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Abstract 

Recently it has been shown that the conventional notions of stability in the sense of Lyapunov and 
asymptotic stability can be used to characterize the stability properties of a class of “logical” discrete 
event systems (DES). Moreover, it has been shown that stability analysis via the choice of appropriate 
Lyapunov functions can be used for DES and can be applied to several DES applications including 
manufacturing systems and computer networks [1, 2]. In this paper we extend the conventional 
notions and analysis of uniform boundedness, uniform ultimate boundedness, practical stability, 
finite time stability, and Lagrange stability so that they apply to the class of logical DES that can be 
defined on a metric space. Within this stability-theoretic framework we show that the standard Petri 
net-theoretic notions of boundedness are special cases of Lagrange stability and uniform 
boundedness. In addition we show that the Petri net-theoretic approach to boundedness analysis is 
actually a Lyapunov approach in that the net-theoretic analysis actually produces an appropriate 
Lyapunov function. Moreover, via the Lyapunov approach we provide a sufficient condition for the 
uniform ultimate boundedness of General Petri nets. To illustrate the Petri net results, we study the 
boundedness properties of a rate synchronization network for manufacturing systems. In addition, 
we provide a detailed analysis of the Lagrange stability of a single-machine manufacturing system 
that uses a priority-based part servicing policy. 
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1 Introduction 

Discrete event systems (DES) are dynamical systems which evolve in time by the occurrence of events 

at possibly irregular time intervals. “Logical” DES are a class of discrete time asynchronous DES with 

equations of motion that are most often non-linear and discontinuous with respect to the random 

occurrence of events. Recently there has been much interest in the characterization of the stability 

properties of logical DES and in [1, 3, 4] the authors show how to adapt the metric space approach to 

Lyapunov stability analysis in [5] so that a wide class of DES can be analyzed with this conventional 

approach. In fact in [1, 3, 4] the authors showed that the standard Lyapunov method via the choosing 

of appropriate Lyapunov functions can be applied to several particular classes of DES applications 

including manufacturing systems and computer networks. More recently, a detailed analysis of load 

balancing systems has been conducted in [2, 6] using the framework in [1, 3, 4]. Earlier work on the 

analysis of boundedness properties of DES is contained in [7]. 

In this paper we extend the conventional Lyapunov framework so that it applies to the study of 

uniform boundedness, uniform ultimate boundedness, practical stability, finite time stability, and 

Lagrange stability of the class of logical DES that can be defined on a metric space. As mentioned 

above, Lyapunov concepts have been already been studied on a metric space (see, e.g., [5] for an 

introductory treatment, [8] for more advanced studies of stability preserving mappings on metric 

spaces and their applications, and [9] for more recent work on the use of a metric space Lyapunov 

approach for interconnected systems). There have also been studies of stability for more general 

topological spaces (see, e.g., [10]). In addition, there have been studies of stability for automata (see, 

e.g., [11]) and in temporal logic systems (see, e.g., [12]); for an overview of other DES-theoretic work 

along these lines see [1]. This paper shows how to perform stability and boundedness analysis of 

logical DES that are defined on a metric space. Logical DES that can be defined on a metric space 

include Petri nets [13, 14], Vector DES [15, 16], and many applications (see, e.g., [2]). The DES to be 

studied, such as Petri nets, do not enjoy having a state space that is a vector space so that the general 

stability formulationsin, for instance, [17, 18, 19, 20] for normed linear spaces do not directly apply. 

Moreover, the logical DES to be considered here are inherently asynchronous and at each state there 

may be up to an infinite number of events that can occur and hence there can possibly be an infinite 

number of next states. Hence, the approach in [11] (and similar automata-theoretic approahes) does 

not apply since it is for finite systems. In addition, the standard formulations in [8, 17, 18, 19, 20] do 

not directly apply since for them it is assumed that at each state there is a unique next state (for DES 

there is often non-deterministic behavior that results in uncertainty about what the next state is). 
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The results in Section 3 show that via relatively straightforward extensions, the Lyapunov analysis 

of uniform boundedness extends to the study of logical DES (Theorem 1). For uniform ultimate 

boundedness extensions must be made to ensure sufficient conditions that will be more generally 

applicable to logical DES (Theorem 2 and Corollary 1). Perhaps most importantly (due to its wide 

variety of possible applications), in Section 3 we show that the analysis of practical stability, finite 

time stability [21, 22], and Lagrange stability can be extended to include logical DES (Theorems 3 and 

4 and Corollary 2). 

We also investigate several applications of the theory of stability and boundedness for logical DES 

that is introduced in Section 3. For instance, in Section 4 we show how the standard notions of 

boundedness in Petri net theory are really special cases of the conventional notions of stability and 

boundedness in Section 3. In Theorem 5 we show that the standard approach to the analysis of 

“structural boundedness” for General Petri nets [13] is equivalent to a Lyapunov approach where an 

appropriate Lyapunov function is chosen. In addition, in Theorem 5 we introduce the notion of 

uniform ultimate boundedness for General Petri nets and using the Lyapunov approach provide 

sufficient conditions for uniform ultimate boundedness of General Petri nets. Finally, to illustrate the 

Petri net results we analyze a rate synchronization network for manufacturing systems. 

In Section 5 we provide a detailed investgation into the Lagrange stability of a single-machine 

manufacturing system that uses a priority-based part servicing policy. The investigation was 

motivated by the work of Perkins and Kumar [23] and Lu and Kumar [24], but we conduct our studies 

in the stability framework established in Section 3 and investigate stability properties of a new 

scheduling policy. Although the priority-based policy that we study can be expected to be less efficient 

than, e.g., the Clear-a-Fraction or Clear-Largest-Buffer policies in [23], practical considerations in 

manufacturing systems (e.g., constraints due to the ordering of how parts must be processed) often 

dictate the use of the type of priority-based policy that we study. Hence, our manufacturing system 

appplication serves to illustrate the utility of the stability framework of Section 3 and provides a result 

that can be practically useful (See Theorem 6). Finally, we note that some concluding remarks are 

provided in Section 6. 

2 A Discrete Event System Model 

We study the stability of systems that can be accurately modeled with 

G = (X, E, fe, g, Ev). (1) 
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X is the set of states and E is the set of events. State transitions are defined by the operators, fe : X −→ 

X where e ∈ E. An event, e, may only occur if it is in the set defined by the enable function, g : X −→ 

P(E) − {Ø}, where P(E) denotes the power set of E. We only require that fe be defined when e ∈ g(x). 

Notice that according to the definition of g, it can never be the case that no event is enabled. We can, 

however, model deadlock by defining a null event, e0, so that fe0(x¯) = x¯ where x¯ ∈ X is the state that 

the system is deadlocked at. 

We associate “logical time” indices with the states and events so that xk ∈ X represents the state at 

time k ∈ {0,1,2,...} = IN (the set of natural numbers) and ek ∈ g(xk) represents an enabled event at time 

k ∈ IN. Notice that there can be just one state at time k, but that many events may be enabled at time 

k. Should an enabled event ek occur, then the next state, xk+1 is defined by xk+1 = fek(xk). 

We now define state trajectories and event trajectories. A state trajectory is any sequence {xk} ∈ XIN 

such that xk+1 = fek(xk) for some ek ∈ g(xk) for all k ∈ IN. An event trajectory is any sequence {ek} ∈ EIN 

such that there exists a state trajectory, {xk} ∈ XIN, where for every k ∈ IN, ek ∈ g(xk). The set of all such 

event trajectories is denoted by E ⊂ EIN. Notice that corresponding to a given event trajectory, there 

can be only one state trajectory. In general, however, an event trajectory that produces a given state 

trajectory is not unique. Notice that all state and event trajectories must be infinite sequences. 

Let Ev ⊂ E denote a set of what we call “valid” event trajectories that we assume is specified as part 

of the modeling process. Let Ev(x0) be the set of valid event trajectories when the initial state is x0 ∈ X. 

The framework provides another mechanism for further pruning E. Ea ⊂ Ev is the set of what we call 

“allowed” event trajectories. Including Ea in our model yields a great deal of modeling power. In 

particular, we will make use of Ea to model the decision-making policies which we impose on our 

systems. 

If we fix k ∈ IN, then Ek denotes the sequence of events e0,e1,...,ek−1, and the EkE ∈ Ev(x0) is used to 

denote the concatenation of Ek with a sequence of infinite length E = ek,ek+1,... such that EkE ∈ Ev (E0 = 

Ø, the string with no elements in it which we also use to denote the empty set). If E is a string then |E| 

denotes the length of the string (i.e., the number of elements in the string). Let E 
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l = {E' : E'E E Ev, JE'J < oo} 

inf{p(x, x' ) : x' E Xz} 

VJ : [O, oo) ----+ !R+ 

, oo)) . If VJ : !R+ ----+ !R+ , if VJ E I( 

(i.e., the set of all finite length valid event trajectories). Let X : X × 

Efv × IN → X. The value of the function X(x0,Ek,k) will be used to denote the state reached at time k from 

x0 ∈ X by application of event sequence Ek such that Ek
E ∈ Ev. For fixed x0, the functions X(x0,Ek,k), where 

Ek
E ∈ Ev(x0), are called motions. 

3 Sufficient Conditions for Stability and Boundedness of DES in a 

Metric Space 

Let ρ : X × X denote a metric on X, and {X;ρ} a metric space. Let Xz ⊂ X and ρ(x,Xz) = 

denote the distance from point x to the set Xz. The r-neighborhood of 

an arbitrary set Xz ⊂ X is denoted by the set S(Xz;r) = {x : 0 < ρ(x,Xz) < r} where r > 0. 
Also, let S¯(Xz;R) = {x ∈ X : ρ(x,Xz) ≥ R}. Let + denote the nonnegative reals. A continuous function 

(resp., ) is said to belong to class K, i.e., ψ ∈ K, if ψ(0) = 0 and if ψ 

is strictly increasing on [0,r1] (resp., on [0 , and if limr→∞ ψ(r) = ∞, 

then ψ is said to belong to class KR. Let Ea ⊂ Ev be a set of allowed event trajectories and Xb ⊂ X denote 

a bounded subset of X for the remainder of the paper. 

