shows the values of the centers of
the output membership functions for fuzzy sets V', plotted
versus the centers of the input membership functions of F¢
and C® on the z- and y-axes. Note that if fuzzy inference
and defuzzification were used, Fig. 14(b) would show exactly
how the fuzzy system interpolates to produce the true nonlinear
control surface. The control surface as shown in Fig. 14(b) is
nonsymmetric (i.e., the maximum of the output is 3.57 and
the minimum is —2.93).-This is because the control laws for
moving the ball upward and downward are different as they
vary with the ball position (i.e., the input e(kT) to the fuzzy
controller).

To improve FMRLC performance, one possible solution is
to redesign the controller so that the rule-base has enough
membership functions at the center where the most learning is
needed. Yet, this approach will not be considered because the
resulting controller will then be limited to a specific range
of the inputs that happen to have been generated for the
particular reference input sequence. Another possible solution
is to increase the number of rules (by increasing the number
of membership functions on each input universe of discourse)
used by the fuzzy controller. Therefore, the total number of
rules (for all combinations) is also increased, and we enhance
the capability of the rule-base to memorize more distinct
control actions (i.e., to achieve “fine control”). For instance,
if we increase the number of membership functions on each
input universe of discourse from 11 to, say 101 (but keeping
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Fig. 15. Responses for FMRLC (nonlinear model, sinusoidal input sequence).

all other parameters, such as the scaling gains, the same), the
total number of rules will increase from 121 to 10201 (.,
there are two orders of magnitude increase in the number of
rules)®, and we get the responses shown in Fig. 15 for the
FMRLC. Clearly as compared to Fig. 12, we have drastically
improved the performance of the FMRLC to the extent that it
performs similar to the MRAC for the nonlinear model (see
Fig. 6). Notice that in Fig. 15 the output error swings between
£0.027 even after 15 s of simulation, and the plant output is
oscillatory. Longer simulations have shown that this FMRLC
appears to be stable but the plant cannot perfectly follow the
response of the reference model.

Even though we were able to significantly improve perfor-
mance, enlarging the rule-base has many disadvantages: (i)
the number of rules increases exponentially for an increase
in membership functions and increases even faster with more
inputs to the fuzzy controller’, (ii) the computational efficiency
drastically decreases as the number of rules increases, and (iii)
arule-base with a large number of rules will require a long time
period for the learning mechanism to fill in the correct control
laws since smaller portions of the rule-base map in Fig. 14(b)

SWe chose this number of membership functions by trial and error and
found that further increases in the number of membership functions had very
little effect on performance.

7The maximum number of rules for a MISO fuzzy system can be found

as [y N; where n is the total number of inputs and IV; is the number of
membership functions on the sth input universe of discourse.

will be updated by the FMRLC for a higher granularity rule-
base. Hence, the advantages of increasing the number of rules
will soon be offset by practical implementation considerations
and possible degradations in performance. ‘

This motivates the need for special enhancements to the
FMRLC so that: (i) we can minimize the number of member-
ship functions and therefore rules used, and (ii) at the same
time maximize the granularity of the rule-base near the point
where the system is operating (e.g., the center region of the
rule-base map in Fig. 14(a)) so that very effective learning
can take place. In the next section we introduce the .idea of
“dynamically focused learning” that seeks to allocate rules to
the learning process in an efficient manner.

II. Fuzzy MODEL REFERENCE
LEARNING CONTROL WITH DFL

In order to avoid an excessive number of rules, this section
first discusses an alternative view of a fuzzy rule-base and then
presents three alternative approaches to perform “dynamically
focused learning” (DFL) for the FMRLC, where the rule-base
is “focused” onto the current region of operation so that a
smaller rule-base can be used.

A. FMRLC Learning Dynamics

To begin we clarify several issues in FMRLC learhing
dynamics including: (i) the effects of gains on linguistics,
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Fig. 16. Responses for FMRLC with reduced rule-base and no DFL (sinusoidal input sequence).

and (ii) characteristics of the rule-base such as granularity,
coverage, and the control surface. The fuzzy controller in the
FMRLC (see Fig. 8) used for the magnetic ball suspension
system has 11 membership functions for each process input
(e(kT) and ¢(kT)). There are a total of 121 rules (i.e., 121
output membership functions), with all the output membership
function centers initialized at zero. The universes of discourse
for each process input are “normalized” to the interval [—1,1]
by means of constant scaling factors. For our fuzzy controller
design, the gains g., g., and g, were employed to normalize
the universe of discourse for the error e(kT'), change in error
c(kT), and controller output v{kT'), respectively. The gains
ge and g. then act as the scaling factors of the physical
range of the inputs. By changing these gains, the meanings
of the premises of the linguistic rules will also be changed.
An off-line tuning procedure for selecting these gains (such
as the one described in [1]-[5]) is essentially picking the
appropriate meaning for each of the linguistic variables. For
instance, one of the membership functions E* on e(kT) is
defined as “PositiveBig” (see Fig. 9) and it covers the region
[0.6 1.0] on e(kT). With the gain g. = 74=z, the linguistic
term “PositiveBig” quantifies the position errors in the interval
[0.165 0.275]. If the gain is increased t0 g = 7z (ie.,
reducing the domain interval of the universe of discourse
from [~0.275 0.275] to [—0.05 0.05]), then the linguistic
term “PositiveBig” quantifies position errors in the interval
[0.03 0.05]. Note that the range covered by the linguistic term
is reduced by increasing the scaling factor (decreasing the
domain interval of the universe of discourse), and thus the
true meanings of a membership function can be varied by the
gains applied.

In addition, the fuzzy controller rule-base can be seen
as a control surface. Then, a two-input, single-output fuzzy
controller can be viewed as a functional map which maps
the inputs to the output of the fuzzy controller. Therefore,
the FMRLC algorithm that constructs the fuzzy controller is
essentially identifying this control surface for the specified
reference model. With the “granularity” chosen by the number
of membership functions and the gain, this control surface is
most effective on the domain interval of the input universes
of discourse (at the outer edges the inputs and output of the
fuzzy controller saturate). For example, the gain g, = ﬁiﬁ
is chosen to scale the input e(kT') onto a normalized universe
of discourse [—1 1]. The domain interval of the input universe
of discourse on e(kT) is then bounded on [—0.275 0.275].

Hence, a tuning procedure that changes the gains g. and g
is altering the “coverage” of the control surface. Note that
for a rule-base with a fixed number of rules, when the domain
interval of the input universes of discourse are large (i.e., small
ge and g.), it represents a “coarse control” action; and when
the input universes of discourse are small (i.e., large g. and
gc), it represents a “fine control” action. Hence, we can vary
the “granularity” of a control surface by varying the gains g
and g..

Based on the above intuition about the gains and the
resulting fuzzy controller, it is possible to develop different
strategies to adjust the gains g. and g. so that a smaller rule-
base can be used at the input range needed the most. This is
done by adjusting the meaning of the linguistic values based on
the most recent input signals to the fuzzy controller so that the
control surface is properly focused on the region that describes
the system activity. In the next section, we will give details on
three techniques that we will be able to scale (i.e., “auto-tune”),
to move (i.e., “auto-attentive”), and to move and remember
(i.e., “auto-attentive with memory”) the rule-base to achieve
dynamically focused learning for FMRLC. For comparison
purposes, all the fuzzy controllers in the following sections
have 121 rules, where each of the input universes of discourse
have 11 uniformly spaced membership functions (the same
ones that were used in Fig. 9 of Section II-C). The initial gains
ge and g are chosen to be 75= and 5= respectively® in order
to ensure various DFL approaches for FMRLC are activated
so that we can study their behavior. It is interesting to note that
with this choice of gains, the FMRLC (without dynamically
focused learning) will produce the unstable responses shown in
Fig. 16. In the next three sections we will introduce techniques
that will focus the rule-base so that such poor behavior (i.e.,
where the ball is lifted to hit the coil) will be avoided.

B. DFL Strategy I—Auto-Tuning Mechanism

In the standard FMRLC design for the magnetic ball sus-
pension system, the input sequence does not excite the whole
range of the designated input universes of discourse (see
Fig. 14). Instead, the rule-base learned for the input sequence
only covered the center part of the rule-base. Hence, to achieve
an adequate number of rules to enhance the granularity of the
rule-base near the center, it would be necessary to design the

8This choice will make the initial rule-base of the fuzzy controller much
smaller than the center learned region as shown in a dashed box in Fig. 14(a).
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Fig. 17. DFL I: Dynamics of auto-tuning for FMRLC.

rule-base so that it is located at exactly where most of the
rules are needed. However, we would like to ensure that we
can adapt the fuzzy rule-base should a different input sequence
drive the operation of the system out of this center region.
Based on our experience in tuning the FMRLC, it is often
observed that the gains g. and g. are chosen as bounds on
the inputs to the controller so that the rule-base represents
the active region of the control actions. Hence, our approach
to scale each input universe of discourse is that we chose
the maximum of each input over a time interval (window) of
the last T4 seconds (maxr,{e(kT)} and maxr, {c(kT)}).
Then this maximum value is defined as the gain of each

input e(kT) and c(kT) so that g. W and

ge = W After some experimentation, we chose
T4 = 0.1 §°. Longer time windows tend to slow down the
auto-tuning action; while a shorter window often speeds up
the auto-tuning but the resulting control is more oscillatory.
Once the gains are changed, it is expected that the learning
mechanism of the FMRLC will adjust the rules accordingly
when they are re-activated, because the scaling will alter all
the rules in the rule-base. Note that the learning process now
involves two individual, distinct components: (i) the FMRLC
learning mechanism that fills in the appropriate consequents
for the rules, and (ii) the auto-tuning mechanism (i.e., an
adaptation mechanism) that scales the gains which actually re-
define the premise membership functions. Normally, we make
the learning mechanism operate at a higher rate than the auto-
tuning mechanism for the premise membership functions in
order to try to assure stability. If the adaptation mechanism is
designed to be faster than the learning mechanism, the learning
mechanism will not be able to keep up with the changes made
by the auto-tuning mechanism so that it will never be able to
learn the rule-base correctly. The different rates in learning and
adaptation can be achieved by adjusting the sampling period 7'
of the FMRLC and the window length T’y of the auto-tuning
mechanism.

Fig. 17 illustrates how the gain scaling implemented by
auto-tuning affects the input membership functions. Note that

°1t was found via simulations that any T4 € [0.05,0.3] s can be used
equally effectively.

the center of the output membership functions on v(kT") in
Fig. 17 are filled with a “standard” set of rules such that
they represent a typical choice (for - illustration purposes)
from a control engineer’s experience for the fuzzy controller.
For example, at the beginning the centers of each input
membership functions are shown in the rule-base shown in
Fig. 17. In the next time instant if the values max, {e(kT)}

and maxTA{c(kT)} are halved, the gains g, = m

and g. = W are now doubled. Then, the overall
effect is that each of membership functions in the input
universes of discourse is given a new linguistic meaning and
the domain of the control surface is expanded as shown by
the centers of each input membership function after the auto-
tuning action (see Fig. 17).

