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Stability analysis of load balancing systems 

KEVIN L. BURGESSt and KEVIN M. PASSINOH 

A load processor is a system that has a buffer which can receive load and store 
it while it is waiting to be processed and has a local decision-making policy for 
determining if portions of its load should be sent to other load processors. A 
load balancing system is a set of such load processors that are connected in a 
network so that (i) they can sense the amount of load in the buffers of 
neighbouring processors and pass load to them, and (ii) so that, via local 
information and decisions by the individual load processors, the overall load in 
the entire network can be balanced. Such balancing is important to ensure that 
certain processors are not overloaded while others. are left idle (i.e. load 
balancing helps avoid underutilization of processing resources). The topology 
of the network, delays in transporting and sensing load, types of load, and 
types of local load passing policies all affect the performance of the load 
balancing system. In this paper, we show how a variety of load balancing 
systems can be modelled in a discrete event system (DES) theoretic frame
work, and how balancing properties and performance can be characterized and 
analysed in a general Lyapunov stability theoretic framework. 

1. Introduction 
A load balancing system is a network of load processors (e.g. machines in a 

manufacturing system, computers on a network) that are connected together so 
that any processor on the network is capable of passing a portion of its load 
(e.g. jobs, tasks, parts) to any other processor to which it is connected, and if a 
processor can pass load to another load processor it can also sense the load level 
of that processor. Figure 1 illustrates an example load balancing system where 
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Figure I. Example of a load balancing system. 
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358 K. L. •Burgess and K. M. Passino 

each load processor along with its buffer is numbered from 1 to 6 and the arc 
from 1 to 2 indicates that 1 can sense the amount of load in the buffer of 
processor 2 and that 1 can pass load to processor 2. Since there are no arcs 
between 1 and 5, these processors cannot sense each other's loads or pass load 
to each other. 

We are interested in studying the ability of the processors in such a system to 
redistribute the total network load so that it is balanced among all of the 
processors in the network (i.e. so the buffer levels are balanced). There may be 
delays incurred in the transportation of load from node to node and in the 
sensing of load between nodes. We assume that these delays are bounded. The 
load in the network may be such that it is valid to describe it with a continuous 
variable ('fluid load'),. or it may be such that it can only be described as existing 
in discrete blocks (possibly of non-uniform size). Furthermore, the network 
operates in an asynchronous fashion so that each processor can decide when it 
wants to pass load independently of the others (moreover, allowing for various 
types of asynchronism ensures that the load balancing policies can be imple• 
mented in real-time). 

In this analysis, which is based on the results presented by Burgess (1992), 
we model several variations of the load balancing problem in the DES 
framework of Passino et al. (1990, 1991, 1994) and analyse them via a Lyapunov 
stability approach. In particular, we will provide conditions under which the 
various load balancing systems are stable in the sense of Lyapunov, asymptotic
ally stable, and exponentially stable, thereby characterizing the performance of 
the system's load redistribution policies. While it is possible to characterize and 
analyse certain 'stability' properties of DES with automata models and graph 
algorithms or with temporal logic and proof systems (see the references in 
Passino et al. 1990, 1991, 1994), in this work we investigate the characterization 
and analysis of conventional stability properties within a Lyapunov framework. 
In this way, we avoid the use of custom stability definitions and exploit several 
advantages of Lyapunov theory by showing that (i) it is possible to pick 
physically motivated Lyapunov functions that provide insight into the dynamics 
of how load balancing systems operate, (ii) by using the analytical Lyapunov 
approach we avoid having to enumerate all possible sequences of load transfers 
in showing that the system satisfies certain qualitative balancing properties, and 
(iii) a useful by-product of the Lyapunov analysis is obtained for those systems 
that can be shown to be exponentially stable (i.e. we provide a characterization 
of the 'speed' of balancing). To gain a full appreciation of the significance of the 
stability analysis in this paper and the wide number of applications where load 
balancing problems are encountered, the reader is referred to Shivaratri et al. 
(1992). 

The load balancing systems that we examine are similar to, and generaliza
tions of, those analysed by Passino et al. (1991) and Tsitsiklis and Bertsekas 
(1989). [n Passino et al. (1990, 1991) the load balancing system is very simple 
because the load is considered to exist only in blocks of unit size, the allowed 
inter-processor load exchanges arc quite restricted and any delays that exist in 
passing load and sensing load levels are ignored. The model of Tsitsiklis and 
Bertsekas (1989) assumes that load can be represented by a continuous variable 
and that delays exist in load passing and sensing. The model also allows for 
general load passing. Tsitsiklis and Bertsekas (1989) show that eventually the 
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359 Stability analysis of load balancing systems 

load will be perfectly balanced among the processors, and they suggest a proof 
for the 'geometric convergence' of the network to a balanced state. 

We model the load balancing problem in the DES framework of Passino et 
al. (1990, 1991, 1994) and analyse it via the Lyapunov approach. Initially, we do 
not consider delays (in load passing and sensing) in our analysis. We show that 
non-delay systems are asymptotically stable under weaker passing conditions 
than in Tsitsiklis and Bertsekas (1989). We also show that under passing 
conditions similar to those in Tsitsiklis and Bertsekas (1989) that the non-delay 
load balancing system is exponentially stable. Additionally, we perform a rate of 
convergence analysis. We present generalized load passing conditions. We 
introduce the idea of 'virtual load' and demonstrate the asymptotic and 
exponential stability of non-delay virtual load systems. As a further generaliza
tion of the non-delay case, we prove asymptotic and exponential stability of 
systems in which the load is divided into discrete blocks of non-uniform size. In 
addition, we provide a rate of convergence analysis for the discrete load case. 

We also study the full delay load balancing system as described by Tsitsiklis 
and Bertsekas (1989). Tsitsiklis and Bertsekas (1989) presented a proof for 
asymptotic stability and suggested a proof for geometric convergence. We take a 
different approach by studying the problem within the Lyapunov stability 
framework, proving asymptotic and exponential stability (in a different way), 
and providing a rate of convergence analysis. Three of the lemmas in our proof 
of exponential stability are adaptations of lemmas from the proof of Tsitsiklis 
and Bertsekas (1989). In order to use the exponential stability results of Michel 
et al. (1992 a, b) in our analysis, we generalize the conditions for exponential 
stability. The generalization allows us to prove exponential stability for the 
general delay case. As with the non-delay case, our exponential stability analysis 
helps to show how to provide a detailed characterization of the speed of 
balancing which can be obtained from a particular load balancing system. 

Finally, we note that the load balancing problem considered by Cybenko 
(1994) is a special case of the one of Tsitsiklis and Bertsekas (1989) and the 
problems considered here. Passino and Antsaklis (1993) studied how to minim
ize the number of load transfers to achieve balancing by using global informa
tion about the load distribution in the system. In all the problems considered 
here, the load processors only use local information, balancing proceeds in an 
asynchronous fashion, and we do not consider trying to minimize the number of 
load transfers to achieve balancing. Also, note that while Boel and van 
Schuppen (1989) consider load balancing in a stochastic framework, our frame
work only admits deterministic load balancing problems. 

In the next two subsections we introduce (i) the DES model we will use to 
represent the load balancing systems and (ii) the stability definitions and 
theorems that we use lo characterize and analyse load balancing properties. 

1.1. A DES model 
We study the stability of systems that can be modelled via G =('le,'&, 

le, g, Ev). ;if is the set of states and t is the set of events. State transitions are 
defined by the operators, f,: ;if--,. ;if where e E t. An event, e, may only occur if 
it is in the set defined by the enable function, g: ~--,. \lJ>('&) - {<fl}, where \lJ>('&) 
denotes the power set of 'ii:. We only require that le be defined when e e g(x). 
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360 K. L. Burgess and K. M. Passino 

Notice that according to the definition of g, it can never be the case that no 
event is enabled. We can, however, model deadlock by defining a null event, e0, 

so that /,o(i) =i. 
We associate 'time' indices with the states and events so that xk E ~ 

represents the state at time k e N and eke g(xk) represents an enabled event at 
time k EN (N denotes the set of natural numbers). Notice that there can be 
just one state at time k, but that many events may be enabled at time k. Should 
an enabled event ek occur, then the next state, Xk+i is defined by xk+t = 
f,,(xk), 

We now define state trajectories and event trajectories. A state trajectory is 
any sequence {xd E 21;N such that _xk+I = f,,(xk) for some ek E g(xk) for all 
k e N. An event trajectory is any sequence {ek} E 'f,N such that there exists a 
state trajectory, {xk} e ~,v, where for every k e N, eke g(xk), The set of all 
such event trajectories is denoted by E C '& N. Notice that corresponding to a 
given event trajectory, there can be only one state trajectory. In general, 
however, an event trajectory that produces a given state trajectory is not unique. 
Notice that all state and event trajectories must be of infinite length. 

Because not every event trajectory E E E may be physically realizable, our 
model allows for a set of valid event trajectories, Ev C E. Ev(x0) is the set of 
valid event trajectories when the initial state is x0 E ~. The framework provides 
another mechanism for further pruning E. E 0 C Ev is the set of allowed event 
trajectories. Including E0 in our model yields a great deal of modelling power. 
In particular, we will make extensive use of Ea to model the decision-making 
policies which we impose on our systems. 

If we fix k e N, then Ek denotes the sequence of events e0 , e 1, ... , ek-l, 

and EkE e Ev(x0) is the concatenation of Ek with the sequence of infinite length 
E = ek> ek+i, .... The function X(x0 , Eb k) will be used to denote the state 
reached at time k from x0 e 21: by application of event sequence Ek such that 
Ek£ e E. For fixed x0 , the functions X(xo, Ek, k), where EkE e EvCxo), are 
called motions. 

1.2. Stability definitions and theorems 
In standard Lyapunov stability theory, we normally speak of stability with 

respect to one equilibrium point within the state space. However, in the 
generalized Lyapunov stability theory, we can speak of stability with respect to 
an invariant set. A set is called invariant with respect to G if all motions 
originating in the set remain in the set. Mathematically, the set 21:m C ~ is an 
invariant set with respect to G if Xo E 21:m implies that X(x0 , Ek, k) e 21:m for all 
k e N and all Ek such that EkE e Ev(xo)-

The machinery that we use to determine the 'distance' between any two 
states in 21: is that of the metric. Let p: ~ x ~--> 9' denote a metric on 'le, and let 
{'le; p} denote a metric space. If 21:, C ~ then the distance between a point x e X 
and the set 'lez is defined by p(x,'le,) =inf{p(x,x'); x' e~,}. Additionally, we 
define the ,-neighbourhood of a set 'le, c 21: to be the set S(X,; r) 
{x e 'le: 0 < p(x, ~,) < r} where r > 0. 

A closed invariant set ~m c ~ of G (due to the definition of invariance, all 
invariant sets are closed with respect to {21:; p}) is called stable in the sense of 
Lyapunov with respect to Ea if for any e > 0 it is possible to find some /5 > 0 
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361 Stability analysis of load balancing systems 

such that when p(xo, i'rm) < c5, we have p(X(xo, Eb k), i'rm) < e for all Ek such 
that EkE E £ 3 (x0) and k EN. If furthermore p(X(x0, Eb k), Xm)-> 0 as 
k -> oo, then the closed invariant set gem of G is called asymptotically stable with 
respect to Ea. As is always the case, these properties are local stability 
properties, i.e. with respect to some ,-neighbourhood. 

It follows directly from the above definitions of stability that if the closed 
invariant set Xm C X is stable ( asymptotically stable) in the sense of Lyapunov 
with respect to Ea, then it is stable (asymptotically stable) in the sense of 
Lyapunov with respect to all Ea· such that Ea· CE•. 

If the closed invariant set Xm C X of G is asymptotically stable with respect 
to E 8 , then the set i'ra C ?£ having the property that for all x0 E x., 
p(X(x0, Ek, k), Z!;m)-> 0 for all Ek such that EkE E Ea(x0) as k-> oo is called 
the region of asymptotic stability of Xm with respect to E •. If :lea :le, then the 
closed invariant set lfm of G is called asymptotically stable in the large with 
respect to Ea . 

In addition to our concern that eventually p(X(x0, Ek> k), :l/;'m) ..... 0, we may 
be concerned with how quickly any state trajectory must reach the invariant set. 
In particular, we say that the closed invariant set llem C OC of G is exponentially 
stable with respect to Ea if p(X(x0 , Ek> k), iifm).,;; {;;e-«k p(x0, ilem) for some 
a:> 0 and some , > 0 and for all Ek such that EkE E E.(x0) and k E N. 

It follows directly from the definition of exponential stability that if the 
closed invariant set Xm C 2'e is exponentially stable with respect to Ea, then it is 
exponentially stable with respect to all Ea• such that Ea· CE•. 

If the closed invariant set Xm C X of G is exponentially stable with respect to 
Ea, then the set Xe C X having the property that for all x0 E Xe, p(X(x0 , Eb k), 
Xrn) ~ l;;e-a:k p(xo, Xm) for some Cl:'> 0 and some l;; > 0 for all Ek and k EN 
such that EkE E E 3 (xo) is called the region of exponential stability of ilem with 
respect to £ 3 • If Xe = X, then the closed invariant set ;ll;m of G is called 
exponentially stable in the large with respect to Ea. 

We now state three theorems, whose proofs may be found in Passino et al. 
(1990, 1991), Michel (1992 a, b), which establish necessary and sufficient condi
tions for a system to possess the stability properties defined above. 

Theorem 1: In order for a closed invariant set Xm C X of G to be stable in the 
sense of Lyapunov with respect to Ea, it is necessary and sufficient that in a 
sufficiently small neighborhood S(Xm; r) of the set Xm there exists a specified 
functional V with the following properties. 

(i) For all sufficiently small c1 > O, it is possible to find a c2 > 0 such that 
V(x) > Cz for x E S(Xm; r) and p(x, iifm) > c1. 

(ii) For any c4 > 0 as small as desired, it is possible to find a c3 > 0 so small 
that when p(x, ilem) < C3 for x E S(Xm; r) we have V(x).,;; c4 . 

(iii) V(X(xo, Ek> k)) is a non-increasing function for x0 E S(OCm; r) and for 
all k EN, provided that X(x0 , Ek, k) E S(Xm; r) for all Ek such that 
EkE E E.(xo), 

Theorem 2: In order for a closed invariant set Xrn C X of G to be asymptotic
ally stable in the sense of Lyapunov with respect to Ea, it is necessary and 
sufficient that in a sufficiently small neighbourhood, S(Xm; r), of the set ['em there 
exists a specified functional V having propenies (i), (ii), and (iii) of Theorem 1 
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362 K. L. Burgess and K. M. Passino 

and furthermore V(X(xo, Eb k))-> 0 as k->"' for all Ek such that 
EkE e E.(xo) and for all k E N as long as X(xo, Ek, k) E S(liem; r). 

Theorem 3: The closed invariant set ;!Cm C :l' of G is exponentially stable with 
respect to Ea if there exists a functional V defined on S(2rm; r), De {1,2, ...} 
and c1, c2, C3 > 0 with c3/c2 E (0, 1) such that 

(i) c1p(x, 2rm)"' V(x)"' c2p(x, lrm) for all x E S(l?em; r); 

(ii) V(X(xo, Ek+D, k + D)) - V(X(xo, Eb k))"' -c3p(X(xo, Eh k), lfm) for 
xo E S(~m; r) and for all k E N, provided that X(xo, Eb k) E S(2rm; r) 
for all Ek such that EkE e E8 (x0). 

The conditions of Theorems 2 and 3 are sufficient for asymptotic stability in 
the large and exponential stability in the large, respectively, if they are changed 
so that all occurrences of S(2rm; r) are replaced by lf. 

A conventional Lyapunov approach to stability analysis will be taken where 
we define p and the invariant set lfm, choose a Lyapunov function, V, and show 
that it satisfies the appropriate conditions of the above theorems so that we can 
infer that the system possesses certain stability properties. 

1.3. Summary 
Above, we have indicated the types of load balancing problems to be 

considered and have established a modelling formalism for load balancing 
systems. In addition, we have provided stability definitions and an approach to 
stability analysis for load balancing systems. In § 2 we will study the load 
balancing problem without delays in passing and sensing load. We prove in this 
case that a particular load redistribution policy is asymptotically and exponen
tially stable. We also generalize on the original non-delay load balancing system 
and prove that several of the generalized systems are asymptotically and 
exponentially stable. The generalizations include generalized load passing condi• 
tions, virtual load systems, and discrete load systems. In § 3, we will study the 
load balancing problem with delays in passing and sensing load. We prove in 
this case that a particular load redistribution policy is asymptotically and 
exponentially stable. Finally, we offer some concluding remarks in § 4. 

2. A load balancing problem without delays 
The load processors, L = {1, 2, ... , N}, are all connected to a network 

along which they can pass load to other load processors. The network of load 
processors is described by a directed graph, (L, A), where AC L x L. For 
every i E L, there must exist (i, j) e A in order to assure that every load 
processor is connected to the network, and if (i, j) EA then (j, i) e A. Load 
processor i can only transfer a portion of its load to load processor j if 
(i, j) E A . Finally, if ( i, j) E A, then i -4= j. 

Each load processor i e L has a buffer in which its load is stored prior to 
processing. It is the buffer levels x; that we actually wish to balance; thus, it is 
the buffer levels that are affected by load transfers. In this section, we will 
assume that the load can be partitioned into sufficiently small units so that it is 
valid to describe it with a continuous variable. We will also assume that the total 
amount of load in the buffers of the load processors on the network remains 
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363 Stability analysis of load balancing systems 

static until a load balance is achieved; hence, we assume that no load arrives or 
is processed during the balancing of the load. 

In this section, we are not considering load transportation or load sensing 
delays. Hence, we require that the real time between events ek and ek+I (which 
will represent the passing of load) is greater than the greatest system transporta
tion time plus the greatest system sensing time. We do, however, allow for more 
than one node to pass load at one time and for nodes simultaneously to pass 
load to more than one of the nodes that they are connected to on the network. 

Let [if;= :)\N be the set of states and xk = [x1x 2 .. . xN]' and xk+1 = 
[x1x2... xN]' denote the states at times k and k + 1, respecti_vely. Let x;(k') 
denote the amount of load at node i e L at time k'. Let e~f;\1l represent that 
node i € L passes load to its neighbours m E p(i) where p(i) {j: (i, j) e A}. 
Let the list a(i) = (ai(i), ai'(i), ... , ar(i)) such that j < j' < • · · < j" and j, j', 
... , j" E p(i) and ai ;;i, 0 for all j E p(i); the size of the list a(i) is IPU)I. For 
convenience, we will denote this list by a(i) (aj(i): j E p(i)). am(i) denotes 
the amount of load transferred from i E L to me p(i). Let {e~f;\1>} denote the 
set of all possible such load transfers. Let the set of events be described by 

~ = 0'({e~f;\O}) - {q,} 

where 0'(Q) denotes the power set of the set Q. Notice that each event ek €~is 
defined as a set, with each element of ek representing the passing of load by 
some node i E L to its neighbouring nodes in the network. Let Yii € (0, 1) for 
(i, j) E A represent the proportion of the load imbalance that is sometimes 
guaranteed to be reduced when i passes load to j. 

Below, we specify g and f,, for ek € g(xk)-

(1) Event ek € g(xk) if both (a) and (b) below hold. 

(a) For all e~\i) eek where a(i) ( ai(i): j E p(i)) it is the case that: 

(i) aj(i) 0 if x; ,s;: xi where j E p(i); 

(ii) 0 ,s;: L ll'm(i),;; X; - (xi+ aj(i)) for all j e p(i) 
mep(i) 

such that x1 > xi; and 
(iii) ar(i) ;;i, Y;;-(x; - xr) for some j* E {j: xi.;;; xm for all 

m E p(i)}. 

Condition (i) prevents load from being passed by node i to node j if 
node i is less heavily loaded than node j. Condition (ii) directly 
implies that x1 - Lmep(i)am(i) ;;i, xi+ ai(i). Thus, after the load a(i) 
has been passed, the remaining load of node i must be at least as 
large as xi+ aj(i) for every node j E p(i) that was less heavily 
loaded than node i to begin with. Condition (iii) implies that if node 
i is not load balanced with all of its neighbours and it passes load, 
then i must pass a non-negligible portion of its load to some 
least-loaded neighbour j*. 

(b) If e~f;\1>Eek where a(i) = (aj(i): j E p(i)), then e~(;}il 1$ ek where 
b(i) = (<'>j(i): j € p(i)) if aj(i) 'F ,5i(i) for some j e p(i). Hence, in 
each valid event ek> there must be a consistent definition of the load 
to be passed from any node i to any node j, aj(i). 
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(2) If ek E g(xk) and e~f;\1) Eek then f,,(xk) = xk+t where 

xi = x; L a'j(i) + L . IX;(j). 
{j: jEp(i)} {j:iep(i),e1,;/j\''ee,l 

The load of node i at time k + 1, x1, is the load of node i at time k 
minus the total load passed by node i at time k plus the total load 
received by node i at time k. 

Let Ev = E be the set of valid event trajectories. We must further specify the 
sets of allowed event trajectories. Define a partial event of type i to represent 
the passing of rr( i) amount of load from i e L to its neighbours p( i). A partial 
event of type i will be denoted by ei,p(i) and the occurrence of ei,p(i) indicates 
that i E L attempts to balance its load further with its neighbours. Event 
ek E g(xk) is composed of a set of partial events. Next, we define two 
possibilities for the allowed event trajectories E •. 

(i) For E; C Ev, assume that each type of partial event occurs infinitely 
often on each EE E;. 

(ii) For Ee C Ev, assume that there exists B > 0 such that for every event 
trajectory EE Ee, in every substring ek'• ek'+i, ek'+2 , ••• , ek'+(B-I) of E 
there is the occurrence of every type of partial event (i.e. for every i e L 
partial event ei,p(i) eek for some k, k' "'- k "'- k' + B - 1). 