Defintion 1: The motions X(x0,Ek,k) of G which begin at x0 ∈ X are bounded w.r.t Ea and Xb if there exists 

a β > 0 such that ρ(X(x0,Ek,k),Xb) < β for all Ek such that EkE ∈ Ea(x0) and for all k ∈ IN. The DES G is said 

to possess Lagrange Stability w.r.t. Ea and Xb if for each x0 ∈ X the motions X(x0,Ek,k) for all Ek such that 

EkE ∈ Ea(x0) and all k ∈ IN are bounded w.r.t. Ea and Xb. 

Definition 2: The motions of G are uniformly bounded w.r.t Ea and Xb if for any α > 0 there exists a β > 0 

(that depends on α) such that if ρ(x0,Xb) < α then ρ(X(x0,Ek,k),Xb) < β for all Ek such that EkE ∈ Ea(x0) 

and for all k ∈ IN. 
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k' ~ T(a). 

r' > R 

V (X(xo, 0, 0)) ::; 1/;2(r' 

1/J1 (p(X(xo , Ek, k) , Xb) ) ::; V (X(xo , Ek , k)) ::; 1/;2(r' 

Definition 3: The motions of G are uniformly ultimately bounded with bound B w.r.t Ea and Xb if there 

exists a B > 0 and if corresponding to any α > 0 there exists T(α) > 0 such that ρ(x0,Xb) < α 

implies that for all such that ) where 

Definition 4: Fix α and β such that β ≥ α > 0, let ρ be a specified metric on X, and let Xb ⊂ X and Ea ⊂ Ev. 

The DES G is said to be practically stable w.r.t. (α,β,ρ,Xb,Ea) if for all x0 ∈ X such that ρ(x0,Xb) < α, 

ρ(X(x0,Ek,k),Xb) < β for all Ek such that EkE ∈ Ea(x0) and all k ∈ IN. 

Definition 5: Fix α and β such that β ≥ α > 0, let ρ be a specified metric on X, and let Xb ⊂ X and Ea ⊂ Ev. 

Furthermore, let Tf denote a fixed final time. The DES G is said to be finite-time stable w.r.t. 

(α,β,Tf,ρ,Xb,Ea) if for all x0 ∈ X such that for all such that 

) where . 

Notice that if the above properties hold for some Ea then they also hold for all Ea such that 

E . 

Theorem 1 In order for the motions of G to be uniformly bounded w.r.t. Ea and Xb it is sufficient that 

there exists a function V defined on S¯(Xb;R) (where R may be large), and ψ1,ψ2 ∈ KR such that 

(i) ψ1(ρ(x,Xb)) ≤ V (x) ≤ ψ2(ρ(x,Xb)), x ∈ S¯(Xb;R), and 
(ii) V (X(x0,Ek,k)) is a non-increasing function for x0 ∈ S¯(Xb;R), for all Ek such that EkE ∈ Ea(x0) and all 

k ∈ IN (i.e., V is non-increasing along all possible motions of the system). 

Proof: 

Fix and let x ) with ρ(x0,Xb) > R. By conditions (i) and (ii), V (X(x0,Ek,k)) ≤ 

) for all Ek such that EkE ∈ Ea(x0). By condition (ii) it is the case that 

) for all Ek such that EkE ∈ Ea(x0) pro-

vided that ρ(X(x0,Ek,k),Xb) > R. Since ψ1 ∈ KR, its inverse exists, so ρ(X(x0,Ek,k),Xb)) ≤ 
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k ~ k', X (xo, Ek, k) E S(Xb; r' 

X (xo, Ek", k") (/.. S(Xb; r' 

p(X(xo, Ek", k") , Xb)) :'.S (3 

V (X(xo, Ek', k')) :'.S 1/;2(r2) - k'l/;3(r1) 

k = T' = (1/;2(r2)/'lf;3(r1 

k* < k :'.S k' :'.S oo 

for all Ek such that EkE ∈ Ea(x0) provided that ρ(X(x0,Ek,k),Xb) > R. If x ) 

or if x0 ∈ S¯(Xb;R) and there exists such that ) where 

be that for this 

) then it could be that for all 

there exist such that 

. However, the above argument yeilds 

) or it could 

) for all k, 

for all such k 

so that ρ(X(x0,Ek,k),Xb)) ≤ max{R,β} for all Ek such that EkE ∈ Ea(x0). 

Theorem 2 In order for the motions of G to be uniformly ultimately bounded with bound B w.r.t. Ea and 

Xb it is sufficient that there exists a function V defined on S¯(Xb;R) (where R may be large), ψ1, ψ2 ∈ KR, 

and ψ3 ∈ K such that 

(i) ψ1(ρ(x,Xb)) ≤ V (x) ≤ ψ2(ρ(x,Xb)), x ∈ S¯(Xb;R), and 

(ii) V (X(x0,Ek+1,k + 1)) − V (X(x0,Ek,k)) ≤ −ψ3(ρ(X(x0,Ek,k),Xb)) for all x0 ∈ S¯(Xb;R), and for all Ek such 

that Ek+1 = Eke (e ∈ E) and Ek+1E ∈ Ea(x0) and all k ∈ IN. 

Proof: 

Fix r1 > R, choose B > r1 such that ψ2(r1) < ψ1(B) (which is always possible), choose r2 > B, and let 

)) + 1. With B < ρ(x0,Xb) ≤ r2, assume that ρ(X(x0,Ek,k),Xb) > r1 for all Ek such that EkE 

∈ Ea(x0). By condition (ii), V (X(x0,Ek,k)) ≤ V (X(x0,Ø,0)) − 

)) for all Ek such that EkE ∈ Ea(x0). But V (X(x0,Ø,0)) ≤ ψ2(ρ(x0,Xb)) ≤ 

ψ2(r2) and ψ3(ρ(X(x0,Ek,k),Xb)) > ψ3(r1) so that we get 

for all Ek such that EkE ∈ Ea(x0). Let )) + 1 as above so that, 

V (X(x0,Ek,k)) ≤ −ψ3(r1) for all Ek such that EkE ∈ Ea(x0) which is a contradiction. Then there exists k∗ 

such that ρ(X(x0,Ek∗,k∗),Xb)) ≤ r1 where Ek∗E ∈ Ea(x0). Suppose now that ρ(X(x0,Ek∗,k∗),Xb)) ≤ r1 and 

ρ(X(x0,Ek,k),Xb)) > r1 for k such that and EkE ∈ Ea(x0) then ψ1(ρ(X(x0,Ek,k),Xb)) ≤ V 

(X(x0,Ek,k)) ≤ V (X(x0,Ek∗,k∗)) ≤ ψ2(ρ(X(x0,Ek∗,k∗),Xb)) 
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k' E 

k E (k', k' + D 

ii) for k' 2:: kD, k E 

V (X (xo, Ek', k')) ::; V (X (xo , 0, 0)) - k'lj;3(p(xo, Xb Ek, Ek,E E E a(xo 
k' 2:: kD , k E IN, V(X(xo , Ek' , k')) ::; 1P2(r2) - k'lj;3 (r1 Ek, 

k = T' k' 2:: DT' 

and ψ2(ρ(X(x0,Ek∗,k∗),Xb)) ≤ ψ2(r1) < ψ1(B) so that ρ(X(x0,Ek,k),Xb) < ψ1−1(ψ1(B)) = B for all k ≥ k∗, and Ek 

such that EkE ∈ Ea(x0). 

Corollary 1: In order for the motions of G to be uniformly ultimately bounded with bound B 

w.r.t. Ea and Xb it is sufficient that there exists a function V defined on S¯(Xb;R) (where R may be large), 

D ∈ IN, and ψ1,ψ2 ∈ KR, ψ3 ∈ K such that 

(i) Conditions (i) and (ii) of Theorem 1 hold, and 

(ii) V (X(x0,Ek+1,k + 1)) − V (X(x0,Ek,k)) ≤ −ψ3(ρ(X(x0,Ek,k),Xb)) for all x0 ∈ S¯(Xb;R), and for all Ek such 

that Ek+1 = Eke (e ∈ E), Ek+1E ∈ Ea(x0), k ∈ [0,D) and if this inequality holds for IN then it holds 

for each Ek such that EkE ∈ Ea(x0) for some ] (i.e., for each E ∈ Ea(x0) the inequality 

holds at least once every D steps). 

Proof: 

Choose r1, r2, and B as above and T as above and by condition ( IN, 

)) for all such that ). As 

above, we find that for ) for all such that 
). Choosing we get a contradiction for . The remainder of the proof 

is the same as for Theorem 2. 

Theorem 3 For the DES G to be practically stable w.r.t. (α,β,ρ,Xb,Ea) it is sufficient that there exists a 

function V defined on X and a real valued function φ(k) such that 

(i) V (X(x0,Ek+1,k+1))−V (X(x0,Ek,k)) ≤ φ(k) for all Ek+1 = Eke (e ∈ E), Ek+1E ∈ Ea(x0) and all k ∈ IN, and 

for all k ∈ IN. 

Proof: 
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k' 2: 

V (X (xo, Ek', k' )) - V (X (xo , 0, 0)) < inf {V(x) : p(x , Xb) 2: ,8} - sup{V(x ) : p(x , Xb) < a } 

Ek, Ek,E E E a(Xo 

r ' > 

V (X (xo , Ek,, k' )) < inf{V(x) : p(x , Xb) 2: ,8} 

p(X (xo , Ek,, k') , Xb) < ,8 

p(X (xo, E k', k') , Xb) 2: ,8 Ek, 

The result is shown via contradiction. Let X(x0,Ek,k) be any motion with x0 ∈ X such that ρ(x0,Xb) < 

α and with Ek such that EkE ∈ Ea(x0). Assume that there exists a 0 which is the earliest time such 

that for any such that ). From 

and substituting in (i) it 

is the case that 

for all such that ). Using the fact that 

V (X(x0,Ø,0))− sup{V (x) : ρ(x,Xb) < α} ≤ 0 

for x0 ∈ X such that ρ(x0,Xb) < α it follows that 

for all such that ). This implies that which is a 

contradiction. Therefore there does not exist k such that for any such that 

) and all IN so ρ(X(x0,Ek,k),Xb) < β for all Ek such that EkE ∈ Ea(x0) and all k ∈ IN. 

Corollary 2: Replace in Theorem 3 the infinite time interval [0,∞) with the finite time interval [0,Tf) 

and sufficient conditions for finite time stability w.r.t. (α,β,Tf,ρ,Xb,Ea) are obtained. 

Using ideas from the proof for uniform boundedness (Theorem 1) and practical stability 

(Theorem 3) we state and prove the following result on Lagrange stability. 

