
159 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS. VOL. 24, NO. I, JANUARY 1994

[11] J. H. Holland, "Genetic algorithms and classifier systems: Founda­
tions and future directions,'' in Proc. 2nd Int. Conf Genetic Algo­
rithms, J. J. Grefenstette, Ed., 1987.

[12] D. Huang, "A framework for the credit-apportionment process in rule­
based systems," IEEE Trans. Syst. Man Cybern., vol. 19, no. 3, pp.
489-498, May/June 1989.

[13] B. Kosko, Neural Networks and Fuzzy Systems. Englewood Cliffs,
NJ: Prentice Hall, 1992.

[14] D. B. Lene!, "The ubiquity of discovery: Computers and thought
lecture," in Proc. 5th Int. Joint Conf A. I., I 977.

[15] A. D. McAulay, and J. C. Oh, "Image learning classifier system
using genetic algorithms," in Proc. IEEE NAECON '89, vol. 2/4,
pp. 705-710, 1989.

[16] A. D. McAulay, Optical Computer Architectures. New York:
Wiley, 1991.

[17] J. C. Oh, "Improved classifier system using genetic algorithms ap­
plied to image learning," M.S. thesis, Wright State Univ., 1989.

[18] E. Post, "Formal reductions of the general combinatorial problem,"
Amer. J. Math., vo. 65, pp. 197-268, 1943.

[19] R. L. Riolo, CFS-C: A package of domain independent subroutines
for implementing classifier systems in arbitrary, user-defined envi­
ronments, Tech. Rep., Logic of Computers Group, Univ. Michigan,
Ann Arbor, Jan. 1986.

[20] J. D. Schaffer, Some experimenting in machine learning using vector
evaluated genetic algorithms, Ph.D. dissertation, Dept. Elec. Eng.,
Vanderbilt Univ., Nashville, Tennessee, Dec. 1984.

[21] S. F. Smith, A learning system based on genetic algorithms, Ph.D.
dissertation, Univ. Pittsburgh, Pittsburgh, PA, 1980.

[22] H. E. Stephanou, and A. P. Sage, "Perspectives on imperfect infor­
mation processing," IEEE Trans. Syst. Man Cybern., vol. SMC-17,
no. 5, pp. 780-789, Sept./Oct. 1987.

[23] S. Watanabe, Pattern Recognition (Human and Mechanical). New
York: Wiley, 1985.

A Metric Space Approach to the Specification of the
Heuristic Function for the A* Algorithm

Kevin M. Passino and Panos J. Antsaklis

Abstract-Given a graph with arcs that have costs, the A* algorithm
is designed to find the shortest path from a single node to a set of nodes.
While the A* algorithm is well understood, it is somewhat limited in
its application due to the fact that it is often difficult to specify the
"heuristic function" so that A* exhibits desirable computational prop­
erties. In this paper a metric space approach to the specification of the
heuristic function is introduced. It is shown how to specify an admis­
sible and monotone heuristic function for a wide class of problem do­
mains. In addition, when the cost structure for the underlying graph
is specified via a metric, it is shown that admissible and monotone heu­
ristic functions are easy to specify and further computational advan­
tages can be obtained. Applications to an optimal parts distribution
problem in flexible manufacturing systems and artificial intelligence
planning problems are provided.

Manuscript received March 7, 1991; revised April 10, 1992 and January
22, 1993. This work was supported in part by the Jet Propulsion Labora­
tory. The work of K. Passino was supported in part by the National Science
Foundation under Grant IRI-9210332.

K. M. Passino is with the Department of Electrical Engineering, Ohio
State University, Columbus, OH 43210.

P. J. Antsaklis is with the Department of Electrical Engineering, Uni­
versity of Notre Dame, Notre Dame, IN 46556.

IEEE Log Number 9212940.

Index Terms-A* Algorithm, artificial intelligence, heuristic
search, manufacturing systems.

I. INTRODUCTION

This paper focuses on the computationally efficient solution to
an optimization problem on weighted graphs. In particular, we
study the problem of how to find the shortest path from a single
node to a set of nodes. The graph that is used and the shortest path
problem (SPP) considered are defined in Section II. Problems with
computational complexity prohibit the use of a conventional dy­
namic programming solution to the SPP. The standard shortest path
algorithms (e.g., Dijkstra's, Moore's, Ford's, and Bellman's al­
gorithms [6]) cannot be used to solve the SPP due to the fact that
we search from a node to a set of nodes on an implicit graph that
is possibly infinite. It is for these reasons that we utilize a branch
and bound algorithm called the "A* algorithm" [9] that can use
certain information about the problem domain (to be defined pre­
cisely in Section III) to focus the search for a solution to the SPP
and, hence, reduce computational complexity. Note that it is pos­
sible to solve the SPP via a generalized version of Dijkstra's al­
gorithm but this generalized Dijkstra's algorithm is a special case
of A* [6]. Moreover, in Proposition 2 it is shown that in solving
the SPP, if A* operates with an admissible and monotone heuristic
.function it will always visit fewer nodes than the generalized Dijk­
stra's algorithm.

The problem one encounters, though, is that it is, in general,
quite difficult to find an admissible and monotone heuristic function
for many applications. Section IV begins by discussing problems
with existing results on the specification of the heuristic function.
To address these problems we extend the theory of heuristic search
by showing that a metric space approach can be used to specify
admissible and monotone heuristic functions in a systematic way,
for various SPP's, for a wide variety of applications so that they
can be solved efficiently. Specifically, the main results of the paper
are as follows: Theorem I provides a metric space approach to
specifying admissible and monotone heuristic functions. Theorem
2 shows that it is not necessary to use a metric to specify the heu­
ristic function. In Theorem 3 and Remark 2 we show how to au­
tomatically specify admissible and monotone heuristic functions
for a wide class of applications that can be modeled via a set of
nodes X such that X C ," (e.g., extended petri nets [35], vector
discrete event systems [18], and other Petri net models [12], [16],
[38]). In cases where it is known that the costs of the arcs can be
specified with a metric, and all the nodes are isolated points, we
can expect computational complexity to be further reduced. We
introduce a new class of "good" heuristic functions and show in
Theorem 4 that these are admissible and monotone. Theorem 6
quantifies how good heuristic functions can be expected to focus
the search for solutions to SPP's. The theoretical results in this
paper are based upon an extension of those in [26]-[28], [30].

In Section V we apply the method in Section III and results in
Section IV to two problems: (I) an optimal part distribution prob­
lem in flexible manufacturing systems, and (2) artificial intelli­
gence (AI) planning problems. In each case we show how the re­
sults of Section IV can be used to specify admissible and monotone
heuristic functions; then we use these in A* to solve SPP's for both
of the applications. The results clearly illustrate that by using our
approach to specify the heuristic functions for A*, significant com­
putational savings can be obtained over the generalized Dijkstra's
algorithm for solving SPP's. Concluding remarks are provided in
Section VI.