Clearly 

:?fb = {xk E :?f: X; Xj for all (i, j) EA} 

is an invariant set that represents a perfectly_ balanced load. Notice that the only 
ek E g(xk), when xk E OCb, are such that all e:;(;~') Eek have rr(i) = (0, 0, ... , 0). 

If Ea= E 8 CE;, the load balancing problem described above is the same as 
the one of Tsitsiklis and Bertsekas (1989), except that in this section we do not 
allow delays in transporting and sensing load. In § 4 we will study load balancing 
systems with delays. 

2, 1. Asymptotic convergence to a balanced state 
To study the ability of the system to redistribute load automatically to 

achieve balancing, we use a Lyapunov stability theoretic approach. Let x = 
[x1 ... xN].Choose 

p(xk, :?fb) = inf {max {lx1 - xii, ... , lxN - xNI}: i E OCb} (1) 

The following result provides slightly weaker conditions for load balancing than 
in Tsitsiklis and Bertsekas (1989) and sets the stage for studying exponential 
stability in the next subsection and generalizing the load balancing results of 
Tsitsiklis and Bertsekas (1989) in § 3. 

Theorem 4: For the load processor network system described above, the in
variant set 21':b is asymptotically stable in the large with respect to E;. 

Proof: Choose 

(2) 



D
ow

nl
oa

de
d 

B
y:

 [O
hi

o 
S

ta
te

 U
ni

ve
rs

ity
 L

ib
ra

rie
s]

 A
t: 

18
:2

6 
10

 O
ct

ob
er

 2
00

7 

365 Stability analysis of load balancing systems 

Notice that 

1 N 1 
- l'.xj;,, -[max {x;} + (N l)min {x;}] (3) 
Nj=l N I i 

It is clear from (1), (2) and (3) that the following relations are valid. 

p(xb geb);,, !(max {x;} - min {x;}) (4)
2 j j 

p(xk> ;/l;b) ,,;; max {x;} - min {x;} (5) 
I I 

N 

V(xk) = _!_ l'.xi - min {x;} ,,;; max {x;} - min {x;} (6)
N j=l I I I 

V(xk) ""_!_[max {x;} + (N - 1) min {x;}] - min {x;} (7)
N ; ; ; 

Equations (4) and (6) yield 2p(xk, OCb);,, max; {x;} - min; {x;} ;,, V(xk), so that 
condition (ii) of Theorem 1 is satisfied. Equation (7) can be manipulated to 
yield 

V(xk) ;;,, _!_(max {x;}
N ; 

- min {x1}); 
(8) 

Equations (5) and (8) directly imply that V(xk);,, (1/N)p(xb if'b), so that 
condition (i) of Theorem 1 is satisfied. 

To satisfy the final condition of Theorem 1, we must show that 
V(X(x0, Ek, k)) is a non-increasing function for all k E N, all x0 E S(2fb; r) and 
all Ek such that EkE E E1(x0). To see that this is the case, notice that once x0 is 
specified, V(xk) varies only as the lightest load in the network, min; {x;} =xr, 
varies. The most lightly loaded node in the network cannot possibly pass load, 
so x)••;,, xr-. Assume an event ek E g(xk) occurs. According to condition (ii) on 
ek E g(xk), if e~f;\'l Eek and j** E p(i), it is not possible that x/ < xr + ar(i). 
Therefore, min; {x;};,, xr and V(xk+1),,;; V(xk). Thus, condition (iii) of 
Theorem 1 is satisfied and 2fb is stable in the sense of Lyapunov with respect 
to E 1. 

In order to show that Eb is asymptotically stable in the large with respect to 
E;, we must show that for all x0 ~ 2fb and all Ek such that EkE E E 1(x0 ), 

V(X(x0, Eb k)) ..... 0 as k ..... 00 • If xk ~ Eb, then there must be some lightest 
loaded node j** (there may be more than one such node) and some other node 
i such that (i, j**) EA and x; > xr-, Because of the restrictions imposed by E;, 
we know that all the partial events are guaranteed to occur infinitely often. 
According to condition (a)(iii) on e, E g(xk), each time partial event ei,p(i) 

occurs, xr is guaranteed to increase by a fixed fraction Yir E (0, 1) of x; - xi** 
so that x)•• > xr, Thus, regardless of how many lightest loaded nodes there 
are, it is inevitable that eventually the overall lightest load in the network must 
increase. Hence, for every k ;;,, 0, there exists k' ;;,, k such that 
V(xk,) > V(xk'+i) as long as xk' i Xb so that V(X(xo, Ek, k))-> 0 as k-> oo and 
Eb is asymptotically stable in the large with respect to E;. □ 

Remark 1: Notice that we do not need the restrictions on allowed event 
trajectories that are imposed by E; to support our conclusion of stability in the 
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366 K. L. Burgess and K. M. Passino 

sense of Lyapunov. Hence, 21:b is stable in the sense of Lyapunov with respect to 
Ev as well. □ 

Remark 2: Note that ~b is not asymptotically stable in the large with respect to 
Ev. This is due to the fact that without the restrictions on Ev to obtain E;, it is 
possible that only one i E L attempts to balance its load for all time. D 

Remark 3: Notice that condition (a)(i) on eke g(xk) is absolutely necessary. If 
condition (i) is removed, then it is possible that nodes may pass load to their 
more heavily loaded neighbours. In this case, node j** (where xi'' = 
minm {Xm: m E L}) may pass load and x ;.. < xi". Hence, the lightest load in the 
network may decrease and both the proof of Lyapunov stability and the proof of 
asymptotic stability become invalid. □ 

Remark 4: Consider the implications 
ek E g(xk) with the more liberal condition 

of replacing condition (a)(ii) on 

0 ~ 2'. aj(i) ~ x; 
jEp(i) 

xi for all j E p(i) such that x; ;,, xi. 

This new condition implies that if e~f;II) Eek, ll'j•(i) (where j* e {j: xi~ Xm for 
all m e p(i)}) may be such that x; xi' and xJ, = x;. In this case, nodes i and 
j* simply exchange load levels. It is still true that the lightest load in the 
network cannot decrease, however, it is not necessarily true that the lightest 
load in the network will ever increase. Hence, 21:b remains stable in the sense of 
Lyapunov with respect to E 1, but we can no longer claim that g{;b is asymptotic
ally stable with respect to E;. □ 

R_emark 5: Consider eliminating condition (a)(iii) on ek E g(xk)· In this case, if 
e~-t\•l E ek and j** E p(i) (where xr minm {xm: m e L} ), it is no longer true 
that xr _must increase by a fixed fraction of x; - xr•· It is now possible that 
even if e~f;\') e ek for all k > k', xr -f. X; as k-+ oo. For example, x; - xr may 
be reduced after each load passing by factors of 1/(k + 1 )2 and the two loads 
will never converge to each other. Hence, it is no longer true that geb is 
asymptotically stable with respect to E i, but it is still the case that :lei, is stable in 
the sense of Lyapunov with respect to E;. □ 

These remarks are similar in nature to the questions posed by Tsitsiklis and 
Bertsekas (1989) after their discussion of the load balancing problem. 

2.2. Exponential convergence to a balanced state 
We now say something about the rate at which the system converges to a 

balanced state. In order to do this, we employ Theorem 3. If we satisfy the 
conditions of this theorem, we know that p(xk> Xb) will be bounded from above 
by an exponential ,e-«kp(x0, l'lb) for some a> 0 and , > O. 

Theorem 5: For the load processor network system described above, the in

variant set OCb is exponentially stable in the large with respect to E 8 . 

Proof: For the proof, see Appendix A. □ 

Remark 1: The proof of Theorem 5 depends critically upon the fact that E 8 
requires that for every i e L, the corresponding partial event, ei,p(i), occurs at 
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367 Stability analysis of load balancing systems 

least once in every B events. Hence, it is clear that OCb is not exponentially 
stable in the large with respect to Ei, □ 

Remark 2: In the proof in Appendix A, it is shown that 

V(xk) - V(xk+N'B) ;;, yN'B~xk, OCb) (9) 

where 

V(xk) = max {.lL Nxi - x;} 
I Nj=l 

The constant r'"'8 from (9) is directly related to the a from the exponential 
overbounding function l;e-«k~x0, :lt'b). Thus, if the speed of convergence is a 
design factor, then y should be made as large as possible and N and B should 
be made as small as possible. 

It is evident that (9) is unnecessarily conservative. Equation (16) from the 
proof in Appendix A, restated here 

xi(k');;, m,in {x;} + yk'-k[x; - min {x;}] for all k';;, k + NB, j e p(i) 
I I 

is also unnecessarily conservative. Actually, equation (16) is valid for all 
k';;, k + RB, where R = max; {lp(i)I}. Let S be the maximum number of arcs 
that must be spanned to reach any node j e L from any other node i e L. N 
can be replaced by S in (24), restated here 

xj(k');;,, min {x;} + (yk'-k)N[x1 - min {x;}] 
I I 

and (9) becomes 

V(xk) - V(xk+RSB);;, yRS'8p(xk, :lt'b) 

Therefore, convergence can be accelerated by designing for RS2 as small as 
possible. □ 

Consider three common network topologies of N nodes. If N nodes are 
connected in a line (e.g. see Fig. 1), then R = 2 and S = N - 1. If N nodes are 
connected in a simple ring, then R =2 and S = int ( N /2) (int (x) is the integer 
portion of x). If N nodes are completely connected (each node is connected to 
every other node), then R = N - 1 and S = l. In general, the ring network will 
converge more rapidly than the line network, and the completely connected 
network will converge more quickly than the ring network. Intuitively, this is 
what we would expect; convergence performance seems directly related to IAI. 
Remark 3: If we change our assumptions regarding the network topology to 
allow networks that are strongly connected, the above analysis may be simply 
amended to remain valid. We must replace Nin (24) with S, where Sis defined 
as in Remark 2. Equation (9) must then be changed by replacing N 3 with S2 N. 
If S > N, then the guaranteed rate of convergence for a strongly connected 
network with N nodes is slower than for a network with N nodes that satisfies 
our original network topology assumption. However, if the cost of inter-node 
connections is great, the sacrifice in convergence speed may be worthwhile. IA I 
for a strongly connected network of N nodes has a minimum value of N when 
the nodes are joined in a ring such that if ( i, j) e A then (j, i) rt A. 
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3. Generalizations of the load balancing problem 
In this section we discuss generalizations of the load balancing problem 

previously outlined. First, we discuss less restrictive conditions on the amount of 
load that can be passed from node to node, coupled with a new specification of 
Ea, Secondly, we discuss the idea of virtual load, a mechanism to account for 
the varied rates at which inter-network processors may process load. Finally, we 
consider the case in which the load in the network cannot be accurately 
modelled by a continuous variable (i.e. the discrete load case). 

3.1. Generalized load passing conditions 
We will require that condiiion (i) on ek e g(xk) remain unchanged. We 

change condition (ii), however, to allow that if e:;f;\il eek then possibly after the 
passing of a(i), the load of node i can fall to the level of some node j' e p(i). 
This new condition (ii) is 

(iia) 0,.,,;; ~ Cl'm(i),.,,;; x; - (xi'+ ai'(i)) for some 
mep(i) 

j' E {j: Xj < X;, j E p(i)} 

Condition (iii) is also changed because we no longer require that if e:;f;\il e ek 
then node i passes a non-negligible amount of load to some least loaded 
neighbour j*. The Y;i are fixed a priori as before. The new condition (iii) is 

(iii a) «r(i) ;,;,, yif(x; xj) for some j' E p(i) such that xr < x; 

Notice that we now require only that if e~f;\il e eb then node i passes a 
predefined fraction of the load difference between nodes i and j' for some node 
j' E p(i). 

We now define new sets of allowed event trajectories. We define an 
elementary event, etp) to represe11t the passing of load a-/i) from processor i to 
processor j (note that e~(t {et,u): j e p(i)}). We define an elementary event 
o~ type (i, j) to be any ei,u), and denote an elementary event of type (i, j) with 
e'I. 

(i) For E 1 c Ev, every event trajectory Ee E 1 must contain an infinite 
number of occurrences of elementary events of every type eii for all 
(i,j)eA. 

(ii) For E 8 , C Ev, assume that there exists B' > 0 such that for every event 
trajectory EE E 8 ,, in every substring ek', ek'+i, ek'+2, .. ,, ek'+(B'-l) of 
E there is the occurrence of every type of elementary event (i.e. for every 
i E L elementary event eii Eek for some k, k',.,,;; k,;;; k' + B' 1). 

Theorem 6: For the load processor network system with conditions (ii a) and 
(iii a) the invariant set ffb is asymptotically stable in the large with respect to E1. 

Proof: Using the same p and V as in Theorem 4, the proof for stability in the 
sense of Lyapunov with respect to E1 is the same as in the proof of Theorem 4. 
The proof of asymptotic stability in the large, however, must be slightly 
modified. In the original proof, we are guaranteed that the partial event ei,p(i), 
where (i, j**) e A and x1 > xr, must occur infinitely often. Given the above 
generalizations, we can simply state that the elementary event e1i**, where 
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x; > xr, must occur infinitely often or until xk e ieb. Thus, we can say that the 
overall lightest load in the network must definitely increase an infinite number 
of times or until it is equal to the average network load. Hence, we have that 
for the generalized load system, 21:'b is asymptotically stable in the large with 
re~~M~. 

Remark 1: The new conditions allow for greater efficiency because it is no 
longer necessary for node i to examine all xi with j e p(i) to find xr before 
passing. In a network where lp(i)I is large, this may prove to be quite a 
time-saving advantage. □ 

Theorem 7: For the load processor network system with conditions (ii a) and 
(iii a) the invariant set geb is exponentially stable in the large with respect to E 8 ,. 

The proof is omitted as it is very similar to the proof of Theorem 5. 

3.2. Virtual load 
In practice, it is often the case that the load processors in the network may 

process the load at different rates. In this case, it is useful to scale the physical 
load of each processor by assigning constants /3; > 0, which are inversely 
proportional to the rate at which processor i can process load, for each i e L. 
Hence, we define /3;x; as the virtual load of processor i, and it is the virtual load 
that we wish to balance among the network nodes. It is useful to balance the 
virtual load in a load processor network to ensure that nodes which process load 
faster have a larger portion of the available load. 

With a few adjustments, the above analysis applies directly in the case of 
virtual load. First of all, because we are interested in balancing the virtual load, 
we should only allow node i to pass load to node j if the virtual load of node i 
is greater than the virtual load of node j. Accordingly, condition (i) on 
ek E g(xk) must be changed to 

(i b) !Xj Oif /1;X; "' f3ixi where j e p(i) 

Secondly, we require that after node i passes load, its virtual load be at least as 
large as the possibly increased virtual load, due to !Xr(i), of node j*. This 
requirement can be expressed as 

/3;(x; - L aj(i)) "" f1Axr + «r(i)) 
;ep(i) 

Direct manipulation of this equation leads to the extension of condition (ii a) 

(iib) O"' :Z: a-j(i) "'x; - /3r (xr + ar(i)) for all 
jep(i) /3; 

j* E {j: /3jXj "' /3,.Xm for all m E p (i)} 

We also must require that if node i is not virtual load balanced with all of its 
neighbours, then i must pass a non-negligible portion of its load to at least one 
of its neighbours. We can express this condition as 

!{(/3;x; - f3ixi) - [/3;(x; - a-i(i)) - /3;(x; + «;(i))]} :;;, Y;;(/3;x; - f3ix;) 

for some j e p(i). After some manipulation, we arrive at the virtual load version 
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of condition (iii a) 

(I·,·,· b) ( ") ::,,, 2yij({3;X; - /3jXj) f . ( ")ai 1 ~ ------- or some J E p 1 

/3; + /3j 
Notice that in the case of /3; = 1 for all i E L, the conditions (i b), (ii b) and 
(iii b) properly reduce to conditions (i), (ii a), and (iii a). 

Clearly 

2rbv = {xk E 2£: l/3;X; - {3ixil = 0 for all (i, j) E A} 

is an invariant set which represents a perfectly balanced virtual load. 

Theorem 8: For the virtual load processor network system with conditions (i b), 
(ii b), and (iii b) the invariant set 2rbv is exponentially stable in the large with 
respect to E 8 ,. 

If all references to x; are replaced by references to /3;x; and the new 
conditions on ek E g(xk) are observed, the proof is very similar to the proof of 
Theorem 5. 

Remark 1: In the virtual load balancing problem, it is of course necessary that 
node i not only has knowledge of xi for all j E p(i), but also of {3i for all 
j E p(i). 0 

Remark 2: Just as new load can enter the load balanced system, perturbing the 
balance, the load processing capabilities of the load processors may change, 
perturbing the balance of the virtual load balanced system. Given that the 
f3 = {/3;: i E L} is updated to reflect the change in load processing capability 
(e.g. a change in the rate at which some node can process load), the system will 
recognize the imbalance and begin to rebalance from a new state x0 /fc 2rbv• □ 

3.3. Discrete load 
Consider now that we have the same system as originally described, except 

that in this case, we may not assume that the load can be described with a 
continuous variable, as is the case in many practical systems. In fact, we assume 
that the load in the system is partitioned into blocks. The largest block in the 
network has size M > 0 and the smallest block in the network has size m, 
M ;;,, m > 0. In contrast to the perfect load balancing that is possible in the 
continuous load case, the best we can generally hope to do with only local 
information in the discrete load case is to balance each interprocessor connec
tion to within M. Next, we define the model G for the discrete load case. 

We utilize the same 2£ and '& as in the continuous load case. Below, we 
specify g and fe for ek E g(xk)-

(1) Event ek E g(xk} if both (a) and (b) below hold. 

(a) For all e~f;\i) Eek where a(i) = (aj(i): j E p(i)) it is the case that: 

(i) aj(i) = 0 if x; - xi,;;; M where j E p(i). 

(ii) X; - L am(i) > min {y j E p(i)}. 
mep(i) I 
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(iii) If ai(i) > 0 for some j E p(i), then 
ar(i) > 0 for some j* E {j: xi~ xm for all m E p(i)}. 

Condition (i) prevents load from being passed by node i to node j if 
nodes i and j are balanced within M. Condition (ii) implies that 
after the load a-(i) has been passed, the remaining load of node i 
must be larger than the load at time k of some neighbour of i. 
Condition (iii) implies that if node i is not load balanced to within 
M with all of its neighbours, then i must pass some load to some 
least-loaded neighbour j*. 

(b) If e~(;\il Eek where a(i) (ai(i): j E p(i)), then e~(;fl rt. ek where 
o(i) = {t\(i): j E p(i)} if a';(i) * oj(i) for some j E p(i). Hence, in 
each valid event eb there must be a consistent definition of the load 
to be passed from any node i to any other node j, a';(i). 

1(2) If ek E g(xk) and e;;(;\ l Eek then fe.(xk) = xk+l where 

x; = X; - L o:;(i) + L . a;(j) 
{j:jep(i)} {j:iep(i).e'.;{;\') eek) 

The load of node i at time k + 1, x;, is the load of node i at time k 
minus the total load passed by node i at time k plus the total load 
received by node i at time k. 

Let Ev E be the set of valid event trajectories. Define E;, E8 C Ev as in 
the continuous load case. 

Clearly 

:?ew = {xk E :?e: Ix; x;I ~ M for all (i, j) E A} 

is an invariant set that represents a balanced load in the sense described above. 
Notice that the only ek E g(xk), where xk E Zfbct, are ones such that all e~f;fl Eek 
have a·(i) = (0, 0, , .. , 0). 

Once again, we employ a Lyapunov stability theoretic approach. Let i = 
[ii, ... , iNI• Choose 

p(xk, Xbd) = inf{max{lx1- xJ i EL}: i E i.fw} (10) 

Theorem 9: For the discrete load processor network system, the invariant set 1'l:bd 

is asymptotically stable in the large with respect to E;. 

Proof: For the proof, see Appendix B. D 

We employ Theorem 3 to prove that p(xk> i.fbct) is bounded from above by an 
exponential t e-o:k p(x0 , i.fbct) for some Cl'> 0 and t > 0. 

Theorem 10: For the discrete load processor network system described above, 
the invariant set lfbct is exponentially stable in the large with respect to E 8 . 

Proof: The first condition of Theorem 3 is shown to hold in the proof of 
Theorem 9. We now show that the final condition of Theorem 3 holds. 

We define a constant 8 on which the proof will depend. For a given discrete 
load network, there is a constant 61 > 0, such that if e~(;\il E ek and a'j(i) > 0 for 
some j E p(i), then x;;;. xr + 81, where j* e p(i) and xr ~ xi for all j E p(i). 
For the same discrete load network, there is also a constant bi > 0, such that if 
(i, j) EA and X; * xj, then Ix; - xii;;;,, °'2· Let O= min { 81, "2, m }. 
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For xk ,t 2rbd, there is L *(k) CL such that L *(k) = {i: x; ~ Xj, j e L}. 
Because there must be at least one node in the network that is more heavily 
loaded than the rest of the nodes, we know that IL*(k) I~ N - 1. 