Theorem 4 For a DES G to possess Lagrange stability w.r.t. Ea and Xb it is sufficient that there exists a 

function V defined on X and ψ1,ψ2 ∈ KR such that 

(i) ψ1(ρ(x,Xb)) ≤ V (x) ≤ ψ2(ρ(x,Xb)), for all x ∈ X,and 

(ii) V (X(x0,Ek,k)) − V (x0) < β(x0) for each x0 ∈ X,and all Ek such that EkE ∈ Ea(x0) for all k ∈ IN and 

some β(x0) > 0. 

Proof: 

Fix 0 and let x ) so that ). For all Ek such that EkE ∈ Ea(x0) 
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(iii) F C (P x T) LJ(T x P 

p, t) r/. F t ,p) (/. F 

W(t' ,p') = W(p, t 

P UT/ 

W(p, t) = a (or W(t,p) = a' a(a' 

and all k ∈ IN, 

Since ψ1 ∈ KR, 

which shows that G possesses Lagrange stability. 

4 A Lyapunov Stability-Theoretic Approach to the Analysis of 

Boundedness Properties of Petri Nets 

4.1 Petri Net Model 

For our discussions on Petri nets we will adhere (to the greatest extent possible) to the somewhat 

standard notation in [13] where a Petri net PN = (P,T,F,W,M0) where 

(i) P = {p1,p2,...,pm} is a finite set of places (represented with circles), 

(ii) T = {t1,t2,...,pn} is a finite set of transitions (represented with line segments), 

) is a set of arcs (represented with arrows), 

(iv) W : F → {1,2,3,...} is an arc weight function (represented with numbers labeling arcs and assume 

for convenience that if ( or if ( we will extend the arc weight function so that 

) = 0 for these cases and the arrow will be omitted), and 

(v) M0 : P → IN is a (initial) marking (represented with dark dots, i.e., tokens, in places). 

It is the case that = Ø and = Ø. The Petri net structure is N = (P,T,F,W) so PN = 

(N,M0). The Petri net PN is normally referred to as the “General Petri net” while if “inhibitor arcs” are 

added it is called an “Extended Petri net” [13, 14] (also recall that “finite capacity nets” can be reduced 

to General Petri nets and that Marked Graphs and State Machines [13] are special cases of General 

Petri nets). If the initial marking is pre-specified then we will refer to the Petri net as (N,M0) or simply 

PN, whereas, if the initial marking is not specified we will refer to the net as N. Also note that if 

) then this is often represented graphically by ) arcs from p to t (t to 

p) each with no numeric label. 

Let Mk(pi) denote the marking (i.e., the number of tokens) at place pi ∈ P at time k and let the 

marking (state) of PN at time k (the “k” will be dropped when it is not needed) be denoted by Mk = 

10 



   

    

     

 

  

 

      

         

     

         

      

  

  

      

     

       

  

         

    

    

          

     

      

    

 

 

'°'d- 1 
U = L...,k= O Uk 

[Mk(p1)···Mk(pm)]t. A transition tj ∈ T is said to be enabled at time k if Mk(pi) ≥ W(pi,tj) for all pi ∈ P such 

that (pi,tj) ∈ F. It is assumed that at each time k there exists at least one transition to fire. If a transition 

is enabled, then it can fire. If an enabled transition tj ∈ T fires at time k, then the next marking for place 

pi ∈ P is given by 

Mk+1(pi) = Mk(pi) + W(tj,pi) − W(pi,tj) 

where (tj,pi) ∈ F and (pi,tj) ∈ F. Let R(M0) denote the set of makings of PN (states) that can be reached 

from M0. Let R1(M) denote the set of all markings that are reachable from M in one transition firing. 

Let A = [aij] denote an n × m matrix of integers (the incidence matrix) where aij = a+ij − a−ij with a+ij = 

W(ti,pj) and aij− = W(pj,ti). Let uk ∈ {0,1}n denote a firing vector where if tj ∈ T is fired then its 

corresponding firing vector is uk = [0···0 1 0···0]t with the “1” in the jth position in the vector and zeros 

are everywhere else. The matrix equations (nonlinear difference equations defined on INm with non-

unique solutions) describing the dynamical behavior represented by a Petri net are given by [13, 14] 

Mk+1 = Mk + Atuk (2) 

where if at step k, a−ij ≤ Mk(pj) for all pj ∈ P, then ti ∈ T is enabled and if this ti ∈ T fires then its 

corresponding firing vector uk is utilized in equation 2 to generate the next state. Notice that if Md ∈ 

R(M0), and we fire some sequence of d transitions with corresponding firing vectors u0, u1, u2, ..., ud−1 

we will get Md = M0 + Atu with where u is called the firing count vector. 

An Extended Petri net is obtained from a General Petri net by adding inhibitor arcs (sometimes 

called “not arcs”). Let Fn ⊂ (P × T) denote the set of inhibitor arcs for the extended Petri net 

= Ø). We use a line with a small circle on the end to graphically 

represent the inhibitor arc. The inhibitor arc does not change in any way what happens when a 

transition t ∈ T fires (i.e., equation 2 remains unchanged for the Extended Petri net). The inhibitor arc 

does, however, change which transitions are enabled at each step. The set of transitions in EPN 

enabled at time k is given by {tj : Mk(pi) ≥ W(pi,tj) for all pi ∈ P s.t. (pi,tj) ∈ F} − {tj : (pi,tj) ∈ Fn and M(pi) 

= 0}. Hence, the inhibitor arc tests if a place has a zero marking. It is important to study properties of 
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Extended Petri nets due to fact that the addition of the inhibitor arc greatly enhances the “modeling 

power” of the Petri net [14]. The characterization and analysis of the qualitative properties of systems 

represented via Petri nets is based on the the fact that Petri net models are a special case of the general 

DES model in equation 1 [3, 4]. 

4.2 Boundedness Properties of Petri Nets: A Lyapunov Approach 

The fact that systems represented by Petri nets are amenable to Lyapunov stability analysis was first 

pointed out in [3, 4]. Below we show that the Petri net theoretic boundedness properties and analysis 

[14, 13] are actually special cases of the boundedness definitions in Section 3 and the Lyapunov 

approach to boundedness analysis. Let ξ = [ξ1ξ2 ...ξm]t such that 0, i = 1,2,...,m. 

Throughout this Section we will use the metric where 

(3) 

and we will use D ⊂ INm to denote a bounded set. Next we state the standard definitions of 

boundedness for Petri nets [13, 14]. 

Definition 6: A Petri net (N,M0) is said to be γ-bounded or simply bounded if for a given γ, M(pi) ≤ γ for 

all pi ∈ P and M ∈ R(M0). 

Definition 7: A Petri net N is said to be structurally bounded if it is bounded for any finite initial 

marking M0. 

For a Petri net (N,M0): (i) (N,M0) is γ-bounded for some γ ≥ 0 iff the motions of (N,M0) which begin 

at M0 are bounded, (ii) N is structurally bounded iff N possesses Lagrange stability, and (iii) N is 

structurally bounded iff the motions of N are uniformly bounded. Next, we show how the Petri net-

theoretic approach to the analysis of structural boundedness is actually a Lyapunov stability-theoretic 

approach. Moreover, we introduce the characterization and analysis of uniform ultimate boundedness 

for Petri nets. 

Theorem 5 For the Petri net N with D = {0}: 
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R = inf{r': 0 < p(M , D ) < r' 

M E {M : p(M , D ) 2: R} , M'l</J :s M l¢ 

M' = M + A l u 

. ( p(M,D) ) 
'1/J3(p(M, D )) = m111{1ri} l + p(M, D) 

Mand M' E R1(M) 

M' E R1(M 

(i) N is uniformly bounded if there exists an m-vector φ > 0 such that Aφ ≤ 0 and 

(ii) N is uniformly ultimately bounded if there exists an m-vector φ > 0 and n-vector π > 0 such that 

Aφ ≤ −π. 

Proof: 

For (i) the proof follows by extending the one for structural boundedness in [13]. Let ξ = φ and 

choose 

(4) 

so that due to the choice of ρ in equation 3 the appropriate ψ1 and ψ2 exist so that ψ1(ρ(M,D)) ≤ V (M) 

≤ ψ2(ρ(M,D)). Notice that V must only be defined and satisfy the appropriate properties on {M : ρ(M,D) 

≥ R} where R may be large. Choose 

and all t ∈ T are enabled at M} 
(R is finite since W(pi,tj) is finite.) For (i), it suffices to show that for all 

such that . We know that for all M and ), 
for some u ≥ 0 (we know that u ≥ 0 exists since M ∈ {M : ρ(M,D) ≥ R}) and 

. Since u ≥ 0, Aφ ≤ 0 implies that for all M and 

whenever M ∈ {M : ρ(M,D) ≥ R}. 

For (ii), it suffices to show that for all ) such that M ∈ {M : ρ(M,D) ≥ R}, 

for some γ > 0. From equation 2, if ), then so 

that . Since u ≥ 0 exists (as long as M ∈ {M : ρ(M,D) ≥ R}) and πi > 0, 

for all ). Hence, if we choose 

(ii) holds. 

Corollary 3: For the Petri net N with D = {0} if for each tj ∈ T, 
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then N is uniformly bounded (resp., uniformly ultimately bounded). 

Proof: 

Choose V (M) = Mtφ where φ = [1 1...1]t and use Theorem 5. 

Due to the fact that stability in the sense of Lyapunov and asymptotic stability are local properties, 

they hold trivially for any invariant set for a Petri net [1, 3, 4]. An analogous result to Theorem 5 part 

(ii) exists for asymptotic stability in the large. Note that the addition of inhibitor arcs to the General 

Petri net to obtain the Extended Petri net simply reduces the number of possible motions that can be 

generated by the system. Therefore, if a general Petri net is uniformly bounded or uniformly 

ultimately bounded, no matter what inhibitor arcs are added to obtain an Extended Petri net the 

Extended Petri net will maintain the corresponding properties. Theorem 5 shows that the standard 

approach to boundedness analysis for General Petri nets is actually a special case of a Lyapunov 

approach to boundedness analysis. Really what is shown is that in the Petri net-theoretic approach to 

the analysis of structural boundedness [13], in picking φ one is actually picking a Lyapunov function 

V (M) = Mtφ. Once this is recognized it will perhaps be easier to study boundedness properties due to 

the wealth of experience there is with regard to the choice of Lyapunov functions. Part (ii) of Theorem 

5 provides what seems to be the first characterization and analysis of uniform ultimate boundedness 

for Petri nets. It is important to note that the Lyapunov approach also applies to the many subclasses 

of Petri nets (e.g., Marked Graphs and State Machines) or for Extended Petri nets. 