Notice that we will require a maximum gain value; other-
wise each input universe of discourse for the fuzzy system may
be reduced to zero (where the gains g. and g. go to infinity)
so that controller stability is not maintained. For the magnetic
ball suspension system, the maximum gain is chosen to be the
same as the initial value (i.e., g. = 5 05 and g, = ) Other
2ainS Gy, gy., gy, and gy are the same as the one used in the
standard FMRLC in Section II-C.

For FMRLC with auto-tuning, Fig. 18 shows that the ball
position can follow the sinusoidal input sequence very closely,
although perfect tracking of the reference response cannot be
achieved. However this result is better than the case where con-
ventional adaptive control is used (see Fig. 6), and definitely
better than the standard FMRLC design (see Fig. 12). Notice
that the results shown in Fig. 18 are similar to Fig. 15 where
10201 rules are used; however, the auto-tuning approach used
only 121 rules (and there are extra computations needed to
implement the auto-tuning strategy—issues in computational
complexity for the DFL strategies are discussed in more detail
in Sections III-E and III-F below). Fig. 19 shows excellent
responses for the same auto-tuned FMRLC with the step input
sequence where the ball position follows the reference model
without noticeable difference (compare to Figs. 7 and 11 for
the MRAC and FMRLC respectively).

C. DFL Strategy II—Auto-Attentive Mechanism

The auto-tuning mechanism seems to work well, but the
performance can still be improved. One of the major disad-
vantages of auto-tuning the FMRLC is that all the rules in the
rule-base are changed by the scaling of the gains, which may
cause distortions in the rule-base and requires the learning
mechanism to re-learn the appropriate control laws. Hence,
instead of scaling, we will consider moving the entire rule-
base will respect to a fixed coordinate system so that the fuzzy
controller can “pay attention” to the current inputs.

To explain the auto-attentive mechanism it is convenient to
define some new terms that are depicted in Fig. 20. First of all,
the rule-base of the fuzzy controller is considered to be a single
cell called the “auto-attentive active region,” and it represents
a fixed size rule-base which is chosen by the initial scaling
gains (i.e., g and g. must be selected a priori). The -outer-
most shaded region of the rule-base is defined as the “attention
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Fig. 19. Responses for FMRLC with auto-tuning (step input sequence).
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Fig. 20. DFL II: Auto-attentive mechanism for FMRLC (before shifting).

boundary.” The four shaded rules'® in the lower right portion
of the rule-base are referred as the FMRLC “active learning
region” where the rules are updated by the learning mechanism
of the FMRLC. Finally, the white arrow in Fig. 20 indicates
the direction of movement of the active learning region.

For the auto-attentive mechanism, if the active learning
_region moves to be adjacent to the attention boundary, a “rule-
base shift” is activated. For example, if the active learning
region hits the lower right attention boundary as shown in
Fig. 21, the result is that the rule-base will be shifted down one
unit and to the right one unit (i.e., the width of a membership
function). The shift in the rule-base is represented by the
“offset” of the rule-base from its initial position!!, which is

10Note that there are at most four rules “on” at one time due to our choice
for membership functions shown in Fig. 9.

"We chose the convention that shifting the rule-base to the right and
downward to be a positive offset and shifting the rule-base to the left and
upward to be a negative one. This choice is made to be compatible with the
convention used in the input universes of discourse in the rule-base (as shown
in Figs. 20 and 21).
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(Eoftset; Cotiset) = (1, 1) as shown in Fig. 21 for this example.
With the offset values, the shift of the rule-base is simply
obtained by adding the offset values to each of the premise
membership functions. After the rule-base is shifted, the active
attention region is moved to the region in the large dash box
in Fig. 21. In the new un-explored region, the consequent of
the rules will be filled with zeros since this represents that
there is no knowledge of how to control in the new region.
Conceptually, the rule-base is moving and following the active
learning region. We emphasize, however, that if the active
learning region never hits the attention boundary, there will
never be a rule-base shift and the controller will behave exactly
the same as the standard FMRLC. Overall, we see that the
auto-attentive mechanism seeks to keep the controller rule-
base focused on the region where the FMRLC is learning how
to control the system (one could think of this as we did with
the auto-tuning mechanism as adapting the meaning of the
linguistics). If the rule-base shifts frequently the system will
“forget” how to control in the regions where it used to be, yet
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Fig. 23. (a)~(c) Movement of the rule-base for the auto-attentive mechanism (sinusoidal input sequence).

learn how to control in the new regions where adaptation is
needed most.

For the magnetic ball suspension system, the input universes
of discourse are chosen as [—0.05,0.05] and [-0.5,0.5] (i.e.,
the gain g. and g. are ﬁ and %, respectively), while all
the other gains are the same as the ones used in the standard
FMRLC design in Section II-C. Note that we can consider the
width of the attention boundary to be a design parameter, but
we found that it is the best to set the attention boundary as
shown in Fig. 20 since this choice minimizes oscillations and
unnecessary shifting of the rule-base for this example.

Similar to the auto-tuning DFL strategy, there are two
distinct processes: (i) the FMRLC learning mechanism that
fills in appropriate consequents for the rules and (ii) the
auto-attentive mechanism (i.e., an adaptation mechanism) that
moves the entire rule-base. Moreover, the learning mechanism
is running at a higher rate compared to the auto-attentive
mechanism (in order to try to assure stability), since we
only allow a shift of the entire rule-base by a single umit
in any direction in any time instant. The rate of adaptation
can be controlled by using a different attention boundary to
activate the rule-base movement. For example, if the attention
boundary shown in Fig. 20 is in the inner part of the rule-base
(say the second outer-most region of the rule-base instead of
the outer-most region), then the rule-base will be shifted more
often and thus increase the adaptation rate of the auto-attentive
mechanism. :

Fig. 22 illustrates the performance of the FMRLC with the
auto-attentive mechanism. We see that the ball position can fol-
low the input sequence very closely, although perfect tracking

of the reference response cannot be achieved (with maximum
output error y, within +0.0078 m), but this result is better
than the case where the conventional adaptive -controller (see
Fig. 6), the standard FMRLC with 10201 rules (see Fig. 15)
and the auto-tuning FMRLC (see Fig. 18), and definitely better
then the unstable standard FMRLC (see Fig.:12 where the ball
is lifted to the coil). :

To gain insight into the dynamics of the auto-attentive .
mechanism, Fig. 23(a) and (b) show the Eogset and Cogset
values throughout the simulation, and Fig. 23(c) depicts the
first five movements of the rule-base. The double arrows in
Fig. 23(c) denote the movement of the rule-base from the
initial position (shown as a empty box) to an outer region
(shown as a shaded box), while the number next to the shaded
box is the rule-base at the next time instant where the rule-
base moved (the shades also change to deeper gray as time
progress). Hence, the rule-base is actually moving closer and
further to the (Fofiset, Coffset) Origin as time progresses, and it
also moves around the initial position in a counter-clockwise
circular motion (this motion is induced by the sinusoids that
the rule-base is trying to track). Note that we have done
simulation tests for different sizes of the dctive attention
region for improving the responses from the auto-attentive
FMRLC. However, we found that smaller active attention
regions result in excessive motion for the rule-base, while
larger auto-attention active regions will have the low rule-
base “granularity” problem as the standard FMRLC. Fig. 24
shows excellent responses for the same auto-attentive FMRLC
design with a step input sequence, which is basically the same
as in the case of standard FMRLC (see Fig: 11).
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D. DFL Strategy III—Auto-Attentive Mechanism with Memory

Note that in the auto-attentive DFL strategy, every shift
of the rule-base will create a new un-explored region. This
region will be filled with zeros since this represents that
we have no knowledge of how to control when we move
into a new operating condition. Having to learn the new
regions from scratch after every movement of the rule-base
can cause degradations in the performance of the auto-attentive
FMRLC since it will require the learning mechanism to fill in
the unknown rules (i.e., additional time for learning will be
needed). For example, if an auto-attentive FMRLC has been
operating for a long time on an input sequence, then at some
time instant a disturbance affected the controller inputs and
forced the rule-base to leave its current position, some of the
rules are lost and replaced by new rules that will accommodate
the disturbance. When the temporary disturbance is stopped
and the rule-base returns to its initial position again, its
previous experience is lost and it is required to “re-learn”
everything about how to control in a region where it really
has gained a significant amount of experience.

Fuzzy Experience Model: To better reflect the “experience”
that a controller gathers, we will introduce a third fuzzy
system which we call the “fuzzy experience model” for the
FMRLC (the first one is the fuzzy controller and the second
one is the fuzzy inverse model) as the memory to record
an abstraction of the control laws which are in the region
previously reached through the auto-attentive mechanism. The
rule-base of this fuzzy experience model (i.e., the “experience

experience rule-base.

rule-base”) is used to represent the “global knowledge” of
the fuzzy controller. In this case, no matter how far off the
auto-attentive mechanism has offset the rule-base, there is
a rough knowledge of how to control in any region where
the controller has visited before. In other words, this fuzzy
controller not only possesses learning capabilities from the
learning mechanism and adaptation abilities from the auto-
attentive algorithm, it also maintains a representation of the
“experience” it has gathered on how to control in an additional
fuzzy system (an added level of memory and hence learning'?).

As shown in Fig. 25, the fuzzy experience model has two
inputs ecenter(k7") and ceenter (K7'), which represent the center
of the auto-attentive active region that is defined on e(kT)
and ¢(kT). For our example, these inputs have five symmetric,
uniformly spaced membership functions, and there are a total
of 25 rules (i.e., 25 output membership functions which are
initialized at zero at the beginning). The universes of discourse
for each of these inputs are normalized to the interval [—1,1]
by means of constant scaling factors. To represent the global
knowledge, the gains ge__... 3= and ge . = 25
were employed to normalize the universe of discourse for the
eITOr €center(kT) and change in error ceepter(k7). The same
gains used in the standard FMRLC design are employed here
since these are assumed to represent the complete universes of
discourse (determined by the physical limits) for the magnetic
ball suspension system. The output universe of discourse is
selected to be [—1,1] with gain g,_..,.. = 1, which preserves
the original information from the fuzzy experience model
without scaling.

20ne can easily envision how to add successive nested learning/auto-
attentive mechanisms and memory models for the FMRLC.



70 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B: CYBERNETICS, VOL. 26, NO. 1, FEBRUARY 1996

Ball Position (y) Voltage Input (v) Output Error (y,)
— Flant r o001 | E
- - Ref. Model 40 0
02}
L !
% ik y it Ly ok
- 2 5 i ) i . 1 i i
5 g e B i ! ] g | i
1] £ 20 LRI ! : - b
o5 ) U | . - =
= > i i i S I L -0.001 |- 3
10 | 1 by
0002 |
ot}
L . . ) . ok ; ) . . .
5 1 15 20 o 5 10 15 20 0 5 10 15 20
Seconds Seconds Seconds

Fig. 27. Responses for FMRLC with auto-attentive mechanism with memory (sinusoidal input sequence).