Fix a time k ;;;,, 0. There must be some i ,t L *( k) and some j E L *(k) such 
that (i, j) E A. According to the restrictions imposed by E 8 , there is some time 
k 1, k "'= k 1 < k + B such that e~f;\i) Eek,· Conditions (a)(ii) and (a)(iii) on 
ek E g(xk), along with the definition of 6, imply that either (a) IL*(k + 1)1 ~ 
IL*(k)I - 1 and x~ = xi for all q E L*(k + 1) and all j EL*(k); or 
(b) x ~ ;;;,, xi + 6 for all q E L * ( k + 1) and all j E L * ( k). In other words, either 
the number of least loaded nodes decreases by at least one or the smallest load 
increases by at least 6. Thus, because IL*(k)I ~ N - l, we can conclude that for 
xk $ ftbd, V(xk) - V(xk+NB);;;,, 6. From (10), it is clear that Ii1x; > p(xk, ftbd). 
It is also clear that there is some t > 0 such that 

N 

to > LXi > p(xk, ftbd) 
i=l 

Therefore, it follows that V(xk) - V(xk+NB) > (1/t)p(xb l'fbd), which satisfies 
the final condition of Theorem 3. D 

Remark 1: Notice that in the discrete load case, the rate of exponential 
convergence depends on N, B and t. As in the continuous load case, the 
smaller we make B, the faster we are guaranteed to converge. Unlike the 
continuous load case in which the guaranteed rate of convergence depends on 
tangible system constants R and S, in this case we have the peculiar dependence 
on ,. It is less clear how to design for a small , than it is to design for a small R 
or S. If all the load blocks in the network have size M, then .5 M and 
t =Li 1x;/M. However, if the load blocks are of various sizes then t must be 
calculated from a worst-case a.nalysis. D 

Remark 2: It can be shown if we change condition (a)(iii) to 'if X; - xi> M for 
some (i, /)EA then aj(i) > 0 for some (i, /)EA', thereby alleviating the nodes 
from scanning all of their neighbours to locate one of the least loaded, then 1!ebd 
is asymptotically stable in the large with respect to E I and exponentially stable 
in the large with respect to E 8 . Of course, the guaranteed rate of convergence 
will suffer under this Jess strict load passing condition. 

4. The load balancing problem with delays 
We now modify the model of the system to allow for delays in load transport 

and sensing as in Tsitsiklis and Bertsekas (1989). In this extended analysis, we 
no longer require that the real time between events ek and ek+I be greater than 
the greatest system transportation time plus the greatest system sensing time. In 
this sense, we allow a reduction of the degree of synchronicity forced upon the 
system. What we now require is that there exist B > 0 such that load passed at 
time k is received by time k + B - 1 and that for all (i, j) EA load which 
arrives at node j at time k' will be sensed by node i by time k' + B - 1. 

Tsitsiklis and Bertsekas (1989) presented a proof for asymptotic stability and 
suggested a proof for geometric convergence. We take a different approach by 
studying the problem within the Lyapunov stability framework and proving 
asymptotic and exponential stability and providing a rate of convergence 
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373 Stability analysis of load balancing systems 

analysis. Our proof for asymptotic stability is different from the one of Tsitsiklis 
and Bertsekas (1989). Lemmas 1, 2 and 3 in our proof of exponential stability 
are adaptations of lemmas from the proof of Tsitsiklis and Bertsekas (1989). 
Lemma 4 in our proof of exponential stability provides sufficient conditions for 
exponential stability that are more general than those of Michel et al. (1992 a, b) 
and allow us to finish the proof for the delay case. 

Let 'l1'. = 9t(ZN+IAl)xB be the set of states. (We use the term 'state' here for 
convenience. Strictly speaking, xk E 'l1'. is not necessarily a 'state' in the conven
tional sense.) Every xk e 'l1'. is composed of three 'sub-states'. Let Xno e mNxB 

represent the loads of the N network nodes at times k, k - l, ... , k - B + 2, 
k - B + l. The first column represents the loads of the nodes at time k, the 
second column represents the loads of the nodes at time k - 1, and so on. Let 
Xni E 9tNxB represent the loads of the N network nodes at times k - B, 
k - B - 1, ... , k - 2B + 2, k - 2B + 1. The first column represents the loads 
of the nodes at time k - B, the second column represents the loads of the nodes 
at time k - B - l, and so on. Let x, E 9tlAlxB represent all of the IAI loads in 
transit between the N network nodes at times k, k - 1, ... , k - B + 2, 
k - B + l. The first column represents the loads in transit at time k, the second 
column represents the loads in transit at time k - l, and so on. Pictorially, the 
state xk e X may be represented as 

where Xn = [Xno] 
Xn1 

We also define 

x, =[:;o] 
so that the sum of the elements of any column of x, is equal to the total 
network load. Let Xno(k'), Xn1(k1), xn(k'), x 1(k'), and xs(k') be defined in the 
same manner as Xno, Xni, Xn, x,, and x,, with the exception that the state from 
which they derive is xk' instead of xk. 

Let x, denote the load of node i e L at time k, let x; denote the load of 
node i E L at time k + l, and let x,(k') denote the load of node i E L at time 
k'. Clearly, X; is element i of the first column of Xk, x; is element i of the first 
column of Xk+I and x;(k') is element i of the first column of xk'• Let x;_i 
denote the load in transit from node i to node j at time k, and let x/-i denote 
the load in transit from node i to node j at time k + I, (i, j) EA. Clearly, x,_j 

is one of the last IAI elements of the first column of Xk, and xl-; is one of the 
last IAI elements of the first column of xk+\· Let x1be the perception by node i 
of the load of node j at time k, and let x 1(k') be the perception by node i of 
th.e load of node j at time k'. Because of the restriction on the delay in sensing, 
x1must be any one of the elements of row j of xk (i.e. row j of Xno), and x1(k') 
must be any one of the elements of row j of xk'· 

Let e~f(i) represent that node i E L passes load to its neighbours m E p(i) 
where p(i) = {j: 3(i, j) e A}. Let a(i) = («j(i), «r(i), ... , «r(i)) such that 
j < j' < • • • < j" and j, j', ... , j" E p(i) and a-;;;,, 0 for all j E p(i); the size of 
the list is IP(i)I, For convenience, we will denote this list by a-(i) = («j(i): 
j e p(i)). a-"'(i) denotes the amount of load passed from i EL to m E p(i). Let 
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374 K. L. Burgess and K. M. Passino 

{e~v)U)} denote the set of all possible such load passes. Let et; represent that 
node j e L receives f3;;,, 0 load from node i. Let {e~_,} denote the set of all 
possible such load receptions. Let the set of events be described by 

'& = {0'({e~<t0n u '?J>({eh-;n - {<t>} 

As before, each event ek e 'i!: is defined as a set. Elements of ek may 
represent either the passing of load by node i e L to its neighbouring nodes in 
the network or the reception of load by node i e L. Once again, let the Yii for 
(i, j) e A be defined a priori. 

Below, we specify g and fe for ek E g(xk)-

(1) Event eke g(xk) if (a), (b), and (c) below hold. 

(a) For all e~ti) eek where rx(i) (rxj(i): j e p(i)) it is the case that 

(i) «j(i) =0 if x;,;:; x\ where j e p(i), 

(ii) 0 ,;:; L rxm(i),;:; X; - (xf + ll'j(i)) for all j E p(i) 
mEp(i) 

such that x; ;;,, x I and 

(iii) rxj*(i);;,, Yij*(X; - x 1.) for some j* e {j: 
m E p(i)}. 

Condition (i) prevents load from being passed by node i to node j if 
node i is less heavily loaded than its perception.of node j. Condition 
(ii) directly implies that X; - Lmep(i)ll'm(i);;,, x 1 + ll'j(i). Thus, after 
the load ll'(i) has been passed, the remaining load of node i must be 
at least as large as xj + aj(i) for every node j e p(i) that was less 
heavily loaded than node i to begin with. Condition (iii) implies that 
if node i does not perceive itself as being load balanced with all of its 
neighbours, then i must pass a non-negligible portion of its load to 
some neighbour perceived to be least loaded, j*. 

(b) For all et
1 

eek it is the case that O,;:; f3,;:; xhi• 

(c) If e~vr<i) Eek where a(i) = («j(i): j E p(i)), then e:;;t0 "' ek where 
o(i) = (6i(i): j e p(i)) if ll'j(i) * oj(i) for all j e p(i). Hence, in each 
valid event ek< there must be a consistent definition of the load, 
ai(i), to be passed from any node i to any other node j. 

(d) If e~,-; eek, then et
1 'I: ek if f3 * o. Hence, in each valid event ek> 

there must be a consistent definition of the load, (3, received by any 
node j from any other node i, ( i, j) e A. 

(2) If ek E g(xk) then f,,(xd = Xk+l where 

Xj = Xj -

The load of node i at time k + 1 is the load of node i at time k minus 
the total load passed by node i at time k plus the total load received by 
node i at time k. The load in transit from node i to any one of its 

https://perception.of
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375 Stability analysis of load balancing systems 

neighbours, j e p(i), at time k + 1 is the load in transit from node i to 
node j at time k plus the passed load, minus the received load. 

Let Ev= E be the set of valid event trajectories. We must further specify the 
set of allowed event trajectories, Ea C Ev. We define a partial event of type 
'i-,.' to represent the passing of a(i) amount of load from i e L to its 
neighbours p(i). A partial event of type i-,. will be denoted by ei-p(i) and the 
occurrence of ei-p([) indicates that i e L attempts to balance its load with its 
neighbours further. We define a partial event of type 'j.,_' to represent the 
receiving of f3 amount of load by j e L from one of its neighbours in p(j). 
Event ek is composed of a set of partial events. For E 8 C Ev, the following two 
conditions must hold for every E e E 8 . 

(1) There exists B > 0 such that in every substring ek', ek'+l, ek'+2, . , ,, 
ek'+(B-l) there is the occurrence of partial event ei-p(i) for all i e L (i.e. 
for every i e L partial event ei-p(,) eek for some k, k',,;; k,,;; k' + 
B -1), 

(2) For every i and k' such that e~f(i) eek', there is k',,;; k < k' + B such 
that e~!J eek. This restriction mandates that load passed at time k' must 
be recdived intact by time k' + B - 1. 

We want to define an invariant set such that any state xk which is in the 
invariant set exhibits the following properties. 

(i) The load in the nodes is perfectly balanced at time k. 

(ii) There is no load in transit at time k. 

(iii) At time k, every node has an accurate perception of the load of its 
neighbours, 

Let L'={l,2, ... ,2N}, G={l,2,,,,,B} and H={l,2, ... , IAI}- If y is a 
matrix, let (y)pq denote the element in row p and column q of y. Choose 

Xb = {xk e X: (x.);i = (x.)pq for all i, p e L' and j, q e G; 

(x1);j = 0 for all i e H and j e G} (11) 

Consider any xk e Xb. Because all elements of x. are equal, the load in the 
nodes is perfectly balanced at time k. Because all elements of x, are zero, there 
can be no load in transit at time k, Because the load at all nodes has been fixed 
since time k - 2B + 1, we are guaranteed that each node has an accurate 
perception of all of its neighbours at time k. Hence, Xb is an invariant set whose 
element states exhibit, the required properties. Notice that the only eke g(xk), 
wher_e _xk e Xb, are ones such that all e~(ij(,) eek have a(i) = (0, 0, ... , 0) and 
all ehH e ek have /3 = 0. 

To study the ability of the system to redistribute load automatically to 
achieve balancing, we again employ a Lyapunov stability theoretic approach. Let 
T = {l, 2, ... , (2N + IAI)}. Choose 

p(xb Xb) = inf {max {l(xk)ij - (i);J for all i e T, j e G}: i e Xb} (12) 

Theorem 11: For the load processor network with delays as described above, the 
invariant set Xb is asymptotically stable in the large with respect to E 8 . 

Proof: For the proof, see Appendix C, □ 
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376 K. L. Burgess and K. M. Passino 

We employ the exponential stability theorem to prove that p(_xb :?eb) is 
bounded from above by an exponential te-«k p(_x0, 2eb) for some a-> 0 and 
i; > 0. 

Theorem 12: For the load processor network with delays as described above, the 
invariant set 21':'b is exponentially stable in the large with respect to E 8 . 

Proof: For the proof, see Appendix D. D 

In the proof in Appendix D, we show that 

V(Xk-2B+i) - V(xk+3N'B+28) ;;,, _!_y2a-l(11r3N'B+iB)N p(_xk, :?eb), (13)
B 

for k;;,, 2B - L Because (13) is valid only for k;;,, 2B - 1, it should be apparent 
that k = 2B - 1 in our model is equivalent to k = 0 in Lemma 4 (from the proof 
in Appendix D). Hence, what we have shown via the proof is that for all 
k ;;,,2B -1 

p(_xk, :?eb).;; i;e-«(k-28+1) p(_x2B-1, :?eb) 

for some a-> 0 and t > 0. Of course, from the proof of asymptotic stability, we 
are assured that 

p(_xk> :?eb) .;; 2NB2(2 + 
28

~AI )p(_x0, :?eb) 

for all Q.;; k<2B- l. 

Remark 1: This remark will parallel Remark 2 that followed the proof of 
exponential stabjlity for the non-delay, continuous load system. The value 
(1/By28- 1)(r,y3N·B+ 2B)N from (13) is directly related to the a: from the 
exponential overbounding function Ce-a<k-2B+ll p(_x28_1, :?eh)- Thus, if speed of 
convergence is a design factor, then y should be made as large as possible and 
N and B should be made as small as possible. 

The condition k';;,, k + 3NB in Lemma 2 (from the proof in Appendix D) is 
unnecessarily conservative. From the proof of Lemma 2, we see that the 
condition k';;,. k + 3RB, where R = max; {lp(i)I} + 1, is sufficient. Let S be the 
maximum number of arcs that must be spanned to reach any node j e L from 
any other node i E L. Because every processor i e L is actually at a distance (in 
arcs) of S or less from every other processor j e L, (13) can be validly written as 

V(xk-iB+t) V( ) :,, l .28-1( •.3RSB+2B)Sd ;?e )xk+3RSB+2B - Br 1/r ,.,._xk> b 

Therefore, convergence can once again be accelerated by designing for RS2 as 
small as possible. □ 

Remark 2: The idea of virtual load works for the delay case similarly to the 
way in which it worked for the non-delay case. □ 

Remark 3: It is possible to extend the delay case to cover the possibility of 
discrete loads. The proofs would be similar in spirit to those found here. □ 
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377 Stability analysis of load balancing systems 

S. Concluding remarks 
In § 1, we introduced a DES model and provided stability definitions and an 

approach to stability analysis for load balancing systems. In § 2 we studied the 
load balancing problem without delays in passing and sensing load. We proved 
in this case that a particular load redistribution policy is asymptotically and 
exponentially stable. We also generalized on the original non-delay load 
balancing system and proved that several of the generalized systems are 
asymptotically and exponentially stable. In § 3, we studied the load balancing 
problem and considered delays in passing and sensing load. We proved in this 
case that a particular load redistribution policy is asymptotically and exponen
tially stable. 

While we have shown how to characterize and analyse stability properties of 
general load balancing systems with and without delays and have generalized the 
results of Tsitsiklis and Bertsekas (1989) in several ways, there still remains 
research to be done. For instance, in all of the load balancing problems 
considered in this paper (and in Tsitsiklis and Bertsekas 1989), it is assumed that 
no new load arrives at the network for processing and that no load is processed 
while the load is being balanced. Certainly the results indicate that if load 
arrives/departs while it is being balanced the system will continually seek to 
balance; but, in general, the systems will not possess the stability properties 
found in this paper. Clearly there is a need to characterize and analyse stability 
properties of the general load balancing problem with arrivals/departures. 
Another issue that needs to be addressed is how to generalize the dynamics of 
the load processor so that other types of load processing mechanisms can be 
considered. Finally, there is clearly a need to consider general load balancing 
problems in a stochastic framework. 
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Appendix A-Proof of Theorem S: Choose the same V(x) as in (2). The first 
condition of Theorem 3 is shown to hold in the proof of asymptotic stability, 
Theorem 4. We now show that the second condition of Theorem 3 holds. 

Let y = min1,i {Yii}. For any i E L and k ;;,, o., we know from condition (a)(ii) 
on e:;(;\'l Eek and the definition of y that if e:;f;\'l Eek and. aii) > 0 for .some 
j e p(i), then x;;;;,, xi+ y(x; - xi) for some j E p(i). If e:;f;\'l ¢ ek or e:;f;\'l eek 
and a(i) = (0, 0, ... , 0), then x; =x1. It follows that in any case 

x;;;,, min {x;} + y[x; - min {x;}] (A 1) 
' i 

Thus, it is clear that min; {x;} is a non-decreasing function of k. We now show 
via induction on t that 

x;(k + t);;,, min {x;} + y'[x; - min {x1}] (A2)
i i 

for all t;;,, 0. Equation (14) is the statement of (A 2) for t 1. Assume that 
( A 1) is true for an arbitrary t. If x1 denotes the load of i e L at time k, then 
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378 K. L. Burgess and K. M. Passino 

according to (A 1): 

X;(k + t + 1) ;a, min {x;(k + t)} + y[x;(k + t) - min {x;(k + t)}] 
I l 

;;, min{x;} + y[x;(k + t) - min{x;}] 
l l 

;;, min{x;} + y[min{x;} + y1[x; - min{x;}) min{x;}) 
I J l I 

= min {x;} + y'+ 1[x; - min {x;}) 
l l 

Thus, (A 2) must be valid for all t ;;, 0. 
Fix i e L and k;;, 0. We now show that the loads of all neighbours of i are 

bounded from below by a function of x; for all k', k' ;;,, k + NB. Specifically, we 
will show that 

xi(k');;,, min{x;} + yk'-*[x; - min{x;}] for all k';;,, k + NB, j e p(i) 
! l 

(A3) 

There are. times km;;, k, m E {1, 2, ...}, such that e~f;\i) E ekm• and for 
k' * km, e~f;j'J f ek'• According to the restriction on EE E 8 , k .s; k 1 < k + B 
and km-I< km< km+I + B for all m E {2, 3, ...}. Below, we investigate three 
cases that may occur at any time km. The different cases describe different 
possible relative load levels of node i and its neighbours. More than one case 
may apply to a given time km. 

In the first case, there is time km, m E {1, 2, ...}, and j E p(i) such that 
xj(km) < x;(km) and x1(km),:;; xr(km) for all j' E p(i). According to condition 
(a)(iii) on ek E g(xk), a:j(i) ;a, y[x1(km) - xj(km)J. Utilizing this fact and applying 
(A 2) to x; yields 

X1(km + 1) ;;,, xj(km) + y[x;(km) - xj(km)] 

;;,, min{x;} + y[x;(km) - min{x1}]
i i 

;;,, m.in {x;} + y[min {x;} + ykm-k(x; - min {x;}] min {x;}] 
t I I i 

= min {x;} + ykm-k+ 1[x; - m_in {x;}) 
' ' 

If we now apply (A 2) to xi with k = km + 1 and I = k' - km - 1, it is clear that 

X1(k');;,, min {x;(km + 1)} + yk'-km- 1(x/km + 1) - min {x,(km + 1)}] 
l I 

1;;,, min {x } + [min {x;} + ykm-k+ 1(x; - min {x;}] - min {x }]yk'-km-

1 1 

I l l l 

;;, min {x;} + yk'-k[x; - min {x;}] for all k' ;;,, km + 1 (A4)
i i 

In the second case, there is time km, m E {1, 2, ...}, and j' E p(i) such that 
at some time kq, 1.s; q < m, o:r(i);;,., y[x;(kq) - xr(kq)]. In other words, at time 
kq, node i passed at least y[x1(kq) - xr(kq)] to node j'. We consider any 
j E p(i) such that xj(km);;, xr(km). Applying (A 2) to Xj with k = km and 
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379 Stability analysis of load balancing systems 

t = k' - k,,, yields 

xj(k');,, min {x;(km)} + yk'-km[x/km) - min {x;(km)}J 
I I 

;,, m_in{x;} + yk'-km[xp(km) - m_in{x1}] for all k';,, km (AS) 
/ I 

Clearly, (A 4) applies to node j' for all k 1 , k 1 
;,, kq + l. Because km;;,, kq + 1, 

we can substitute in (A 5) for xr(km) from (A4) to arrive at 

xj(k') ;,, min {x;} + yk'-k.,[min {x;} + ykm-k[x1 - min {x;}] - min {x1}] 
f l I 1 

;;,, min {x1} + yk'-k[x1 - min {x;}] for all k' ;;,, km (A6)
i i 

In the third case, there is time km, m E {1, 2, ...}, such that x1(km) ,s;; x/km) 
for all j E p(i) (i.e. all neighbours of node i are at least as heavily loaded as 
node i). In this case, for any j E p(i), it is clear from (A 2) with k = km and 
t = k' - km that 

xj(k');;,, min{x1(km)} + yk'-km[xj(km) - min{x1(k,,,)}] 
I I 

;,, min{x1} + yk'-km[x1(km) - min {x1}] for all k';,, km (A 7) 
I I 

From (A 2) with t = km - k, it is also clear that 

X;(km);;,, min{x;} + ykm-k[x; - min{x;}] (AS) 
I I 

If follows then from (A 7) and (A 8) that 

x/k') ;;,, min {x;} + yk'-km[min {x1} + ykm-k[x1 - min {x1}] - min {x1}] 
I t l J 

;,, min {x1} + yk'-k[x1 - min {x;}] for all k' ;,, km (A 9) 
/ I 

Now notice that at each time km, m E {1, 2, ...}, it must be the case that 
exactly one of the following is true. 

(i) There is at least one j E p(i) such that <Xj(i);,, y[x1(k,,,) - Xj(km)] and at 
every time kq, q < m, <Xj(i) < y[x;(kq) - .1'j(kq)] (i.e. node i passes a 
non-negligible amount of load at time k to at least one of its neighbours 
to which it has not passed a non-negligible amount of load since before 
time k1). 

(ii) For every j E p(i) such that <Xj(i);,, y[x1(km) - xi(km)l, there is some 
q < m such that the load passed by processor i to processor j at time q 
satisfies cxj(i);;,, y[x;(kq) Xj(kq)] (i.e. processor i passes a non-negligible 
amount of load only to neighbours j e p(i) to which it has not passed a 
non-negligible amount of load since time ki). 

(iii) For every j E p(i), x;(km) ,s;; xj(km) (Le. processor i cannot pass load to 
any of its neighbours j E p(i)). 

If (ii) is true, then the second case applies to all neighbours of i and ( A 6) is 
valid for all j E p(i). Hence, because kN,,; k + NB, if m < N, then (A 3) is 
valid. If (iii) is true, then the third case applies for all of the neighbours of i, 
and (A 9) is valid for all j e p(i). Hence, because kN < k + NB, if m < N, then 
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(A 3) is valid. If (i) is true, the first case applies to all of the neighbours of i to 
which i passes a non-negligible amount of load, and (A 4) is valid for all j E p(i) 
for which a'j(i);;, y[x;(km) - xj(km)] is true. Because Jp(i)J < N, either (ii) or 
(iii) must occur before kN or (i) must occur for every km, me {l, 2, ... , 
N - 1}. Therefore, (A 3) must be valid. 