4.3 Petri Net Application: Manufacturing System 

In [7] the authors provide simple computer network and production network applications that 

illustrate the use of the Lyapunov approach for analysis of boundedness properties. In this paper we 

introduce the study of boundedness properties of a special class of manufacturing lines with rate 

synchronization shown in Figure 1. 

Figure 1: Manufacturing Line with Rate-Synchronization 
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Suppose that we are given the manufacturing system line shown in Figure 1 where transitions 

represent machines (a transition firing represents the completion of processing a part), and the places 

are used as shown to represent buffers where parts are passed through the system for processing 

(e.g., M(p1) represents the number of parts that have already been processed by the first machine and 

that are waiting to be processed by the second machine). The “rate-synchronizers” are used to ensure 

that the rates of processing of parts in the manufacturing system line are synchronized (to allow 

maximum flexibility in processing, we only seek to maintain a loosely coupled form of rate 

synchronization). Let N = (P,T,F,W) represent a manufacturing system with N such machines 

connected in series (similar analysis applies for other topologies). With this, m = 3(N−1) and n = N. 

For the analysis of boundedness properties choose V (M) = Mtφ where φ = [1 1 2 1 1 2...2]t. Notice 

that if either fires V (Mk+1) ≤ V (M) so that the manufacturing line with ratesynchronization is 

uniformly bounded. The choice of the “2” in the φ vector weights the adding and subtacting of tokens 

to, e.g., place p3, so that the weighted sum of tokens for the network will not increase. Checking that 

Aφ ≤ 0 per part (i) of Theorem 5 also verifies the uniform boundedness of the manufacturing line. 

5 Lagrange Stability of DES: A Manufacturing Application 

We consider machines as shown in Figure 2 which are capable of servicing parts of type i such that i 

∈ P where P = {1,2,...,N}. We fix the rate of arrival of parts to the machine. The machine can only service 

one part at a time and must be configured differently to service parts of different types. There is a set-

up time when reconfiguring the machine for processing different part types. Parts that have arrived 

at the machine and have not yet been processed are accumulated in buffers. 

We will show that some such machines can be implemented with buffers of finite size. 

Figure 2: Machine with Buffers 

Because we are concerned with arrival rates and because the processing of any part takes a finite 

amount of real time, we require that our DES model of the machine be synchronous. The events, ek, 
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will be required to occur with a fixed real time period. All references to real time will be given in terms 

of the event period, which we will call a cycle. Accordingly, we define the relevant rate and delay 

constants. There must be bi > 0 cycles between arrivals of parts of type i ∈ P at buffer i, the machine 

requires mi > 0 cycles to process one part of type i ∈ P (when the machine is producing parts of type i 

∈ P), and si > 0 cycles are required to configure the machine to produce parts of type i ∈ P. 

We further define 

. 

From the definitions of mi and bi, wi is the number of parts that can arrive at buffer i per every part of 

type i that enters the machine to be processed (when parts of type i are being processed). In other 

words, the frequency of arrivals of part type i is 1 part per bi cycles and the frequency of processing 

of part type i is 1 part processed per mi cycles (assuming the machine is currently processing parts of 

type i); wi is the ratio of the frequency of arrivals to the frequency of departures. 

Clearly, it is not possible to bound the buffer levels in general if w > 1. Hence, we require that w < 1 so 

that wi < 1 for all i ∈ P. 

The machine described above is similar to the machine in [23]. The authors of [23] assume that 

the parts are fluid and continuously arrive at and depart from the machine. We assume that the parts 

arrive singularly at discrete points in time. In addition in [23] they study several different scheduling 

policies for this machine. Here, we shall study the Lagrange stability of a priority-based part servicing 

policy. 

5.1 Single Machine Priority-Based Part Servicing Problem 

NLet . The number of parts in buffer i ∈ P at time k ∈ IN is xi, and xk = [x1x2 ...xN]t. Let eb
i represent 

that one part of type i ∈ P arrives at buffer i, let emi represent that one part of type i ∈ P enters the 

machine for processing, and let e0 be the null event. Let B = {eb
i : i ∈ P} and M = {em

i : i ∈ P}, so that the 

set of events is 

. 
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Notice that each event ek ∈ E is defined as a set of “sub-events”. 

We now specify g and fe for ek ∈ g(xk). For ek ∈ g(xk), it is necessary that ek ∈ E and that ek satisfy the 

following conditions: 

• If emi ∈ ek then xi > 0. 

• If e0 ∈ ek then ek = {e0}. 

If xk+1 = fek(xk) then 

. 
If xk+1 = fe0(xk), then 

xk+1 = xk. 

Let Ev = E be the set of valid event trajectories. We further specify the set of allowed event 

trajectories, Ea, in order to specify the manner in which the machine chooses which parts to produce 

and to guarantee the synchronicity of the machine. We specify that the machine observe a priority-

based part servicing policy. This policy mandates that once a production run is begun on a particular 

part type, the run must continue until the buffer of the chosen part type is emptied. Additionally, the 

parts in buffer i ∈ P will be servicied before the parts in buffer i + 1. Once all buffers have been serviced, 

the first buffer will be serviced again. For Ea ⊂ Ev, every E ∈ Ea must satisfy the following conditions: 

for some 0 for all i ∈ P. 

• If ebi ∈ ek, then ebi ∈ ek+bi, and for all . 

• Let k∗ = min{k ≥ 0 : xi(k) > 0 for some i ∈ P} and i∗ = min{i ∈ P : xi(k∗) > 0}. 

em
i∗ ∈ ek∗+si∗ where ( for all and ( for all i ∈ P and all k, 

. 

• If emi ∈ ek, then 

(i) if xi(k + 1) > 0, then 
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p(xk, Xb) = L m i X i 

iEP 

for all . 

(b) for all for all . 

(ii) if xi(k + 1) = 0, then 

(a) emj ∈ ek+sj and for all where j = i + 1 if (i + 1) ∈ P or 

. 

(b) for all for all . 

• For any for all i ∈ P and for all i ∈ P, then . 

• The real time between events ek and ek+1 is fixed for all k ≥ 0. 

Notice that with this definition, for start-up the priority-based policy sets up for and processes the 

first part to arrive that has the highest priority. Following this, it cycles through the processing of part 

types according to their fixed priority ordering (where after the lowest priority part is processed, the 

highest priority part is serviced again). 

5.2 Lagrange Stability Analysis 

We will show that the machine whose operation is described above can be implemented with finite 

buffers by showing that the machine with a priority-based part processing policy possesses Lagrange 

stability. Choose 

Xb = {[00...0]t} 

and 

. (5) 

For any variable ai which is defined for all i ∈ P, we let a = mini{ai} and ¯a = maxi{ai}. 

Theorem 6 The machine with priority-based part servicing policy possesses Lagrange stability w.r.t. Ea 

and Xb. 

Proof: 

Choose 

V (xk) = ρ(xk,Xb) (6) 
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so that condition (i) of Theorem 4 is satisfied. We define the set of times R = {k0,k1,k2,...}, 

kp < kq if p < q, to include every time k such that and ) = 0 for some i ∈ P 

(these times define the ends of production runs). Additionally, let k0 = 0. Let j∗(kp) ∈ P, kp ∈ R, denote 

the part type that is being processed by the machine between times kp and kp+1. We define 

. In order to bound ∆p, we consider: 

• xj∗(kp)(kp), the number of parts of type j∗(kp) that are in the buffer at time kp and 

+ 1, the maximum number of parts of type j∗(kp) that can arrive during time ∆p. 

The sum of the above two classifications of parts of type j∗(kp) is the maximum number of parts that 

must be processed between times kp and kp+1. The maximum number of cycles, ∆p, that the machine 

may require to accomplish the necessary processing is simply mj∗(kp) times the sum of parts: 

. 

∆p can be no larger than ∆p plus the number of cycles required to configure the machine to process 

parts of type j∗(kp). Hence, we find that 

, 

so that 

. (7) 

We now bound V (xkp+1) in terms of V (xkp). In order to do this, we consider the following relations, 

which are easily derived from the specification of Ea: 

xj∗(kp)(kp+1) = 0 (8) 

∆p 

xi(kp+1) − xi(kp) ≤ + 1 for all ) 
(9) 

bi 

From equations 8, 9, and the definition of Ea, it follows that 

Applying equations 5, 6 , 7, and 10, we see that 
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( x kp+J < V (xkp) - Xj•(kp)(kp)mj*(kp) + .6.p L b- + L m i 

iEP,i-f-j*(kp) i iEP,i-f-j* (kp) 

= V (xkp) - Xj•(kp)(kp)mj*(kp) + .6.p(w - Wj•(kp) ) + L mi 

iEP,i-f-j* (kp) 

< V (xkp) - Xj•(kp)(kp)mj* (kp) + [ ( xi*(kp) (kp) + 1) mj*(kp)+ 

] 
W - Wj*(kp) 

Sj•(kp) ---- + L m i 
l - Wj• (kp) iEP,i-f-j*(kp) 

= V (xkp) - Xj•(kp)(kp)mj*(kp) (
1 

1 
- w ) + 

- Wj•(kp) 

( ) (
W - Wj*(kp) ) 

mj* (kp) + Sj•(kp) _ .• + L mi • 
l WJ (kp) iEP,i-f-j*(kp ) 

( xi*(kp)(kp) + 1) bj*(kp) 
m fx{ xi(kp)} < b. 

( Xj• (kp )(kp) + 1) bj * (kp) 

( t, L-i EP Xi(k p) - 1) Q 

bj* (kp ) 

V 

(11) 

While up to this point the proof has been similar to the proof of stability for the CAF policy in [23], 

next we must account for the the fact that we are using the priority-based part servicing policy. 

From the definition of Ea (which characterizes the priority-based part processing policy), it is 

evident that 

+ 1 (12) 

where is an upper bound on the number of cycles that have transpired since 

the last time kq, q < p, such that xj∗(kq) = 0. From equation 12, we see that 

. (13) 

Manipulating equation 13 yields 

1 (14) 
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(x kp+q) < ')'qV (x kp) + L '"•t(. 
n=O 

(x kp+q+J < ')'V (x kp+q) + ( 

< 1 (1'V (x.,) + ~ 1n() + ( 
q 

< ')'q+ l v (x kp) + L 'Yn( . 
n=O 

q- l 

(x kq) < ')'qV (x o) + L ')'n( 

n=O 

( 
< V (x o) +-- . 