Leaining Mechanism for Fuzzy Experience Model: The
learning mechanism for this fuzzy experience model is
similar to the learning mechanism for the FMRLC except
that the fuzzy inverse model is not needed. The two inputs
Ccenter (KT) and ceenter(KT') (ic., the center of the auto-
attentive active region) are used to calculate the “experience”
Veenter (KT') for the current auto-attentive active region,
and the ‘“‘activation level” of all the rules, while only
the rules with activation levels larger than zero will be
updated (i.e., the same as the method used in the FMRLC
learning mechanism). Each time after the fuzzy controller
rule-base (i.e., the auto-attentive active region) is updated,
the numerical average value of the auto-attentive rule-base
consequent Centers Veenter(avg)(k1) will be taken for the
corresponding fuzzy experience model. Hence, the change
of the consequent fuzzy sets of the experience rule-base,
that have premises with nonzero activation levels, can be
ComPUted a8 Ucenter(chg) = /Ucenter(avg)(kT) - Ucenter(kT)
and Vgenter(chg) 18 used to update the fuzzy experience model
exactly the same way as the fuzzy controller is updated by the
y¢ in Section II-C. For example, the shaded area in Fig. 25
(the active learning region for the experience rule-base) is
activated by the inputs ecenter (577 and ceenter (KT') (i.., these
are the rules that have nonzero activation level). First, assume
that the centers of all membership functions on veenter(kK7')
are zero at the beginning, and thus the output of the fuzzy
experience model Veenter (K7T°) is zero. Then, assume we found
Veenter(avg) (KT) = 0.5 to be the average value of the control
surface (i.e., average value of the centers of the output member
functions) for the auto-attentive active region; hence we the
update of the fuzzy experience model vcepter(chg) = 0-5 can
be found. Hence, the consequent membership functions of
the fuzzy experience model will be shifted to 0.5 as shown
in the shaded region of Fig. 25. It is obvious that there are
numerous other methods to obtain an abstract representation
of the rule-base in the auto-attentive active region besides
using the average!®. Our approach uses a simple method to
represent experience and hence provides a rough estimate
of the unknown control laws (so that we can do better than
simply filling in the unknown part with zeros as we did for
DFL II). Then, it is hoped that the learning mechanism of the

13 We have tried other more complicated methods such as using least squares
to find a linear surface that best fits the control surface, but we found that
such a method significantly increases the computational complexity without
major performance improvements.

FMRLC will properly update the rules that were filled in by
the experience model if they are activated.:

With this approach the new un-éxplored region of the fuzzy
controller (i.e., the shaded region at the boundary of the auto-
attentive active region in Fig. 21) can then be interpolated
using the information recorded in the fuzzy experience model,
instead of filling with zeros in the consequent of the rules.
The interpolation is achieved by finding the consequent fuzzy
sets for the unexplored region (see the shaded region in
Fig. 26) given the centers of each of the premise fuzzy
sets. The enlarged active learning region for the experi-
ence rule-base shown in Fig. 26 illustrates that there are 21
un-explored rules in the auto-attentive active region needed
to be estimated. With the interpolation approach described
above, we will be computing the output of 21 different
locations in the experience rule-base. These computations
are expensive for obtaining the guesses for the un-explored
region, and thus we choose to only compute the consequent
fuzzy sets for the center of the column (i.e., with input at
(ecenter(column) (K1), Ceente:(KT')) as shown in Fig. 26) and
the row (i.e., with input at (ecenter(k71"), Coonter(row) (KT')) as
shown in Fig. 26) of the un-explored region, and then fill
the entire column or row with their center-values. Note that
the auto-attentive mechanism that uses the fuzzy experience
model for memory essentially performs a multi-dimensional
interpolation, where a coarse rule-base is used to store the
general shape of the global control surface and this information
is used to fill in guesses for the auto-attentive active region as
it shifts into regions that it has visited before.

As shown in Fig. 27 when the auto-attentive mechanism
with memory is used, the ball position can follow the input
sequence almost perfectly with maximum output error y.
within £0.0022 m (i.e., about 3.5 times smaller than the auto-
attentive FMRLC without memory in Fig. 22). Fig. 28 shows
the results for the same technique when we use a step input
sequence. Notice that in terms of output error these are the
best results that we obtained (compared to the. results from
MRAC and the two other dynamic focusing techniques).

E. Computational Issues

Note that when different DFL strategies are applied to the
standard FMRLC to minimize memory usage in the rule-base
and to allow the rule-base to “focus” there are additional
computations for these operations. In DFL T we need to save
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Fig. 28. Responses for FMRLC with auto-attentive mechanism with memory (step input sequence).
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For DFL II where the rule-base is allowed to shift, we
used a specially structured indexing system to incorporate the (@) ®
movement of the rule-base so that the extra computations are  Fig. 29. (a)~(b) Structured fuzzy rule-base indexing system.

minimal. To illustrate this indexing system, a two-input, one-
output fuzzy system shown in Fig. 29(a) is discussed here. The
fuzzy rule-base contains a set of If ... Then rules which can
be represented in the table as shown in Fig. 29(a) (note that all
numbers shown in Fig. 29(a) are indices, not the centers of the
membership functions as in some previous figures). Assuming
that there are two membership functions in each of the two
input universes of discourse (named by “0” and “1”), and there
four membership functions in the output universe of discourse
(named by “0,” “1,” “2,” and “3”), then all the rules can
be listed out as shown in Fig. 29(b) where the premise and
consequent of a rule are listed together in a row. Note that
with this indexing scheme for the membership functions, the
indices of the input membership functions of the If ... Then
rules appear to be a number system (in this example, it is a
binary number system).

Normally, the most computationally intensive part of simu-
lating the fuzzy system is to identify which rules are activated
since this has in the past often been done by checking whether
each and every rule is activated. If we employ the numbering
scheme in Fig. 29(b) in order to locate the activated rules,
all that is needed is to identify which premises become
active. For example, in the case with triangular membership
functions where at most two membership functions can be
activated at once, instead of checking all IT7-_; N; rules (where
n is the total number of inputs and V; is the number of
membership functions on the ith input universe of discourse),
we can pinpoint the 2™ possible rules that can be activated
very fast since the premise membership functions that are
“on” directly identify which rules are activated (hence an
exhaustive search is not necessary). While for the case with
two membership functions in each input universe of discourse
the binary indexing scheme is not particularly innovative, it

is important to note that the exact same scheme works for
n membership functions in each input universe of discourse
by simply using a base-n indexing scheme. It is the use of
such a scheme for a higher number of inputs that will provide
significant computational efficiency.

Next, assume that the rule-base is shifted via DFL II as
shown in Fig. 30(a) where the movement can be indicated
by adding one unit (i.e., the offset value to the rule-base
with respect to its initial position) to the indices of each
input universes of discourse. Hence, before the rule-base shift
each of the input universes of discourse has the membership
functions named “0” and “1,” and they are shifted to “1” and
“2” as shown in the gray filled input indices in Fig. 30(a). This
adjustment is further illustrated in Fig. 30(b) and Fig. 30(c),
where the indices with the lowest value (i.e., “0” in our
example) are simply replaced by the highest value plus the
offset of the rule-base (in our case the highest value is “1”
and the offset is “1” so we replace the index “0” by “2”).
It is important to note that the rule-base before and after the
shift still form a binary number system except that the digits
used are no longer “0” and “1” but “1” and “2.” This indexing
scheme works in a similar way for n inputs to the fuzzy system
by employing a base-n indexing scheme as it is discussed
above. Also notice that this adjustment scheme ensures that
we do not need additional memory for the fuzzy system to
operate in the region where the rule-base has been shifted.
There is no real movement is the memory except that the
rule-base indices of some premises are renamed. Hence, this
scheme significantly reduces the computational complexity of
DFL 1II so that it is at a level similar to that of the standard
FMRLC.
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Fig. 30. (a)~(c) Structured fuzzy rule-base indexing system with rule-base movement.
TABLE 1
COMPARISON OF DIFFERENT CONTROL STRATEGIES %1
Controller (Step Input) (Sinusoidal Input) Elapsed time'? | Mem. usagel® See
Type Dep(kT) | Deo®GT) | Su(:T) | Ber®(T) (in ms) (in kb) Figures
[ mrac [ 1o5x1077 [ 181 x10° | 1.3ax 10" | 1.86x 10° | 0.12 | 0.16 E
Standard
FMRLC 4.45 x 1073 | 1.77 x 10° unstable 0.53 1.25 11,12
FMRLC with
10201 rules not tested 7.53x 1072 | 1.86 x 10° 0.96 43.5 15
FMRLC _
without DFL not tested unstable 0.53 1.25 16
Auto-tuned
FMRLC 1.26 x 107% | 1.81x 10° | 5.23x 1072 | 1.84x 10° 1.18 5.43 19, 18
Auto-attentive
FMRLC 8.70x 10~% | 1.79x 105 | 1.18x 1072 | 1.81 x 16® 0.55 1.26 24, 22
Auto-attentive .
FMRLC 3.06x 1078 | 1.79x 10° | 4.80x 107 | 1.79 x 16° 1.01 1.86 28, 27
with memory

Finally, the DFL III is constructed by augmenting DFL T
with the fuzzy experience model. The additional fuzzy system
in DFL II not only requires much more memory and thus
more computations (since it adds another fuzzy system), it
also requires us to calculate the average value of the center
values of the output membership functions of fuzzy controller
rule-base (which is expensive for a large rule-base) in order to
update the fuzzy experience model. In summary, DFL I and
III require significant additional memory and calculations, but
DFL 1II is nearly as efficient as the standard FMRLC.

F. Summary Evaluation

As shown in the results for the magnetic ball suspension
system, FMRLC with DFL outperforms the original FM-
RLC control strategies and the conventional adaptive control
techniques. The memory usage in the fuzzy controller rule-
base is minimized at the expense of slightly increasing the
computational complexity due to the addition of the DFL
strategies. To clarify these points, next we will summarize
the results of the entire paper. Recall that we ran all our
simulations in this paper for 20 seconds and that our sampling
interval was T = 0.004 s. Let 3, y2(kT) and 5", v2(kT)

denote the sum of the squares of the signals y.(kT") and v(kT)
over the entire simulation interval. Table I summarizes the
results from all simulations in this paper.

First, note that while the computational requirements for
the MRAC are the lowest, it achieves the worsé performance.
As Table I shows, there are stability problems with the
standard FMRLC for certain inputs. Notice that the amount
of control energy >, v*(kT") used is roughly the same for all
the controllers. In addition, although the auto-tuned FMRLC
achieved moderate performance with a small rule-base, it is
relatively slow (in terms of elapsed time) due to the use of
a window-based approach to tune the controller input gains
ge and g.. While the auto-attentive FMRLC with memory
achieved the best performance, its elapsed time is the second
worst one. If we were interested in implementation of the

14The elapsed time is calculated from a simulation program run on a
NeXTStation with a Motorola 68040 33Mhz CPU; DSP56001, and 32Mb
RAM. Due to the limited resolution of 1/60 sec used to calculate time intervals,
we simulated the controller 50,000 times and calculated the average elapsed
time to estimate the length of time used by the controller to compute a single
control value. :

15The memory usage includes the amount of storage needed for the rule-'
bases and all supporting variables for the controller.
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controllers'S, it is observed from Table I that the best strategy
is perhaps the auto-attentive FMRLC because it is only slightly
slower that the standard FMRLC and yet it achieved low
output error.