We now extend (A 3) to 
xj(k');;, min {x;} + (rk'-k)1[x; - min {x;}] for all k';;. k + /NB (A 10) 

I I 

where j is any node that is reachable from i by spanning l inter-processor 
connections (arcs (i, j) e A). Equation (A 3) establishes the validity of (A 10) 
for l = 1. We assume (A 10) is valid for a general j at a distance l from i, and 
there must be some node q e p(j) such that q is at a distance l + 1 from i. 

• Equation (A 3), applied to q e p(j), yields 

xq(k');;, min {x;(k + /NB)} + yk'-(k+INBl[xj(k + /NB) - min {x;(k + /NB)}] 
I I 

;;, min{x;} + yk'-k[xj(k + {NB) min{x;}] 
I 1 

for all k' ;;, k + (l + 1)NB 

Substituting based on our inductive hypothesis 

xq(k');;, min{x;} + yk'-k[min{x;} + (yk'-k) 1[x; - min{x;}] - m.in{x;}] 
l I l l 

= min {x;} + (rk'-ki+I[x; - min {x;}] for all k' ;;. k + (l + l)NB. 
I 1 

Hence, (A 10) must be valid for all l;;, 1. 
Because every processor in the network can be reached from i by spanning 

fewer than N arcs, (A 10) implies that 

x;(k') ;;, min {x;} + (rk'-k)N[x; min {x;}] (A 11) 
' j 

for all k';;, k + N 2B, j e p(i). Because we have made no assumptions to the 
contrary, (A 11) is valid for any i e L. Hence, we can replace x; with max; {x;} 
and j e p(i) with j e L and (A 11) becomes 

xj(k') ;;. min {x;} + (yk'-k)N[max {x;} - min {x;}] 
I I I 

for all k';;. k + N 2B, j e L. ,It follows directly that 

min {x;(k')};;. min {x;} + (rk'-k)N[max {x;} - min {x;}] (A 12) 
l l 1 l 

for all k';;. k + N 2B. 
Choose k' = k + N 2B. For every k;;, 0, xk iJ: lfb, equations (5) and (A 12) 

imply that 

;;. yN'B~Xk, ~\) (A 13) 

The above equation satisfies the final condition of Theorem 3. □ 
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381 Stability analysis of load balancing systems 

Appendix B-Proof of Theorem 9: Choose 

) -!_!_ ix; - min {x;}, xk $ ~bdV( (B 1)xk - N;-1 • 

0, Xk E 2ebd 

Notice that for xk $ ~bd, there must be two nodes i and j, (i, j) EA, such 
that x, - xi > M. Because nodes i and j, (i, j) E A , of any state x E i'fbd must be 
such that x; - xi,;;; M, it is clear from (10) that 

p(xk> zfbd) ;;,,½max{x; - xi - M: (i, j) e A} 

2p(xk, i'fbd) ;;,, max (x; - xi - M: (i, j) EA} ~ 1jJ1(xd (B 2) 

According to (B 1), because max; {x;};;,, (1/N)~f:'_1x;, V(xk),;;; max, {x1} -
min; {x;}. Because there exists a network link between any two nodes that 
consist of fewer than N interprocessor connections, it must be true that 
max;{x;} - min;{x,},;;; N max {x; - Xf (i, j) EA}. Hence 

V(xk),;;; Nmax {x; - Xf (i, j) EA} 

_!_V(xk),;;; max {x; - Xf (i, j) E A} ~ 1/'z(xk) (B 3) 
N 

Finally, notice that according to (10) and (B 1), 

V(xk) = p(xk, ?fbd) = 0, xk E ;/fbd (B 4) 

We will find a constant rJ E (0, ao) such that r,p(xk> 1fbct) ;a,, V(xk) for all 
xk E ?£. From (B 4), we see that for all xk E ?Cb, any value of rJ will suffice. 
Thus, we need only be concerned with xk $ ;fbd· Accordingly, we will find a 
constant if, E (0, ao) such that if,1J!1(xk);;,, 1/Ji(xk) for xk $ ~bd- Notice from (B 2) 
and (B 3) that 

1/'1(xk) + M = 1/'2(xk) 

and V,1{xk) = s, s > 0, implies that 1/lz(xk) = s + M. From this, it is clear that 
if, E [1, ao ). For very large values of E, a value of <J> close to unity will satisfy our 
requirement, but as £ approaches zero, the necessary value of <J> approaches 
infinity. However, because the network contains a finite number of blocks, each 
of finite size, there must be some constant, t:0 , M ;a,, t:0 > 0, such that for 
xk 1 ;/l';bd, V,1(xk) ;a,, 1:0, Thus, if we choose q, 2M/i:0 , it is clear that if 
1/Ji(xk);;,, M, then 

2M
c/>1/11(xk) = -1/Ji(xk);;. 2V,1(xk);;,, 1/J1(xk) + M = 1/Ji(xk) 

eo 
and if 1/)1(xd < M, then 

2M
<l>1/J1(xk) = -1/Ji(xk) ;a,, 2M ;;,, 1/'1(xd + M 1/!2(xk) 

eo 
It follows that for all 1/J1(xk) ;a,, £0 

(jnpi(x k) ;;,, 1/Ji(x k) (B 5) 
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382 K. L. Burgess and K. M. Passino 

From (B 3)-(B 5), we see that 

1 
2,Pp(xb :?ebd) ""<Pt/J1(xk)"" t/)z(xk)"" N V(xk) 

2N <J>p(xk, :?ebd) ;;: V(xk) for all xk e :?e (B 6) 

so that condition (ii) of the Theorem 1 is satisfied. 
Notice from (10) that for xk ,t 21:bd, 

p(xb 2fbd) "- max {x;} - min {x;} (B 7) 
r I 

Because 

we see from (B 1) that 

1
V(xd"" -[max{x;} + (N l)min{x;}) - min{x;}

N ; 1 ; 

;;, Nl [max {x1} - min{x1}) 
I I 

NV(xk) ;;, max {x;} - min {x1} (B 8) 
I I 

Thus, from (B 4), (B 7), (B 8) we conclude that 

NV(xd ;;, p(xb :?ebd) for all xk E 2f (B 9) 

so that condition (i) of the Theorem 1 is satisfied. 
Condition (iii) of the Theorem l is satisfied in exactly the same way as in the 

proof of Theorem 4 so that :?ebd is stable in the sense of Lyapunov with respect 
to E1. 

In order to show that :?ebd is asymptotically stable in the large with respect to 
E1, we must show that for all x0 ,t 21:bd and all Ek such that EkE E E1(x0) 

V(X(x0 , Eb k))-> 0 as k-> oo (B 10) 

If xk ff; \!t'bd, then there must be some lightest loaded node j** (there may be 
more than one such node) and some other node i such that (i, j**) E A and 
x1 > xr, Because of the restrictions imposed by E 1, we know that all the partial 
events are guaranteed to occur infinitely often. According to condition (a)(iii) 
on ek E g(xk), each time partial event e1

·PU) occurs, xr is guaranteed to 
increase by m so that x;-• ""xr + m, and according to condition (a)(ii) on 
ek E g(xk), x; is guaranteed to be greater than xi*'. In fact, because the system 
is composed of a finite number of blocks, each of finite size, we know that there 
is some constant o> 0 such that x; ""xr + o. Thus, regardless of how many 
lightest loaded nodes there are, it is inevitable that eventually the overall lightest 
load in the network must increase. Hence, for every k ""0, there exists k' > k 
such that V(xk•) > V(xk•+i) as long as xk' ,t :?ebd so that (B 10) holds and ?fbd is 
asymptotically stable in the large with respect to E,-. □ 

Appendix C-Proof of Theorem 11: For convenience, we define some math
ematical notation. If y is a matrix, then min {y} is equal to the minimum of all 
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383 Stability analysis of load balancing systems 

of the elements of y, max {y} is equal to the maximum of all of the elements of 
y, and LY is equal to the sum of all of the elements of y. Further, let (y); be 
column i of y. 

Choose 

(C 1) 

Notice that V(xk) is the average load (total network load divided by N) minus 
the minimum load, taken over times k - 2B + 1, ... , k - l, k, at any node 
i e L. 

We first demonstrate that condition (ii) of Theorem 1 is satisfied by our 
choice of p(xb geb) and V(xk). 

It is clear from (1) and (12) that 

p(xk, geb) ;a, max {½(max {xn} - min {xn} ), max {x,}} 

;a, max {½(max {xn} - min {xn}), ½max {x,}} 

;a, ½max{(max{xn} - min{xn}), max{x,}} (C2) 

It is also clear that 

max{xd = max{max{xn}, max{x,}} 

We must consider two cases. If max {xn} - min {xn} ;a, max {x,}, then 

max {xn} ;a, max {x,} and max {xn} = max {xd 

It follows, then, from (C 2) that 

2p(xb geb) ;a, max {xk} - min {xn} 

On the other hand, if max {x,} ;a, max {xn} - min {xn}, then because we know 
that 

max {x,} ;a, max {x,} - min {xn} 

and 

max {xd = max {max {x,}, max {xn}} 

it must be the case that 

max {x,} ;a, max {xd - min {xn} 

Once again, (C 2) implies that 

2p(xb geb) ;a, max {xd - min {xn} 

Thus, we can conclude that 

2p(xb geb) ;a, max {xd - min {xn} (C3) 

for all xk 1$ geb· 
If max {xd ;a, (1/NB)LXs, then (C 1) and (C 3) imply that 

V(xk) ,,,; max {xd - min {xn} ,,,; 2p(xk, geb) (C4) 

However, it is possible that some load is in transit and that the load at the 
nodes is distributed such that max {xd < (1/NB)Ix,. It is clearly true for all 
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384 K. L. Burgess and K. M. Passino 

k', k - B < k' "- k, that the total load in transit is equal to the total system 
load minus the load at the nodes. Hence, if q is the column of xk that contains 
the load at the nodes and in transit at time k', then 

;;;e L(x.)q - N max {(xn)q} 

1 
;;. Lx, - Nmax{xn}

8 

However 

IA Imax {x,} ;;. })x,)q 

for all k ', k - B < k' "- k. It follows that 

1 
max {x,} ;;. - -[__!_LX, - N max {xn}]

!Al B 

1 
;;. - -[__!_LX, - N max {xk}] (CS)

!Al B 

Because of the maximum network transit time, this max {x,} resulted from at 
the most B - 1 load passes. Due to condition (a)(ii) on ek E g(xk) and the 
maximum network sensing time, each of these load passes must have been 
smaller than max {xn} min { x"}. Hence 

max {x,} "- (B - l)(max {xn} - min {x,.}) 

"- B(max{xd min{xn}) (C6) 

Equations (C 5) and (C 6) imply that 

1
max{xk} - min{xn};;. - -[]_LXs - Nmax{xk}] (C7)

BIA! B 

and (C 3) and (C 7) imply that 

2p(xk, ;ifb) ;,e_l_[__!_Lx, - Nmax{xd]
BIAI B 

2BIA Ip(xb ;ifb) ;;. _l_Lx, - max {xk} (C8)
N BN 

From (C3) it is clear that 2p(xk, ;/l;b) + min {xn};;. max {xk}. Hence, from (C8), 
it is clear that 

2BIA Ip(xb ~\);;. _I_LXs - 2p(xk, ;ifb) - min {xn} 
N BN 

1 
[
2BIAI + 2]p(xb ;ifb);;. - -Lx, - min {xn} = V(xk) (C9)

N BN 
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385 Stability analysis of load balancing systems 

Because (C4) and (C9) both bound V(xk) from above, we can claim that V(xk) 
is always bounded from above by the greater of the two bounds. Therefore, it is 
always true that 

(C 10) 

so that condition (ii) of Theorem 1 is satisfied. 
We now demonstrate that condition (i) of Theorem 1 is satisfied by our 

choice of fKxk, g{'b) and V(xk)-
Notice that Ix,-" max {LXno, LXn1}- It follows, then, from (C 1) that 

1
V(x,J -" - -Ixn - min {x,,} (C 11) 

2NB 

In an analogous manner to the non-delay case, LXn is minimized in terms of 
max {x.} and min {x,,} when exactly one element of x,, is equal to max {x.} and 
the remaining elements of x 11 are equal to min {x.}. From this analysis and (47), 
we have that 

1
V(xk);;,, - -[max{x.} + (2NB - l)min{xn}l - min{x.}

2NB 
1 

= - -[max{x.} - min {x.}] (C 12)
2NB 

It is clear from (11) and (12) that 

p(xb 21:b) ~ max {(max {x,,} - min (x.}), max {x,}} (C 13) 

We must consider two cases. First, consider max{x,,}-min{x,,}-"max{x,}. 
Then, according to (C 13), 

p(xk> ~\)~max {x.} - min {x,,} (C 14) 

Equations (C 14) and (C 12) yield 

1
V(xk) ;;,, --fKxk, ~b) (C 15)

2NB 
Now, consider max {x1} > max {xn} - min {xn} so that 

(C 16) 

As before, the maximum load in transit at times k B + l, ... , k - 1, k, is the 
sum of at most B - 1 load passes, each of which must have been smaller than 
max {x.} - min {xn}- Hence, 

max {x1} .;;; B[max {x11 } - min {xn}] (C 17) 

A slight manipulation of (C 16) and (C 17), along with (C 12) yields 

_!_p(xk, ;lr,b) ~ max {x11 } -
B 

min {x.} 

1 1
--p(xk, ~b).,, --[max {x.}
2NB2 2NB 

min {x.}] ~ V(xk) (C 18) 
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386 K. L. Burgess and K. M. Passino 

Because (C 15) and (C 18) both bound V(xk) from below, we can claim that 
V(xk) is always bounded from below by the lesser of the two bounds. 
Therefore, it is always true that 

1
V(xk) ;a, --p(xk, :1l\) 

2NB2 

so that condition (i) of Theorem 1 is satisfied. 
To satisfy the final condition of Theorem 1, we must show that 

V(X(x0 , Ek> k)) is a non-increasing function for k ;a, 0 and all Ek such that 
EkE EE 8 (x0). To see that this is the case, notice that once x0 is specified, 
V(xk) varies only as min{xn} varies. Clearly, what we must show is that 
min {xn} is non-decreasing as a function of k. According to condition (a)(ii) on 
ek E g(xk), if e~t•> Eek and q(i) = {j: j E p(i) and x; ;a, x1} then x; ;a, x 1for all 
j E q(i). In words, no node can pass so much load that its load level drops 
below its pre-pass perception of the load level of any node that it passed to. 
Therefore, because we are assured that x 1;a, min {xn} for all i E L and j E p(i), 
xi ;a, min {x.} for all i E L. Hence, min {xn} is a non-decreasing function of k. 
Thus, condition (iii) of Theorem 1 is satisfied and ~b is stable in the sense of 
Lyapunov with respect to E 8 . 

ln order to show that ~b is asymptotically stable in the large with respect to 
E 8, we must show that for all x0 t ~b and all Ek such that EkE E E 8 (x0), 

V(X(x0 , Ek> k))-> 0 as k-> oo (C 19) 

If xk If; :?Cb, then xk+i will represent a change of the load levels of all of the 
nodes included in some non-empty subset of L. Any change in the load of node 
i e L that is not positive must be due to the passing of load by node i at time k. 
In fact, from conditions 

i ➔ p(iJ h 
ea(iJ Eek t en 

(a)(ii) and (a)(iii) on ek E g(xk), we have that if 

x1 ;a, x1+ yij[x1 - Xj] for some j such that ai(i) > 0 

;a, min {xn} + y[x; - min {x.}] (C20) 

where y=min(i,jJeA{Y;i}. Notice that (C20) is valid even if e~f(i)lfiek or 
a(i) = (0, 0, ... , 0). Thus, for any time k' > k, x1(k') ;a, min {x.}. Again notice 
that min {xn} is a non-decreasing function of k. 

The question now becomes whether or not the passing of load is guaranteed 
to increase min {xn}. Employing ( C 20) and the fact that min { xn} is a 
non-decreasing function of k, we will use induction to show that 

x;(k +!);a, min {xn} + (y)1[x; - min {xn}] for all i E L (C21) 

The case of / = l is simply ( C 20). Assume that (C 21) is valid for some general 
l. Then, from (C20) and (C21), 

x1(k + l + 1) ;a, min{x,.(k + l)} + y[x1(k + /) - min{x.(k + /)}] 

3 min {xn} + y[x;(k + /) - min {x11 }] 

;a, min {x11 } + y[min {x,.} + (y)1[x1 - min {xn}] - min {xn}l 

= min{x,.} + (y)1+ 1(x; - min {x,.}] for all i EL 

Thus, we have shown that (C21) is valid in general. 



D
ow

nl
oa

de
d 

B
y:

 [O
hi

o 
S

ta
te

 U
ni

ve
rs

ity
 L

ib
ra

rie
s]

 A
t: 

18
:2

6 
10

 O
ct

ob
er

 2
00

7 

387 Stability analysis of load balancing systems 

Fix a time k such that xk ff; Xb. If x; > min {xn} for all i e L, then 

x;(k + m):;;,, min{xn} + (y)28
-

1[x; - min{xn}] (C22) 

for all i e L and m e {l, 2, ... , 2B - 1}. From (C 22) and the definition of the 
state, it is clear that 

min {xn(k + 2B 1)} :;;,, min {xn} + (y)28
-

1[min {x;} - min {xn}] 
I 

> min {xn} (C23) 

Let L* CL be the set of all i such that x; = min {x.}. It is possible that 
IL*I > 0. Because x;(k'):;;,, min {xd for all k' > k, if x; = min {xn}, then 
x;(k - m) = min {xn} for all me {l, 2, .... , 2B - 1}. Thus, for any two nodes i 
and j such that (i, j) e A and j e L*, xj = min {xk}. According to the restric• 
tions imposed on valid event strings by E 8 , there must be times k' and k", 
k < k ' :,;;; k" , k" < k + 2B , sueh that e.x;(i)i-p(i) eek' and eap)i-i Eek" for some I•e L 
and j e L* such that (i, j) e A. Because IL*I < N, the above passing and 
receiving scenario may have to transpire N - 1 times to ensure that 
xi(ki) > min {xn} for all j e L* and for some k1 ;a, k. It is apparent that for 
k 1 = k + 2NB, Xj(ki) > min {x.} for all j e L*. Let L* CL such that 
L* UL* Land L* UL.,.= <f>. From (C21), 

min {x;(k1)} ;a, min {x.} + (y)2N8 [min {x;} - min {xn}]
,eL* IEL* 

For any j e L* that receives load at time k" < k 1 that was passed at time 
k' ;a, k, we have from the above equation, the fact that x}(k') = min {xn}, and 
(C21)that 

xj(k") ;a, xj(k" - 1) + y[min {x;(k')} - min {xn}l 
iEL* 

;a, min {xn} + y[min {x;(k')} - min {xn}l 
iEL* 

;,. min {x.} + (rl'-k+1[min {x;} - min {xn}l 
ieL* 

From (C21), 
xj(k1) "" min {xn} + (rl•-k"[xj(k") - min {xn}] 

:;;,, min {x,,} + (rl1-k"[min {xn} + 

(rl'-k+l[min {x;} - min {xn}] - min {xn}] 
IEL* 

;,. min {xn} + (y)2N
8 [min {x;} - min {xn}] 

1eL* 

Therefore 
min {x;(k + 2NB)} ;a, min {xn} + (y)2N8 [min {x;} - min {xn}] 

I IEL* 

and 
min{xn(k + 2(N + l)B)} ;a, min{x,,} + (y)2N8 [min{x;} min{x,,}]

ie L * 
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388 K. L. Burgess and K. M. Passino 

Equations (C 23) and (C 24) and the definition of V(xk) imply that 

V(xk) - V(xk+2(N+l)B);;, (y)2N8 [min{x;} - min{xn}] > 0 (C25)
l€L· 

Therefore, (C 19) holds and OC'b is asymptotically stable in the large with 
respect to EB. □ 

Appendix D-Proof of Theorem 12: Lemmas 1, 2 and 3 are adaptations of 
lemmas from the proof of Tsitsiklis and Bertsekas (1989). 

Fix processor i and time k. For any j E p(i) and any time k' > k, we will say 
that system condition Ej(k') occurs if 

(i) x\(k') < min {xn} + l'...yk'-k[x; - min {xn}] (D 1)
2 

(ii) e~(i)(i) e ek', a'j(i) ;;, y[x;(k') - x\(k')] (D2) 

Lemma I: Ifj e p(i), k 1 > k, e~(i)(i) Eek,, and Ej(k1) occurs, then E;(k) does 
not occur for k;;, k 1 + 2B. 

Proof: Suppose k k, e~ti) and Ej(k occurs. From (C21);;, Eek,, ) 

11 

x;(k1) ;;, min {xn} + yk•-k[x; - min {x.}] (D 3) 

Subtracting (D 1) with k' = k1 from (D 3) yields 

x;(k1) - x1(ki);;, ( 1 - ~ )rk,-k[x1- min {x.}j 

;;, ½rk,-k[x; - min {x.}] 

If we let k' = ki, (D 2) yields 

ai(i);;, y[x;(k1) - x}(k1)] 

;;, ; yk,-k[x; - min {x.}J (D4) 

According to the restrictions placed on valid event strings by Ea, processor j will 
receive load ll'j(i) at some time k2, k 1 ~ k2 < k 1 + B. Hence 

Xj(k2 + 1):;;, Xj(k2) - ~ + ll'j(i) 

;;, min {x.(kz)} + ll'i(i) 

. where ; is the total load (which may be zero) passed by processor j at time k2. 