1 - ')' 

1 (15) 

where and 0 < 2 < 1. If we define 

and 

, 
we see from equations 11 and 16 that 

(16) 

V (xkp+1) < γV (xkp) + ζ. Notice that by 
definition, 0 < γ < 1. We now show via induction that 

V (17) 

As the induction hypothesis, we assume that equation 17 is true for some general q. Given the 

induction hypothesis and equation 16, we have 

V 

Hence equation 17 is true for q + 1. Because equation 16 is precisely equation 17 with q = 1, equation 

17 must be true for all q ≥ 1. If we let p = 0 in equation 17, we see that 

V 

(18) 
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Thus, we have bounded V (xkq) for all kq ∈ R. 
Consider now the set of times Sq such that if k ∈ Z and k ∈ (kq,kq+1), then k ∈ Sq. In equation 18, we 

have found a bound for V (xk), for k = kq and k = kq + 1. We now wish to bound 

V (xk) for all . Clearly, the maximum of V over must occur at one of 

the following times: kq, kq+1, or at kqm, where 

is the time in Sq immediately before the beginning of part production). We can bound the increase in 

V that occurs between times kq and kq
m as 

Hence, for all k > 0, 

V , (19) 

so that by Theorem 4, the machine posses Lagrange stability. 

Remark 1: Utilizing equation 19 it is easy to see that the buffer levels will for all k ≥ 0 be constrained 

by 

Remark 2: Notice that the results verify our intuition that increasing (0) for the 

priority-based part servicing policy will create the possibility that buffer levels can rise even higher. 

Remark 3: If the CAF (clear a fraction) policy is used the authors in [23] show that the buffer levels 

will be constrained by 

, 
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-where 0 < 2 < 1. If 2 is chosen to be N1 and we have a machine such that mi = mj, bi = bj for all i,j ∈ P, and 

we have all the same set-up times, then the bound given in Remark 1 is the same as the CAF bound 

(except for the differences induced by the discrete nature of our part flow). Intuitively, this is not 

surprising since it indicates that if all the arrival rates are the same and all the processing times are 

the same then in this special case the priority-based policy is a special case of the CAF policy so we 

get the same bounds as in [23]. It is easy, however, to pick the machine parameters so that the priority-

based policy will perform much differently than the CAF policy (in fact this is most often the case), 

and for these cases our results provide bounds for this new policy. 

6 Concluding Remarks 

We have shown that it is straightforwardto extend the conventional notions and analysis of uniform 

boundedness, uniform ultimate boundedness, practical stability, finite time stability, and Lagrange 

stability to the class of DES that can be defined on a metric space (e.g., Petri nets and Vector DES). We 

show that the Petri net-theoretic notions and analysis of boundedness are really a special case of 

conventional notions and analysis of boundedness. Also, we introduce the notion of uniform ultimate 

boundedness to Petri net theory and provide a sufficient condition for this property. We use a rate-

synchronization network in manufacturing systems to illustrate some of the Petri net results. 

Moreover, we show that a machine with a priority-based part servicing policy possesses Lagrange 

stability. In fact we provide explicit bounds on the maximum number of parts that will be in the 

buffers at any one time in terms of the machine parameters and initial buffer levels. 
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	1 Introduction 
	1 Introduction 
	Discrete event systems (DES) are dynamical systems which evolve in time by the occurrence of events at possibly irregular time intervals. “Logical” DES are a class of discrete time asynchronous DES with equations of motion that are most often non-linear and discontinuous with respect to the random occurrence of events. Recently there has been much interest in the characterization of the stability properties of logical DES and in [1, 3, 4] the authors show how to adapt the metric space approach to Lyapunov s
	In this paper we extend the conventional Lyapunov framework so that it applies to the study of uniform boundedness, uniform ultimate boundedness, practical stability, finite time stability, and Lagrange stability of the class of logical DES that can be defined on a metric space. As mentioned above, Lyapunov concepts have been already been studied on a metric space (see, e.g., [5] for an introductory treatment, [8] for more advanced studies of stability preserving mappings on metric spaces and their applicat
	The results in Section 3 show that via relatively straightforward extensions, the Lyapunov analysis of uniform boundedness extends to the study of logical DES (Theorem 1). For uniform ultimate boundedness extensions must be made to ensure sufficient conditions that will be more generally applicable to logical DES (Theorem 2 and Corollary 1). Perhaps most importantly (due to its wide variety of possible applications), in Section 3 we show that the analysis of practical stability, finite time stability [21, 2
	We also investigate several applications of the theory of stability and boundedness for logical DES that is introduced in Section 3. For instance, in Section 4 we show how the standard notions of boundedness in Petri net theory are really special cases of the conventional notions of stability and boundedness in Section 3. In Theorem 5 we show that the standard approach to the analysis of “structural boundedness” for General Petri nets [13] is equivalent to a Lyapunov approach where an appropriate Lyapunov f
	In Section 5 we provide a detailed investgation into the Lagrange stability of a single-machine manufacturing system that uses a priority-based part servicing policy. The investigation was motivated by the work of Perkins and Kumar [23] and Lu and Kumar [24], but we conduct our studies in the stability framework established in Section 3 and investigate stability properties of a new scheduling policy. Although the priority-based policy that we study can be expected to be less efficient than, e.g., the Clear-
	2 A Discrete Event System Model 
	We study the stability of systems that can be accurately modeled with 
	e, g, Ev). (1) 
	G = (X, E, f

	e : X −→ X where e ∈ E. An event, e, may only occur if it is in the set defined by the enable function, g : X −→ e be defined when e ∈ g(x). Notice that according to the definition of g, it can never be the case that no event is enabled. We can, however, model deadlock by defining a null event, e, so that fe0(x¯) = x¯ where x¯ ∈ X is the state that 
	X is the set of states and E is the set of events. State transitions are defined by the operators, f
	P(E) − {Ø}, where P(E) denotes the power set of E. We only require that f
	0

	the system is deadlocked at. 
	xk ∈ X represents the state at k ∈ g(xk) represents an enabled event at time k ∈ IN. Notice that there can be just one state at time k, but that many events may be enabled at time 
	We associate “logical time” indices with the states and events so that 
	time k ∈ {0,1,2,...} = IN (the set of natural numbers) and e

	k.k occur, then the next state, xk+1 is defined by xk+1 = fek(xk). xk} ∈ Xxk+1 = fek(xk) for some ek ∈ g(xk) for all k ∈ IN. An event trajectory is any sequence {ek} ∈ Exk} ∈ X, where for every k ∈ IN, ek ∈ g(xk). The set of all such event trajectories is denoted by E ⊂ E. Notice that corresponding to a given event trajectory, there can be only one state trajectory. In general, however, an event trajectory that produces a given state trajectory is not unique. Notice that all state and event trajectories mus
	 Should an enabled event e
	We now define state trajectories and event trajectories. A state trajectory is any sequence {
	IN 
	such that 
	IN 
	such that there exists a state trajectory, {
	IN
	IN
	Let 
	of the modeling process. Let 
	0
	The framework provides another mechanism for further pruning 
	. 
	“allowed” event trajectories. Including 
	particular, we will make use of 
	If we fix k ∈ IN, then E
	0
	1
	0
	denote the concatenation of E

	Ø, the string with no elements in it which we also use to denote the empty set). If E is a string then |E| denotes the length of the string (i.e., the number of elements in the string). Let E 
	(i.e., the set of all finite length valid event trajectories). Let X : X× Ev × IN → X. The value of the function X(x,Ek,k) will be used to denote the state reached at time k from x0 ∈ X by application of event sequence Ek such that Ek∈ Ev. For fixed x, the functions X(x,Ek,k), where 
	f
	0
	E 
	0
	0

	k∈ Ev(x), are called motions. 
	E
	E 
	0

	3 Sufficient Conditions for Stability and Boundedness of DES in a Metric Space 
	3 Sufficient Conditions for Stability and Boundedness of DES in a Metric Space 
	Let ρ : X × X denote a metric on X, and {X;ρ} a metric space. Let Xz ⊂ X and ρ(x,Xz) = 
	denote the distance from point x to the set Xz. The r-neighborhood of an arbitrary set Xz ⊂ X is denoted by the set S(Xz;r) = {x : 0 < ρ(x,Xz) < r} where r > 0. Also, let S¯(Xz;R) = {x ∈X: ρ(x,Xz) ≥ R}. Let denote the nonnegative reals. A continuous function 
	+ 

	(resp., ) is said to belong to class K, i.e., ψ ∈ K, if ψ(0) = 0 and if ψ ] (resp., on [0 , and if limr→∞ ψ(r) = ∞, Ea ⊂ Ev be a set of allowed event trajectories and Xb ⊂ X denote a bounded subset of X for the remainder of the paper. 
	is strictly increasing on [0,r
	1
	then ψ is said to belong to class KR. Let 

	x,Ek,k) of G which begin at x0 ∈ X are bounded w.r.t Ea and Xb if there exists a β> 0 such that ρ(X(x,Ek,k),Xb) < β for all Ek such that EkE ∈ Ea(x) and for all k ∈ IN. The DES G is said Ea and Xb if for each x0 ∈ X the motions X(x,Ek,k) for all Ek such that kE ∈ Ea(x) and all k ∈ IN are bounded w.r.t. Ea and Xb. 
	Defintion 1: The motions X(
	0
	0
	0
	to possess Lagrange Stability w.r.t. 
	0
	E
	0

	Ea and Xb if for any α > 0 there exists a β> 0 x,Xb) < α then ρ(X(x,Ek,k),Xb) < β for all Ek such that EkE ∈ Ea(x) and for all k ∈ IN. 
	Definition 2: The motions of G are uniformly bounded w.r.t 
	(that depends on α) such that if ρ(
	0
	0
	0

	Ea and Xb if there x,Xb) < α implies that for all such that ) where 
	Definition 3: The motions of G are uniformly ultimately bounded with bound B w.r.t 
	exists a B > 0 and if corresponding to any α > 0 there exists T(α) > 0 such that ρ(
	0