In case of a large number of inputs and rules, DFL will be
a particularly useful technique for the FMRLC. However, it
must be emphasized that the DFL strategies discussed in this
paper introduce more parameters for tuning. While this can
complicate the tuning process, it also increases the flexibility,
as well as the learning capabilities of the FMRLC design.
Finally, note that all the DFL techniques can also be applied
to the fuzzy inverse model if needed (for example, we have
found it quite useful to auto-tune the gains of the fuzzy inverse
model). .

IV. CONCLUSION

In this paper we used a magnetic ball suspension system
as a testbed to: (i) introduce and evaluate three approaches
to dynamically focused learning control (auto-tuning, auto-
attentive, and auto-attentive with memory); and (ii) compare
the performance of the FMRLC with the DFL enhancement to
conventional model reference adaptive control and the original
FMRLC. We found that while the FMRLC with DFL is more
computationally intensive than conventional MRAC and the
FMRLC, it can provide enhanced performance over both of
these techniques.

We must emphasize that while we have only shown how
to use the concept of dynamically focused learning for the
FMRLC it is a general concept that could be applied to other
control strategies (e.g., in neural control). Moreover, while the
concept of dynamically focused learning may extend to other
control paradigms (indeed, the auto-tuning approach is used
in [51], [52]), the performance realized in this case study may
not. It is therefore important to study the following issues in
future work:

i)  stability, convergence, and robustness issues for the
FMRLC with DFL,

ii) more extensive comparisons with conventional adap-

tive control techniques (e.g., adaptive variable structure

control), and

application to a plant with more complex and chal-

lenging dynamics.

Furthermore, there is a significant need to perform experimen-

tal evaluation of the DFL strategies. For example, it would

be interesting to determine if the DFL strategies can enhance

the performance of the FMRLC that was implemented for the

two-link flexible robot in [29, 30].
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	fuzzy controller to changing operating conditions. The output membership functions of their fuzzy controller are adjusted in response to the future or past performance of the overall system, where the prediction is obtained through a linear process model updated by on-line identification. In addition to using the direct SOC framework or the indirect approach, there are many other adaptive fuzzy system applications, to name a few, that chose to use neural network for identification and reinforcement learning

	Recent work on adaptive fuzzy systems has focused on merging concepts and techniques from conventional adaptive systems into a fuzzy systems framework. Most notable is the work of Wang that is gathered in [47] where he shows how to construct: (i) fuzzy estimators/identifiers using, for example, least squares, back-propagation, and clustering techniques; (ii) stable (direct and indirect) adaptive fuzzy controllers; and (iii) fuzzy adaptive filters. Our approach is significantly different from Wang's since we
	Recent work on adaptive fuzzy systems has focused on merging concepts and techniques from conventional adaptive systems into a fuzzy systems framework. Most notable is the work of Wang that is gathered in [47] where he shows how to construct: (i) fuzzy estimators/identifiers using, for example, least squares, back-propagation, and clustering techniques; (ii) stable (direct and indirect) adaptive fuzzy controllers; and (iii) fuzzy adaptive filters. Our approach is significantly different from Wang's since we
	In Section II, we describe the nonlinear model of the mag­netic ball suspension system which will be used to illustrate the concepts and techniques in the paper. Then we develop a conventional adaptive controller and a standard FMRLC for the magnetic ball suspension system and· demonstrate hqw the FMRLC fails to achieve the control objectives. Via the failure of the FMRLC, we motivate the need for the dynamically focused learning (DFL). In Section III, we introduce three types ofDFL strategies and evaluate 
	IL CONVENTIONAL ADAPTIVE CONTROL AND FMRLC FOR A MAGNETIC BALL SUSPENSION SYSTEM 
	In this section we develop a conventional adaptive controller and FMRLC for a magnetic ball suspension system and perform a comparative analysis to assess the advantages and disadvant8~f'S of each approach. At the end of this section, we highlight certain problems that can arise with the FMRLC and use these as motivation for the dynamically focused learning enhancement to the FMRLC. 
	A. Magnetic Ball Suspension System 
	The model of the magnetic ball suspension systemshown 
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	v(t) = Ri(t) + L-i­
	dt 
	An experimental magnetic ball suspension system is described in [ 48]. It is interesting to note that the system parameters of their experimental setup are quite similar to those used in our model. 
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	Fig. 1. Magnetic ball suspension system. 
	where y(t) is the ball position in meters, M = 0.1 kg is the ball mass, g = 9.8 m/sis the gravitational acceleration, R = 50 n is the winding resistance, L = 0.5 His the winding inductance, v(t) is the input voltage, and i(t) is the winding current. The position of the ball is detected by a position sensor 
	2 

	(e.g. an infra-red or microwave sensor) and is assumed to be fully detectable over the entire range between the magnetic coil and the ground level. In state-space form (1) becomes 
	dx1(t) =x(t) 
	dx1(t) =x(t) 
	2

	dt dx2(t) x~(t)
	--=g---(2)
	dt Mx1(t) 
	dx3(t) R 1 
	~ = -Lx3(t) + zv(t) 

	where [x1(t) x2(t) x3(t)]' = [y(t) d~~t) i(t)]' (where "'" denotes matrix transpose). Notice that the nonlinearities are induced by the x~(t) and x,\t) terms in the dxJ?) equation. By linearizing the plant model in (2), assuming that the ball is initially located at x 1 (0) = y(0), a linear system can be found by calculating the Jacobian matrix at y(0). The linear state-space form of the magnetic ball suspension system is given as 
	dx1(t) = x(t) 
	dx1(t) = x(t) 
	2

	dt dx2(t) g ~ 
	(3)
	----;ft= y(oti(t) -2y My(ot3(t) 
	dx3(t) R I 
	~ = -zx3(t) + zv(t). 

	Since the ball position y(t) is the only physical output of the plant, by assuming all initial conditions are zero, the model can be rewritten as a transfer function 
	fj( s) 
	fj( s) 
	(4)
	v(s) 

	(in this section, we adopt the convention that if z(t) is a time function, z(s) is its Laplace transformation). Note that there are three poles (two stable and one unstable) and no zeros in the transfer function in (4). Two poles (one stable and one unstable) and the de gain change based on the initial position of the ball (i.e., the system dynamics will vary significantly 
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	Fig. 2. Pole-zero map of the magnetic ball suspension system (third order linear model with all possible initial conditions). 
	depending on the location of the ball). From Fig. 1, the total distance between the magnetic coil and the ground level is 
	0.3 m, and the diameter of the ball is 0.03 m. Thus, the total length of the suspension system is 0.27 m, and the initial position of the ball y(0) can be anywhere between 0.015 m (touching the coil) and 0.285 m (touching the ground). For this range the numerator of the: transfer function -1; JMi(o) 
	varies from -323.3 (ball at 0.015 m) to -7 4.17 (ball at 0.285 m), while the two poles move from ±25.56 to ±5.864 as shown in the pole-zero map in Fig. 2. Clearly then the position of the ball will affect our ability to control it. If it is close to the coil it may be difficult to control since the unstable pole moves further out into the right half plane, while if it is near the ground level it is easier to control. The effect of the ball position on the plant dynamics can cause problems with the applicati
	B. Conventional Adaptive Control 
	In this section a model reference adaptive controller (MRAC) is designed for the magnetic ball suspension system. The particular type of MRAC we use is described in [9] (on p. 125) and it uses the so called "indirect" approach to adaptive control where the updates to the controller are made: by first identifying the plant parameters. The MRAC controller structure is shown in Fig. 3, for which every component is discussed next (it is assumed that the reader is familiar with the concepts and techniques in con
	To design the MRAC, a linear model is required. To make the linear model most representative of the range of dynamics of the nonlinear plant we assume that the ball is initialized 
	/\/\ A /\ q a q=quotient( ~~ C=A.--­bil
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	A-b Matching Equality 
	Ada tive Controller 
	Fig. 3. Model reference adaptive controller (MRAC) structure. 

	at the middle between the magnetic coil and the ground level where y(O) = 0.15 m to perform our linearization. In order to simplify the MRAC design, we will assume the plant is second order by neglecting the pole at -100 since its dynamics are much faster then the remaining roots in the plant (see Fig. 2). We found via simulation that the use of this second order linear model has no significant affect on the low frequency responses compared to the original third order linear model. Hence, the transfer funct
	F(s) = Yv:((ss)) = kp kpnp(s) (5) s+ ap2s + ap1 = dp(s) 
	2 

	where kp = -1.022, np(s) = 1, dp = s+ ap2S + apl = 
	2 

	2
	2

	s -65.33. The reference model M(s) in Fig. 3 is used to specify the desired closed-loop system behavior. Here, the reference model is chosen to be 
	M(s) = km = k~nm(8)
	M(s) = km = k~nm(8)

	(6)8 + am28 + am1 dm(8) 
	2 

	where km = -25, nm(8) = 1, dm = 8+ am28 + aml = 8+ lQ3 + 25 (i.e., there are two poles at -5). This choice reflects our desire to have the closed-loop response with minimal overshoot, zero steady-state error, and yet a stable, fast response to a reference input. Moreover, to ensure that the "matching equality" is achieved (i.e., that there will exist a set of controller parameters that can achieve the behavior specified in M) [9] we choose the order of the reference model to be the same as that of the plant
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	where .A(s) = >-0(8)nm(8) = 8+ ),23 + ),1 = (8 + 20)is 
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	a monic function (where the value 20 is chosen since ;.}s) filters v and y and a cut-off of 20 rad/sec will not attenuate most frequencies of interest). From the matching equality in [9] the values of the controller parameter c0 and the polynomials c(8) and d(8) that result in the reference model response being achieved are Co, c*(s), and d*(3) where 
	(8) 
	where q is the quotient of 5..ol,= , and the nominal controller 
	p 
	p 
	parameters are (based on the matching equalities) 

	(j_* = + 508 + 890.33, Co = 24.45, c* = c;8 + c;3 + er, d* = d;8 + d;8 + dr 
	8
	2 
	2 
	(9) 
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	where [ci Cz di dz] = [-490.33 -10 66673.9 8085.43] := (}_* and (}_ denotes the controller parameters that are tuned. 
	Using the "certainty equivalence principle" (i.e., that the estimates of the plant parameters should be taken as the true values of the plant parameters and used to specify the controller) [9], the plant parameters are used, along with (8) to compute the controller parameters (see Fig. 3). Assume that the "identifier model" (i.e., the model that is adjusted so that it behaves like the plant) is 
	Mi(s) = bi2S + bil -ni(s) (10) s+ ai2s + ail -di(s) 
	2 