Using (D 4) this becomes 

xj(k2 + 1) ;;, min {x.} + ai(i) 

;;, min {x.} + ; yk,-k[x; - min {x.}] 

;;, min {xn} + ; yk,+l-k[x; min {x.}] 



D
ow

nl
oa

de
d 

B
y:

 [O
hi

o 
S

ta
te

 U
ni

ve
rs

ity
 L

ib
ra

rie
s]

 A
t: 

18
:2

6 
10

 O
ct

ob
er

 2
00

7 

389 Stability analysis of load balancing systems 

Using (C 21) it follows that for all k3 > k2 + 1, 

xj(k3)-" min{xn} + yk,-k,- 1[xj(k2 + 1) - min{xn}] 

-" min {xn} + yk,-k,- 1(min {xn} + (D 5) 

Lyk,+l-k[x; - min{xn}l - min{xn}l 
2 

-" min {xn} + yk,-k[x; - min {xn}J (D6) 

Because k2 < k 1 + B, (D 6) is vaHd for all k3 ;;a, k1 + B. 
Let k4 -" k1 + 2B such that e~f(,) Eek,· According to the maximum system 

sensing time, there is some time k5, k4 ;,,, k5 > k4 - B, such that 
x}(k4) = xj(k5). Equation (D 6) is valid at time k5 and yields 

xj(k4) - min {xn} = xj(ks) - min {xn} -" ; yk,-k[x; - min {xn}] 

-" Lyk,-k[x; - min {xn}J. 
2 

Therefore, equation (D 1) does not hold at k4 and E1(k4) does not occur. □ 

Lemma 2: There exists some YJ > 0 such that for any i E L, k ;,,, 0, j E p(i) and 
any k';,,, k + 3NB, we have 

xj(k'):;;, min{xn} + rJyk'-k[x; - min{xn}l 

Proof: Fix i and k. Let k1, ... , kN be times such that e~7;f(i) E ekm and 
km-I+ 2B <km;;;; km-I+ 3B for all m E {1, 2, ... , N}. According to Lemma 
1, if j E p(i) and m *I, then Ei(km) and Ej(k1) cannot both occur. Thus, there 
is some km, m E {1, 2, .. , N}, such that Ej(km) does not occur for any j E p(i). 
According to condition. (a)(iii) on eke g(xk), (D 2) must be valid for some j* 
such that X1•(km);;;; x1(km) for all j E p(i). Because Ei(km) does not occur, 
(D 3) is violated for j = j*. It follows that for all j e p(i) 

(D 7) 

According to the maximum system sensing time, there is some time k1, 

km-" k 1 >km - B, such that x1(km) = xj(k1). For any k2 , k2;,,, k + 3NB, we 
have k2 ,.;, km,.;, k1, and (C21) yields 

xj(k2) -" min {xn} + yk,-k 1[xj(k1) - min {xn}] 

Realizing that xj(k 1) = x}(km), we employ (D 7) to conclude that 

xj(k2);,,, min{xn} + ykz-k 1[min{xn} + ; ykm-k[x; - min{x,.}] - min{xn}] 

;,,, min {xn} + Ly<k,-k)+(km~k,l[x; - min {xn}]] 
2 

;,,, min {xn} + Lykz-ky8 [x; - min {x,.}]]
2 

This proves Lemma 1 with YJ = y8 +1/2. D 
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390 K. L. Burgess and K. M. Passino 

Lemma 3: For any i E L, any k;;.,, 0, any j E L that can be reached from i by 
rraversing I arcs, and for any k' ;;.,, k + 3/NB, we have 

xi(k');;.,, min {xn} + (17yk'-k)1(x; - min {xn}] 

Proof: Lemma 2 establishes Lemma 3 for l = l. Assume that Lemma 3 is true 
for every j at a distance of l from i. Assume m is at distance l + 1 from i. Then 
m E p(j) for some j at a distance l from i. It follows from our inductive 
hypothesis that 

xj(k + 3/NB) ;;.,, min {xn} + (17y31N8)1(x; - min {xn}) 

If we apply Lemma 2 to processor rn E p(j) at time k 1 ;;.,, k +3/NB + 3NB, we 
see that 

Xm(k1);;.,, min{xn} + 17yk,-k-3INB[xj(k + 3/NB) - min{xn}l 

;;.,, min {xn} + 1/Yk,-k-3/NB(min {xn} + 
8(17y31N ) 1[x; - min {xn}J - min {xn}] 

;;.,, min {xn} + 17yk,-k-31NB(1/Y3/NB)l[x; - min {xn}] 

""min{xn} + 1/Yk,-k(1/Yk,-k)1[x; - min{xn}) 

;;.,, min {xn} + (17yk 1-k)1+ 1[x; - min {xn}) 

Hence, the induction is complete and we have proven Lemma 3. D 

Fix i E L and k;;.,, 2B - L Because every processor is at a distance of less 
than N from i, Lemma 3 yields 

Xj(k');;;, min {x,,} + (17y3N'B+ZB)N[x; - min {xn}] 

for all j, for all k' E [k + 3N2 B, k + 3N2 B + 2B]. Hence 

min{xn(k + 3N2B + 2B)};;;, min{xn} + (17y3N'B+ 2B)N[x; - min{xn}J 

This relation is true for all i E L. Thus 

min{x,.(k + 3N2B + 2B)};;.,, min{xn} + (17y3N'B+ 28 )N[max{x;} - min{xn}l 
I 

;;;, min {xn(k - 2B + l)} + (r,y3N'B+2B)N 

x [max {x;} - min {x 11 (k - 2B + 1)}] (D 8) 
I 

Invoking the definition of the state, it is clear that 

max{xn} max{x;(k - rn)} for some rn E {0, 1, ... , 2B - 1}. 
i 

Equation (C 21) and the above equation imply that 

max {x;} ;;.,, min {x.(k - m)} + y'"[max {x;(k - rn)} min {xn(k - m)}] 
I I 
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391 Stability analysis of load balancing systems 

Manipulating further, we obtain 

max{x;} - min{xn(k - m)};;;, ym[max{xn} - min{xn(k - m)}J 
I 

max {x;} - min {xn(k - 2B + 1)} ;;,,, y28 - 1[max {xn} - min {xn(k - m)}) 
l 

From (D 8) and (D 9), it follows that 

min {xn(k + 3N2B + 2B)} ;;;, min {xn(k - 2B + 1)} 

+ 1'2B-l(!Jy3N"B+2B)N[max {xn} - min {xn}] 

and 

min {xn(k + 3N2B + 2B)} - min {xn(k - 2B + l)} ;;,,, 

y2s-1(71y3N'B+2B)N[max {xn} - min {xn}l 

From ( C 1) it is apparent that 

V(xk+3N'B+2B) = -
1-Ix, - min {xn(k + 3N2B + 2B)}

NB 

and 

V(xk-2B+i) = -
1-Ix, - min {xn(k - 2B + l)}

NB 

Clearly, then 

V(xk-28+1) V(xk+3N'B+2B) = min {xn(k + 3N1 B + 2B)} 

- min{xn(k - 2B + l)} 

;;,,, y2s-1(r1Y3N28+1B)N. 

[max {xn} - min {xn}l (D 10) 

for all k ;;,,, 2B - l. In the proof of asymptotic stability it is shown that 

max {x.} - min {x.} ;;,,, ..!..p(xk, lfb) 
B 

for all xk 1; 2eb. Hence, (D 10) becomes 

V(xk-28+1) - V(xk+3N'B+2B>:;,. ..!..y2s-1(71y3N'B+lB)Np(xk, 2eb) (D 11) 
B 

Lemma 4: The closed, invariant set lfm E If is exponentially stable with respect 
to Ea if there exists a V defined on S(~m; r), constants ci, Cz, C3 > 0, and 
constants D, Di such that D > Di and D, Di e N such that 

(i) V(xk+i),:,;; V(xk) for all k:;,. 0 

(ii) c1p(x, ~m),,; V(x),,; Czp(x, ~m) for all x E S(2em; r) 

(iii) V(xk) V(xk+D)"" c3p(xk+D,, ?em) for all k ""'0 
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392 K. L. Burgess and K. M. Passino 

Proof: Conditions (i), (ii) and (iii) imply that 

C3 
-" -V(xk+D) 

c2 

C3 
-" -V(xk+D) (D 12) 

C2 

We now show via induction that for all integers m ;;a, 0 

(D 13) 

Our induction hypothesis is that (D 13) is valid for some m ;,, 0. From (D 12) 
and our induction hypothesis it follows that 

C3 
V(Xmo) - V(X(m+l)D) ;,, -V(X(m+l)D) 

c2 

V(Xmo)-" (1 + ::)V(x(m+l)D) 

C3)-l ( C3)-(m+l) 
V(X(m+l)D) ~ 1 + c V(Xmo) ~ l + c V(xo)( 

2 2 

and (D 13) is valid for m + 1. If we let k = 0 in (73) 

V(xo)-" (1 + ::)v(xv) 

V(xv) ~ (1 + ::r\(xo) 

we see that (D 13) is valid for m = l. Therefore (D 13) is valid for all m ;;;, 0 
((D 13) is trivially satisfied for m 0). Equation (D 13) and condition (i) imply 
that for all k such that (m - l)D ~ k ~ mD 

V(xk) ~ ( 1 + ::)-(m-l)V(x0) 

Because (k/D) - 1 ~ m - l for all k such that k ~ mD, it follows from the 
above equation that 

(D 14) 
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393 Stability analysis of load balancing systems 

From (D 14) and condition (ii), we see that 

C3) kc1p(xb i:'rm) ~ 1 + c f3 V(xo)( 
2 

C3) k,;; c2 1 + c~ f3 p(xo, i!em)( 

where f3 = (l + cJ/c2)-11° < 1. Therefore, there is some ct> 0 such that e-"' ;a, f', 
and 

p(xk, 'lem) ,;; ci (1 + CJ) e-<>k p(xo, 2em), D 
CJ C2 

Clearly, (D 11) satisfies condition (iii) of Lemma 4. Conditions (i) and (ii) of 
Lemma 4 are satisfied in the proof of stability. D 
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	each load processor along with its buffer is numbered from 1 to 6 and the arc from 1 to 2 indicates that 1 can sense the amount of load in the buffer of processor 2 and that 1 can pass load to processor 2. Since there are no arcs between 1 and 5, these processors cannot sense each other's loads or pass load to each other. 
	We are interested in studying the ability of the processors in such a system to redistribute the total network load so that it is balanced among all of the processors in the network (i.e. so the buffer levels are balanced). There may be delays incurred in the transportation of load from node to node and in the sensing of load between nodes. We assume that these delays are bounded. The load in the network may be such that it is valid to describe it with a continuous variable ('fluid load'),. or it may be suc
	In this analysis, which is based on the results presented by Burgess (1992), we model several variations of the load balancing problem in the DES framework of Passino et al. (1990, 1991, 1994) and analyse them via a Lyapunov stability approach. In particular, we will provide conditions under which the various load balancing systems are stable in the sense of Lyapunov, asymptotically stable, and exponentially stable, thereby characterizing the performance of the system's load redistribution policies. While 
	(iii) a useful by-product of the Lyapunov analysis is obtained for those systems that can be shown to be exponentially stable (i.e. we provide a characterization of the 'speed' of balancing). To gain a full appreciation of the significance of the stability analysis in this paper and the wide number of applications where load balancing problems are encountered, the reader is referred to Shivaratri et al. (1992). 
	The load balancing systems that we examine are similar to, and generalizations of, those analysed by Passino et al. (1991) and Tsitsiklis and Bertsekas (1989). [n Passino et al. (1990, 1991) the load balancing system is very simple because the load is considered to exist only in blocks of unit size, the allowed inter-processor load exchanges arc quite restricted and any delays that exist in passing load and sensing load levels are ignored. The model of Tsitsiklis and Bertsekas (1989) assumes that load can 
	The load balancing systems that we examine are similar to, and generalizations of, those analysed by Passino et al. (1991) and Tsitsiklis and Bertsekas (1989). [n Passino et al. (1990, 1991) the load balancing system is very simple because the load is considered to exist only in blocks of unit size, the allowed inter-processor load exchanges arc quite restricted and any delays that exist in passing load and sensing load levels are ignored. The model of Tsitsiklis and Bertsekas (1989) assumes that load can 
	load will be perfectly balanced among the processors, and they suggest a proof for the 'geometric convergence' of the network to a balanced state. 

	We model the load balancing problem in the DES framework of Passino et al. (1990, 1991, 1994) and analyse it via the Lyapunov approach. Initially, we do not consider delays (in load passing and sensing) in our analysis. We show that non-delay systems are asymptotically stable under weaker passing conditions than in Tsitsiklis and Bertsekas (1989). We also show that under passing conditions similar to those in Tsitsiklis and Bertsekas (1989) that the non-delay load balancing system is exponentially stable. A
	We also study the full delay load balancing system as described by Tsitsiklis and Bertsekas (1989). Tsitsiklis and Bertsekas (1989) presented a proof for asymptotic stability and suggested a proof for geometric convergence. We take a different approach by studying the problem within the Lyapunov stability framework, proving asymptotic and exponential stability (in a different way), and providing a rate of convergence analysis. Three of the lemmas in our proof of exponential stability are adaptations of lemm
	Finally, we note that the load balancing problem considered by Cybenko (1994) is a special case of the one of Tsitsiklis and Bertsekas (1989) and the problems considered here. Passino and Antsaklis (1993) studied how to minimize the number of load transfers to achieve balancing by using global information about the load distribution in the system. In all the problems considered here, the load processors only use local information, balancing proceeds in an asynchronous fashion, and we do not consider tryin
	In the next two subsections we introduce (i) the DES model we will use to represent the load balancing systems and (ii) the stability definitions and theorems that we use lo characterize and analyse load balancing properties. 
	1.1. A DES model We study the stability of systems that can be modelled via G =('le,'&, le, g, Ev). ;if is the set of states and t is the set of events. State transitions are defined by the operators, f,: ;if--,. ;if where e E t. An event, e, may only occur if 
	it is in the set defined by the enable function, g: ~--,. \lJ>('&) -{<fl}, where \lJ>('&) denotes the power set of 'ii:. We only require that le be defined when e e g(x). 
	K. L. Burgess and K. M. Passino 
	Notice that according to the definition of g, it can never be the case that no event is enabled. We can, however, model deadlock by defining a null event, e, so that /,o(i) =i. 
	0

	We associate 'time' indices with the states and events so that xk E ~ represents the state at time k e N and eke g(xk) represents an enabled event at time k EN (N denotes the set of natural numbers). Notice that there can be just one state at time k, but that many events may be enabled at time k. Should an enabled event ek occur, then the next state, Xk+i is defined by xk+t = f,,(xk), 
	We now define state trajectories and event trajectories. A state trajectory is any sequence {xd E 21;N such that _xk+I = f,,(xk) for some ek E g(xk) for all k e N. An event trajectory is any sequence {ek} E'f,N such that there exists a state trajectory, {xk} e ~,v, where for every k e N, eke g(xk), The set of all such event trajectories is denoted by E C '& N. Notice that corresponding to a given event trajectory, there can be only one state trajectory. In general, however, an event trajectory that produces
	Because not every event trajectory E E E may be physically realizable, our model allows for a set of valid event trajectories, Ev C E. Ev(x) is the set of valid event trajectories when the initial state is x0 E ~. The framework provides another mechanism for further pruning E. E0 C Ev is the set of allowed event trajectories. Including E0 in our model yields a great deal of modelling power. In particular, we will make extensive use of Ea to model the decision-making policies which we impose on our systems. 
	0

	If we fix k e N, then Ek denotes the sequence of events e, e 1, ..., ek-l, and EkE e Ev(x0) is the concatenation of Ek with the sequence of infinite length E = ek> ek+i, .... The function X(x, Eb k) will be used to denote the state reached at time k from xe 21: by application of event sequence Ek such that Ek£ e E. For fixed x, the functions X(xo, Ek, k), where EkE e EvCxo), are called motions. 
	0 
	0
	0 
	0 

	1.2. Stability definitions and theorems In standard Lyapunov stability theory, we normally speak of stability with respect to one equilibrium point within the state space. However, in the generalized Lyapunov stability theory, we can speak of stability with respect to an invariant set. A set is called invariant with respect to G if all motions originating in the set remain in the set. Mathematically, the set 21:m C ~ is an invariant set with respect to G if Xo E 21:m implies that X(x, Ek, k) e 21:m for all 
	0
	-

	invariant sets are closed with respect to {21:; p}) is called stable in the sense of Lyapunov with respect to Ea if for any e > 0 it is possible to find some /5 > 0 
	invariant sets are closed with respect to {21:; p}) is called stable in the sense of Lyapunov with respect to Ea if for any e > 0 it is possible to find some /5 > 0 
	such that when p(xo, i'rm) < c5, we have p(X(xo, Eb k), i'rm) < e for all Ek such that EkE E £(x) and k EN. If furthermore p(X(x, Eb k), Xm)-> 0 as k -> oo, then the closed invariant set gem of G is called asymptotically stable with respect to Ea. As is always the case, these properties are local stability properties, i.e. with respect to some ,-neighbourhood. 
	3 
	0
	0


	It follows directly from the above definitions of stability that if the closed invariant set Xm C X is stable ( asymptotically stable) in the sense of Lyapunov with respect to Ea, then it is stable (asymptotically stable) in the sense of Lyapunov with respect to all Ea· such that Ea· CE•. 
	If the closed invariant set Xm C X of G is asymptotically stable with respect to E , then the set i'ra C ?£ having the property that for all x0 E x., p(X(x0, Ek, k), Z!;m)-> 0 for all Ek such that EkE E Ea(x) as k-> oo is called the region of asymptotic stability of Xm with respect to E •. If :lea :le, then the closed invariant set lfm of G is called asymptotically stable in the large with respect to Ea . 
	8 
	0

	In addition to our concern that eventually p(X(x, Ek> k), :l/;'m) ..... 0, we may be concerned with how quickly any state trajectory must reach the invariant set. In particular, we say that the closed invariant set llem C OC of G is exponentially stable with respect to Ea if p(X(x, Ek> k), iifm).,;; {;;e-«k p(x, ilem) for some a:> 0 and some , > 0 and for all Ek such that EkE E E.(x) and k E N. 
	0
	0
	0
	0

	It follows directly from the definition of exponential stability that if the closed invariant set Xm C 2'e is exponentially stable with respect to Ea, then it is exponentially stable with respect to all Ea• such that Ea· CE•. 
	If the closed invariant set Xm C X of G is exponentially stable with respect to Ea, then the set Xe C X having the property that for all x0 E Xe, p(X(x, Eb k), Xrn) ~ l;;e-a:k p(xo, Xm) for some Cl:'> 0 and some l;; > 0 for all Ek and k EN such that EkE E E (xo) is called the region of exponential stability of ilem with respect to £• If Xe = X, then the closed invariant set ;ll;m of G is called exponentially stable in the large with respect to Ea. 
	0 
	3 
	3

	We now state three theorems, whose proofs may be found in Passino et al. (1990, 1991), Michel (1992 a, b), which establish necessary and sufficient conditions for a system to possess the stability properties defined above. 
	Theorem 1: In order for a closed invariant set Xm C X of G to be stable in the sense of Lyapunov with respect to Ea, it is necessary and sufficient that in a sufficiently small neighborhood S(Xm; r) of the set Xm there exists a specified functional V with the following properties. 
	(i) 
	(i) 
	(i) 
	For all sufficiently small c1 > O, it is possible to find a c2 > 0 such that V(x) > Cz for x E S(Xm; r) and p(x, iifm) > c. 
	1


	(ii) 
	(ii) 
	For any c4 > 0 as small as desired, it is possible to find a c> 0 so small that when p(x, ilem) < C3 for x E S(Xm; r) we have V(x).,;; c. 
	3 
	4 



	(iii) V(X(xo, Ek> k)) is a non-increasing function for x0 E S(OCm; r) and for all k EN, provided that X(x, Ek, k) E S(Xm; r) for all Ek such that EkE E E.(xo), 
	0

	Theorem 2: In order for a closed invariant set Xrn C X of G to be asymptotically stable in the sense of Lyapunov with respect to Ea, it is necessary and sufficient that in a sufficiently small neighbourhood, S(Xm; r), of the set ['em there exists a specified functional V having propenies (i), (ii), and (iii) of Theorem 1 
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	and furthermore V(X(xo, Eb k))-> 0 as k->"' for all Ek such that EkE e E.(xo) and for all k E N as long as X(xo, Ek, k) E S(liem; r). 
	Theorem 3: The closed invariant set ;!Cm C :l' of G is exponentially stable with respect to Ea if there exists a functional V defined on S(2rm; r), De {1,2, ...} and c1, c2, C3 > 0 with c3/c2 E (0, 1) such that 
	(i) 
	(i) 
	(i) 
	c1p(x, 2rm)"' V(x)"' c2p(x, lrm) for all x E S(l?em; r); 

	(ii) 
	(ii) 
	V(X(xo, Ek+D, k + D)) -V(X(xo, Eb k))"' -c3p(X(xo, Eh k), lfm) for xo E S(~m; r) and for all k E N, provided that X(xo, Eb k) E S(2rm; r) for all Ek such that EkE e E(x). 
	8 
	0



	The conditions of Theorems 2 and 3 are sufficient for asymptotic stability in the large and exponential stability in the large, respectively, if they are changed so that all occurrences of S(2rm; r) are replaced by lf. 
	A conventional Lyapunov approach to stability analysis will be taken where we define p and the invariant set lfm, choose a Lyapunov function, V, and show that it satisfies the appropriate conditions of the above theorems so that we can infer that the system possesses certain stability properties. 
	1.3. Summary Above, we have indicated the types of load balancing problems to be considered and have established a modelling formalism for load balancing systems. In addition, we have provided stability definitions and an approach to stability analysis for load balancing systems. In § 2 we will study the load balancing problem without delays in passing and sensing load. We prove in this case that a particular load redistribution policy is asymptotically and exponentially stable. We also generalize on the o
	this case that a particular load redistribution policy is asymptotically and exponentially stable. Finally, we offer some concluding remarks in § 4. 
	2. A load balancing problem without delays 
	The load processors, L = {1, 2, ..., N}, are all connected to a network along which they can pass load to other load processors. The network of load processors is described by a directed graph, (L, A), where AC L x L. For every i E L, there must exist (i, j) e A in order to assure that every load processor is connected to the network, and if (i, j) EA then (j, i) e A. Load processor i can only transfer a portion of its load to load processor j if (i, j) E A . Finally, if ( i, j) E A, then i -4= j. 
	Each load processor i e L has a buffer in which its load is stored prior to processing. It is the buffer levels x; that we actually wish to balance; thus, it is the buffer levels that are affected by load transfers. In this section, we will assume that the load can be partitioned into sufficiently small units so that it is valid to describe it with a continuous variable. We will also assume that the total amount of load in the buffers of the load processors on the network remains 
	Each load processor i e L has a buffer in which its load is stored prior to processing. It is the buffer levels x; that we actually wish to balance; thus, it is the buffer levels that are affected by load transfers. In this section, we will assume that the load can be partitioned into sufficiently small units so that it is valid to describe it with a continuous variable. We will also assume that the total amount of load in the buffers of the load processors on the network remains 
	static until a load balance is achieved; hence, we assume that no load arrives or is processed during the balancing of the load. 