	Definition 4: Fix α and β such that β ≥ α > 0, let ρ be a specified metric on X, and let Xb ⊂ X and Ea ⊂ Ev. The DES G is said to be practically stable w.r.t. (α,β,ρ,Xb,Ea) if for all x0 ∈ X such that ρ(x,Xb) < α, x,Ek,k),Xb) < β for all Ek such that EkE ∈ Ea(x) and all k ∈ IN. 
	0
	ρ(X(
	0
	0

	Definition 5: Fix α and β such that β ≥ α > 0, let ρ be a specified metric on X, and let Xb ⊂ X and Ea ⊂ Ev. f denote a fixed final time. The DES G is said to be finite-time stable w.r.t. f,ρ,Xb,Ea) if for all x0 ∈ X such that for all such that 
	Furthermore, let T
	(α,β,T

	) where . 
	Ea then they also hold for all Ea such that 
	Notice that if the above properties hold for some 

	E . 
	Ea and Xb it is sufficient that there exists a function V defined on S¯(Xb;R) (where R may be large), and ψ,ψ2 ∈ KR such that 
	Theorem 1 In order for the motions of G to be uniformly bounded w.r.t. 
	1

	(i) 
	(i) 
	(i) 
	(ρ(x,Xb)) ≤ V (x) ≤ ψ(ρ(x,Xb)), x ∈ S¯(Xb;R), and 
	ψ
	1
	2


	(ii) 
	(ii) 
	x,Ek,k)) is a non-increasing function for x0 ∈ S¯(Xb;R), for all Ek such that EkE ∈ Ea(x) and all k ∈ IN (i.e., V is non-increasing along all possible motions of the system). 
	V (X(
	0
	0



	Proof: 
	Proof: 
	x x,Xb) > R. By conditions (i) and (ii), V (X(x,Ek,k)) ≤ k such that EkE ∈ Ea(x). By condition (ii) it is the case that k such that EkE ∈ Ea(x) prox,Ek,k),Xb) > R. Since ψ1 ∈ KR, its inverse exists, so ρ(X(x,Ek,k),Xb)) ≤ 
	Fix and let 
	) with ρ(
	0
	0
	) for all E
	0
	) for all E
	0
	-
	vided that ρ(X(
	0
	0

	k such that EkE ∈ Ea(x) provided that ρ(X(x,Ek,k),Xb) >R. If x ) 
	for all E
	0
	0

	or if x0 ∈ S¯(Xb;R) and there exists 
	or if x0 ∈ S¯(Xb;R) and there exists 
	or if x0 ∈ S¯(Xb;R) and there exists 
	such that 
	) where 

	be that for this 
	be that for this 
	) then it could be that for all there exist such that . However, the above argument yeilds 
	) or it could ) for all k, for all such k 


	x,Ek,k),Xb)) ≤ max{R,β} for all Ek such that EkE ∈ Ea(x). 
	so that ρ(X(
	0
	0

	Ea and 
	Theorem 2 In order for the motions of G to be uniformly ultimately bounded with bound B w.r.t. 

	Xb it is sufficient that there exists a function V defined on S¯(Xb;R) (where R may be large), ψ,ψ2 ∈ KR, 3 ∈ K such that 
	1
	and ψ

	(i) 
	(i) 
	(i) 
	(ρ(x,Xb)) ≤ V (x) ≤ ψ(ρ(x,Xb)), x ∈ S¯(Xb;R), and 
	ψ
	1
	2


	(ii) 
	(ii) 
	x,Ek+1,k + 1)) − V (X(x,Ek,k)) ≤ −ψ(ρ(X(x,Ek,k),Xb)) for all x0 ∈ S¯(Xb;R), and for all Ek such 
	V (X(
	0
	0
	3
	0



	k+1 = Eke (e ∈ E) and Ek+1E ∈ Ea(x) and all k ∈ IN. 
	that E
	0


	Proof: 
	Proof: 
	1 >R, choose B > r1 such that ψ(r) < ψ(B) (which is always possible), choose r2 >B, and let x,Xb) ≤ r, assume that ρ(X(x,Ek,k),Xb) >r1 for all Ek such that EkE Ea(x). By condition (ii), V (X(x,Ek,k)) ≤ V (X(x,Ø,0)) − k such that EkE ∈ Ea(x). But V (X(x,Ø,0)) ≤ ψ(ρ(x,Xb)) ≤ (r) and ψ(ρ(X(x,Ek,k),Xb)) > ψ(r) so that we get k such that EkE ∈ Ea(x). Let )) + 1 as above so that, 
	Fix r
	2
	1
	1
	)) + 1. With B < ρ(
	0
	2
	0
	∈ 
	0
	0
	0
	)) for all E
	0
	0
	2
	0
	ψ
	2
	2
	3
	0
	3
	1
	for all E
	0

	x,Ek,k)) ≤ −ψ(r) for all Ek such that EkE ∈ Ea(x) which is a contradiction. Then there exists k∗ x,Ek∗,k∗),Xb)) ≤ r1 where Ek∗E ∈ Ea(x). Suppose now that ρ(X(x,Ek∗,k∗),Xb)) ≤ r1 and x,Ek,k),Xb)) > r1 for k such that and EkE ∈ Ea(x) then ψ(ρ(X(x,Ek,k),Xb)) ≤ V x,Ek,k)) ≤ V (X(x,Ek∗,k∗)) ≤ ψ(ρ(X(x,Ek∗,k∗),Xb)) 
	x,Ek,k)) ≤ −ψ(r) for all Ek such that EkE ∈ Ea(x) which is a contradiction. Then there exists k∗ x,Ek∗,k∗),Xb)) ≤ r1 where Ek∗E ∈ Ea(x). Suppose now that ρ(X(x,Ek∗,k∗),Xb)) ≤ r1 and x,Ek,k),Xb)) > r1 for k such that and EkE ∈ Ea(x) then ψ(ρ(X(x,Ek,k),Xb)) ≤ V x,Ek,k)) ≤ V (X(x,Ek∗,k∗)) ≤ ψ(ρ(X(x,Ek∗,k∗),Xb)) 
	V (X(
	0
	3
	1
	0
	such that ρ(X(
	0
	0
	0
	ρ(X(
	0
	0
	1
	0
	(X(
	0
	0
	2
	0

	(ρ(X(x,Ek∗,k∗),Xb)) ≤ ψ(r) < ψ(B) so that ρ(X(x,Ek,k),Xb) < ψ−(ψ(B)) = B for all k ≥ k∗, and Ek 
	and ψ
	2
	0
	2
	1
	1
	0
	1
	1
	1


	kE ∈ Ea(x). 
	such that E
	0

	Corollary 1: In order for the motions of G to be uniformly ultimately bounded with bound B 
	w.r.t. Ea and Xb it is sufficient that there exists a function V defined on S¯(Xb;R) (where R may be large), 
	,ψ2 ∈ KR, ψ3 ∈ K such that 
	D ∈ IN, and ψ
	1

	(i) 
	(i) 
	(i) 
	Conditions (i) and (ii) of Theorem 1 hold, and 

	(ii) 
	(ii) 
	x,Ek+1,k + 1)) − V (X(x,Ek,k)) ≤ −ψ(ρ(X(x,Ek,k),Xb)) for all x0 ∈ S¯(Xb;R), and for all Ek such k+1 = Eke (e ∈ E), Ek+1E ∈ Ea(x), k ∈ [0,D) and if this inequality holds for IN then it holds k such that EkE ∈ Ea(x) for some ] (i.e., for each E ∈ Ea(x) the inequality holds at least once every D steps). 
	V (X(
	0
	0
	3
	0
	that E
	0
	for each E
	0
	0




	Proof: 
	Proof: 
	, r, and B as above and T as above and by condition ( IN, 
	Choose r
	1
	2

	)) for all 
	)) for all 
	)) for all 
	such that 
	). As 

	above, we find that for 
	above, we find that for 
	) for all 
	such that 

	). Choosing we get a contradiction for 
	). Choosing we get a contradiction for 
	. The remainder of the proof 

	is the same as for Theorem 2. 
	is the same as for Theorem 2. 


	Theorem 3 For the DES G to be practically stable w.r.t. (α,β,ρ,Xb,Ea) it is sufficient that there exists a function V defined on X and a real valued function φ(k) such that 
	(i) x,Ek+1,k+1))−V (X(x,Ek,k)) ≤ φ(k) for all Ek+1 = Eke (e ∈ E), Ek+1E ∈ Ea(x) and all k ∈ IN, and for all k ∈ IN. 
	V (X(
	0
	0
	0


	Proof: 
	Proof: 
	x,Ek,k) be any motion with x0 ∈ X such that ρ(x,Xb) < k such that EkE ∈ Ea(x). Assume that there exists a 0 which is the earliest time such that for any such that ). From 
	The result is shown via contradiction. Let X(
	0
	0
	α and with E
	0

	and substituting in (i) it is the case that 
	for all such that ). Using the fact that x,Ø,0))− sup{V (x) : ρ(x,Xb) < α} ≤ 0 
	V (X(
	0

	x0 ∈ X such that ρ(x,Xb) < α it follows that for all such that ). This implies that which is a contradiction. Therefore there does not exist k such that for any such that x,Ek,k),Xb) < β for all Ek such that EkE ∈ Ea(x) and all k ∈ IN. 
	for 
	0
	) and all IN so ρ(X(
	0
	0

	f) f,ρ,Xb,Ea) are obtained. 
	Corollary 2: Replace in Theorem 3 the infinite time interval [0,∞) with the finite time interval [0,T
	and sufficient conditions for finite time stability w.r.t. (α,β,T

	Using ideas from the proof for uniform boundedness (Theorem 1) and practical stability (Theorem 3) we state and prove the following result on Lagrange stability. 
	Ea and Xb it is sufficient that there exists a 
	Theorem 4 For a DES G to possess Lagrange stability w.r.t. 

	,ψ2 ∈ KR such that 
	function V defined on X and ψ
	1

	(i) 
	(i) 
	(i) 
	(ρ(x,Xb)) ≤ V (x) ≤ ψ(ρ(x,Xb)), for all x ∈ X,and 
	ψ
	1
	2


	(ii) 
	(ii) 
	x,Ek,k)) − V (x) < β(x) for each x0 ∈ X,and all Ek such that EkE ∈ Ea(x) for all k ∈ IN and 
	V (X(
	0
	0
	0
	0



	some β(x) > 0. 
	0

	Proof: 
	x k such that EkE ∈ Ea(x) 
	Fix 0 and let 
	) so that ). For all E
	0

	and all k ∈ IN, 
	1 ∈ KR, 
	Since ψ

	which shows that G possesses Lagrange stability. 