	In order to share the signals between the identifier and the controller, the identifier model can be re-written as (see [9], Section II-A for more details) 
	, ( ) bi2s + bi1 '( ) (>.2 -ai2)s + (>.1 -ai1) '( )
	Yi s = V s + y s .
	A A 
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	>.(s) >.(s) 

	(11) Notice that v(s) is the input to the plant and fj( s) is the output of the plant. The identifier structure is 
	(12) 
	where /3 = [bi1 bi2]', g_ = [(>.1 -ai1) (>.2 -ai2)]', .fu(l)(s) = [(sJ --A)-b,x]f(s), .fu(\s) = [(sJ -A)-b,x]fi(s), and 1
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	[(sJ -A)-b,x] = [Ats) A(s/ in which A = [-t -~ ]
	2 
	and b,x = [~]. Further simplification will give the identifier output as 
	Yi(s) = JI.fu(s) (13) 
	1

	where JI= [g_' /3], and .fu'(s) = [.fu(l)' (s) _fu( )'(sl]. It is assumed that the initial conditions of the "observer" (i.e., the box labeled "filter" in Fig. 3) are chosen to be zero. Note that 1r contains the parameters that will be determined through the identifier, and based on the plant model it is expected that the unknown parameters JI converge to JI* = [kv O (>.1 ap1) (>.2 -ap2)] = [24.45 0 465.33 40]. The adaptation mechanism will use the identifier output error ei = Yi -y in the "normalized gradi
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	where g > 0 is an adaptation gain, 1' > 0 is a scaling factor, and the projection rule is 
	If bi1 = kmin and bil > 0, then let bil = 0 
	If bi1 = kmin and bil > 0, then let bil = 0 

	where kmin is chosen to be -0.001. For each new estimate 1r, the controller parameter fj_ is then updated by using the matching equality as shown in Fig. 3. The parameter error is denoted by ¢ = JI -JI* and it is expected to approach zero as t ----+ oo:-As the parameter error ¢ goes to zero, it is expected the output error e0 approaches zero provided that the plant is exactly the second order linear plant, as proven in [9]. 
	of the plant parameters 
	2

	Note that when this MRAC is used on a nonlinear model, there is no guarantee of convergence. 
	2 

	Since the plant is assumed to be second order, based on the theory of persistency of excitation [9], the identifier parameters will converge to their true values if an input which is "sufficiently rich" of at least to the order of twice the order of the system. Therefore, an input composed as the sum of two sinusoids will be used to obtain richness of order four according to the theory. In order to pick the two sinusoids as the input, it would be beneficial to study the frequency response of the plant model
	1

	Next, the adaptive controller will be simulated with two different plant models to demonstrate the closed-loop perfor­mance. The two plant models used are: (i) the second order linear model, and (ii) the original nonlinear system (i.e., (2)). 
	Second Order Linear Plant: In this section, the adaptive controller will be simulated with the second-.order linear model of the ball suspension system which was used to design the MRAC. The initial position of the ball is at 0.15 m. In order to speed up the adaptation, the initial condition of the identifier is chosen to be JI = [-1 1 460 40] (i.e., we assume that ap2 is known to be zero, that we have a good guess of the value of ap1, but that we have no good idea of the value of kp)­With these initial par
	Second Order Linear Plant: In this section, the adaptive controller will be simulated with the second-.order linear model of the ball suspension system which was used to design the MRAC. The initial position of the ball is at 0.15 m. In order to speed up the adaptation, the initial condition of the identifier is chosen to be JI = [-1 1 460 40] (i.e., we assume that ap2 is known to be zero, that we have a good guess of the value of ap1, but that we have no good idea of the value of kp)­With these initial par
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	that the voltage input v in Fig. 4 is of acceptable magnitude compared with the implementation in [48]; in fact all control strategies studied in this paper produced acceptable voltage control inputs to the plant compared to [ 48]. 
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	Non-Linear System: In this section, the adaptive controller will be simulated with the nonlinear model of the ball suspen­sion system with the same controller and initial conditions so that the ball starts at 0.15 m. Fig. 5 shows the responses for the nonlinear model. It is observed that the ball first drops to the ground level since the adaptation mechanism is slow and it cannot keep up with the fast-moving system. After about 2.5 s, the system starts to recover and tries to keep up with the plant. The ide
	the range where the ball is close to the ground level (0.3 m), whereas the response gets worse in the range where the ball is close to the magnetic coil (0 m) (i.e., the nonzero identifier error is found and the control input is more oscillatory in the instant when the ball position is closer to O m). This behavior is due to the nature of the nonlinear plant, where the system dynamics vary significantly with the ball position, and the adaptive mechanism is not fast enough to adapt the controller parameters 
	In order to keep the ball from falling to the ground level or lifting up to the coil, one approach is to apply the previously adapted controller parameters to initialize the adaptive con
	In order to keep the ball from falling to the ground level or lifting up to the coil, one approach is to apply the previously adapted controller parameters to initialize the adaptive con
	-

	troller. It is hoped that this initialization process would help the adaptation mechanism to keep up with the plant dynamics at the beginning of the simulation. As shown in Fig. 6 when this approach is employed, the ball does not fall to the ground level (compared to Fig. 5). Despite the fact that the system appears to be stable, the identifier error does not approach zero and swings between ±0.001 m and the plant output error swings between ±0.03 m (i.e., the closed-loop response of the plant is still not 

	Note that from all the simulations, due .to the use of the gradient type update the MRAC seems to be slow in general. Although it is faster with the use of very large adaptation gains, it is obvious that large adaptation gains will be problematic be­cause of sensitivity to noise. In addition, the MRAC designed with a linear, second order model does not perform adequately with the nonlinear plant, which is due to the variation in plant dynamics. If other input sequences are used, such as those with higher or
	3

	We also investigated MRAC with different adaptation algorithms, such as normalized least squares algorithm with convariance resetting [9]. Although the simulation results for this least squares type MRAC show a slightly faster adaptation speed for the linear plant model, the simulation results appear to be less satisfactory than those of the gradient update method when the nonlinear plant model is used. It is for this reason, and due to space constraints, that we did not include our results for the MRAC wit
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	Fig. 7. Responses for MRAC (nonlinear model, step input sequence).· 
	Also note that since the magnetic ball suspension system is feedback linearizable, it is possible to design a stable adaptive controller for this nonlinear system (see Ch. 7 in [9]). However, since the nonlinear model of the magnetic ball suspension system has a "relative degree" of three, using the approach in Section 7.3 of [9] results in an adaptive controller of significant complexity (with a high dimension regressor and parameter vectors). In addition, the approach in [9] only works for a very special 
	C. Fuzzy Model Reference Learning Control 
	In this section, the FMRLC shown in Fig. 8, which was introduced in [l]-[5], will be designed for the magnetic ball suspension system. Note that the design of FMRLC does not require the use of a linear plant model, and thus from now on we will always use the nonlinear model of the magnetic ball suspension system. The fuzzy controller in Fig. 8 uses the error signale( kT) = r(kT) -y( kT) and the change in error of the ball position c(kT) = e(kT)-;(kT-T) to decide what voltage to apply so that y(kT) --+ r(kT)
	4 

	4 Notice that we use sampled versions of all signals as the operation of the FMRLC is easier to explain and visualize in discrete-time. 
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	are adjusted, the learning mechanism seeks to adjust the fuzzy controller so that the closed-loop system (the map from r(kT) to y( kT) where T is the sampling period) acts like a pre­specified reference model (the map from r(kT) to Ym(kT)). Next we describe each component of the FMRLC in Fig. 8. 
	The Fuzzy Controller: In fuzzy control theory, the range of values for a given controller input or output is often called the "universe of discourse" [47], [49]. Often, for greater flexibility in fuzzy controller implementation, the universes of discourse for each process input are "nonnalized" to the interval [-1, 1] by means of constant scaling factors. For our fuzzy controller design, the gains 9e, 9c, and 9v were employed to normalize the universe of discourse for the error e(kT), change in error c(kT),
	0 
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	We utilize one multiple-input, single-output (MISO) fuzzy controller, which has a knowledge-base of IF-THEN control 
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	Fig. 9. Input-output universes of discourse and rule-base for the fuzzy controller. 
	rules of the form If e is jj;a and C is Cb Then 'V is va,b, Cb Then va,b, where Ea) Cb, and va,b denote the fuzzy sets where eand cdenote the linguistic variables associated with that quantify the linguistic statements "e is jj;a ," "c is Cb," controller inputs e(kT) and c(kT), respectively, v denotes and "fJ is va,b ," respectively. We chose to use 11 fuzzy sets the linguistic variable associated with the controller output v, (triangular membership function with base widths of 0.4) on jj;a denotes the ath 
	denotes the bth linguistic value associated with c, respectively, shown in Fig. 9(a). and va,b denotes the consequent linguistic value associated Assume that we use the same fuzzy sets on the c( kT) with v. For example, one fuzzy control rule could be: If Error normalized universes of discourse (i.e., Cb = Ea)_ The is PositiveLarge and ChangelnError is NegativeSmall Then membership functions on the output universe of discourse Plantlnput is PositiveBig, (in this case e = "Error," E= are assumed to be unknow
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	Input-output universes of discourse and the rule-base for the fuzzy inverse model. 


	of 0.2 and centers at zero. This is done to model the fact that the fuzzy controller initially knows nothing about how to control the plant. In conventional direct fuzzy controller development the designer specifies a set of such control rules where va,b are also specified a priori; for the FMRLC, the system will automatically specify and/or modify the fuzzy sets va,b to improve/maintain performance as is explained next. Note that we use singleton fuzzification, minimum to quantify the premise and implicati
	The Reference Model: The reference model provides a means for quantifying the desired performance. In general, the reference model may be any type of dynamical system (linear or nonlinear, time-invariant or time-varying, discrete or continuous time, etc.). Here, we use a discretized version of the same reference model as was used for the MRAC. The performance of the overall system is computed with respect to the reference model by generating error signals 
	Ye(kT) = Ym(kT) -y(kT) and Ye(kT) = y,(kT)-},(kT-T) shown in Fig. 8. Given that the reference model characterizes design criteria such as rise time and overshoot, and that the input to the reference model is the reference input r(kT), the desired performance of the controlled process is met if the learning mechanism forces Ye(kT) and Ye(kT) to 
	remain very small for all time; hence, Ye(kT) and Ye(kT) provide a characterization of the extent to which the desired performance is met at time kT. If the performance is met (y(kT) ;::::: 0) then the learning mechanism will not make significant modifications to the fuzzy controller. On the other hand if Ye(kT) and Ye(kT) are big, the desired performance is not achieved and the learning mechanism must adjust the fuzzy controller. Next we describe the operation of the learning mechanism. 
	The Leaming Mechanism: As previously mentioned, the learning mechanism performs the function of modifying the knowledge-base of a direct fuzzy controller so that the closed-loop system behaves like the reference model. These 
	The Leaming Mechanism: As previously mentioned, the learning mechanism performs the function of modifying the knowledge-base of a direct fuzzy controller so that the closed-loop system behaves like the reference model. These 
	knowledge-base modifications are made by observing data from the controlled process, the reference model, and the fuzzy controller. The learning mechanism consists of two parts: a fuzzy inverse model and a knowledge-base modifier. The fuzzy inverse model performs the function of mapping Ye(kT) and Ye(kT) (representing the deviation from the desired behavior), to changes in the process input YJ(kT) that are necessary to force Ye(kT) and Ye(kT) to zero. The knowledge-base modifier performs the function of mod