0018-9472/94$04.00 © 1994 IEEE

https://0018-9472/94$04.00

160 IEEE TRANSACTIONS ON SYSTEMS. MAN, AND CYBERNETICS, VOL. 24, NO. 1, JANUARY 1994

II. THE SHORTEST PATH PROBLEM

We consider problems that can be modeled with

where

X is the possibly infinite set of nodes (for our
applications in Section V, states),

Q is the possibly infinite set of labels for arcs

(simply called arcs) between nodes (for our
applications, these will be "inputs")

o: Q XX--+ X is the function (a partial function) which de-
fines a graph,

x: XX X--+ iRl+ is the arc cost function (a partial function)

Xo is the initial node, and
X1 C X is the nonempty finite set of final nodes.

!Rl+ denotes the set of positive reals and IRl+ = IR1+ U {O}. The set

E(P) = {(x, x') EX XX: x' = o(q, x)} u {(xd, Xo)}

denotes the (possible infinite) set of arcs for P (xd is a dummy node,

and (xd, x0) a dummy arc added for convenience). The arc cost

function x(x, x') is defined for all (x, x') e E(P); it specifies the

"cost" for each arc and it is required that there exist a o' > 0 such

that x(x, x') ~ o' for all (x, x') e E(P). (For convenience, how­

ever, we define x (xd, x0) = 0.) Finally, we require that for each x

e X, \ { o (q, x): q e Q} \ is finite, i.e., that the graph of Pis locally

finite (hence, Pis equivalent to a o-graph [10], [34]).

The mathematical notation in this paper is as follows: Let Z be

an arbitrary set. Z* denotes the set of all finite strings over Z in­

cluding the empty string 0. For any s ,t e Z * such that s = zz'

• • • z" and t = yy' • • • y", st denotes the concatenation of the

strings s and t, and t e s is used to indicate that t is a substring of

s, i.e., s = zz' • • • t • • • z". For brevity, the notation s2z" is used

to denote a strings e Z* such thats = zz' • • • z" begins with the

element z e Zand ends with z" e Z. Let Zo be a distinguished mem­

ber of the set Z. The notations, is used to denote a strings e Z*

such that s = ZoZ' • • • z begins with z0 and ends with z e Z. Fur­

thermore, s,> denotes a strings e Z* such thats= zz'z" • • • begins

with z e Z and the end element is not specified. The string s<z>

denotes the strings e Z* such thats = ZoZ' • • • zz" • • • , i.e., a

string that begins at z0 , passes through z, and whose end element

is not specified. A (finite directed) cycle is a strings e Z* such that

s = zz' • • • z"z has the same first and last element z e Z. A string

s e Z* is cyclic if it contains a cycle (fort,, e Z*, tzz es), and

acyclic if it does not. Let \s\ for s e Z* denote the length of string

s e Z, i.e., the number of elements of Z concatenated to obtain s.

A string s e X* is called a path (for our applications, a state

trajectory) of P if for all successive nodes xx' es, x' = o(q, x) for

some q e Q. Let

Es(P) C E(P)

denote the set of all arcs needed to define a particular path s e X *

that can be generated by P. For some path s = xx'x"x"' • • • ,

Es(P) is found by simply forming the pairs (x, x'), (x', x"), x",

x"'), • • • . A sequence of arcs u e Q* that produces a path s e X *

is constructed by concatenating q e Q such that x' = o(q, x) for

all xx' es. Let X, C X then

X(P, x, X,) C X*

denotes the set of all finite paths s = xx' • • • x" of P beginning

with x e X and ending with x" e X,. Then, for instance, X (P, x0 ,

x1) denotes the set of all finite length paths for P that begin with

the initial node x0 and end with a final node x e X1and X (P, x, X)

denotes the set of all valid paths for P that begin with x e X. P is

said to be (x, X,)-reachable if there exists a sequence u e Q* that

produces a paths e X (P, x, X,).
To specify the SPP let the performance index be

J: X* lfi1+

where the cost of a path s is defined by

J(s) = x(x, x')
(x,x')EE,(P)

for all x e X ands e X (P, x, X). By definition, J(s) = 0 ifs = x

where x e X.
Shortest Path Problem (SPP): Assume that Pis (x0 , X1) reach­

able. Find a sequence of arcs u e Q* that leads P along an optimal

paths*, i.e., s* e X(P, x0, X1) such that J(s*) = inf {J(s): s e

X(P, xo, X1)}.
There may, in general, be more than one optimal path, i.e., the

solution to the SPP is not necessarily unique. The set of optimal

paths for P, beginning at node x e X, and ending at node x' e X,,

where X, C X, is denoted by X *(P, x, X,) C X (P, x, X,). In this

paper we are concerned with finding only one optimal path for the

SPP and finding it in a computationally efficient manner.

III. SOLUTIONS VIA HEURISTIC SEARCH

The approach here is to use a search algorithm to successively

generate candidate paths until an optimal one is found. A brute

force approach to solving this problem may produce an algorithm

whose computational complexity would prohibit solving all but the

simplest of SPP's. Here we use an approach which seeks to mini­

mize the number of paths considered and hence, produces a solu­

tion in a computationally efficient number for a wide variety of

applications.
A conventional dynamic programming solution could be used

for the SPP, but due to the problem of state space explosion, such

methods can result in an inefficient algorithm with large memory

requirements [1], [40]. Often, a branch and bound technique is

chosen in such situations to produce either optimal or near optimal

solutions (see, for instance, [6], [15], [17], [22]). This is the ap­

proach taken here. We use a particular class of branch and bound

algorithms called "heuristic search" algorithms [13], [23] which

utilize the "principle of optimality" of dynamic programming and

the advantages of branch and bound algorithms that allow certain

candidate solutions (paths) to be eliminated from consideration by

using information from the problem domain. The particular heu­

ristic search algorithm used here is called the "A* algorithm" and

it was introduced in [4], [9], [10]. The formal properties of A* are

given in [24], [25], [34] and are briefly summarized below to pro­

vide the necessary background for this paper.
Note that: (1) \X\ can be infinite, (2) the graph of Pis defined

implicitly rather than explicitly, and (3) we search for the shortest

path from one node to a set of nodes. Hence, Dijkstra's algorithm

[6] cannot, in general, be used to solve the above SPP. It is for

similar reasons that Moore's, Ford's, and Bellman's algorithms [6]

cannot be used to solve the SPP. Dijkstra's algorithm can be gen­

eralized so that it can also operate even when (1)-(3) hold; this

"generalized Dijkstra's algorithm" is actually a special case of the

A* [6] which will be used here. In fact, below we will show that

the worst case computational complexity A* is always less than or

equal to that of the generalized Dijkstra's algorithm. Moreover, for

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 24, NO. I, JANUARY 1994 161

a wide class of problem domains, we can significantly reduce the ss' denote the operation of replacing s by ss'. To find sx' E X (P,
amount of computations taken to solve the SPP compared with the C, 0) from C and 0 choose (x, x') E C U 0 let s = xx'. Repeat
generalized Dijkstra's algorithm, the following steps until xd is encountered: (a) find (x 1, x2

) E C U
A. Theory of the A* Algorithm 0 with x2 = x wheres = x· • ·, (b) lets<- x 1s, and go to (a). The