	4 A Lyapunov Stability-Theoretic Approach to the Analysis of Boundedness Properties of Petri Nets 
	4 A Lyapunov Stability-Theoretic Approach to the Analysis of Boundedness Properties of Petri Nets 
	4.1 Petri Net Model 
	4.1 Petri Net Model 
	For our discussions on Petri nets we will adhere (to the greatest extent possible) to the somewhat ) where 
	standard notation in [13] where a Petri net PN = (P,T,F,W,M
	0

	(i) 
	(i) 
	(i) 
	,p,...,pm} is a finite set of places (represented with circles), 
	P = {p
	1
	2


	(ii) 
	(ii) 
	,t,...,pn} is a finite set of transitions (represented with line segments), 
	T = {t
	1
	2



	) is a set of arcs (represented with arrows), 
	(iv) 
	(iv) 
	(iv) 
	(iv) 
	W : F → {1,2,3,...} is an arc weight function (represented with numbers labeling arcs and assume 

	for convenience that if ( or if ( we will extend the arc weight function so that ) = 0 for these cases and the arrow will be omitted), and 

	(v) 
	(v) 
	0 : P → IN is a (initial) marking (represented with dark dots, i.e., tokens, in places). 
	M



	It is the case that = Ø and = Ø. The Petri net structure is N = (P,T,F,W) so PN = 
	). The Petri net PN is normally referred to as the “General Petri net” while if “inhibitor arcs” are added it is called an “Extended Petri net” [13, 14] (also recall that “finite capacity nets” can be reduced to General Petri nets and that Marked Graphs and State Machines [13] are special cases of General ) or simply PN, whereas, if the initial marking is not specified we will refer to the net as N. Also note that if ) then this is often represented graphically by ) arcs from p to t (t to 
	(N,M
	0
	Petri nets). If the initial marking is pre-specified then we will refer to the Petri net as (N,M
	0

	p) each with no numeric label. k(pi) denote the marking (i.e., the number of tokens) at place pi ∈ P at time k and let the 
	Let M

	k = 
	marking (state) of PN at time k (the “k” will be dropped when it is not needed) be denoted by M

	k(p)···Mk(pm)]. A transition tj ∈ T is said to be enabled at time k if Mk(pi) ≥ W(pi,tj) for all pi ∈ P such i,tj) ∈ F. It is assumed that at each time k there exists at least one transition to fire. If a transition j ∈ T fires at time k, then the next marking for place i ∈ P is given by 
	[M
	1
	t
	that (p
	is enabled, then it can fire. If an enabled transition t
	p

	k+1(pi) = Mk(pi) + W(tj,pi) − W(pi,tj) 
	M

	j,pi) ∈ F and (pi,tj) ∈ F. Let R(M) denote the set of makings of PN (states) that can be reached . Let R(M) denote the set of all markings that are reachable from M in one transition firing. ij] denote an n × m matrix of integers (the incidence matrix) where aij = aij − a−ij with aij = i,pj) and aij−= W(pj,ti). Let uk ∈ {0,1}denote a firing vector where if tj ∈ T is fired then its k = [0···0 1 0···0]with the “1” in the jth position in the vector and zeros are everywhere else. The matrix equations (nonlinear
	where (t
	0
	from M
	0
	1
	Let A = [a
	+
	+
	W(t
	n 
	corresponding firing vector is u
	t 
	m 

	Mk+1 = Mk + Atuk (2) 
	where if at step k, a−ij ≤ Mk(pj) for all pj ∈ P, then ti ∈ T is enabled and if this ti ∈ T fires then its k is utilized in equation 2 to generate the next state. Notice that if Md ∈ ), and we fire some sequence of d transitions with corresponding firing vectors u,u,u, ..., ud−1 
	corresponding firing vector u
	R(M
	0
	0
	1
	2

	d = M0 + Au with where u is called the firing count vector. An Extended Petri net is obtained from a General Petri net by adding inhibitor arcs (sometimes n ⊂ (P × T) denote the set of inhibitor arcs for the extended Petri net = Ø). We use a line with a small circle on the end to graphically represent the inhibitor arc. The inhibitor arc does not change in any way what happens when a transition t ∈ T fires (i.e., equation 2 remains unchanged for the Extended Petri net). The inhibitor arc does, however, chang
	we will get M
	t
	called “not arcs”). Let F
	enabled at time k is given by {t

	Extended Petri nets due to fact that the addition of the inhibitor arc greatly enhances the “modeling power” of the Petri net [14]. The characterization and analysis of the qualitative properties of systems represented via Petri nets is based on the the fact that Petri net models are a special case of the general DES model in equation 1 [3, 4]. 

	4.2 Boundedness Properties of Petri Nets: A Lyapunov Approach 
	4.2 Boundedness Properties of Petri Nets: A Lyapunov Approach 
	The fact that systems represented by Petri nets are amenable to Lyapunov stability analysis was first pointed out in [3, 4]. Below we show that the Petri net theoretic boundedness properties and analysis [14, 13] are actually special cases of the boundedness definitions in Section 3 and the Lyapunov ξ2 ...ξm]such that 0, i = 1,2,...,m. Throughout this Section we will use the metric where 
	approach to boundedness analysis. Let ξ =[ξ
	1
	t 

	(3) and we will use D ⊂ INto denote a bounded set. Next we state the standard definitions of 
	m 

	boundedness for Petri nets [13, 14]. 
	) is said to be γ-bounded or simply bounded if for a given γ, M(pi) ≤ γ for 
	Definition 6: A Petri net (N,M
	0

	i ∈ P and M ∈ R(M). 
	all p
	0

	Definition 7: A Petri net N is said to be structurally bounded if it is bounded for any finite initial 
	. 
	marking M
	0

	): (i) (N,M) is γ-bounded for some γ ≥ 0 iff the motions of (N,M) which begin 0 are bounded, (ii) N is structurally bounded iff N possesses Lagrange stability, and (iii) N is structurally bounded iff the motions of N are uniformly bounded. Next, we show how the Petri net-theoretic approach to the analysis of structural boundedness is actually a Lyapunov stability-theoretic approach. Moreover, we introduce the characterization and analysis of uniform ultimate boundedness for Petri nets. 
	For a Petri net (N,M
	0
	0
	0
	at M

	Theorem 5 For the Petri net N with D = {0}: 
	(i) 
	(i) 
	(i) 
	N is uniformly bounded if there exists an m-vector φ > 0 such that Aφ ≤ 0 and 

	(ii) 
	(ii) 
	N is uniformly ultimately bounded if there exists an m-vector φ > 0 and n-vector π > 0 such that Aφ ≤ −π. 


	Proof: For (i) the proof follows by extending the one for structural boundedness in [13]. Let ξ = φ and choose 
	(4) 1 and ψ2 exist so that ψ(ρ(M,D)) ≤ V (M) 
	so that due to the choice of ρ in equation 3 the appropriate ψ
	1

	(ρ(M,D)). Notice that V must only be defined and satisfy the appropriate properties on {M : ρ(M,D) ≥ R} where R may be large. Choose 
	≤ ψ
	2

	and all t ∈ T are enabled at M} i,tj) is finite.) For (i), it suffices to show that for all such that . We know that for all M and ), for some u ≥ 0 (we know that u ≥ 0 exists since M ∈{M : ρ(M,D) ≥ R}) and . Since u ≥ 0, Aφ ≤ 0 implies that for all M and whenever M ∈ {M : ρ(M,D) ≥ R}. For (ii), it suffices to show that for all ) such that M ∈{M : ρ(M,D) ≥ R}, for some γ > 0. From equation 2, if ), then so i > 0, 
	(R is finite since W(p
	that . Since u ≥ 0 exists (as long as M ∈ {M : ρ(M,D) ≥ R}) and π

	for all ). Hence, if we choose 
	(ii) holds. 
	j ∈ T, 
	Corollary 3: For the Petri net N with D = {0} if for each t

	then N is uniformly bounded (resp., uniformly ultimately bounded). 
	Proof: Choose V (M) = Mφ where φ = [1 1...1]and use Theorem 5. 
	t
	t 

	Due to the fact that stability in the sense of Lyapunov and asymptotic stability are local properties, they hold trivially for any invariant set for a Petri net [1, 3, 4]. An analogous result to Theorem 5 part 
	(ii) exists for asymptotic stability in the large. Note that the addition of inhibitor arcs to the General Petri net to obtain the Extended Petri net simply reduces the number of possible motions that can be generated by the system. Therefore, if a general Petri net is uniformly bounded or uniformly ultimately bounded, no matter what inhibitor arcs are added to obtain an Extended Petri net the Extended Petri net will maintain the corresponding properties. Theorem 5 shows that the standard approach to bounde
	t


	4.3 Petri Net Application: Manufacturing System 
	4.3 Petri Net Application: Manufacturing System 
	In [7] the authors provide simple computer network and production network applications that illustrate the use of the Lyapunov approach for analysis of boundedness properties. In this paper we introduce the study of boundedness properties of a special class of manufacturing lines with rate synchronization shown in Figure 1. 
	Figure 1: Manufacturing Line with Rate-Synchronization 
	Suppose that we are given the manufacturing system line shown in Figure 1 where transitions represent machines (a transition firing represents the completion of processing a part), and the places are used as shown to represent buffers where parts are passed through the system for processing ) represents the number of parts that have already been processed by the first machine and that are waiting to be processed by the second machine). The “rate-synchronizers” are used to ensure that the rates of processing
	(e.g., M(p
	1

	For the analysis of boundedness properties choose V (M) = Mφ where φ = [1 1 2 1 1 2...2]. Notice k+1) ≤ V (M) so that the manufacturing line with ratesynchronization is uniformly bounded. The choice of the “2” in the φ vector weights the adding and subtacting of tokens , so that the weighted sum of tokens for the network will not increase. Checking that Aφ ≤ 0 per part (i) of Theorem 5 also verifies the uniform boundedness of the manufacturing line. 
	t
	t
	that if either fires V (M
	to, e.g., place p
	3