	In this section, we are not considering load transportation or load sensing delays. Hence, we require that the real time between events ek and ek+I (which will represent the passing of load) is greater than the greatest system transportation time plus the greatest system sensing time. We do, however, allow for more than one node to pass load at one time and for nodes simultaneously to pass load to more than one of the nodes that they are connected to on the network. 
	Let [if;= :)\N be the set of states and xk = [x1x 2 .. . xN]' and xk+1 = [xx... xN]' denote the states at times k and k + 1, respecti_vely. Let x;(k') denote the amount of load at node i e L at time k'. Let e~f;\l represent that node i € L passes load to its neighbours m E p(i) where p(i) {j: (i, j) e A}. Let the list a(i) = (ai(i), ai'(i), ..., ar(i)) such that j < j' < •· · < j" and j, j', ..., j" E p(i) and ai ;;i, 0 for all j E p(i); the size of the list a(i) is IPU)I. For convenience, we will denote th
	1
	2
	1
	1

	~ = 0'({e~f;\O}) -{q,} 
	where 0'(Q) denotes the power set of the set Q. Notice that each event ek €~is defined as a set, with each element of ek representing the passing of load by some node i E L to its neighbouring nodes in the network. Let Yii € (0, 1) for (i, j) E A represent the proportion of the load imbalance that is sometimes guaranteed to be reduced when i passes load to j. 
	Below, we specify g and f,, for ek € g(xk)
	-

	(1) 
	(1) 
	(1) 
	Event ek € g(xk) if both (a) and (b) below hold. 

	(a) 
	(a) 
	(a) 
	For all e~\i) eek where a(i) ( ai(i): j E p(i)) it is the case that: 

	(i) 
	(i) 
	(i) 
	aj(i) 0 if x; ,s;: xi where j E p(i); 

	(ii) 
	(ii) 
	0 ,s;: L ll'm(i),;; X; -(xi+ aj(i)) for all j e p(i) 




	mep(i) 
	such that x1 > xi; and 
	(iii) ar(i) ;;i, Y;;-(x; -xr) for some j* E {j: xi.;;; xm for all m E p(i)}. 
	Condition (i) prevents load from being passed by node i to node j if node i is less heavily loaded than node j. Condition (ii) directly implies that x1 -Lmep(i)am(i) ;;i, xi+ ai(i). Thus, after the load a(i) has been passed, the remaining load of node i must be at least as large as xi+ aj(i) for every node j E p(i) that was less heavily loaded than node i to begin with. Condition (iii) implies that if node i is not load balanced with all of its neighbours and it passes load, then i must pass a non-negligibl
	(b) 
	(b) 
	(b) 
	(b) 
	If e~f;\>Eek where a(i) = (aj(i): j E p(i)), then e~(;}il 1$ ek where b(i) = (<'>j(i): j € p(i)) if aj(i) 'F ,5i(i) for some j e p(i). Hence, in ek> there must be a consistent definition of the load to be passed from any node i to any node j, aj(i). 
	1
	each valid event 
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	(2) 
	(2) 
	If ek E g(xk) and e~f;\1) Eek then f,,(xk) = xk+t where 


	xi = x; L a'j(i) + L . IX;(j). 
	{j:jEp(i)} {j:iep(i),e1,;/j\''ee,l 
	The load of node i at time k + 1, x, is the load of node i at time k minus the total load passed by node i at time k plus the total load received by node i at time k. 
	1

	Let Ev = E be the set of valid event trajectories. We must further specify the sets of allowed event trajectories. Define a partial event of type i to represent the passing of rr(i) amount of load from i e L to its neighbours p(i). A partial event of type i will be denoted by ei,p(i) and the occurrence of ei,p(i) indicates that i E L attempts to balance its load further with its neighbours. Event ek E g(xk) is composed of a set of partial events. Next, we define two possibilities for the allowed event traje
	(i) 
	(i) 
	(i) 
	For E; C Ev, assume that each type of partial event occurs infinitely often on each EE E;. 

	(ii) 
	(ii) 
	For Ee C Ev, assume that there exists B > 0 such that for every event trajectory EE Ee, in every substring ek'• ek'+i, ek'+, ••• , ek'+(B-I) of E there is the occurrence of every type of partial event (i.e. for every i e L partial event ei,p(i) eek for some k, k' "'-k "'-k' + B -1). 
	2



	Clearly 
	:?fb = {xk E :?f: X; Xj for all (i, j) EA} 
	is an invariant set that represents a perfectly_ balanced load. Notice that the only ek E g(xk), when xk E OCb, are such that all e:;(;~') Eek have rr(i) = (0, 0, ..., 0). 
	If Ea= E 8 CE;, the load balancing problem described above is the same as the one of Tsitsiklis and Bertsekas (1989), except that in this section we do not allow delays in transporting and sensing load. In § 4 we will study load balancing systems with delays. 
	2, 1. Asymptotic convergence to a balanced state 
	To study the ability of the system to redistribute load automatically to achieve balancing, we use a Lyapunov stability theoretic approach. Let x = [x1 ... xN].Choose 
	p(xk, :?fb) = inf {max {lx1 -xii, ..., lxN -xNI}: i E OCb} (1) 
	The following result provides slightly weaker conditions for load balancing than in Tsitsiklis and Bertsekas (1989) and sets the stage for studying exponential stability in the next subsection and generalizing the load balancing results of Tsitsiklis and Bertsekas (1989) in § 3. 
	Theorem 4: For the load processor network system described above, the invariant set 21':b is asymptotically stable in the large with respect to E;. 
	Proof: Choose 
	(2) 
	Notice that 1 N 1 
	-l'.xj;,, -[max {x;} + (N l)min {x;}] (3) Nj=l N I i 
	It is clear from (1), (2) and (3) that the following relations are valid. p(xb geb);,, !(max {x;} -min {x;}) (4)
	j j 
	2 

	p(xk> ;/l;b) ,,;; max {x;} -min {x;} (5) 
	I I 
	N 
	V(xk) = _!_ l'.xi -min {x;} ,,;; max {x;} -min {x;} (6)j=l I I I 
	N 

	V(xk) ""_!_[max {x;} + (N -1) min {x;}] -min {x;} (7)
	N ; ; ; 
	Equations (4) and (6) yield 2p(xk, OCb);,, max; {x;} -min; {x;} ;,, V(xk), so that condition (ii) of Theorem 1 is satisfied. Equation (7) can be manipulated to yield 
	V(xk) ;;,, _!_(max {x;}N ; 
	V(xk) ;;,, _!_(max {x;}N ; 
	V(xk) ;;,, _!_(max {x;}N ; 
	-min {x1}); 
	(8) 

	Equations 
	Equations 
	(5) 
	and 
	(8) 
	directly imply 
	that 
	V(xk);,, (1/N)p(xb if'b), 
	so 
	that 

	condition (i) of Theorem 1 is satisfied. 
	condition (i) of Theorem 1 is satisfied. 

	To 
	To 
	satisfy 
	the 
	final 
	condition 
	of 
	Theorem 
	1, 
	we 
	must 
	show 
	that 


	V(X(x, Ek, k)) is a non-increasing function for all k E N, all x0 E S(2fb; r) and all Ek such that EkE E E(x0). To see that this is the case, notice that once x0 is specified, V(xk) varies only as the lightest load in the network, min; {x;} =xr, varies. The most lightly loaded node in the network cannot possibly pass load, so x)••;,, xr-. Assume an event ek E g(xk) occurs. According to condition (ii) on ek E g(xk), if e~f;\'l Eek and j** E p(i), it is not possible that x/ < xr + ar(i). Therefore, min; {x;};
	0
	1
	1

	In order to show that Eb is asymptotically stable in the large with respect to E;, we must show that for all x0 ~ 2fb and all Ek such that EkE E E (x), V(X(x, Eb k)) ..... 0 as k ..... 00 • If xk ~ Eb, then there must be some lightest loaded node j** (there may be more than one such node) and some other node i such that (i, j**) EA and x; > xr-, Because of the restrictions imposed by E;, we know that all the partial events are guaranteed to occur infinitely often. According to condition (a)(iii) on e, E g(x
	1
	0
	0

	Remark 1: Notice that we do not need the restrictions on allowed event trajectories that are imposed by E; to support our conclusion of stability in the 
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	sense of Lyapunov. Hence, 21:b is stable in the sense of Lyapunov with respect to Ev as well. □ 
	Remark 2: Note that ~b is not asymptotically stable in the large with respect to Ev. This is due to the fact that without the restrictions on Ev to obtain E;, it is possible that only one i E L attempts to balance its load for all time. D 
	Remark 3: Notice that condition (a)(i) on eke g(xk) is absolutely necessary. If condition (i) is removed, then it is possible that nodes may pass load to their more heavily loaded neighbours. In this case, node j** (where xi'' = minm {Xm: m E L}) may pass load and x ;.. < xi". Hence, the lightest load in the network may decrease and both the proof of Lyapunov stability and the proof of 
	asymptotic stability become invalid. 
	asymptotic stability become invalid. 
	asymptotic stability become invalid. 
	□ 

	Remark 4: Consider the implications ek E g(xk) with the more liberal condition 
	Remark 4: Consider the implications ek E g(xk) with the more liberal condition 
	of 
	replacing 
	condition (a)(ii) 
	on 

	0 ~ 2'. aj(i) ~ x; jEp(i) 
	0 ~ 2'. aj(i) ~ x; jEp(i) 
	xi for all j E p(i) such that x; ;,, xi. 

	This new 
	This new 
	condition implies that if e~f;II) Eek, ll'j•(i) (where j* e {j: xi~ Xm 
	for 


	all m e p(i)}) may be such that x; xi' and xJ, =x;. In this case, nodes i and j* simply exchange load levels. It is still true that the lightest load in the network cannot decrease, however, it is not necessarily true that the lightest load in the network will ever increase. Hence, 21:b remains stable in the sense of Lyapunov with respect to E, but we can no longer claim that g{;b is asymptotically stable with respect to E;. □ 
	1

	R_emark 5: Consider eliminating condition (a)(iii) on ek E g(xk)· In this case, if e~-t\•l E ek and j** E p(i) (where xr minm {xm: m e L} ), it is no longer true that xr _must increase by a fixed fraction of x; -xr•· It is now possible that even if e~f;\') e ek for all k > k', xr -f. X; as k-+ oo. For example, x; -xr may be reduced after each load passing by factors of 1/(k + 1 )and the two loads will never converge to each other. Hence, it is no longer true that geb is asymptotically stable with respect to
	2 

	These remarks are similar in nature to the questions posed by Tsitsiklis and Bertsekas (1989) after their discussion of the load balancing problem. 
	2.2. Exponential convergence to a balanced state We now say something about the rate at which the system converges to a balanced state. In order to do this, we employ Theorem 3. If we satisfy the 
	conditions of this theorem, we know that p(xk> Xb) will be bounded from above by an exponential ,e-«kp(x, l'lb) for some a> 0 and , > O. 
	0

	Theorem 5: For the load processor network system described above, the invariant set OCb is exponentially stable in the large with respect to E . 
	8

	Proof: For the proof, see Appendix A. □ 
	Remark 1: The proof of Theorem 5 depends critically upon the fact that E requires that for every i e L, the corresponding partial event, ei,p(i), occurs at 
	Remark 1: The proof of Theorem 5 depends critically upon the fact that E requires that for every i e L, the corresponding partial event, ei,p(i), occurs at 
	8 

	The constant r'"'from (9) is directly related to the a from the exponential overbounding function l;e-«k~x, :lt'b). Thus, if the speed of convergence is a design factor, then y should be made as large as possible and N and B should be made as small as possible. 
	8 
	0


	least once 
	least once 
	least once 
	in every 
	B 
	events. 
	Hence, it is clear that OCb 
	is not exponentially 

	stable in the large with respect to Ei, 
	stable in the large with respect to Ei, 
	□ 

	Remark 2: 
	Remark 2: 
	In the proof in Appendix A, it is shown that 

	TR
	V(xk) -V(xk+N'B) ;;, yN'B~xk, OCb) 
	(9) 

	where 
	where 

	V(xk) = 
	V(xk) = 
	max {.lL Nxi -x;} I Nj=l 


	It is evident that (9) is unnecessarily conservative. Equation (16) from the proof in Appendix A, restated here 
	xi(k');;, m,in {x;} + yk'-k[x; -min {x;}] for all k';;, k + NB, j e p(i) 
	I I 
	is also unnecessarily conservative. Actually, equation (16) is valid for all k';;, k + RB, where R = max; {lp(i)I}. Let S be the maximum number of arcs that must be spanned to reach any node j e L from any other node i e L. N can be replaced by S in (24), restated here 
	xj(k');;,, min {x;} + (yk'-k)N[x-min {x;}] 
	1 

	I I 
	and (9) becomes 
	V(xk) -V(xk+RSB);;, yRS'p(xk, :lt'b) 
	8

	Therefore, convergence can be accelerated by designing for RSas small as possible. □ 
	2 

	Consider three common network topologies of N nodes. If N nodes are connected in a line (e.g. see Fig. 1), then R = 2 and S = N -1. If N nodes are connected in a simple ring, then R =2 and S = int ( N /2) (int (x) is the integer portion of x). If N nodes are completely connected (each node is connected to every other node), then R = N -1 and S = l. In general, the ring network will converge more rapidly than the line network, and the completely connected network will converge more quickly than the ring netw
	Remark 3: If we change our assumptions regarding the network topology to allow networks that are strongly connected, the above analysis may be simply amended to remain valid. We must replace Nin (24) with S, where Sis defined as in Remark 2. Equation (9) must then be changed by replacing Nwith SN. If S > N, then the guaranteed rate of convergence for a strongly connected network with N nodes is slower than for a network with N nodes that satisfies our original network topology assumption. However, if the co
	3 
	2 
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	3. Generalizations of the load balancing problem 
	In this section we discuss generalizations of the load balancing problem previously outlined. First, we discuss less restrictive conditions on the amount of load that can be passed from node to node, coupled with a new specification of Ea, Secondly, we discuss the idea of virtual load, a mechanism to account for the varied rates at which inter-network processors may process load. Finally, we consider the case in which the load in the network cannot be accurately modelled by a continuous variable (i.e. the d
	3.1. Generalized load passing conditions We will require that condiiion (i) on ek e g(xk) remain unchanged. We change condition (ii), however, to allow that if e:;f;\il eek then possibly after the 
	passing of a(i), the load of node i can fall to the level of some node j' e p(i). This new condition (ii) is 
	(iia) 0,.,,;; ~ Cl'm(i),.,,;; x; -(xi'+ ai'(i)) for some 
	mep(i) 
	j' E {j: Xj < X;, j E p(i)} 
	Condition (iii) is also changed because we no longer require that if e:;f;\il e ek then node i passes a non-negligible amount of load to some least loaded neighbour j*. The Y;i are fixed a priori as before. The new condition (iii) is 
	(iii a) «r(i) ;,;,, yif(x; xj) for some j' E p(i) such that xr < x; 
	Notice that we now require only that if e~f;\il e eb then node i passes a predefined fraction of the load difference between nodes i and j' for some node j' E p(i). 
	We now define new sets of allowed event trajectories. We define an elementary event, etp) to represe11t the passing of load a-/i) from processor i to processor j (note that e~(t {et,u): j e p(i)}). We define an elementary event o~ type (i, j) to be any ei,u), and denote an elementary event of type (i, j) with e'I. 
	(i) 
	(i) 
	(i) 
	For Ec Ev, every event trajectory Ee Emust contain an infinite number of occurrences of elementary events of every type eii for all (i,j)eA. 
	1 
	1 


	(ii) 
	(ii) 
	For E , C Ev, assume that there exists B' > 0 such that for every event trajectory EE E 8,, in every substring ek', ek'+i, ek'+2, .. ,, ek'+(B'-l) of E there is the occurrence of every type of elementary event (i.e. for every i E L elementary event eii Eek for some k, k',.,,;; k,;;; k' + B' 1). 
	8



	Theorem 6: For the load processor network system with conditions (ii a) and (iii a) the invariant set ffb is asymptotically stable in the large with respect to E. 
	1

	Proof: Using the same p and V as in Theorem 4, the proof for stability in the sense of Lyapunov with respect to E1 is the same as in the proof of Theorem 4. The proof of asymptotic stability in the large, however, must be slightly modified. In the original proof, we are guaranteed that the partial event ei,p(i), where (i, j**) e A and x> xr, must occur infinitely often. Given the above generalizations, we can simply state that the elementary event ei**, where 
	Proof: Using the same p and V as in Theorem 4, the proof for stability in the sense of Lyapunov with respect to E1 is the same as in the proof of Theorem 4. The proof of asymptotic stability in the large, however, must be slightly modified. In the original proof, we are guaranteed that the partial event ei,p(i), where (i, j**) e A and x> xr, must occur infinitely often. Given the above generalizations, we can simply state that the elementary event ei**, where 
	1 
	1

	x; > xr, must occur infinitely often or until xk e ieb. Thus, we can say that the overall lightest load in the network must definitely increase an infinite number of times or until it is equal to the average network load. Hence, we have that for the generalized load system, 21:'b is asymptotically stable in the large with re~~M~. 

	Remark 1: The new conditions allow for greater efficiency because it is no longer necessary for node i to examine all xi with j e p(i) to find xr before passing. In a network where lp(i)I is large, this may prove to be quite a □ 
	time-saving advantage. 

	Theorem 7: For the load processor network system with conditions (ii a) and (iii a) the invariant set geb is exponentially stable in the large with respect to E ,. 
	8 

	The proof is omitted as it is very similar to the proof of Theorem 5. 
	3.2. Virtual load In practice, it is often the case that the load processors in the network may process the load at different rates. In this case, it is useful to scale the physical load of each processor by assigning constants /3; > 0, which are inversely proportional to the rate at which processor i can process load, for each i e L. Hence, we define /3;x; as the virtual load of processor i, and it is the virtual load that we wish to balance among the network nodes. It is useful to balance the virtual load
	is greater than the virtual load of node j. Accordingly, condition (i) on ek E g(xk) must be changed to 
	(i b) !Xj Oif /1;X; "' f3ixi where j e p(i) 
	Secondly, we require that after node i passes load, its virtual load be at least as large as the possibly increased virtual load, due to !Xr(i), of node j*. This requirement can be expressed as 
	/3;(x; -L aj(i)) "" f1Axr + «r(i)) 
	;ep(i) 
	Direct manipulation of this equation leads to the extension of condition (ii a) 
	(iib) O"' :Z: a-j(i) "'x; -/3r (xr + ar(i)) for all jep(i) /3; 
	j* E {j: /3jXj "' /3,.Xm for all m E p (i)} 
	We also must require that if node i is not virtual load balanced with all of its neighbours, then i must pass a non-negligible portion of its load to at least one of its neighbours. We can express this condition as 
	!{(/3;x; -f3ixi) -[/3;(x; -a-i(i)) -/3;(x; + «;(i))]} :;;, Y;;(/3;x; -f3ix;) 
	for some j e p(i). After some manipulation, we arrive at the virtual load version 
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	of condition (iii a) 
	·,·,· b) ( ") ::,,, 2yij({3;X; -/3jXj) f . ( ")
	(I

	ai 1 ~ -------or some J E p 1 /3; + /3j Notice that in the case of /3; = 1 for all i E L, the conditions (i b), (ii b) and (iii b) properly reduce to conditions (i), (ii a), and (iii a). Clearly 
	2rbv = {xk E 2£: l/3;X; -{3ixil = 0 for all (i, j) E A} 
	is an invariant set which represents a perfectly balanced virtual load. 
	Theorem 8: For the virtual load processor network system with conditions (i b), (ii b), and (iii b) the invariant set 2rbv is exponentially stable in the large with respect to E ,. 
	8 

	If all references to x; are replaced by references to /3;x; and the new conditions on ek E g(xk) are observed, the proof is very similar to the proof of Theorem 5. 
	Remark 1: In the virtual load balancing problem, it is of course necessary that node i not only has knowledge of xi for all j E p(i), but also of {3i for all j E p(i). 0 
	Remark 2: Just as new load can enter the load balanced system, perturbing the balance, the load processing capabilities of the load processors may change, perturbing the balance of the virtual load balanced system. Given that the f3 = {/3;: i E L} is updated to reflect the change in load processing capability 
	(e.g. a change in the rate at which some node can process load), the system will recognize the imbalance and begin to rebalance from a new state x/fc 2rbv• □ 
	0 

	3.3. Discrete load Consider now that we have the same system as originally described, except that in this case, we may not assume that the load can be described with a continuous variable, as is the case in many practical systems. In fact, we assume that the load in the system is partitioned into blocks. The largest block in the network has size M > 0 and the smallest block in the network has size m, M ;;,, m > 0. In contrast to the perfect load balancing that is possible in the continuous load case, the be
	We utilize the same 2£ and '& as in the continuous load case. Below, we specify g and fe for ek E g(xk)
	-

	(1) 
	(1) 
	(1) 
	Event ek E g(xk} if both (a) and (b) below hold. 