A* algorithm above is nearly the same as that originally given inHeuristic search techniques have been applied to search prob­ [9] except for clarity the "pointers" (arcs) are included explicitlylems where computational complexity is either very high or intract­ in the algorithm via 0 and C.
able. The A* algorithm is one of the most widely used heuristic A* is said to be complete since it terminates with a solution. Asearch algorithms. It utilizes information about how promising it heuristic function h (x) is said to be admissible if O s iz (x} s
is that particular paths are on an optimal path to reduce the com­ J(s;) for all x EX such thats;> E X*(P, x, X1). Let A*(h(x))
putational complexity. To do this, J (s*) is estimated by some eas­ denote an A* algorithm which uses h(x) as its heuristic function.
ily computable evaluation function given by]: X* ---+ U;:+ which is If Ji (x) is admissible then A* (h (x)) is said to be admissible since it
defined for alls EX* such thats EX (P, x, X) where x EX (often is guaranteed to find an optimal path when one exists, i.e., when
"](x)" is used [34] but we use the mathematically correct notation P is (x0 , X1) reachable. A heuristic function h(x) is said to be
•'](s,>' '), Ifs* E X * (P, x0 , X1) and s* = sfx> then J (s*) = J (s;) monotone if h(x) s x(x, x') + h(x') for all (x, x') E E(P). A+ J (s!,) where J(s;) = min {J (s,): sx E X (P, x0 , {x})} and heuristic function h (x) is said to be consistent (equivalent to being
J(s!,) = min {J(sxx,}: s,,, EX (P, x, X1)}. The evaluation function monotone) if h(x) s J(s!,) + h(x') for all (x, x') E E(P) whereJ is obtained by approximating both J (s;) and J (s;,,} with appro­ s!, E X * (P, x, x'). If iz (x) is a monotone heuristic function then
priately defined functions. The value of J (s;) will be estimated A* (h (x}) finds optimal paths to all expanded nodes, i.e., g(s,) =
using g: X*---+ J:;+ where g(sx) = J(s_J for alls, E X(P, x0 , X) J(s:) for all x EX with(·, x) EC, s, E X(P, C, 0), ands; E
("g(x)" is often used in the literature). Note that g(s,) = 0 ifs, X * (P, x0 , x). The real utility of knowing that iz (x) is monotone
= x0 the initial node of P. To estimate J(s_;,,) the function iz: X---+ lies in the fact that nodes are expanded at most once. This implies
u::+ is used with h(x) = 0 if x E X1. The function h is called the that the A* algorithm can be simplified by removing Step 5, part
"heuristic function" since it provides the facility for supplying the (c) since arcs (pointers) will never be taken from C and placed in
A* algorithm with special information about the particular search 0.
problem under consideration to focus the search of A*. The eval­
uation function is chosen to be](s,) = g(s,) + h(x) where x EX. B. Efficient Solutions to the Shortest Path Problem
The function](s,) estimates the cost of a path from x0 to x' E Xr In this Section we show that the A* algorithm produces efficientthat goes through the node x. The A* algorithm proceeds by gen­ solutions to the SPP. The following proposition follows immedi­erating candidate paths which are characterized with two sets C C ately from the above discussion.
E(P) and 0 C E(P). The operation of finding the set 8 (x) = {x' Proposition 1: If iz (x) is admissible then A* (h (x)) provides aE X: x' = o(q, x)} is called expanding the node x E X. For Zand solution to the SPP.
Z' arbitrary sets, let Z <- Z' denote the replacement of Z by Z '. For a worst case analysis of the complexity of A* used to solve
The A* algorithm which produces an optimal path s* E X * (P, x0 , the SPP in (20] the authors assume as a basic operation the expan­
Xi) assuming that Pis (x0 , X1) reachable is given by: sion of a node and that](s,) is easy to compute. Let Xe = {x EX:

The * Algorithm:](s,) s J(s*), s, E X (P, C, 0), s* E X * (P, x0 , X1)}. No more
(1) Let C = {} and 0 = {(xd, x0)}, than IX,I nodes, where IXel s IXI, will be expanded at termina­
(2) If IOI > 0, then go to Step 3. If IOI = 0, then exit with no tion. If h(x) is only admissible (and not monotone) then it is pos­

solution. sible that A* expands 0(2') (where r = IXel) nodes in the worst
(3) Choose (x, x') E 0 so that](s,x') is a minimum (resolve case. If iz (x) is known to be monotone then each node is only ex­

ties arbitrarily) . panded once so A* has complexity O(IXel) in the worst case. In
Let 0 <- 0- {(x, x')} and C <-CU {(x, x')}. general, if it is assumed that visiting a node is the basic operation

(4) If x' E X1 then exit withs,, EX* (P, x0 , X1), an optimal then if h(x) is monotone, A* runs in O(IXel 2) steps in the worst
path. case. (We shall use this latter characterization of computational

(5) For each x" E 8 (x'): complexity to compare A* to other conventional algorithms.) It is
(a) If for all x EX, (x, x") ¢CU 0 then let 0 <- 0 U

also important to note that the computational complexity of A* is
{(x', x")}. optimized relative to a certain class of algorithms that are "equally

informed" about the problem domain and return an optimal solu­(b) If there exists x EX such that (x, x") E 0 and
](s,,x") tion [2]. In fact, if iz (x) for A* is monotone, then A* uses the most
<](s-;;x") then let O <- 0 - { (x, x")} and effective scheme of any admissible algorithm for utilizing the heu­
0 <- 0 U { (x', x")}. ristic information provided by iz (x) [2]. The following proposition

(c) If there exists x EX such that (x, x") EC and follows immediately from the above discussions.
](s,,x") <](s:.x") then let C <- C - {(x, x")} and Proposition 2: If h(x) is monotone and IXI is finite then the
0 <- 0 U {(x', x")}. complexity of A* (h (x)) is 0 (IX, I2) and the complexity of the gen­

(6) Go to step (2). eralized Dijkstra's algorithm is O(IXl 2) where IX,I s IXI.
Proposition 2 indicates that: (1) A* should always be chosen over

The contents of C and 0 change at different stages of the algorithm, the generalized Dijkstra's algorithm to solve the SPP, provided that
but it is always the case that there does not exist (x 1

, x2
) E C U 0 a monotone h(x) can be found, and (2) if a monotone h(x) can be

3
2

3

,and (x x4
) E C U 0 such that x = x4 and x 1 * x Let the set of found, then IIXI - IX,11 or the size of h(x} for all x EX, quantifies

paths of P, investigated by A*, be denoted by X(P,
.

C, 0). Each the computational savings of A* over the generalized Dijkstra's
paths,, E X (P, C, 0) begins with x0 , the initial node, and has an algorithm. Roughly speaking, the larger that iz (x) can be chosen
end node x' EX such that (·, x') EC U 0. Fors, s' EX* lets <- (still maintaining monotonicity) the fewer nodes A* will have to

162 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 24, NO. I, JANUARY 1994

expand to find an optimal path. Results have in fact shown that for
a wide class of graphs, if h(x) is monotone then A* far outperforms
the generalized Dijkstra's algorithm. For instance, in the case where
h(x) is monotone it has been shown that for a wide class of ran­
domly generated "Euclidean graphs" A* operates with an average
complexity of O(IXI) [37). Similar results on the reduction of search
complexity obtained with A* over the generalized Dijkstra's al­
gorithm are provided in (5).