	The authors in [1]-[5] introduced the idea of using a fuzzy system to map Ye(kT) and Yc(kT) (and possibly functions of Ye (kT), or process operating conditions), to the necessary changes in the process inputs YJ(kT). This map is called the fuzzy inverse model since information about the plant inverse dynamics is used in its specification. Note that similar to the fuzzy controller, the fuzzy inverse model shown in Fig. 8 contains normalizing scaling factors, namely 9v,, 9vc, and gf, for each universe of disc
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	Fig. I 1. Responses for FMRLC (step input sequence). 

	knowledge of how to update the controller when the error, change of error between the reference model, and the plant output is given. The gains of the fuzzy inverse model are then initially chosen to be gYe = o.i75' gYc = 0.5, and g= 30. Note that all the gains are chosen based on the physical properties of the plant, so that 9ye = 9e, gYc = 9c, and g1 = 9v (more details on the rationale and justification for this choice for the gains is provided in [l]-[5]). Successful design of the fuzzy inverse model has
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	Given the information about the necessary changes in the input as expressed by YJ(kT), the knowledge-base modi­fier (as shown in Fig. 8) changes the knowledge-base of the fuzzy controller so that the previously applied control action will be modified by the amount y f (kT). Therefore, 
	consider the previously computed control action v(kT -T), which contributed to the present good/bad system perfor­mance. Note that e(kT -T) and c(kT -T) would have been the process error and change in error, respectively, at that time. By modifying the fuzzy controller's knowledge­base we may force the fuzzy controller to produce a desired output v(kT -T) + Y1(kT). Assume that only symmetric membership functions are defined for the fuzzy controller's output so that v~'b(kT) denotes the center value of the m
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	It is important to note that our rule-base modification proce­dure implements a form of local learning and hence utilizes memory. In other words, different parts of the rule-base are "filled in" based on different operating conditions for the system, and when one area of the rule-base is updated, other rules are not affected. Hence, the controller adapts to new situations and also remembers how it has adapted to past situations [1], [2], [50]. 
	Continuing with our example above, assume that all the normalizing gains for both the direct fuzzy controller and the fuzzy inverse model are unity and that the fuzzy inverse model produces an output YJ(kT) = 0.5 indicating that the value of the output to the plant at time kT -T should have been v(kT -T) + 0.5 to improve performance (i.e., to force Ye ~ 0). Next, suppose that e(kT -T) = 0.75 and c(kT -T) = -0.2. Then, the rules If E and c-Then v,-and If Eand c-Then v,-are the only rules with 
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	nonzero activation levels (8,-= 0.25 and 5,-= 0.75). Hence, these are the only rules that have their consequent fuzzy 
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	sets (V,-, v,-) modified (see Fig. 9(b)). To modify these fuzzy sets we simply shift their centers according to (15). Next, we apply the FMRLC to the ball-suspension control problem. 
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	According to the design procedure in [1]-[5], a step input can be used to tune the gains 9c and gYc of the FMRLC. Here, we chose a step response sequence. Notice in the ball position plot in Fig. 11 that the FMRLC design was quite successful in generating the control rules such that the ball position tracks the reference model almost perfectly. It is important to note that the FMRLC design here required no iteration on the design process. This is not necessarily true in general and some tuning is often need
	Up to this point, the FMRLC seems to be a very efficient control algorithm • for a wide variety of nonlinear systems (see, [1]-[5]). However, there currently exists no mathematical evaluation of the robustness and stability properties of the FMRLC. It is possible that there exists an input sequence which will cause the FMRLC to fail since stability of the FMRLC depends on the input (as it does for all nonlinear systems). For example, if the sinusoidal input sequence r(t) = 0.05(sin(lt)+sin(10t)) is used (as
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	Fig. 12. Responses for FMRLC (sinusoidal input sequence). 
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	Fig. 13. Rule-base of the learned fuzzy controller (step input sequence). 
	system) are performed to improve the FMRLC, Fig. 12 indeed shows one of the best responses we can obtain. 
	D. Motivation for Dynamically Focused Learning (DFL) 
	With the results as shown in Fig. 12, one would ask: What are the effects ofdifferent reference inputs? In the conventional adaptive controller design for linear plants with unknown but constant coefficients, the theory of persistence of excitation provides some guidelines for selecting an input with "sufficient richness" so that the adaptive controller will be fully excited and hence capable to identify the appropriate parameters. There is no such theory established for the FMRLC. As was found in [1]-[5] t
	the controller and 
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	The rule-base of the fuzzy controller for the sinusoidal input sequence is not used since it is filled with extreme values as the system is unstable. 
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	except the center nine rules. For better visualization of the 
	rule-base, Fig. 14(a) and (b) show two different graphical 
	representations of the rule-base in Fig. 13. Fig. 14(a) is a 
	"density plot" of the rule-base, where the shade of gray 
	indicates the value of the center of the output membership 
	functions. This density plot or '"rule-base map" shows that the 
	fuzzy controller actually only utilized 9 of the 121 possible 
	rules. In fact, if the rule-base is sub-divided into 9 sections 
	as shown in Fig. 14(a), the 9 rules that are learned lie within 
	the center section. With such a small number of rules, the 
	learning mechanism of the FMRLC performed inadequately 
	because the resulting control surface can only capture very 
	approximate control actions. In the other words, for more 
	complicated control actions, such a rule-base may not be able 
	to force the plant to follow the reference model closely. 
	Fig. 14(b) is a 3-D surface plot of the same rule-base 
	Fig. 14(b) is a 3-D surface plot of the same rule-base 

	(which is similar to the nonlinear "control surface" of the 
	fuzzy controller), since it shows the values of the centers of 
	the output membership functions for fuzzy sets va,b, plotted 
	versus the centers of the inpult membership functions of Ea 
	and Cb on the x-and y-axes. Note that if fuzzy inference 
	and defuzzification were used, Fig. 14(b) would show exactly 
	how the fuzzy system interpolates to produce the true nonlinear 
	control surface. The control surface as shown in Fig. 14(b) is 
	nonsymmetric (i.e., the maximum of the output is 3.57 and 
	the minimum is -2.93). This is because the control laws for 
	moving the ball upward and downward are different as they 
	vary with the ball position (i.e., the input e(kT) to the fuzzy 
	controller). 
	To improve FMRLC performance, one possible solution is 
	To improve FMRLC performance, one possible solution is 

	to redesign the controller so that the rule-base has enough 
	membership functions at the center where the most learning is 
	needed. Yet, this approach will not be considered because the 
	resulting controller will then be limited to a specific range 
	of the inputs that happen to have been generated for the 
	particular reference input sequence. Another possible solution 
	is to increase the number of mles (by increasing the number 
	of membership functions on each input universe of discourse) 
	used by the fuzzy controller. Therefore, the total number of 
	rules (for all combinations) is also increased, and we enhance 
	the capability of the rule-bas.e to memorize more distinct 
	control actions (i.e., to achieve "fine control"). For instance, 
	if we increase the number of membership functions on each 
	input universe of discourse from 11 to, say 101 (but keeping 
	input universe of discourse from 11 to, say 101 (but keeping 
	all other parameters, such as the scaling gains, the same), the total number of rules will increase from 121 to 10201 (i.e, there are two orders of magnitude increase in the number of rules), and we get the responses shown in Fig. 15 for the FMRLC. Clearly as compared to Fig. 12, we have drastically improved the performance of the FMRLC to the extent that it performs similar to the MRAC for the nonlinear model (see Fig. 6). Notice that in Fig. 15 the output error swings between ±0.027 even after 15 s of sim
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	(a) Control surface and (b) rule-base map of the fuzzy controller (step input sequence). 
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	Responses for FMRLC (nonlinear model, sinusoidal input sequence). 


	Even though we were able to significantly improve perfor­mance, enlarging the rule-base has many disadvantages: (i) the number of rules increases exponentially for an increase in membership functions and increases even faster with more inputs to the fuzzy controller, (ii) the computational efficiency drastically decreases as the number of rules increases, and (iii) a rule-base with a large number of rules will require a long time period for the learning mechanism to fill in the correct control laws since sm
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	We chose this number of membership functions by trial and error and found that further increases iu the number of membership functions had very little effect on performance. 
	6

	The maximum number of rules for a MISO fuzzy system can be found as TI;':,, N; where n is the total number of inputs and Ni is the number of membership functions on the ith input universe of discourse. 
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	will be updated by the FMRLC for a higher granularity rule­base. Hence, the advantages of increasing the number of rules will soon be offset by practical implementation considerations and possible degradations in performance. 
	This motivates the need for special enhancements to the FMRLC so that: (i) we can minimize the number of member­ship functions and therefore rules used, and (ii) at the same time maximize the granularity of the rule-base near the point where the system is operating (e.g., the center region of the rule-base map in Fig. 14(a)) so that very effective learning can take place. In the next section we introduce the idea of "dynamically focused learning" that seeks to allocate rules to the learning process in an ef
	III. Fuzzy MODEL REFERENCE LEARNING CONTROL WITH DFL 
	III. Fuzzy MODEL REFERENCE LEARNING CONTROL WITH DFL 

	In order to avoid an excessive number of rules, this section first discusses an alternative view of a fuzzy rule-base and then presents three alternative approaches to perform "dynamically focused learning" (DFL) for the FMRLC, where the rule~base is "focused" onto the current region of operation so that a smaller rule-base can be used. 
	A. FMRLC Leaming Dynamics 
	A. FMRLC Leaming Dynamics 

	To begin we clarify several issues in FMRLC learning dynamics including: (i) the effects of gains on linguistics, 
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	Fig. 16. Responses for FMRLC with reduced rule-base and no DFL (sinusoidal input sequence). 
	and (ii) characteristics of the rule-base such as granularity, coverage, and the control surface. The fuzzy controller in the FMRLC (see Fig. 8) used for the magnetic ball suspension system has 11 membership functions for each process input (e(kT) and c(kT)). There are a total of 121 rules (i.e., 121 output membership functions), with all the output membership function centers initialized at zero. The universes of discourse for each process input are "normalized" to the interval [-1, 1] by means of constant
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	[0.6 1.0] on e(kT). With the gain ge = _J, the linguistic term "PositiveBig" quantifies the position errors in the interval 
	0
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	[0.165 0.275]. If the gain is increased to ge = o.1(i.e., reducing the domain interval of the universe of discourse from [-0.275 0.275) to [-0.05 0.05]), then the linguistic term "PositiveBig" quantifies position errors in the interval 
	5 