	5 Lagrange Stability of DES: A Manufacturing Application 
	5 Lagrange Stability of DES: A Manufacturing Application 
	We consider machines as shown in Figure 2 which are capable of servicing parts of type i such that i ∈ P where P = {1,2,...,N}. We fix the rate of arrival of parts to the machine. The machine can only service one part at a time and must be configured differently to service parts of different types. There is a setup time when reconfiguring the machine for processing different part types. Parts that have arrived at the machine and have not yet been processed are accumulated in buffers. We will show that some 
	-

	Figure 2: Machine with Buffers 
	Because we are concerned with arrival rates and because the processing of any part takes a finite k, 
	Because we are concerned with arrival rates and because the processing of any part takes a finite k, 
	amount of real time, we require that our DES model of the machine be synchronous. The events, e

	will be required to occur with a fixed real time period. All references to real time will be given in terms of the event period, which we will call a cycle. Accordingly, we define the relevant rate and delay i > 0 cycles between arrivals of parts of type i ∈ P at buffer i, the machine i > 0 cycles to process one part of type i ∈ P (when the machine is producing parts of type i i > 0 cycles are required to configure the machine to produce parts of type i ∈ P. 
	constants. There must be b
	requires m
	∈ P), and s


	We further define 
	. 
	i and bi, wi is the number of parts that can arrive at buffer i per every part of type i that enters the machine to be processed (when parts of type i are being processed). In other i cycles and the frequency of processing i cycles (assuming the machine is currently processing parts of i is the ratio of the frequency of arrivals to the frequency of departures. Clearly, it is not possible to bound the buffer levels in general if w> 1. Hence, we require that w < 1 so i < 1 for all i ∈ P. 
	From the definitions of m
	words, the frequency of arrivals of part type i is 1 part per b
	of part type i is 1 part processed per m
	type i); w
	that w

	The machine described above is similar to the machine in [23]. The authors of [23] assume that the parts are fluid and continuously arrive at and depart from the machine. We assume that the parts arrive singularly at discrete points in time. In addition in [23] they study several different scheduling policies for this machine. Here, we shall study the Lagrange stability of a priority-based part servicing policy. 
	5.1 Single Machine Priority-Based Part Servicing Problem 
	5.1 Single Machine Priority-Based Part Servicing Problem 
	N
	i, and xk = [xx2 ...xN]. Let ei represent 
	Let . The number of parts in buffer i ∈ P at time k ∈ IN is x
	1
	t
	b

	that one part of type i ∈ P arrives at buffer i, let ei represent that one part of type i ∈ P enters the 
	m

	machine for processing, and let ebe the null event. Let B = {ei : i ∈ P} and M = {ei : i ∈ P}, so that the 
	0 
	b
	m

	set of events is 
	. 
	k ∈ E is defined as a set of “sub-events”. 
	Notice that each event e

	e for ek ∈ g(xk). For ek ∈ g(xk), it is necessary that ek ∈ E and that ek satisfy the 
	We now specify g and f

	following conditions: 
	• 
	• 
	• 
	If ei ∈ ek then xi > 0. 
	m


	• 
	• 
	If e∈ ek then ek = {e}. 
	0 
	0



	xk+1 = fek(xk) then 
	If 

	. 
	xk+1 = fe0(xk), then 
	If 

	xk+1 = xk. 
	Ev = E be the set of valid event trajectories. We further specify the set of allowed event Ea, in order to specify the manner in which the machine chooses which parts to produce and to guarantee the synchronicity of the machine. We specify that the machine observe a priority-based part servicing policy. This policy mandates that once a production run is begun on a particular part type, the run must continue until the buffer of the chosen part type is emptied. Additionally, the parts in buffer i ∈ P will be 
	Let 
	trajectories, 
	the first buffer will be serviced again. For 

	for some 0 for all i ∈ P. 
	• 
	• 
	• 
	If ei ∈ ek, then ei ∈ ek+bi, and for all . 
	b
	b


	• 
	• 
	• 
	Let k∗ = min{k ≥ 0 : xi(k) > 0 for some i ∈ P} and i∗ = min{i ∈ P : xi(k∗) > 0}. 

	ei∗∈ ek∗+si∗where ( for all and ( for all i ∈ P and all k, . 
	m


	• 
	• 
	If ei ∈ ek, then 
	m



	(i) i(k + 1) > 0, then 
	if x

	for all . 
	(b) for all for all . 
	(ii) 
	(ii) 
	(ii) 
	i(k + 1) = 0, then 
	if x


	(a) 
	(a) 
	ej ∈ ek+sj and for all where j = i + 1 if (i + 1) ∈ P or . 
	m


	(b) 
	(b) 
	for all for all . 


	• 
	• 
	• 
	For any for all i ∈ P and for all i ∈ P, then . 

	• 
	• 
	k and ek+1 is fixed for all k ≥ 0. 
	The real time between events e



	Notice that with this definition, for start-up the priority-based policy sets up for and processes the first part to arrive that has the highest priority. Following this, it cycles through the processing of part types according to their fixed priority ordering (where after the lowest priority part is processed, the highest priority part is serviced again). 

	5.2 Lagrange Stability Analysis 
	5.2 Lagrange Stability Analysis 
	We will show that the machine whose operation is described above can be implemented with finite buffers by showing that the machine with a priority-based part processing policy possesses Lagrange stability. Choose 
	Xb = {[00...0]} 
	t

	and 
	. (5) i which is defined for all i ∈ P, we let a = mini{ai} and ¯a = maxi{ai}. 
	For any variable a

	a and Xb. 
	Theorem 6 The machine with priority-based part servicing policy possesses Lagrange stability w.r.t. 
	E

	Proof: 
	Proof: 
	Choose V xk) = ρ(xk,Xb) (6) 
	(

	,k,k,...}, 
	so that condition (i) of Theorem 4 is satisfied. We define the set of times R = {k
	0
	1
	2

	p < kq if p < q, to include every time k such that and ) = 0 for some i ∈ P 0 = 0. Let j∗(kp) ∈ P, kp ∈ R, denote p and kp+1. We define 
	k
	(these times define the ends of production runs). Additionally, let k
	the part type that is being processed by the machine between times k

	p, we consider: 
	. In order to bound ∆

	• j∗(kp)(kp), the number of parts of type j∗(kp) that are in the buffer at time kp and 
	x

	+ 1, the maximum number of parts of type j∗(kp) that can arrive during time ∆p. The sum of the above two classifications of parts of type j∗(kp) is the maximum number of parts that p and kp+1. The maximum number of cycles, ∆p, that the machine j∗(kp) times the sum of parts: 
	must be processed between times k
	may require to accomplish the necessary processing is simply m

	. 
	p can be no larger than ∆p plus the number of cycles required to configure the machine to process parts of type j∗(kp). Hence, we find that 
	∆

	, 
	so that 
	. (7) V xkp+1) in terms of V (xkp). In order to do this, we consider the following relations, Ea: 
	We now bound 
	(
	which are easily derived from the specification of 

	xj∗(kp)(kp+1) = 0 (8) 
	∆p 
	xi(kp+1) − xi(kp) ≤ + 1 for all ) 
	(9) 
	i Ea, it follows that 
	b
	From equations 8, 9, and the definition of 

	Applying equations 5, 6 , 7, and 10, we see that 
	V 
	(11) 
	While up to this point the proof has been similar to the proof of stability for the CAF policy in [23], next we must account for the the fact that we are using the priority-based part servicing policy. 
	Ea (which characterizes the priority-based part processing policy), it is evident that 
	From the definition of 

	+ 1 (12) 
	where is an upper bound on the number of cycles that have transpired since q, q < p, such that xj∗(kq) = 0. From equation 12, we see that 
	the last time k

	. (13) Manipulating equation 13 yields 
	1 (14) 
	1 (15) where and 0 < 2 < 1. If we define 
	and 
	, 
	we see from equations 11 and 16 that (16) V xkp+1) < γV (xkp) + ζ. Notice that by definition, 0 < γ < 1. We now show via induction that 
	(

	V (17) As the induction hypothesis, we assume that equation 17 is true for some general q. Given the induction hypothesis and equation 16, we have 
	V 
	Hence equation 17 is true for q + 1. Because equation 16 is precisely equation 17 with q = 1, equation 17 must be true for all q ≥ 1. If we let p = 0 in equation 17, we see that 
	V 
	(18) 
	V xkq) for all kq ∈ R. q such that if k ∈ Z and k ∈ (kq,kq+1), then k ∈ Sq. In equation 18, we 
	Thus, we have bounded 
	(
	Consider now the set of times S

	xk), for k = kq and k = kq + 1. We now wish to bound 
	have found a bound for V (

	xk) for all . Clearly, the maximum of V over must occur at one of 
	V (

	q, kq+1, or at kq, where q immediately before the beginning of part production). We can bound the increase in q and kqas 
	the following times: k
	m
	is the time in S
	V that occurs between times k
	m 

	Hence, for all k > 0, 
	V , (19) so that by Theorem 4, the machine posses Lagrange stability. 
	Remark 1: Utilizing equation 19 it is easy to see that the buffer levels will for all k ≥ 0 be constrained by 
	Remark 2: Notice that the results verify our intuition that increasing (0) for the priority-based part servicing policy will create the possibility that buffer levels can rise even higher. 
	Remark 3: If the CAF (clear a fraction) policy is used the authors in [23] show that the buffer levels will be constrained by 
	, 
	Nand we have a machine such that mi = mj, bi = bj for all i,j ∈ P, and 
	where 0 <2< 1. If 2 is chosen to be 
	1 

	we have all the same set-up times, then the bound given in Remark 1 is the same as the CAF bound 
	(except for the differences induced by the discrete nature of our part flow). Intuitively, this is not 
	surprising since it indicates that if all the arrival rates are the same and all the processing times are 
	the same then in this special case the priority-based policy is a special case of the CAF policy so we 
	get the same bounds as in [23]. It is easy, however, to pick the machine parameters so that the priority-
	based policy will perform much differently than the CAF policy (in fact this is most often the case), 
	and for these cases our results provide bounds for this new policy. 



	6 Concluding Remarks 
	6 Concluding Remarks 
	We have shown that it is straightforwardto extend the conventional notions and analysis of uniform boundedness, uniform ultimate boundedness, practical stability, finite time stability, and Lagrange stability to the class of DES that can be defined on a metric space (e.g., Petri nets and Vector DES). We show that the Petri net-theoretic notions and analysis of boundedness are really a special case of conventional notions and analysis of boundedness. Also, we introduce the notion of uniform ultimate boundedn
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