IV. THE HEURISTIC FUNCTION

It is clear that it is very important to be able to specify an h(x)
that is monotone; otherwise the complexity of A* can become ex­
ponential in the worst case. Unfortunately it is not easy to specify
monotone heuristic functions for a wide class of applications;
hence, the use of A* has been somewhat limited to special situa­
tions. This problem is partly resolved here by showing that a metric
space approach provides a method to specify monotone (and hence
admissible) heuristic functions for a very wide class of applica­
tions.

There has been extensive work on the problem of how to auto­
matically generate heuristics for an arbitrary problem. In [3], (7),
[8], [33) the authors introduced, respectively, the related ''problem
similarity," "auxiliary problem," and "relaxed model" ap­
proaches to the generation of heuristics. The main deficiencies of
these approaches is that they provided no way to systematically
produce similar and auxiliary problems or relaxed models. Fur­
thermore, in [39) it was proven that the approach in [7] can be
computationally inefficient. Approaches similar to these have also
been used in Operations Research [11), [17] . As an extension to
Pearl's (and the others) work, the authors in [14] suggest a method
for modeling a problem that will always lead to the derivation of a
set of "simplified" subproblems from which admissible and mono­
tone heuristics can be derived algorithmically for the original prob­
lem. Their algorithm uses a problem decomposition algorithm to
obtain the subproblems and then uses exhaustive search to find the
minimal cost optimal path in each subproblem. From this, a heu­
ristic which is admissible and monotone is generated. The problem
with this approach is the reliance on an exhaustive search. While
Irani and Yoo have found computationally efficient solutions to
several specific simple problems, the approach of decomposing the
problem to generate heuristics was not proven to be computation­
ally efficient in general. Recently, it has been shown that for a class
of "vector discrete event systems," a linear integer programming
approach can be used to specify the heuristic function for A* (19).
Unfortunately, computationally efficient techniques do not cur­
rently exist to solve the linear integer programming problem.

A. Specifying The Heuristic Function: A Metric Space Approach

In our metric space approach to specifying the heuristic function
there is no need to perform a search or use a mechanical decom­
position procedure to find the heuristic. In this way we do not de­
feat the main purpose of using the A* algorithm-to reduce the com­
putational complexity of search. We will, however, require for
some of the results below that P has nodes that are "numerical,"
i.e., that X C [Rl". In this way we exploit the structure of X to obtain
efficient solutions to the SPP.

Let Z be an arbitrary nonempty set and let p: ZxZ --+ [Rl where p
has the following properties: (1) p (x, y) 2: 0 for all x, y E Zand

p(x, y) = 0 iff x = y, (2) p(x, y) = p(y, x) for all x, y E Z, and
(3) p (x, y) 2: p (x, z) + p (z, y) for all x, y, z E Z (triangle in­
equality). The function p is called a metric on Zand {Z; p} is a
metric space. Let z E Zand define d(z, Z) = inf{p (z, z'): z' E Z}.
The value of d(z, Z) is called the distance between point z and
set Z. Recall that if x, y E [Rl", x = [x1 x2 • • • xnJ', y =
lY1 Y2 ••• Yn1', and 1 :5 p :5 oo, then Pp(x, y) = cI:7=1 Ix; -
y;jP] 11P, p,y,(X, y) = max {Ix; - Y1I, lx2 - Y2I, • • ·, lxn - Ynl},
and Pd (discrete metric) where Pd(x, y) = 0 if x = y and Pd(x, y)
= 1 if x * y, are all valid metrics on IRl" [21). We shall frequently
use these metrics in the following results and in Section V.

The first theorem says that if the heuristic function is chosen to
be the distance between a node x and a set X1 as defined in a metric
space, and the metric satisfies a certain constraint, then it will be
both admissible and monotone.

Theorem 1: For P if h(x) = inf{p(x, x1): x1 E X1} and p is a
metric on X with p (x, x') :5 x (x, x') for all (x, x') E E(P) then
h(x) is admissible and monotone.

Proof For admissibility let s,x" E X (P, x, X1) where x EX
and let xx' E s:,x" be two successive nodes on s,x ". From the tri­
angle inequality, p(x, x") :5 p(x, x') + p(x', x"). Using repeated
applications of the triangle inequality along s:,x " we know that if t
= sxx"

p (x, x") :5 I: p (x, x')
(x,x1eE,(P)

and with the assumption that p (x, x') :5 x(x, x ') for all (x, x') E
E(P)

I: p (x, x') :5 I: x(x, x').
(x,x1EE,(P) (x,x')EE,(P)

Since this is true for any path it is true for optimal ones also. Let
st,,, Ex *(p, x, X1) (we need only consider cases where one exists).
Then, from above,

0 :5 p (x, x") :5 I; X (x, x') = J (s:Jx,,)
(x,x') EE,(P)

where t = s!fx,,_ So, by the definition of h(x) we have O :5 h(x) :5

J(s{,,,) for all x EX and s!x" E X * (P, x, X1) which guarantees the
admissibility of h(x). For monotonicity, let sxx" EX (P, x, X1) where
xEX and let xx' E s,x" be two successive nodes on Sxx"· Notice that
for the sequence of nodes x E X expanded, the node at which the
inf is achieved in h (x) = inf{p (x, x1): x1 E X1} may change. Let xP
denote the node at which the inf is achieved for x and x; the one
for x'. By the triangle inequality, p (x, x;) :5 p (x, x') + p (x', x;).
But by definition of h(x) we know that p(x, xp) :5 p(x, x;). It fol­
lows that p (x, xp) :5 p (x, x') + p (x', x;). By the definition of h (x)
we have h(x) :5 p(x, x') + h(x') and since p(x, x') :5 x(x, x'),
h (x) :5 x (x, x') + h (x') for all x, x' EX such that xx' E s where
s E X(P, x, X1) which guarantees the monotonicity of h(x) (we
could have just proven monotonicity since it implies
admissibility). ■

Remark 1: Assume that P is (x0 , X1) reachable. Consider the
following suboptimal shortest paths problem (SOSPP): Find a se­
quence of arcs u e Q* that leads P along a near-optimal (E-optimal)
paths,i.e.,seX(P,x0 ,X1)suchthatJ(s) :5 (1 + E)l(s*)where
J(s*) = inf{J(s): s e X(P, x0, X1)} and E 2: 0. A solution to this
SOSPP is provided in [29] where if E is very small and h(x) is E­

monotone h(x) :5 (1 + E)x(x. x') + h(x') for all (x, x') e E(P))
the complexity of the algorithm may be satisfactory for special
problems (but it is exponential in the worst case). In [29] the au-

163 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS. VOL. 24,

thors use the same metric space approach as above to provide the
first results on the automatic specification of h(x) for a SOSPP's
(first results for automatic specification of "semiadmissible" heu­
ristics [34)). The result is the same as for Theorem l except it is
required that p(x, x') s (l + e)x(x, x') for all (x, x') E E(P) to
get e-monotonicity and hence e-optimality.

It is, however, not necessary to use the metric space notion of
distance for the heuristic function as Theorem 2 shows.

Theorem 2: Let 0: X X X-+ :Rl+ and suppose that fJ(x, x') s
x(x, x') for all (x, x') E E(P). For P there exist heuristic functions
h(x) = inf{fJ(x, x'): x' E X1} such that fJ is not a metric on X, that
are admissible and monotone.