	(a) 
	(a) 
	(a) 
	For all e~f;\i) Eek where a(i) = (aj(i): j E p(i)) it is the case that: 

	(i) 
	(i) 
	(i) 
	aj(i) = 0 if x; -xi,;;; M where j E p(i). 

	(ii) 
	(ii) 
	X; -L am(i) > min {y j E p(i)}. 




	mep(i) I 
	(iii) If ai(i) > 0 for some j E p(i), then ar(i) > 0 for some j* E {j: xi~ xm for all m E p(i)}. 
	Condition (i) prevents load from being passed by node i to node j if nodes i and j are balanced within M. Condition (ii) implies that after the load a-(i) has been passed, the remaining load of node i must be larger than the load at time k of some neighbour of i. Condition (iii) implies that if node i is not load balanced to within M with all of its neighbours, then i must pass some load to some least-loaded neighbour j*. 
	(b) If e~(;\il Eek where a(i) (ai(i): j E p(i)), then e~(;fl rt. ek where o(i) = {t\(i): j E p(i)} if a';(i) * oj(i) for some j E p(i). Hence, in each valid event eb there must be a consistent definition of the load to be passed from any node i to any other node j, a';(i). 
	1
	(2) If ek E g(xk) and e;;(;\ l Eek then fe.(xk) = xk+l where 
	x; = X; -L o:;(i) + L . a;(j) 
	{j:jep(i)} {j:iep(i).e'.;{;\') eek) 
	The load of node i at time k + 1, x;, is the load of node i at time k minus the total load passed by node i at time k plus the total load received by node i at time k. 
	Let Ev E be the set of valid event trajectories. Define E;, EC Ev as in the continuous load case. Clearly :?ew = {xk E :?e: Ix; x;I ~ M for all (i, j) E A} 
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	is an invariant set that represents a balanced load in the sense described above. Notice that the only ek E g(xk), where xk E Zfbct, are ones such that all e~f;fl Eek have a·(i) = (0, 0, , .. , 0). 
	Once again, we employ a Lyapunov stability theoretic approach. Let i = [ii, ..., iNI• Choose 
	p(xk, Xbd) = inf{max{lx1-xJ i EL}: i E i.fw} (10) 
	Theorem 9: For the discrete load processor network system, the invariant set 1'l:bd is asymptotically stable in the large with respect to E;. 
	Proof: For the proof, see Appendix B. D 
	We employ Theorem 3 to prove that p(xk> i.fbct) is bounded from above by an exponential t e-o:k p(x, i.fbct) for some Cl'> 0 and t > 0. 
	0

	Theorem 10: For the discrete load processor network system described above, the invariant set lfbct is exponentially stable in the large with respect to E . 
	8

	Proof: The first condition of Theorem 3 is shown to hold in the proof of Theorem 9. We now show that the final condition of Theorem 3 holds. 
	We define a constant 8 on which the proof will depend. For a given discrete load network, there is a constant 61 > 0, such that if e~(;\il E ek and a'j(i) > 0 for some j E p(i), then x;;;. xr + 8, where j* e p(i) and xr ~ xi for all j E p(i). For the same discrete load network, there is also a constant bi > 0, such that if (i, j) EA and X; *xj, then Ix; -xii;;;,, °'2· Let O= min { 8, "2, m }. 
	1
	1
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	For xk ,t 2rbd, there is L *(k) CL such that L *(k) = {i: x; ~ Xj, j e L}. Because there must be at least one node in the network that is more heavily loaded than the rest of the nodes, we know that IL*(k)I~ N -1. 
	Fix a time k ;;;,, 0. There must be some i ,t L *( k) and some j E L *(k) such that (i, j) E A. According to the restrictions imposed by E, there is some time k , k "'= k 1 < k + B such that e~f;\i) Eek,· Conditions (a)(ii) and (a)(iii) on ek E g(xk), along with the definition of 6, imply that either (a) IL*(k + 1)1 ~ IL*(k)I -1 and x~ = xi for all q E L*(k + 1) and all j EL*(k); or 
	8
	1

	(b) x ~ ;;;,, xi + 6 for all q E L * ( k + 1) and all j E L * ( k). In other words, either the number of least loaded nodes decreases by at least one or the smallest load increases by at least 6. Thus, because IL*(k)I ~ N -l, we can conclude that for xk $ ftbd, V(xk) -V(xk+NB);;;,, 6. From (10), it is clear that Iix; > p(xk, ftbd). It is also clear that there is some t > 0 such that 
	1

	N 
	to > LXi > p(xk, ftbd) 
	i=l 
	Therefore, it follows that V(xk) -V(xk+NB) > (1/t)p(xb l'fbd), which satisfies the final condition of Theorem 3. D 
	Remark 1: Notice that in the discrete load case, the rate of exponential convergence depends on N, B and t. As in the continuous load case, the smaller we make B, the faster we are guaranteed to converge. Unlike the continuous load case in which the guaranteed rate of convergence depends on tangible system constants R and S, in this case we have the peculiar dependence on ,. It is less clear how to design for a small , than it is to design for a small R or S. If all the load blocks in the network have size 
	1

	Remark 2: It can be shown if we change condition (a)(iii) to 'if X; -xi> M for some (i, /)EA then aj(i) > 0 for some (i, /)EA', thereby alleviating the nodes from scanning all of their neighbours to locate one of the least loaded, then 1!ebd is asymptotically stable in the large with respect to EI and exponentially stable in the large with respect to E . Of course, the guaranteed rate of convergence will suffer under this Jess strict load passing condition. 
	8

	4. The load balancing problem with delays 
	We now modify the model of the system to allow for delays in load transport and sensing as in Tsitsiklis and Bertsekas (1989). In this extended analysis, we ek and ek+I be greater than the greatest system transportation time plus the greatest system sensing time. In this sense, we allow a reduction of the degree of synchronicity forced upon the system. What we now require is that there exist B > 0 such that load passed at time k is received by time k + B -1 and that for all (i, j) EA load which arrives at n
	no longer require that the real time between events 

	Tsitsiklis and Bertsekas (1989) presented a proof for asymptotic stability and suggested a proof for geometric convergence. We take a different approach by studying the problem within the Lyapunov stability framework and proving asymptotic and exponential stability and providing a rate of convergence 
	Tsitsiklis and Bertsekas (1989) presented a proof for asymptotic stability and suggested a proof for geometric convergence. We take a different approach by studying the problem within the Lyapunov stability framework and proving asymptotic and exponential stability and providing a rate of convergence 
	analysis. Our proof for asymptotic stability is different from the one of Tsitsiklis and Bertsekas (1989). Lemmas 1, 2 and 3 in our proof of exponential stability are adaptations of lemmas from the proof of Tsitsiklis and Bertsekas (1989). Lemma 4 in our proof of exponential stability provides sufficient conditions for exponential stability that are more general than those of Michel et al. (1992 a, b) and allow us to finish the proof for the delay case. 

	Let 'l1'. = 9t(ZN+IAl)xB be the set of states. (We use the term 'state' here for convenience. Strictly speaking, xk E 'l1'. is not necessarily a 'state' in the convenxk e 'l1'. is composed of three 'sub-states'. Let Xno e mNxB represent the loads of the N network nodes at times k, k -l, ..., k -B + 2, k -B + l. The first column represents the loads of the nodes at time k, the second column represents the loads of the nodes at time k -1, and so on. Let Xni E 9tNxB represent the loads of the N network nodes 
	tional sense.) Every 

	where Xn =[Xno] Xn1 
	We also define 
	x, =



	[:;o] 
	[:;o] 
	so that the sum of the elements of any column of x, is equal to the total network load. Let Xno(k'), Xn1(k), xn(k'), x1(k'), and xs(k') be defined in the Xno, Xni, Xn, x,, and x,, with the exception that the state from which they derive is xk' instead of xk. 
	1
	same manner as 

	Let x, denote the load of node i e L at time k, let x; denote the load of node i E L at time k + l, and let x,(k') denote the load of node i E L at time k'. Clearly, X; is element i of the first column of Xk, x; is element i of the first column of Xk+I and x;(k') is element i of the first column of xk'• Let x;_i denote the load in transit from node i to node j at time k, and let x/-i denote the load in transit from node i to node j at time k + I, (i, j) EA. Clearly, x,_j is one of the last IAI elements of t
	1
	1
	1
	1

	Let e~f(i) represent that node i E L passes load to its neighbours m E p(i) where p(i) = {j: 3(i, j) e A}. Let a(i) = («j(i), «r(i), ..., «r(i)) such that j < j' < • • • < j" and j, j', ..., j" E p(i) and a-;;;,, 0 for all j E p(i); the size of the list is IP(i)I, For convenience, we will denote this list by a-(i) =(«j(i): j e p(i)). a-"'(i) denotes the amount of load passed from i EL to m E p(i). Let 
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	{e~v)U)} denote the set of all possible such load passes. Let et; represent that node j e L receives f3;;,, 0 load from node i. Let {e~_,} denote the set of all possible such load receptions. Let the set of events be described by 
	'& = {0'({e~<tn u '?J>({eh-;n -{<t>} 
	0

	As before, each event ek e 'i!: is defined as a set. Elements of ek may represent either the passing of load by node i e L to its neighbouring nodes in the network or the reception of load by node i e L. Once again, let the Yii for (i, j) e A be defined a priori. 
	Below, we specify g and fe for ek E g(xk)
	-

	(1) 
	(1) 
	(1) 
	Event eke g(xk) if (a), (b), and (c) below hold. 

	(a) 
	(a) 
	(a) 
	For all e~ti) eek where rx(i) (rxj(i): j e p(i)) it is the case that 

	(i) 
	(i) 
	(i) 
	«j(i) =0 if x;,;:; x\ where j e p(i), 

	(ii) 
	(ii) 
	0 ,;:; L rxm(i),;:; X; -(xf + ll'j(i)) for all j E p(i) 




	mEp(i) 
	such that x; ;;,, x and 
	I

	(iii) rxj*(i);;,, Yij*(X; -x.) for some j* e {j: m E p(i)}. 
	1

	Condition (i) prevents load from being passed by node i to node j if node i is less heavily loaded than its j. Condition 
	perception.of node 

	(ii) directly implies that X; -Lmep(i)ll'm(i);;,, x + ll'j(i). Thus, after the load ll'(i) has been passed, the remaining load of node i must be at least as large as xj + aj(i) for every node j e p(i) that was less heavily loaded than node i to begin with. Condition (iii) implies that if node i does not perceive itself as being load balanced with all of its neighbours, then i must pass a non-negligible portion of its load to some neighbour perceived to be least loaded, j*. 
	1 

	(b) 
	(b) 
	(b) 
	For all eteek it is the case that O,;:; f3,;:; xhi• 
	1 


	(c) 
	(c) 
	If e~vr<i) Eek where a(i) = («j(i): j E p(i)), then e:;;t"' ek where o(i) = (6i(i): j e p(i)) if ll'j(i) *oj(i) for all j e p(i). Hence, in each ek< there must be a consistent definition of the load, ai(i), to be passed from any node i to any other node j. 
	0 
	valid event 


	(d) 
	(d) 
	If e~,-; eek, then et'I: ek if f3 * o. Hence, in each valid event ek> there must be a consistent definition of the load, (3, received by any node j from any other node i, (i, j) e A. 
	1


	(2) 
	(2) 
	If ek E g(xk) then f,,(xd = Xk+l where 


	Xj = Xj 
	-

	The load of node i at time k + 1 is the load of node i at time k minus the total load passed by node i at time k plus the total load received by node i at time k. The load in transit from node i to any one of its 
	The load of node i at time k + 1 is the load of node i at time k minus the total load passed by node i at time k plus the total load received by node i at time k. The load in transit from node i to any one of its 
	neighbours, j e p(i), at time k + 1 is the load in transit from node i to node j at time k plus the passed load, minus the received load. 

	Let Ev= E be the set of valid event trajectories. We must further specify the set of allowed event trajectories, Ea C Ev. We define a partial event of type 'i-,.' to represent the passing of a(i) amount of load from i e L to its neighbours p(i). A partial event of type i-,. will be denoted by ei-p(i) and the occurrence of ei-p([) indicates that i e L attempts to balance its load with its neighbours further. We define a partial event of type 'j.,_' to represent the receiving of f3 amount of load by j e L fro
	8

	(1) 
	(1) 
	(1) 
	There exists B > 0 such that in every substring ek', ek'+l, ek'+2, . , ,, ek'+(B-l) there is the occurrence of partial event ei-p(i) for all i e L (i.e. for every i e L partial event ei-p(,) eek for some k, k',,;; k,,;; k' + B -1), 

	(2) 
	(2) 
	For every i and k' such that e~f(i) eek', there is k',,;; k < k' + B such that e~!J eek. This restriction mandates that load passed at time k' must be recdived intact by time k' + B -1. 


	We want to define an invariant set such that any state xk which is in the invariant set exhibits the following properties. 
	(i) 
	(i) 
	(i) 
	The load in the nodes is perfectly balanced at time k. 

	(ii) 
	(ii) 
	There is no load in transit at time k. 


	(iii) At time k, every node has an accurate perception of the load of its neighbours, 
	Let L'={l,2, ...,2N}, G={l,2,,,,,B} and H={l,2, ... , IAI}-If y is a matrix, let (y)pq denote the element in row p and column q of y. Choose 
	Xb = {xk e X: (x.);i = (x.)pq for all i, p e L' and j, q e G; 
	(x);j = 0 for all i e H and j e G} (11) 
	1

	Consider any xk e Xb. Because all elements of x. are equal, the load in the nodes is perfectly balanced at time k. Because all elements of x, are zero, there can be no load in transit at time k, Because the load at all nodes has been fixed since time k -2B + 1, we are guaranteed that each node has an accurate perception of all of its neighbours at time k. Hence, Xb is an invariant set whose element states exhibit, the required properties. Notice that the only eke g(xk), wher_e _xk e Xb, are ones such that a
	To study the ability of the system to redistribute load automatically to achieve balancing, we again employ a Lyapunov stability theoretic approach. Let T = {l, 2, ... , (2N + IAI)}. Choose 
	p(xb Xb) = inf {max {l(xk)ij -(i);J for all i e T, j e G}: i e Xb} (12) 
	Theorem 11: For the load processor network with delays as described above, the invariant set Xb is asymptotically stable in the large with respect to E . 
	8

	Proof: For the proof, see Appendix C, □ 
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	We employ the exponential stability theorem to prove that p(_xb :?eb) is bounded from above by an exponential te-«k p(_x, 2eb) for some a-> 0 and i; > 0. 
	0

	Theorem 12: For the load processor network with delays as described above, the invariant set 21':'b is exponentially stable in the large with respect to E . 
	8

	Proof: For the proof, see Appendix D. D 
	In the proof in Appendix D, we show that 
	V(Xk-2B+i) -V(xk+3N'B+28) ;;,, _!_y2a-l(11r3N'B+iB)N p(_xk, :?eb), (13)B for k;;,, 2B -L Because (13) is valid only for k;;,, 2B -1, it should be apparent that k = 2B -1 in our model is equivalent to k = 0 in Lemma 4 (from the proof in Appendix D). Hence, what we have shown via the proof is that for all 
	k ;;,,2B -1 
	p(_xk, :?eb).;; i;e-«(k-28+1) p(_x2B-1, :?eb) 
	for some a-> 0 and t > 0. Of course, from the proof of asymptotic stability, we are assured that 
	p(_xk> :?eb) .;; 2NB(2 + ~AI )p(_x0, :?eb) 
	2
	28

	for all Q.;; k<2B-l. 
	Remark 1: This remark will parallel Remark 2 that followed the proof of exponential stabjlity for the non-delay, continuous load system. The value (1/By2-)(r,yN·B+B)N from (13) is directly related to the a: from the exponential overbounding function Ce-a<k-B+ll p(_x_, :?eh)-Thus, if speed of convergence is a design factor, then y should be made as large as possible and N and B should be made as small as possible. 
	8
	1
	3
	2
	2
	28
	1

	The condition k';;,, k + 3NB in Lemma 2 (from the proof in Appendix D) is unnecessarily conservative. From the proof of Lemma 2, we see that the condition k';;,. k + 3RB, where R = max; {lp(i)I} + 1, is sufficient. Let S be the maximum number of arcs that must be spanned to reach any node j e L from any other node i E L. Because every processor i e L is actually at a distance (in arcs) of S or less from every other processor j e L, (13) can be validly written as 
	V(xk-iB+t) V( ) :,, l .28-1( •.3RSB+2B)Sd ;?e )
	xk+3RSB+2B -Br 1/r ,.,._xk> b 
	Therefore, convergence can once again be accelerated by designing for RSas small as possible. □ 
	2 

	Remark 2: The idea of virtual load works for the delay case similarly to the way in which it worked for the non-delay case. □ 
	Remark 3: It is possible to extend the delay case to cover the possibility of discrete loads. The proofs would be similar in spirit to those found here. □ 
	S. Concluding remarks 
	In § 1, we introduced a DES model and provided stability definitions and an approach to stability analysis for load balancing systems. In § 2 we studied the load balancing problem without delays in passing and sensing load. We proved in this case that a particular load redistribution policy is asymptotically and exponentially stable. We also generalized on the original non-delay load balancing system and proved that several of the generalized systems are asymptotically and exponentially stable. In § 3, we s
	While we have shown how to characterize and analyse stability properties of general load balancing systems with and without delays and have generalized the results of Tsitsiklis and Bertsekas (1989) in several ways, there still remains research to be done. For instance, in all of the load balancing problems considered in this paper (and in Tsitsiklis and Bertsekas 1989), it is assumed that no new load arrives at the network for processing and that no load is processed while the load is being balanced. Certa
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	Appendix A-Proof of Theorem S: Choose the same V(x) as in (2). The first condition of Theorem 3 is shown to hold in the proof of asymptotic stability, Theorem 4. We now show that the second condition of Theorem 3 holds. 
	Let y = min,i {Yii}. For any i E L and k ;;,, o., we know from condition (a)(ii) on e:;(;\'l Eek and the definition of y that if e:;f;\'l Eek and. aii) > 0 for .some j e p(i), then x;;;;,, xi+ y(x; -xi) for some j E p(i). If e:;f;\'l ¢ ek or e:;f;\'l eek and a(i) = (0, 0, ..., 0), then x; =x. It follows that in any case 
	1
	1

	x;;;,, min {x;} + y[x; -min {x;}] (A 1) 
	' i 
	Thus, it is clear that min; {x;} is a non-decreasing function of k. We now show via induction on t that 
	x;(k + t);;,, min {x;} + y'[x; -min {x}] (A2)
	1

	i i 
	for all t;;,, 0. Equation (14) is the statement of (A 2) for t 1. Assume that ( A 1) is true for an arbitrary t. If x1 denotes the load of i e L at time k, then 
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	according to (A 1): X;(k + t + 1) ;a, min {x;(k + t)} + y[x;(k + t) -min {x;(k + t)}] 
	I l 
	;;, min{x;} + y[x;(k + t) -min{x;}] 
	l l 
	;;, min{x;} + y[min{x;} + y[x; -min{x;}) min{x;}) 
	1

	Fix i e L and k;;, 0. We now show that the loads of all neighbours of i are bounded from below by a function of x; for all k', k' ;;,, k + NB. Specifically, we will show that 
	xi(k');;,, min{x;} + yk'-*[x; -min{x;}] for all k';;,, k + NB, j e p(i) 
	! l 
	(A3) 
	There are. times km;;, k, m E {1, 2, ...}, such that e~f;\i) E ekm• and for k' *km, e~f;j'J f ek'• According to the restriction on EE E, k .s; k < k + B and km-I< km< km+I + B for all m E {2, 3, ...}. Below, we investigate three cases that may occur at any time km. The different cases describe different possible relative load levels of node i and its neighbours. More than one case may apply to a given time km. 
	8
	1 

	In the first case, there is time km, m E {1, 2, ...}, and j E p(i) such that xj(km) < x;(km) and x1(km),:;; xr(km) for all j' E p(i). According to condition (a)(iii) on ek E g(xk), a:j(i) ;a, y[x(km) -xj(km)J. Utilizing this fact and applying (A 2) to x; yields 
	1

	X1(km + 1) ;;,, xj(km) + y[x;(km) -xj(km)] 
	;;,, min{x;} + y[x;(km) -min{x1}]
	i i 
	;;,, m.in {x;} + y[min {x;} + ykm-k(x; -min {x;}] min {x;}] 
	t I I i 
	= min {x;} + ykm-k+ [x; -m_in {x;}) 
	1

	' ' If we now apply (A 2) to xi with k = km + 1 and I = k' -km -1, it is clear that 
	X1(k');;,, min {x;(km + 1)} + yk'-km-(x/km + 1) -min {x,(km + 1)}] 
	1

	l I 
	1
	;;,, min {x } + [min {x;} + ykm-k+ (x; -min {x;}] -min {x }]
	1

	yk'-km
	-
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	I l l l 
	;;, min {x;} + yk'-k[x; -min {x;}] for all k' ;;,, km + 1 (A4)
	i i 
	In the second case, there is time km, m E {1, 2, ...}, and j' E p(i) such that at some time kq, 1.s; q < m, o:r(i);;,., y[x;(kq) -xr(kq)]. In other words, at time kq, node i passed at least y[x(kq) -xr(kq)] to node j'. We consider any j E p(i) such that xj(km);;, xr(km). Applying (A 2) to Xj with k = km and 
	1

	t = k' -k,,, yields xj(k');,, min {x;(km)} + yk'-km[x/km) -min {x;(km)}J 
	I I 
	;,, m_in{x;} + yk'-km[xp(km) -m_in{x}] for all k';,, km (AS) 
	1

	/ I 
	Clearly, (A 4) applies to node j' for all k , k ;,, kq + l. Because km;;,, kq + 1, we can substitute in (A 5) for xr(km) from (A4) to arrive at 
	1
	1 

	xj(k') ;,, min {x;} + yk'-k.,[min {x;} + ykm-k[x-min {x;}] -min {x}] 
	1 
	1

	f l I 1 
	;;,, min {x} + yk'-k[x-min {x;}] for all k' ;;,, km (A6)
	1
	1 

	i i 
	In the third case, there is time km, m E {1, 2, ...}, such that x(km) ,s;; x/km) for all j E p(i) (i.e. all neighbours of node i are at least as heavily loaded as node i). In this case, for any j E p(i), it is clear from (A 2) with k = km and t = k' -km that 
	1

	xj(k');;,, min{x(km)} + yk'-km[xj(km) -min{x(k,,,)}] 
	1
	1

	I I 
	;,, min{x} + yk'-km[x(km) -min {x1}] for all k';,, km (A 7) 
	1
	1

	I I 
	From (A 2) with t = km -k, it is also clear that X;(km);;,, min{x;} + ykm-k[x; -min{x;}] (AS) 
	I I 
	If follows then from (A 7) and (A 8) that 
	x/k') ;;,, min {x;} + yk'-km[min {x} + ykm-k[x1 -min {x}] -min {x}] 
	1
	1
	1

	I t l J 
	;,, min {x} + yk'-k[x-min {x;}] for all k' ;,, km (A 9) 
	1
	1 

	/ I 
	Now notice that at each time km, m E {1, 2, ...}, it must be the case that exactly one of the following is true. 
	(i) 
	(i) 
	(i) 
	There is at least one j E p(i) such that <Xj(i);,, y[x(k,,,) -Xj(km)] and at every time kq, q < m, <Xj(i) < y[x;(kq) -.1'j(kq)] (i.e. node i passes a non-negligible amount of load at time k to at least one of its neighbours to which it has not passed a non-negligible amount of load since before time k). 
	1
	1


	(ii) 
	(ii) 
	For every j E p(i) such that <Xj(i);,, y[x1(km) -xi(km)l, there is some q < m such that the load passed by processor i to processor j at time q satisfies cxj(i);;,, y[x;(kq) Xj(kq)] (i.e. processor i passes a non-negligible amount of load only to neighbours j e p(i) to which it has not passed a non-negligible amount of load since time ki). 