	[0.03 0.05]. Note that the range covered by the linguistic term is reduced by increasing the scaling factor (decreasing the domain interval of the universe of discourse), and thus the true meanings of a membership function can be varied by the gains applied. 
	In addition, the fuzzy controller rule-base can be seen as a control surface. Then, a two-input, single-output fuzzy controller can be viewed as a functional map which maps the inputs to the output of the fuzzy controller. Therefore, the FMRLC algorithm that constructs the fuzzy controller is essentially identifying this control surface for the specified reference model. With the "granularity" chosen by the number of membership functions and the gain, this control surface is most effective on the domain int
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	Hence, a tuning procedure that changes the gains ge and gc is altering the "coverage" of the control surface. Note that for a rule-base with a fixed number of rules, when the domain interval of the input universes of discourse are large (i.e., small ge and gc), it represents a "coarse control" action; and when the input universes of discourse are small (i.e., large ge and gc), it represents a "fine control" action. Hence, we can vary the "granularity" of a control surface by varying the gains ge and gc, 
	Based on the above intuition about the gains and the resulting fuzzy controller, it is possible to develop different strategies to adjust the gains ge and gc so that a smaller rule­base can be used at the input range needed the most. This is done by adjusting the meaning of the linguistic values based on the most recent input signals to the fuzzy controller so that the control surface is properly focused on the region that describes the system activity. In the next section, we will give details on three tec
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	B. DFL Strategy I-Auto-Tuning Mechanism 
	In the standard FMRLC design for the magnetic ball sus­pension system, the input sequence does not excite the whole range of the designated input universes of discourse (see Fig. 14). Instead, the rule-base learned for the input sequence only covered the center part of the rule-base. Hence, to achieve an adequate number of rules to enhance the granularity of the rule-base near the center, it would be necessary to design the 
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	Fig. 17 are filled with a "standard" set of rules such that 
	they represent a typical choice (for illustration purposes) } C:°' from a control engineer's experience for the fuzzy controller.
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	Fig. 17. DFL I: Dynamics of auto-tuning for FMRLC. 

	rule-base so that it is located at exactly where most of the rules are needed. However, we would like to ensure that we can adapt the fuzzy rule-base should a different input sequence drive the operation of the system out of this center region. 
	Based on our experience in tuning the FMRLC, it is often observed that the gains ge and gc are chosen as bounds on the inputs to the controller so that the rule-base represents the active region of the control actions. Hence, our approach to scale each input universe of discourse is that we chose the maximum of each input over a time interval (window) of the last TA seconds (maxrA { e(kT)} and maxrA { c(kT)} ). Then this maximum value is defined as the gain of each 
	input e(kT) and c(kT) so that ge = maxTA {e(kT)} and 
	gc = maxTA {c(kT)}. After some experimentation, we chose TA = 0.1 s. Longer time windows tend to slow down the auto-tuning action; while a shorter window often speeds up the auto-tuning but the resulting control is more oscillatory. Once the gains are changed, it is expected that the learning mechanism of the FMRLC will adjust the rules accordingly when they are re-activated, because the scaling will alter all the rules in the rule-base. Note that the learning process now involves two individual, distinct c
	9

	It was found via simulations that any TA E [0.05, 0.3] s can be used equally effectively. 
	9

	For example, at the beginning the centers of each input membership functions are shown in the rule-base shown in Fig. 17. In the next time instant if the values maxrA { e( kT)} and maxTA {c(kT)} are halved, the gains ge = maxTJe(kT)} 
	and gc = maxTA { c(kT)} are now doubled. Then, the overall effect is that each of membership functions in the input universes of discourse is given a new linguistic meaning and the domain of the control surface is expanded as shown by the centers of each input membership function after the auto­tuning action (see Fig. 17). 
	Notice that we will require a maximum gain value; other­wise each input universe of discourse for the fuzzy system may be reduced to zero (where the gains ge and gc go to infinity) so that controller stability is not maintained. For the magnetic ball suspension system, the maximum gain is chosen to be the same as the initial value (i.e., ge = o.1and gc = \ ). Other gains gv' gYe' gYc and gf are the same as the one used in the standard FMRLC in Section II-C. 
	5 
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	For FMRLC with auto-tuning, Fig. 18 shows that the ball position can follow the sinusoidal input sequence very closely, although perfect tracking of the reference response cannot be achieved. However this result is better than the case where con­ventional adaptive control is used (see Fig. 6), and definitely better than the standard FMRLC design (see Fig. 12). Notice that the results shown in Fig. 18 are similar to Fig. 15 where 10201 rules are used; however, the auto-tuning approach used only 121 rules (an
	C. DFL Strategy II-Auto-Attentive Mechanism 
	C. DFL Strategy II-Auto-Attentive Mechanism 

	The auto-tuning .mechanism seems to work well, but the performance can still be improved. One of the major disad­vantages of auto-tuning the FMRLC is that all the rules in the rule-base are changed by the scaling of the gains, which may cause distortions in the rule-base and requires the learning mechanism to re-learn the appropriate control laws. Hence, instead of scaling, we will consider moving the entire rule­base will respect to a fixed coordinate system so that the fuzzy controller can "pay attention"
	To explain the auto-attentive mechanism it is convenient to define some new terms that are depicted in Fig. 20. First of all, the rule-base of the fuzzy controller is considered to be a single cell called the "auto-attentive active region," and it represents a fixed size rule-base which is chosen by the initial scaling gains (i.e., ge and gc must be selected a priori). The outer­most shaded region of the rule-base is defined as the "attention 
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	Fig. 18. Responses for FMRLC with auto-tuning (sinusoidal input sequence). Ball Position (y) Voltage Input (v) Output Error (ye) 
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	Fig. 19. Responses for FMRLC with auto-tuning (step input sequence). 
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	Fig. 20. DFL II: Auto-attentive mechanism for FMRLC (before shifting). 
	boundary." The four shaded rulesin the lower right portion of the rule-base are referred as the FMRLC "active learning region" where the rules are updated by the learning mechanism of the FMRLC. Finally, the white arrow in Fig. 20 indicates the direction of movement of the active learning region. 
	10 

	For the auto-attentive mechanism, if the active learning region moves to be adjacent to the attention boundary, a "rule­base shift" is activated. For example, if the active learning region hits the lower right attention boundary as shown in Fig. 21, the result is that the rule-base will be shifted down one unit and to the right one unit (i.e., the width of a membership function). The shift in the rule-base is represented by the "offset" of the rule-base from its initial position, which is 
	11

	Note that there are at most four rules "on" at one time due to our choice for membership functions shown in Fig. 9. 
	10

	We chose the convention that shifting the rule-base to the right and downward to be a positive offset and shifting the rule-base to the left and upward to be a negative one. This choice is made to be compatible with the convention used in the input universes of discourse in the rule-base (as shown in Figs. 20 and 21). 
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	Fig. 21. DFL II: Auto-attentive mechanism for FMRLC (after shifting). 
	(Eoffset, Coffset) = (1, 1) as shown in Fig. 21 for this example. 
	With the offset values, the shift of the rule-base is simply 
	obtained by adding the offset values to each of the premise 
	membership functions. After the rule-base is shifted, the active 
	attention region is moved to the region in the large dash box 
	in Fig. 21. In the new un-expllored region, the consequent of 
	the rules will be filled with zeros since this represents that 
	there is no knowledge of how to control in the new region. 
	Conceptually, the rule-base is moving and following the active: 
	learning region. We emphasize, however, that if the active: 
	learning region never hits the attention boundary, there will 
	never be a rule-base shift and the controller will behave exactly 
	the same as the standard FMRLC. Overall, we see that the: 
	auto-attentive mechanism seeks to keep the controller rule­
	base focused on the region where the FMRLC is learning how 
	to control the system ( one could think of this as we did with 
	the auto-tuning mechanism as adapting the meaning of the: 
	linguistics). If the rule-base shifts frequently the system will 
	"forget" how to control in the regions where it used to be, yet 
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	learn how to control in the new regions where adaptation is needed most. 
	For the magnetic ball suspension system, the input universes of discourse are chosen as [-0.05, 0.05] and [-0.5, 0.5] (i.e., the gain ge and gc are _1and \, respectively), while all
	5 
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	the other gains are the same as the ones used in the standard FMRLC design in Section II-C. Note that we can consider the width of the attention boundary to be a design parameter, but we found that it is the best to set the attention boundary as shown in Fig. 20 since this choice minimizes oscillations and unnecessary shifting of the rule-base for this example. 
	Similar to the auto-tuning DFL strategy, there are two distinct processes: (i) the FMRLC learning mechanism that fills in appropriate consequents for the rules and (ii) the auto-attentive mechanism (i.e., an adaptation mechanism) that moves the entire rule-base. Moreover, the learning mechanism is running at a higher rate compared to the auto-attentive mechanism (in order to try to assure stability), since we only allow a shift of the entire rule-base by a single unit in any direction in any time instant. T
	Fig. 22 illustrates the performance of the FMRLC with the auto-attentive mechanism. We see that the ball position can fol­low the input sequence very closely, although perfect tracking 
	Fig. 22 illustrates the performance of the FMRLC with the auto-attentive mechanism. We see that the ball position can fol­low the input sequence very closely, although perfect tracking 
	of the reference response cannot be achieved (with maximum output error Ye within ±0.0078 m), but this result is better than the case where the conventional adaptive controller (see Fig. 6), the standard FMRLC with 10201 rules (see Fig. 15) and the auto-tuning FMRLC (see Fig. 18), and definitely better then the unstable standard FMRLC (see Fig. 12 where the ball is lifted to the coil). 