Proof: Suppose that fJ (x, x') = 0 for all x, x' EX. Then f) is
not a metric but when 0 is used in the heuristic function we have
h(x) = 0 for all x EX which is clearly an admissible and monotone
heuristic function. Also, if h (x) s h' (x) for all x EX, where h' (x)
satisfies the conditions of Theorem 4, h(x) is admissible but not
necessarily monotone. ■

Theorems 1 and 2 place the statements made in the theory of
heuristic search about "distance" between points, and between
points and sets in a precise mathematical setting. Likewise, they
clarify the relationship between monotonicity and the triangle in­
equality which has, only in the past, been loosely referred to [9],
[34].

Theorem 1 can make it easier to specify h(x) because for many
problems the conditions of Theorem 1 are easier to test than the
admissibility and monotonicity conditions. Theorem l does not,
however, make the task of specifying h(x) entirely simple; h(x)
still must be chosen so that the constraint p (x, x') s x (x, x') is
met for all (x, x') E E(P) and one must, in fact, be able to specify
a metric p on X. Theorem 3 and the following discussions show
several ways to overcome these difficulties.

Let p be any metric on X and

') = {3 p(x, x')Pa (X, X
l + p(x, x')

where {3 = inf{x(x, x'): (x, x') E E(P)}. Let Pb be a bounded
metric on X for (x, x') E E(P), i.e., for all (x, x') E E(P) there
exists a > 0 such that Pb(x, x') s a. Let Pc be a metric on X and
assume that Pc(x, x') = 'YX (x, x') for all (x, x') E E(P) for some 'Y
> 0. Let P{j be a metric on X such that p{j(x, x') = {3 if x * x' and
P[j(x, x') = 0 if x = x' for all (x, x') E E(P).

Theorem 3: For P the heuristic functions:

(l) h1 (x) = inf{Pa (x, X1): Xt E Xj}
(2) h2(x) = inf{({3/a)pb(x, xi): XtE Xj}
(3) h3(X) = inf{(l/-y)pc(X, X1): XtE Xi}
(4) h4 (x) = inf{p/j (x, x1): x1 E X1}

are all admissible and monotone.
Proof: Due to the fact that there exists o' > 0 such that x(x,

x') ~ o' for all (x, x') E E(P), {3 > O; hence, it is easy to show
that Pa, ({3/a)pb, (l/-y)pc, and P{j are all metrics on X. For (l),
Pa(x, x') s x(x, x') for all (x, x') E E(P) since Pa(x, x') s {3 and
{3 s x(x,x') for all (x,x') eE(P). For(2), since ls (1/{3)x(x,
x') and (1/a)pb(x, x') s l for all (x, x') E E(P) we know that
({3/a)pb(x, x') s x(x, x') for all (x, x') E E(P). Clearly for (3),
(l h)Pc (x, x') s x (x, x') and for (4) P{j (x, x') s {3 for all (x, x')

NO. I, JANUARY 1994

E E(P). With this, the result follows immediately from Theorem
l. ■

To choose h1 (x) determine {3 and specify any metric p on X;
using Pa and Theorem 3, h1 (x) will be admissible and monotone.
To choose h2 (x) pick a bounded metric Pb on X and determine a;
using Theorem 3, h2 (x) will be admissible and monotone. For h3 (x)
it must be the case that the costs are in a special form then h3 (x)
will be admissible and monotone. For h4 (x), p{j can be specified
for any X; hence, this choice will always be admissible and mono­
tone (See Theorem 5 below also).

Notice that for each of the techniques, in order to specify h(x)
it is necessary to be able to specify a metric on X. In general, this
may not be an easy task but as the next Remark and the following
comments explain, there are a wide variety of applications for which
it is easy to specify a metric on X.

Remark 2: There is a wide class of applications whose graph
can be modeled in terms of X C IR1", e.g., X comprised of n-tuples
of natural numbers or integers. As evidence of this fact we tum to
the many applications of the theory of Petri nets (35] (e.g., general
or extended petri nets), the use of such models in discrete event
system theoretic research [12], [16], (38], [36], and other related
"vector discrete event system models" [18].

Theorem 3 says that there is no difficulty in specifying h(x) for
all problems that can be modeled with P provided a valid metric p
on X can be specified. Remark 2 indicates that there exists many
problems that can be modeled as having a state space X C !Rl";
hence, there is no trouble specifying an admissible and monotone
heuristic for the wide class of applications with X C ~• because
there exist many metrics on ('\l" (e.g., Pp, Pd, and Poo) and any metric
on iFc1" is also a metric on X, where X C [g]". Note that for particular
applications many results similar to Theorem 3 exist, since for Pp
and p 00 one can weight the various terms in the sum and max re­
spectively; hence, one has flexibility in specifying the heuristic
function when this metric space approach is used.

B. Good Heuristic Functions

Theorems l and 3 provide an automatic procedure to specify
h(x) for a wide class of problems; the use of such h(x) will allow
A* to produce solutions to SPP's in a computationally efficient
manner. Next, we seek to show how to make h(x) large so that
even more computational savings can be obtained, i.e., fewer nodes
will be expanded in finding the optimal path.

Consider P' = (X, Q, o, x ', x0 , X1) defined as for P except x ':
X x X-+ IRi+ where x' is a metric on X, i.e., the costs for the arcs
are characterized by a metric. Also, in terms of the metric space
{X, x '} every x EX is assumed to be an isolated point. Notice that,
in general, we are requiring that x' be defined on some (x, x') such
that (x, x') ¢ E(P). We call a heuristic function good if h(x) =
inf{x' (x, x1): x1 E Xj} for all x EX. The motivation for our defi­
nition of this new class of heuristic functions lies in the desire to
choose h(x) as large as possible to get efficient search.

Theorem 4: For P' if h(x) is good then h(x) is admissible and
monotone.

Proof: Since every x EX is an isolated point there exists a o'
> 0 such that x' (x, y) ~ o' for every x, y EX such that x * y.
Since A* prunes cycles it will not repeatedly investigate any single
(x, x') E E(P ') with x = x' and x' (x, x') = O; hence, if h (x) is
good then A* (h(x)) is complete. By Theorem l, h(x) is admissible
and monotone. ■

164 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 24, NO. I, JANUARY 1994

This indicates that if we have a problem domain P' without costs
for the arcs or a problem domain where it is not known how to
specify the costs, then Theorem 4 offers a method to assign the
costs so that an efficient search for a solution to several SPP's is
possible. In fact, for any P such that all the costs are equal (or
where this can be assumed) the following result provides an ad­
missible and monotone heuristic function.

Theorem 5: If\' (x, x') = 'YPd(x, x') for all (x, x') e E(P) for
some 'Y > 0 then h (x) = inf{x' (x, x1): x1 e x1 } is an admissible
and monotone heuristic function for finding the solution to the SPP
in the case where the costs are all equal to some 'Y where 'Y > O.

Proof' Even though x' (x, x') = 0 when x = x', such self­
loops will be pruned by A* so it does not matter that x' doesn't
precisely model the fact that all the costs are equal. The (x, x') e
E(P) such that x(x, x') * 'Y cannot be on any optimal path. The
result follows directly from Theorem 4 since x' is a metric. ■

Theorem 5 is quite useful in practice since often a solution is
sought which will minimize the length of the path. Theorems 4 and
5 illustrate how information from the problem domain (the knowl­
edge that the costs were modeled with a metric) is used to focus
A*'s search for an optimal solution. This is further quantified by
sho~ing that if a good heuristic function h(x) is used we can expect
A* (h (x)) to more narrowly focus its search.

Theor':.m 6: ~or P' if h(x) = inf{x' (x, x1): x1 e X1} for all x e
X then lh(x) - h (x')I :5 x '(x, x') for all (x, x') e E(P ').

Proof' From monotonicity h(x) s x' (x, x') + h(x') for all
~x, x') e,E(P'). Also, with a simple rearrangement, -x '(x', x) s
h (x) - h (x') :S x' (x, x'). Since x' is a metric, x' (x, x') = x (x',
x) for all x, x' EX so we have lh(x) - Jz(x')I s x '(x, x') for all
(x, x') e E(P'). ■

We see that if the heuristic function is monotone then the esti­
mate of the remaining cost at the next node cannot be too much
smaller than the estimate of the remaining cost at the current node.
This te!1ds to guarantee that we have good heuristic information
(large h (x)) so fewer nodes will be expanded. If x ' is a metric
which specifies the costs for the arcs and is used to guide the search,
then it is also the case that the estimate of the remaining cost at the
next node cannot be too much larger than the estimate of the re­
maining cost at the current node. This tends to guarantee that A*
will not get sidetracked too much from finding an optimal solution.

Theorems 4-6 support the results in [37) where the authors show
that if the costs can be defined by a metric, then A* has average
complexity O(IXI) for a wide class of randomly generated graphs
and thus, on the average, far outperforms conventional algorithms
in solving the SPP. We see that when the heuristic function is based
on a metric that is used to specify the costs of the arcs for P ', then
enough information from the problem domain is used so that we
are guaranteed to get an admissible and monotone heuristic func­
tion. Hence, SPP's can be solved efficiently.

V. APPLICATIONS

In this Section we apply the method in Section III and results in
Section IV to two problems (other applications are given in [29),
[30), [32)): (1) an optimal part distribution problem in flexible
manufacturing systems, and (2) artificial intelligence (Al) planning
problems. In each case, we specify the model P for the problem
and state the particular SPP. Then, using the results of Section IV
we specify admissible and monotone heuristic functions so that A*
can find solutions to the SPP's in a computationally efficient man­
ner. A* and the generalized Dijkstra's algorithm were implemented

to compare the complexity of the two algorithms. For all cases in
the examples, A*, using a heuristic function chosen via the results
in Section IV, significantly outperformed the generalized Dijkstra's
algorithm.

A. Optimal Parts Distribution Problem in Flexible
Manufacturing Systems

A flexible manufacturing system (FMS) that is composed of a
set of identical machines connected by a transportation system is
described by a directed graph (M, T) where M = {l, 2, • • ·, N}
represents a set of machines numbered with i e M and T C M x
M is the set of transportation tracks between the machines. We
assume that (M, T) is strongly connected, i.e., that for any i e M
there exists a path from i to every other j e M. This ensures that
no machine is isolated from any other machine in the FMS. Each
machine has a queue which holds parts that can be processed by
any machine in the system (with proper setup). Let the number of
parts in the queue of machine i e M be given by x; ~ 0. There is
a robotic transporter that travels on the tracks represented by (i, j)
e T and moves parts between the queues of various machines. The
robot can transfer parts from any i e M to any other j e M on any
path between i and j (it is assumed that the robot knows the path
to take, if not A* could be used to find it). The robot can transfer
no more than /3 e '.Nl - {0} parts at one time between two machines.
It is assumed that the robot knows the initial distribution of parts
and the graph (M, T). We wish to find the sequence of inputs to
the robot of the form "move a (a s (3) parts from machine i to
machine j'' that will achieve an even distribution of parts in the
FMS. In this way, we ensure that every machine in the FMS is
fully utilized. It is assumed that no new parts arrive from outside
the FMS and that no parts are processed by the machines while the
redistribution takes place. Our example is similar to the ''load bal­
ancing problem" in Computer Science except that we require that
a minimum number of parts be moved to achieve an even distri­
bution. Next, we specify the model P of this FMS.

Let X = '.h1N denote the set of nodes (actually, states) and xk =
[x, X2 • • • xNJ' and xk + 1 = [x1 xi • • • x;.,J' denote the cur­
rent and next state, respectively. Let Q = {uif: a e INl - {O}} be
the set of arcs (actually, inputs) where uif denotes the command to
the robot to move a parts from machine i to machine j. The state
transition function is given by o(uif, xk) = [x1 x 2 • • • X; -

a • • • xj + a • • • xN]', the arc cost function by x (xk, xk+ 1) =
a, and Xo = [x01 x 02 • • • x 0NJ'. The set X1 characterizes the state
(or states) for which we consider the parts in the FMS to be at an
even distribution. Let int (x) denote the integer part of x (e.g.,
int(3.14) = 3) and "mod" denote modulo. Let

The value of L represents the amount of parts each machine would
have if the parts could be evenly distributed and Le represents the
number of extra parts that we seek to distribute across the first Le
machines. With this intent we let x = [.x1 .x2 • • • .xNJ' where .x;
= L + l for i, i :5 Le and .xj = L for j, Le < j s N (other states
where the parts are considered to be evenly distributed can be spec­
ified in a similar manner-an example of this is given below). We
often let X1 = {x}, hence l<sx) is easy to compute. Also note that
for each x e X there are at most (3 (N - 1)N next states which will
clearly be much less than IXI.

https://int(3.14

165 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 24,

The SPP for this optimal parts distribution problem involves
finding a sequence of inputs uij to the robot which will result in it
moving the least number of parts to achieve an event distribution,
i.e., xk e X1. By Proposition 1, if we can find an h (xk) that is ad­
missible, then A* will solve the SPP (possibly inefficiently). Here,
we show that the metric space approach developed in Section IV
can be used to specify a monotone h(xk) (and hence admissible) so
that the SPP can be solved efficiently. First, consider using the
metric Pp with p = l. Notice that p 1(xk, xk + 1) = 2cx for all (xb

xk+ 1) e E(P). Hence, by Theorems 3 and 1, h 1(xk) = (l/2)p1(xb
x (x defined above) is admissible and monotone so we get an effi­
cient solution to the SPP. Theorems 4 and 6 offer another possi­
bility. Consider the metric p 00 • Notice that p 00 (xk, xk + 1) = ex for
all (xk, xk + 1) e E(P), all xk e X are isolated points, and hence
hco(xk) = Pco(Xk, x) (x defined above) is a good heuristic function.
By Theorem 4 it is admissible and monotone.

Consider the FMS with 3, 4, and 6 machines and track topolo­
gies shown in Fig. 1. For the 3-machine FMS in Fig. 1 let {3 = 1
and Xo = [10 0 4]'; then L = 4 and L, = 2 and we choose x1 =

{[5 5 41'}. A*(h1(xk)) and A*(h00 (xk)) both expand 5 states and
result in an optimal path (state trajectory) of cost 5 (i.e., 5 parts is
the minimum number of parts that must be moved to achieve an
even distribution). The generalized Dijkstra's algorithm expands
36 states to find a solution. If we let x0 = [11 3 2]' then L = 5 and
L, = l. If we choose X1 = {[6 5 5]'}, A* (h 1 (xk)) and A* (h (xk))
both expand 11 states and result in a optimal state trajectory of cost

00

5. The generalized Dijkstra's algorithm expands 51 states to find a
solution; hence, we see that for the 3-machine FMS, A* using the
heuristic functions specified via the results of Section IV far out­
performs the generalized Dijkstra's algorithm.