	To gain insight into the dynamics of the auto-attentive mechanism, Fig. 23(a) and (b) show the Eoffset and Coffset values throughout the simulation, and Fig. 23( c) depicts the first five movements of the rule-base. The double arrows in Fig. 23(c) denote the movement of the rule-base from the initial position (shown as a empty box) to an outer region (shown as a shaded box), while the number next to the shaded box is the rule-base at the next time instant where the rule­base moved (the shades also change to
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	Fig. 24. Responses for FMRLC with auto-attentive mechanism (step input sequence). 
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	Fig. 25. DFL III: The fuzzy experience model for the auto-attentive mech­anism with memory for FMRLC. 
	D. DFL Strategy III-Auto-Attentive Mechanism with Memory 
	Note that in the auto-attentive DFL strategy, every shift of the rule-base will create a new un-explored region. This region will be filled with zeros since this represents that we have no knowledge of how to control when we move into a new operating condition. Having to learn the new regions from scratch after every movement of the rule-base can cause degradations in the performance of the auto-attentive FMRLC since it will require the learning mechanism to fill in the unknown rules (i.e., additional time 
	Fuzzy Experience Model: To better reflect the "experience" that a controller gathers, we will introduce a third fuzzy system which we call the "fuzzy experience model" for the FMRLC (the first one is the fuzzy controller and the second one is the fuzzy inverse model) as the memory to record an abstraction of the control laws which are in the region previously reached through the auto-attentive mechanism. The rule-base of this fuzzy experience model (i.e., the "experience 
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	Fig. 26. DFL III: The enlargement of the active learning region for the experience rule-base. 
	rule-base") is used to represent the "global knowledge" of the fuzzy controller. In this case, no matter how far off the auto-attentive mechanism has offset the rule-base, there is a rough knowledge of how to control in any region where the controller has visited before. In other words, this fuzzy controller not only possesses learning capabilities from the learning mechanism and adaptation abilities from the auto­attentive algorithm, it also maintains a representation of the "experience" it has gathered on
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	fuzzy system (an added level ot memory and ence earnmg . 
	As shown in Fig. 25, the fuzzy experience model has two inputs ecenter ( kT) and Ccenter ( kT), which represent the center of the auto-attentive active region that is defined on e( kT) and c(kT). For our example, these inputs have five symmetric, uniformly spaced membership functions, and there are a total of 25 rules (i.e., 25 output membership functions which are initialized at zero at the beginning). The universes of discourse for each of these inputs are normalized to the interval [-1, 1] by means of co
	• 1 d -_L
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	knowledge, the gains 9ecenter = o.275 an 9ccenter -2.0 
	were employed to normalize the universe of discourse for the error ecenter(kT) and change in error Ccenter(kT). The same gains used in the standard FMRLC design are employed here since these are assumed to represent the complete universes of discourse (determined by the physical limits) for the magnetic ball suspension system. The output universe of discourse is selected to be [-1, 1] with gain 9vcenter = 1, which preserves the original information from the fuzzy experience model without scaling. 
	120ne can easily envision how to add successive nested learning/auto­attentive mechanisms and memory models for the FMRLC. 
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	Responses for FMRLC with auto-attentive mechanism with memory (sinusoidal input seqnence). 


	Learning Mechanism for Fuzzy Experience Model: The learning mechanism for this fuzzy experience model is similar to the learning mechanism for the FMRLC except that the fuzzy inverse model is not needed. The two inputs ecenter(kT) and Ccenter(kT) (i.e., the center of the auto­attentive active region) are used to calculate the "experience" Vcenter ( kT) for the current auto-attentive active region, and the "activation level" of all the rules, while only the rules with activation levels larger than zero will 
	13 

	FMRLC will properly update the rules that were filled in by the experience model if they are activated. 
	With this approach the new un-explored region of the fuzzy controller (i.e., the shaded region at the boundary of the auto­attentive active region in Fig. 21) can then be interpolated using the information recorded in the fuzzy experience model, instead of filling with zeros in the consequent of the rules. The interpolation is achieved by finding the consequent fuzzy sets for the unexplored region (see the shaded region in Fig. 26) given the centers of each of the premise fuzzy sets. The enlarged active lea
	As shown in Fig. 27 when the auto-attentive mechanism with memory is used, the ball position can follow the input sequence almost perfectly with maximum output error Ye within ±0.0022 m (i.e., about 3.5 times smaller than the auto­attentive FMRLC without memory in Fig. 22). Fig. 28 shows the results for the same technique when we use a step input sequence. Notice that in terms of output error these are the best results that we obtained ( compared to the results from MRAC and the two other dynamic focusing t
	E. Computational Issues 
	E. Computational Issues 

	Note that when different DFL strategies are applied to the We have tried other more complicated methods such as using least squares 
	13 

	standard FMRLC to minimize memory usage in the rule-base 
	to find a linear surface that best fits the control surface, but we found that 
	and to allow the rule-base to "focus" there are additional
	such a method significantly increases the computational complexity without major performance improvements. computations for these operations. In DFL I we need to save 
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	Fig, 28. Responses for FMRLC with auto-attentive mechanism with memory (step input sequence). 
	a window of input data, where the maximum value over the entire window length is computed for each input, so that the input gains of the fuzzy controller can be calculated in the next time step. The memory used for the windowed data and the elapsed time for computing the maximum in DFL I is relatively large when these functions were implemented in software (we more carefully quantify what computing resources are needed for all the DFL strategies in the next section). 
	For DFL II where the rule-base is allowed to shift, we used a specially structured indexing system to incorporate the movement of the rule-base so that the extra computations are minimal. To illustrate this indexing system, a two-input, one­output fuzzy system shown in Fig. 29(a) is discussed here. The fuzzy rule-base contains a set of If ... Then rules which can be represented in the table as shown in Fig. 29(a) (note that all numbers shown in Fig. 29(a) are indices, not the centers of the membership funct
	Normally, the most computationally intensive part of simu­lating the fuzzy system is to identify which rules are activated since this has in the past often been done by checking whether each and every rule is activated. If we employ the numbering scheme in Fig. 29(b) in order to locate the activated rules, all that is needed is to identify which premises become active. For example, in the case with triangular membership functions where at most two membership functions can be activated at once, instead of ch
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	Fig. 29. (a)-(b) Structured fuzzy rule-base indexing system. 
	is important to note that the exact same scheme works for n membership functions in each input universe of discourse by simply using a base-n indexing scheme. It is the use of such a scheme for a higher number of inputs that will provide significant computational efficilency. 
	Next, assume that the rule-base is shifted via DFL II as shown in Fig. 30(a) where the movement can be 1.ndicated by adding one unit (i.e., the offset value to the rule-base with respect to its initial position) to the indices of each input universes of discourse. Hence, before the rule-base shift each of the input universes of discourse has the membership functions named "O" and "l," and they are shifted to "l" and "2" as shown in the gray filled input indices in Fig. 30(a). This adjustment is further illu
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	TABLE I 
	COMPARISON OF DIFFERENT CONTROL STRATEGIES,
	14
	15 

	Controller (Step Input) (Sinusoidal Input) Elapsed time See Type Eky:(kT) Ekv(kT) Eky:(kT) E1,v (kT) (in ms) Figures MRAC 1 05 X 10-j 1 81 x 101 34 X 10-) 1 86 X 100 12 0 16 7 6
	2
	2 
	1 
	5 
	1 
	5 

	' 
	' 

	Standard FMRLC 4.45 X 10-1.77x 10unstable 0.53 1.25 11, 12 FMRLC with 10201 rules not tested 7.53 X 10-1.86 X 100.96 43.5 15 FMRLC without DFL not tested unstable 0.53 1.25 16 
	5 
	5 
	2 
	5 

	Auto-tuned FMRLC 1.26 X 10-1.81 X 105.23 X 10-1.84 X 101.18 5.43 19, 18 Auto-attentive FMRLC 8.70 X 10-S 1.79 X 101.13 X 10-1.81 X 100.55 1.25 24, 22 Auto-attentive FMRLC 3.06 X 10-1.79 X 104.80 X 10-1. 79 X 101.01 1.86 28, 27 with memory 
	4 
	5 
	2 
	5 
	5 
	2 
	5 
	6 
	5 
	4 
	5 

	Finally, the DFL III is constructed by augmenting DFL ll with the fuzzy experience model. The additional fuzzy system in DFL III not only requires much more memory and thus more computations (since it adds another fuzzy system), it also requires us to calculate the average value of the center values of the output membership functions of fuzzy controller rule-base (which is expensive for a large rule-base) in order to update the fuzzy experience model. In summary, DFL I and III require significant additional
	F. Summary Evaluation 
	F. Summary Evaluation 

	As shown in the results for the magnetic ball suspension system, FMRLC with DFL outperforms the original FM­RLC control strategies and the conventional adaptive control techniques. The memory usage in the fuzzy controller rule­base is minimized at the expense of slightly increasing the computational complexity due to the addition of the DFL 
	strategies. To clarify these points, next we will summarize the results of the entire paper. Recall that we ran all our simulations in this paper for 20 seconds and that our sampling interval was T = 0.004 s. Let ~k y;(kT) and ~k v (kT) 
	strategies. To clarify these points, next we will summarize the results of the entire paper. Recall that we ran all our simulations in this paper for 20 seconds and that our sampling interval was T = 0.004 s. Let ~k y;(kT) and ~k v (kT) 
	2 

	denote the sum of the squares of the signals Ye (kT) and v( kT) over the entire simulation interval. Table I summarizes the results from all simulations in this paper. 

	First, note that while the computational requirements for the MRAC are the lowest, it achieves the worse performance. As Table I shows, there are stability problems with the standard FMRLC for certain inputs. Notice that the amount of control energy Zk v(kT) used is roughly the same for all the controllers. In addition, although the auto-tuned FMRLC achieved moderate performance with a small rule-base, it is relatively slow (in terms of elapsed time) due to the use of a window-based approach to tune the con
	2

	Toe elapsed time is calculated from a simulatio~ program run on a 
	14

	NeXTStation with a Motorola 68040 33Mhz CPU, DSP56001, and 32Mb RAM. Due to the limited resolution of 1/60 sec used to calculate time intervals, we simulated the controller 50,000 times and calculated the average elapsed time to estimate the length of time used by the controller to compute a single control value. 
	The memory usage includes the amount of storage needed for the rule­bases and all supporting variables for the controller. 
	15 

	controllers, it is observed from Table I that the best strategy is perhaps the auto-attentive FMRLC because it is only slightly slower that the standard FMRLC and yet it achieved low output error. 
	16

	In case of a large number of inputs and rules, DFL will be a particularly useful technique for the FMRLC. However, it must be emphasized that the DFL strategies discussed in this paper introduce more parameters for tuning. While this can complicate the tuning process, it also increases the flexibility, as well as the learning capabilities of the FMRLC design. Finally, note that all the DFL techniques can also be applied to the fuzzy inverse model if needed (for example, we have found it quite useful to auto
	IV. CONCLUSION 
	IV. CONCLUSION 

	In this paper we used a magnetic ball suspension system as a testbed to: (i) introduce and evaluate three approaches to dynamically focused learning control (auto-tuning, auto­attentive, and auto-attentive with memory); and (ii) compare the performance of the FMRLC with the DFL enhancement to conventional model reference adaptive control and the original FMRLC. We found that while the FMRLC with DFL is more computationally intensive than conventional MRAC and the FMRLC, it can provide enhanced performance o
	We must emphasize that while we have only shown how to use the concept of dynamically focused learning for the FMRLC it is a general concept that could be applied to other control strategies (e.g., in neural control). Moreover, while the concept of dynamically focused learning may extend to other control paradigms (indeed, the auto-tuning approach is used in [51], [52]), the performance realized in this case study may not. It is therefore important to study the following issues in future work: 
	i) stability, convergence, and robustness issues for the FMRLC with DFL, 
	ii) more extensive comparisons with conventional adap­tive control techniques (e.g., adaptive variable structure control), and 
	iii) application to a plant with more complex and chal
	-

	lenging dynamics. Furthermore, there is a significant need to perform experimen­tal evaluation of the DFL strategies. For example, it would be interesting to determine if the DFL strategies can enhance the performance of the FMRLC that was implemented for the two-link flexible robot in [29, 30]. 
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