For the 4-machine FMS in Fig. 1, let {3 = I and x 1 = [O 5 2 6]'
so that L = 3 and L, = l. Choose x1 = {[4 3 3 3]', [3 3 3 4]'}.
A* (h1 (xk)) and A* (hco (xk)) expand 38 and 53 states, respectively,
and result in an optimal state trajectory of cost 6 that ends in
[3 3 3 4]'. The generalized Dijkstra's algorithm expands 141 states
to find a solution to the SPP for the 4-machine FMS.

For the 6-machine FMS in Fig. 1, let {3 = 1 and =x0

[4 0,1 2 0 5]' so that L = 2 and L, = 0. Let X1 = { [2 2 2 2 2 21'}.
A* (h 1 (xk)) expands 82 states and results in an optimal state trajec­
tory of cost 6. The generalized Dijkstra's algorithm expanded 798
states to produce the same solution.

Note that if we had allowed {3 > 1 for the above examples then
the computational savings obtained by using A* over the general­
ized Dijkstra's algorithm would even be more pronounced. This is
the case since A* would exploit the fact that the robot could move
multiple parts so that an even distribution could be achieved
quicker. For the generalized Dijkstra's algorithm, large {3 will
drastically increase the number of states it visits in finding an op­
timal state trajectory. Also note that for large N and total number
of parts initially in the FMS, for many FMS track topologies the
SPP can easily become too difficult to solve via any method due to
combinatorial explosion. However, we have shown that for typical
FMS systems the A* algorithm, with the appropriate heuristic func­
tion, can solve the optimal parts distribution problem efficiently,
and with significantly fewer computations than conventional tech­
niques.

B. Artificial Intelligence Planning Problems

Several fundamental relationships between AI planning systems
and control systems have recently been identified in [31]. Here we
show that a class of AI planning problems falls into our framework

NO. I, JANUARY 1994

3~2·T, :9:
D -Machine

_,. - Transportation Track
Fig. 1. Example flexible manufacturing system topologies.

and that the results of Section IV provide a method to specify heu­
ristic functions so that SPP's can be solved efficiently for AI plan­
ning problems. The A* algorithm has already been used for the
solution to many Al planning problems such as tic-tac-toe, the 8
and 15 puzzle, etc. [34]. The extensions to the theory of heuristic
search in this paper allow for a wider variety of such problems to
be studied. For instance, in [27], the authors showed that the metric
space approach could be used to specify the standard heuristic
functions for the 8-puzzle, and discovered several new heuristics
for this problem that also work for the more general N-puzzle. In
[26] heuristic functions were specified for a "triangle and peg"
problem and a simple robotics problem ("blocks world"). Here,
we study the missionaries and cannibals Problem as in [26], an AI
planning problem for which there currently exist no admissible and
monotone heuristic functions (for any choice of the costs). In this
way we illustrate that the results of Section IV facilitate the dis­
covery of new heuristics.

The problem statement is as follows: Three missionaries and
three cannibals are trying to cross a north-south river by crossing
from east to west. As their only means of navigation, they have a
small boat, which can hold one or two people. If the cannibals
outnumber the missionaries on either side of the river, the mis­
sionaries will be eaten; this is to be avoided. Find a way to get
them all across the river which minimizes the number of boat trips
taken.

First, we model this problem with the model P. Let X' = !Nl6

and xk = [x I Xz • • • x6]' and xk + 1 = [x, Xz • • • xi,]' denote the
current and next node (state), respectively. Let x1 (x4) and x3 (x6)

denote the number of cannibals and missionaries on the east (west)
side of the river, respectively. To model the part of the problem
which states that ''the cannibals cannot outnumber the missionar­
ies" we let X = X' - Xb where Xb = {xk e X: x 1 > x 3 or x4 >
x6}. Let "E" and "W' denote the east and west side of the river,
respectively. Let "C" and "M" denote cannibals and missionar­
ies. Let Q = {q;: i = 1, 2, • • ·, 10} where q1 = 2 CW-+ E
(move two cannibals from the west side of the river to the east side
of the river); q2 = 2 CE -+ W; q3 = 1 C W-+ E; q4 = 1 CE -+

W; q5 = 1 C 1 M W -+ E (move one cannibal and one missionary
from the west side of the river to the east side of the river); q6 =
1 C 1 M E -+ W; q1 = 1 M E -+ W; q8 = 1 M E -+ W; q9 = 2 M
E -+ W; q10 = 2 M W -+ E. Of course the boat moves in the
indicated direction also. For the state transition function we have
o(q2 , [3 1 3 0 0 OJ') = [1 0 3 2 1 OJ'; the other cases are defined
similarly. Let x(xk> xk+i) = 1 for all (xk> xk+1) e E(P), Xo =
[3 1300 0]', and X1 = {[0 0 0 3 1 3]'}. The SPP for the mis­
sionaries and cannibals problem is to find the minimum length se­
quence of inputs (loads of passengers) that will result in all persons
on the west side of the river.

166 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 24, NO. I, JANUARY 1994

Currently, there does not exist any monotone h(xk) for this prob­

lem. We now show that the results of Section IV allow for the

specification of several such h(x). First consider Pp where p = 2

and notice that p2(xb xk + 1) :5 "'10 and x (xb xk + 1) = l for all

(xb xk + 1) E E (P) so by Theorems 3 and 1 h(xk) = (1 / "'10) p2(xb

i) where x = [O O O 3 1 3)' is an admissible and monotone heuris­

tic function. Also notice that p,,, (xb xk + 1) :5 2 so by Theorems 3

and 1 h(xk) = (1 /2)p,,, (xb x) where x = [O OO 3 l 3]' is an ad­

missible and monotone heuristic function. When these heuristic

functions are used with A* to find the solution to the SPP, the min­

imum length sequence of inputs found was: q6, q8, q2, q3, q9, q5,

q9, q3, q2, q8, q6. The solution involves 11 boat trips, the minimum

number of trips needed to solve the problem.

VI. CONCLUSIONS

It was shown that for the class of problems modeled by P, Theo­

rem 1 offers a method to specify admissible and monotone heuristic

functions. In the case where X C ,c;r (e.g., for extended Petri nets},

via Theorem 3 and Remark 2 we showed that our metric space

approach can be used to automatically specify admissible and

monotone heuristic functions. It was shown that if this heuristic

function is subsequently used by A*, it would, in a computationally

efficient manner return a solution to a variety of SPP's for a wide

class of applications. We showed via Theorems 4-6 that if the costs

of the arcs could be modeled with a metric then further computa­

tional savings can be expected. We applied the results to an optimal

parts distribution problem in flexible manufacturing systems and

an AI planning problem. In each case, we showed that our main

results in Section IV provided a technique to automatically specify

an admissible and monotone h(x) and that when A* uses this h(x)

there is a significant reduction in the complexity of finding solu­

tions to the SPP's.

REFERENCES

[1] R. Bellman, Dynamic Programming, Princeton Univ. Press, NJ,
1957.

[2] R. Dechter, and J. Pearl, "Generalized best-first search strategies and
the optimally of A*," Journal of the ACM, vol. 32, no. 3, pp. 505-
536, July 1985.

[3] J. Gaschnig, ''A problem similarity approach to devising heuristics,''
Proc. 6th /JCAI, Tokyo, Japan, Aug. 1977, pp. 301-307.

[4] D. Gelperin, "On the Optimality of A*," Art. lntell. vol. 8, pp. 69-
76, 1977.

[5] B. L. Golden, and M. Ball, "Shortest paths with Euclidean distances:
An Explanatory Model," Networks, vol. 8, pp. 297-314, 1978.

[6] M. Gondran, and M. Minoux, Graphs and Algorithms, Wiley, NY,
1984.

[7] G. Guida, and M. Somalvico, "Semantics in problem representation
and search," Inf Proc. Letters, vol. 5, no. 5, pp. 141-145, 1976.

[8] G. Guida, and M. Somalvica, "A method for computing heuristics
in problem solving," Information Sciences, vol. 19, pp. 251-259,
1979.

[9] P. E. Hart, N. J. Nilsson, and B. Raphael, "A formal basis for the
heuristic determination of minimum cost paths,'' IEEE Trans. on Syst.
Sci. Cybern., vol. SSC-4, no. 2, pp. 100-107, July 1968.

[10] P. E. Hart, N. J. Nilsson, and B. Raphael, "Correction to: a formal
basis for the heuristic determination of minimum cost paths,"
SIGART Newsletter, vol. 37, pp. 28-29, 1972.

[11] M. Held, and R. M. Karp, "The traveling salesman problem and
minimum spanning trees," Operations Research, vol. 18, pp. I 138-
1162, 1970.

[12] L. E. Holloway, and B. H. Krogh, "Synthesis of feedback control

logic for a class of controlled Petri nets," IEEE Trans. on Automatic
Control, vol. 35, no. 5, pp. 514-523, May 1990.

[13] T. lbaraki, "Branch and bound procedure and state space represen­
tation of combinatorial optimization problems," Information and
Control, vol. 36, no. 1, pp. 1-27, Jan. 1978.

[14] K. B. Irani, and S. I. Yoo, "A methodology for solving problems:
problem modeling and heuristic generation," IEEE Trans. on Pattern
Anal. and Mach. Int., vol. 10, no. 5, pp. 676-686, Sept. 1988.

[15] R. M. Karp, and M. Held, "Finite-state processes and dynamic pro­
gramming," SIAM J. Applied Math, vol. 15, no. 3, pp. 693-718,
May 1967.

[16] B. H. Krogh, "Controlled petri nets and maximally permissive feed­
back logic," Proc. of the Allerton Conf on Communication, Control,
and Computing, Univ. of Illinois, pp. 317-326, Oct. 1987.

[17] E. L. Lawler, and D. E. Wood, "Branch and bound methods: A sur­
vey," Op. Res., vol. 14, no. 4, pp. 699-719, July-Aug. 1966.

[18] Y. Li, and W. M. Wonham, "A state-variable approach to the mod­
eling and control of discrete event systems," Proc. of the 26th Aller­
ton Conf on Communication, Control, and Computing, Univ. of Il­
linois, Champaign-Urbana, Sept. 1988, pp. 1140-1149.

[19] Y. Li, and W. M. Wonham, "A* algorithm for vector discrete event
systems, Systems Control Group Technical Note 891006, Oct. 1989.

[20] A. Martelli, "On the search complexity of admissible search algo­
rithms," Al, vol. 8, pp. 1-13, 1977.

[21] A. N. Michel, and C. J. Herget, Mathematical Foundations in En­
gineering and Science: Algebra and Analysis, Prentice-Hall, NJ,
1981.

[22] T. L. Morin, and T. L. Marsten, "Branch and Bound Strategies for
Dynamic Programming," Operations Res., vol. 24, no. 4, pp. 611-
627, July-Aug. 1976.

[23] D.S. Nau, V. Kumar, and L. Kanai, "General branch and bound and
its relation to A* and AO*, Art. Intel/., vol. 23, pp. 29-58, 1984.

[24] N. J. Nilsson, Problem-Solving Methods in Artificial Intelligence,
McGraw-Hill, NY, 1971.

[25] N. J. Nilsson, Principles ofArtificial Intelligence, Tioga, NY, 1980.
[26] K. M. Passino, and P. J. Antsaklis, "Artificial intelligence planning

problems in a petri net framework,'' Proc. of the American Control
Conj., pp. 626-631, Atlanta, GA, June 1988.

[27] K. M. Passino, and P. J. Antsaklis, "Planning via heuristic search in
a petri net framework," Proc. of the 3rd IEEE Int. Symp. on Intel­
ligent Control, Arlington, VA, August 1988, pp. 350-355.

[28] K. M. Passino, Analysis and Synthesis of Discrete Event Regulator
Systems, Ph.D. Dissertation, Dept. of Elec. and Comp. Eng., Univ.
Notre Dame, April 1989.

[29] K. M. Passino, and P. J. Antsaklis, "Near optimal control of discrete
event systems,'' Proc. of the Allerton Conf Communication, Con­
trol, and Computing, Univ. of Illinois, Sept. 1989, pp. 915-924.

[30] K. M. Passino, and P. J. Antsaklis, "On the optimal control of dis­
crete event systems," Proc. of the Conf Decision and Control,
Tampa, Florida, Dec. 1989, pp. 2713-2718.

[31] K. M. Passino, and P. J. Antsaklis, "A system and control theoretic
perspective on artificial intelligence planning systems," Int. Journal
Appl. Art. Intel/., vol. 3, no. I, pp. 1-32, 1989.

[32] K. M. Passino, and P. J. Antsaklis, "Optimal stabilization of discrete
event systems," Proc. of the IEEE Conf on Dec. and Control, Ha­
waii, Dec. 1990, pp. 670-671.

[33] J. Pearl, ''On the discovery and generation of certain heuristics,'' The
Al Mag., vol. 4, no. I., pp. 23-33, 1983.

[34] J. Pearl, Heuristics: intelligent search strategies for computer prob­
lem solving. Addison-Wesley, Reading, MA, 1984.

[35] J. L. Peterson, Petri Net Theory and the Modeling of Systems, Pren­
tice-Hall, NJ, 1981.

[36] P. J. Ramadge, and W. M. Wonham, "Supervisory control ofa class
of discrete event processes,'' SIAM J. Control Optimization, vol. 25,
no. I, pp. 206-230, Jan. 1987.

[37] R. Sedgewick, and J. S. Vitter, "Shortest paths in euclidean graphs,"
Algorithms, vol. 1, pp. 31-48, 1986.

[38] T. Ushio, "Maximally permissive feedback and modular control syn­
thesis in petri nets with external input places," IEEE Trans. on Au­
tomatic Control, vol. 35, no. 7, pp. 844-848, July 1990.

[39] M. Valtorta, "A result on the computational complexity of heuristic
estimates for the A* algorithm," Information Sciences, vol. 34, pp.
47-59, 1984.

[40] D. J. White, Dynamic Programming, Holden-Day, San Francisco,
CA, 1969.