	(iii) For every j E p(i), x;(km) ,s;; xj(km) (Le. processor i cannot pass load to any of its neighbours j E p(i)). 
	If (ii) is true, then the second case applies to all neighbours of i and ( A 6) is valid for all j E p(i). Hence, because kN,,; k + NB, if m < N, then (A 3) is valid. If (iii) is true, then the third case applies for all of the neighbours of i, and (A 9) is valid for all j e p(i). Hence, because kN < k + NB, if m < N, then 
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	(A 3) is valid. If (i) is true, the first case applies to all of the neighbours of i to which i passes a non-negligible amount of load, and (A 4) is valid for all j E p(i) for which a'j(i);;, y[x;(km) -xj(km)] is true. Because Jp(i)J < N, either (ii) or 
	(iii) must occur before kN or (i) must occur for every km, me {l, 2, ..., N -1}. Therefore, (A 3) must be valid. 
	We now extend (A 3) to xj(k');;, min {x;} + (rk'-k)[x; -min {x;}] for all k';;. k + /NB (A 10) 
	1

	I I 
	where j is any node that is reachable from i by spanning l inter-processor connections (arcs (i, j) e A). Equation (A 3) establishes the validity of (A 10) for l =1. We assume (A 10) is valid for a general j at a distance l from i, and there must be some node q e p(j) such that q is at a distance l + 1 from i. 
	• Equation (A 3), applied to q e p(j), yields xq(k');;, min {x;(k + /NB)} + yk'-(k+INBl[xj(k + /NB) -min {x;(k + /NB)}] 
	I I 
	;;, min{x;} + yk'-k[xj(k + {NB) min{x;}] 
	I 1 
	for all k' ;;, k + (l + 1)NB 
	Substituting based on our inductive hypothesis xq(k');;, min{x;} + yk'-k[min{x;} + (yk'-k) [x; -min{x;}] -m.in{x;}] 
	1

	l I l l 
	= min {x;} + (rk'-ki+I[x; -min {x;}] for all k' ;;. k + (l + l)NB. 
	I 1 
	Hence, (A 10) must be valid for all l;;, 1. Because every processor in the network can be reached from i by spanning fewer than N arcs, (A 10) implies that x;(k') ;;, min {x;} + (rk'-k)N[x; min {x;}] (A 11) 
	' j 
	for all k';;, k + N B, j e p(i). Because we have made no assumptions to the contrary, (A 11) is valid for any i e L. Hence, we can replace x; with max; {x;} and j e p(i) with j e L and (A 11) becomes 
	2

	xj(k') ;;. min {x;} + (yk'-k)N[max {x;} -min {x;}] 
	I I I 
	for all k';;. k + NB, j e L. ,It follows directly that 
	2

	min {x;(k')};;. min {x;} + (rk'-k)N[max {x;} -min {x;}] (A 12) 
	l l 1 l 
	for all k';;. k + NB. Choose k' = k + N B. For every k;;, 0, xk iJ: lfb, equations (5) and (A 12) imply that 
	2
	2

	;;. yN'B~Xk, ~\) (A 13) The above equation satisfies the final condition of Theorem 3. □ 
	Appendix B-Proof of Theorem 9: Choose 
	Appendix B-Proof of Theorem 9: Choose 
	-!_!_ix; -min {x;}, xk $ ~bd
	) 

	V( (B 1)
	xk -N;-1 • 
	0, Xk E 2ebd 
	Notice that for xk $ ~bd, there must be two nodes i and j, (i, j) EA, such that x, -xi > M. Because nodes i and j, (i, j) E A , of any state x E i'fbd must be such that x; -xi,;;; M, it is clear from (10) that 
	p(xk> zfbd) ;;,,½max{x; -xi -M: (i, j) e A} 
	2p(xk, i'fbd) ;;,, max (x; -xi -M: (i, j) EA} ~ 1jJ1(xd (B 2) 
	According to (B 1), because max; {x;};;,, (1/N)~f:'_x;, V(xk),;;; max, {x} min; {x;}. Because there exists a network link between any two nodes that consist of fewer than N interprocessor connections, it must be true that max;{x;} -min;{x,},;;; N max {x; -Xf (i, j) EA}. Hence 
	1
	1
	-

	V(xk),;;; Nmax {x; -Xf (i, j) EA} 
	_!_V(xk),;;; max {x; -Xf (i, j) E A} ~ 1/'z(xk) (B 3) N 
	Finally, notice that according to (10) and (B 1), 
	V(xk) = p(xk, ?fbd) = 0, xk E ;/fbd (B 4) 
	We will find a constant rJ E (0, ao) such that r,p(xk> 1fbct) ;a,, V(xk) for all xk E ?£. From (B 4), we see that for all xk E ?Cb, any value of rJ will suffice. Thus, we need only be concerned with xk $ ;fbd· Accordingly, we will find a constant if, E (0, ao) such that if,1J!(xk);;,, 1/Ji(xk) for xk $ ~bd-Notice from (B 2) and (B 3) that 
	1

	1/'1(xk) + M = 1/'2(xk) 
	and V,1{xk) = s, s > 0, implies that 1/lz(xk) = s + M. From this, it is clear that if, E [1, ao ). For very large values of E, a value of <J> close to unity will satisfy our £ approaches zero, the necessary value of <J> approaches infinity. However, because the network contains a finite number of blocks, each of finite size, there must be some constant, t:0, M ;a,, t:0 > 0, such that for xk 1 ;/l';bd, V,1(xk) ;a,, 1:0, Thus, if we choose q, 2M/i:, it is clear that if 1/Ji(xk);;,, M, then 
	requirement, but as 
	0 

	2M
	c/>1/11(xk) = -1/Ji(xk);;. 2V,1(xk);;,, 1/J1(xk) + M = 1/Ji(xk) eo 
	and if 1/)1(xd < M, then 
	2M
	<l>1/J1(xk) = -1/Ji(xk) ;a,, 2M ;;,, 1/'1(xd + M 1/!2(xk) eo 
	It follows that for all 1/J1(xk) ;a,, £0 
	(jnpi(x k) ;;,, 1/Ji(x k) (B 5) 
	K. L. Burgess and K. M. Passino 
	From (B 3)-(B 5), we see that 1 
	2,Pp(xb :?ebd) ""<Pt/J1(xk)"" t/)z(xk)"" N V(xk) 
	2N<J>p(xk, :?ebd) ;;: V(xk) for all xk e :?e (B 6) 
	so that condition (ii) of the Theorem 1 is satisfied. Notice from (10) that for xk ,t 21:bd, 
	p(xb 2fbd) "-max {x;} -min {x;} (B 7) 
	r I 
	Because 
	we see from (B 1) that 
	1
	V(xd"" -[max{x;} + (N l)min{x;}) -min{x;}
	N ; 1 ; 
	;;, Nl [max {x1} -min{x1}) 
	I I 
	NV(xk) ;;, max {x;} -min {x1} (B 8) 
	I I 
	Thus, from (B 4), (B 7), (B 8) we conclude that 
	NV(xd ;;, p(xb :?ebd) for all xk E 2f (B 9) 
	so that condition (i) of the Theorem 1 is satisfied. 
	Condition (iii) of the Theorem l is satisfied in exactly the same way as in the :?ebd is stable in the sense of Lyapunov with respect to E. 
	proof of Theorem 4 so that 
	1

	In order to show that :?ebd is asymptotically stable in the large with respect to E, we must show that for all x0 ,t 21:bd and all Ek such that EkE E E(x) 
	1
	1
	0

	V(X(x, Eb k))-> 0 as k-> oo (B 10) 
	0

	If xk ff; \!t'bd, then there must be some lightest loaded node j** (there may be more than one such node) and some other node i such that (i, j**) E A and x1 > xr, Because of the restrictions imposed by E , we know that all the partial events are guaranteed to occur infinitely often. According to condition (a)(iii) on ek E g(xk), each time partial event e·PU) occurs, xr is guaranteed to increase by m so that x;-• ""xr + m, and according to condition (a)(ii) on ek E g(xk), x; is guaranteed to be greater than
	1
	1

	Appendix C-Proof of Theorem 11: For convenience, we define some mathematical notation. If y is a matrix, then min {y} is equal to the minimum of all 
	Appendix C-Proof of Theorem 11: For convenience, we define some mathematical notation. If y is a matrix, then min {y} is equal to the minimum of all 
	of the elements of y, max {y} is equal to the maximum of all of the elements of y, and LY is equal to the sum of all of the elements of y. Further, let (y); be column i of y. 

	Choose 
	(C 1) 
	Notice that V(xk) is the average load (total network load divided by N) minus the minimum load, taken over times k -2B + 1, ..., k -l, k, at any node i e L. 
	We first demonstrate that condition (ii) of Theorem 1 is satisfied by our choice of p(xb geb) and V(xk). It is clear from (1) and (12) that 
	p(xk, geb) ;a, max {½(max {xn} -min {xn}), max {x,}} 
	;a, max {½(max {xn} -min {xn}), ½max {x,}} ;a, ½max{(max{xn} -min{xn}), max{x,}} (C2) It is also clear that max{xd = max{max{xn}, max{x,}} We must consider two cases. If max {xn} -min {xn} ;a, max {x,}, then max {xn} ;a, max {x,} and max {xn} = max {xd It follows, then, from (C 2) that 2p(xb geb) ;a, max {xk} -min {xn} On the other hand, if max {x,} ;a, max {xn} -min {xn}, then because we know that max {x,} ;a, max {x,} -min {xn} and max {xd = max {max {x,}, max {xn}} it must be the case that max {x,} ;a, m
	K. L. Burgess and K. M. Passino 
	k', k -B < k' "-k, that the total load in transit is equal to the total system load minus the load at the nodes. Hence, if q is the column of xk that contains the load at the nodes and in transit at time k', then 
	;;;e L(x.)q -N max {(xn)q} 
	1 
	;;. Lx, -Nmax{xn}8 
	However 
	IA Imax {x,} ;;. })x,)q 
	for all k ', k -B < k' "-k. It follows that 
	1 
	max {x,} ;;. --[__!_LX, -N max {xn}]

	B 
	B 
	!Al 

	1 
	;;. --[__!_LX, -N max {xk}] (CS)

	!Al B 
	!Al B 
	Because of the maximum network transit time, this max {x,} resulted from at the most B -1 load passes. Due to condition (a)(ii) on ek E g(xk) and the maximum network sensing time, each of these load passes must have been smaller than max {xn} min { x"}. Hence 
	max {x,} "-(B -l)(max {xn} -min {x,.}) 
	"-B(max{xd min{xn}) (C6) 
	Equations (C 5) and (C 6) imply that 
	1
	max{xk} -min{xn};;. --[]_LXs -Nmax{xk}] (C7)

	BIA! B 
	BIA! B 
	and (C 3) and (C 7) imply that 
	2p(xk, ;ifb) ;,e_l_[__!_Lx, -Nmax{xd]

	BIAI B 
	BIAI B 
	2BIA Ip(xb ;ifb) ;;. _l_Lx, -max {xk} (C8)N BN 
	From (C3) it is clear that 2p(xk, ;/l;b) + min {xn};;. max {xk}. Hence, from (C8), it is clear that 
	2BIA Ip(xb ~\);;. _I_LXs -2p(xk, ;ifb) -min {xn} N BN 
	1 
	BIAI + 2]p(xb ;ifb);;. --Lx, -min {xn} = V(xk) (C9)N BN 
	[
	2

	Because (C4) and (C9) both bound V(xk) from above, we can claim that V(xk) is always bounded from above by the greater of the two bounds. Therefore, it is always true that 
	(C 10) 
	so that condition (ii) of Theorem 1 is satisfied. 
	We now demonstrate that condition (i) of Theorem 1 is satisfied by our choice of fKxk, g{'b) and V(xk)
	-

	Notice that Ix,-" max {LXno, LXn1}-It follows, then, from (C 1) that 
	1
	V(x,J -" --Ixn -min {x,,} (C 11) 
	2NB 
	In an analogous manner to the non-delay case, LXn is minimized in terms of max {x.} and min {x,,} when exactly one element of x,, is equal to max {x.} and the remaining elements of x11 are equal to min {x.}. From this analysis and (47), we have that 
	1
	V(xk);;,, --[max{x.} + (2NB -l)min{xn}l -min{x.}
	2NB 
	1 
	= --[max{x.} -min {x.}] (C 12)
	2NB 
	It is clear from (11) and (12) that 
	p(xb 21:b) ~ max {(max {x,,} -min (x.}), max {x,}} (C 13) 
	We must consider two cases. First, consider max{x,,}-min{x,,}-"max{x,}. Then, according to (C 13), 
	p(xk> ~\)~max {x.} -min {x,,} (C 14) 
	Equations (C 14) and (C 12) yield 
	Equations (C 14) and (C 12) yield 
	1

	V(xk) ;;,, --fKxk, ~b) (C 15)
	2NB Now, consider max {x1} > max {xn} -min {xn} so that 
	2NB Now, consider max {x1} > max {xn} -min {xn} so that 
	(C 16) 

	As before, the maximum load in transit at times k B + l, ..., k -1, k, is the sum of at most B -1 load passes, each of which must have been smaller than max {x.} -min {xn}-Hence, 
	max {x1} .;;; B[max {x11 } 
	max {x1} .;;; B[max {x11 } 
	max {x1} .;;; B[max {x11 } 
	-

	min {xn}] 
	(C 17) 

	A slight manipulation of (C 16) and (C 17), along with (C 12) yields 
	A slight manipulation of (C 16) and (C 17), along with (C 12) yields 

	_!_p(xk, ;lr,b) ~ max {x11 } B 
	_!_p(xk, ;lr,b) ~ max {x11 } B 
	-

	min {x.} 

	1 1--p(xk, ~b).,, --[max {x.}2NB2 2NB 
	1 1--p(xk, ~b).,, --[max {x.}2NB2 2NB 
	min {x.}] ~ V(xk) 
	(C 18) 


	K. L. Burgess and K. M. Passino 
	Because (C 15) and (C 18) both bound V(xk) from below, we can claim that V(xk) is always bounded from below by the lesser of the two bounds. Therefore, it is always true that 
	1
	V(xk) ;a, --p(xk, :1l\) 2NB
	2 

	so that condition (i) of Theorem 1 is satisfied. 
	To satisfy the final condition of Theorem 1, we must show that V(X(x, Ek> k)) is a non-increasing function for k ;a, 0 and all Ek such that EkE EE8 (x). To see that this is the case, notice that once xis specified, V(xk) varies only as min{xn} varies. Clearly, what we must show is that min {xn} is non-decreasing as a function of k. According to condition (a)(ii) on ek E g(xk), if e~t•> Eek and q(i) = {j: j E p(i) and x; ;a, x}then x; ;a, xfor all j E q(i). In words, no node can pass so much load that its lo
	0
	0
	0 
	1
	1
	1
	8

	ln order to show that ~b is asymptotically stable in the large with respect to E 8, we must show that for all x0 t ~b and all Ek such that EkE E E (x), 
	8 
	0

	V(X(x, Ek> k))-> 0 as k-> oo (C 19) 
	0

	If xk If; :?Cb, then xk+i will represent a change of the load levels of all of the nodes included in some non-empty subset of L. Any change in the load of node i e L that is not positive must be due to the passing of load by node i at time k. 
	where y=min(i,jJeA{Y;i}. Notice that (C20) is valid even if e~f(i)lfiek or a(i) = (0, 0, ..., 0). Thus, for any time k' > k, x(k') ;a, min {x.}. Again notice that min {xn} is a non-decreasing function of k. 
	1

	The question now becomes whether or not the passing of load is guaranteed to increase min {xn}. Employing ( C 20) and the fact that min { xn} is a non-decreasing function of k, we will use induction to show that 
	x;(k +!);a, min {xn} + (y)1[x; -min {xn}] for all i E L (C21) 
	The case of / = l is simply ( C 20). Assume that (C 21) is valid for some general 
	l. Then, from (C20) and (C21), 
	x(k + l + 1) ;a, min{x,.(k + l)} + y[x(k + /) -min{x.(k + /)}] 3 min {xn} + y[x;(k + /) -min {x11}] ;a, min {x11 } + y[min {x,.} + (y)1[x1 -min {xn}] -min {xn}l = min{x,.} + (y)+ (x; -min {x,.}] for all i EL 
	1
	1
	1
	1

	Thus, we have shown that (C21) is valid in general. 
	Fix a time k such that xk ff; Xb. If x; > min {xn} for all i e L, then x;(k + m):;;,, min{xn} + (y)-[x; -min{xn}] (C22) 
	28
	1

	for all i e L and m e {l, 2, ... , 2B -1}. From (C 22) and the definition of the state, it is clear that 
	min {xn(k + 2B 1)} :;;,, min {xn} + (y)-[min {x;} -min {xn}] 
	28
	1

	I 
	> min {xn} (C23) 
	Let L* CL be the set of all i such that x; = min {x.}. It is possible that IL*I > 0. Because x;(k'):;;,, min {xd for all k' > k, if x; = min {xn}, then x;(k -m) = min {xn} for all me {l, 2, .... , 2B -1}. Thus, for any two nodes i and j such that (i, j) e A and j e L*, xj = min {xk}. According to the restric• tions imposed on valid event strings by E , there must be times k' and k", k < k:,;;; , < + , suetat e.x;(i)eek' aneap)Eek" or some Ie and j e L* such that (i, j) e A. Because IL*I < N, the above passi
	8
	' 
	k" 
	k" 
	k 
	2B 
	h 
	h
	i-p(i) 
	d 
	i-i 
	f
	•
	L 

	min {x;(k)} ;a, min {x.} + (y)N[min {x;} -min {xn}]
	1
	2
	8

	IEL* 
	,eL* 

	For any j e L* that receives load at time k" < k1 that was passed at time k' ;a, k, we have from the above equation, the fact that x}(k') = min {xn}, and (C21)that 
	xj(k") ;a, xj(k" -1) + y[min {x;(k')} -min {xn}l 
	iEL* 
	;a, min {xn} + y[min {x;(k')} -min {xn}l 
	iEL* 
	;,. min {x.} + (rl'-k+[min {x;} -min {xn}l 
	1

	ieL* 
	From (C21), 
	xj(k1) "" min {xn} + (rl•-k"[xj(k") -min {xn}] 
	:;;,, min {x,,} + (rl1-k"[min {xn} + 
	(rl'-k+l[min {x;} -min {xn}] -min {xn}] 
	IEL* 
	;,. min {xn} + (y)N[min {x;} -min {xn}] 
	2
	8 

	1eL* 
	Therefore min {x;(k + 2NB)} ;a, min {xn} + (y)N[min {x;} -min {xn}] 
	2
	8 

	I IEL* 
	and min{xn(k + 2(N + l)B)} ;a, min{x,,} + (y)N[min{x;} min{x,,}]
	2
	8

	ie L * 
	K. L. Burgess and K. M. Passino 
	Equations (C 23) and (C 24) and the definition of V(xk) imply that 
	V(xk) -V(xk+2(N+l)B);;, (y)N[min{x;} -min{xn}] > 0 (C25)
	2
	8 

	l€L· 
	Therefore, (C 19) holds and OC'b is asymptotically stable in the large with respect to EB. □ 
	Appendix D-Proof of Theorem 12: Lemmas 1, 2 and 3 are adaptations of lemmas from the proof of Tsitsiklis and Bertsekas (1989). Fix processor i and time k. For any j E p(i) and any time k' > k, we will say that system condition Ej(k') occurs if 
	(i) 
	(i) 
	(i) 
	x\(k') < min {xn} + l'...yk'-k[x; -min {xn}] (D 1)2 

	(ii) 
	(ii) 
	e~(i)(i) e ek', a'j(i) ;;, y[x;(k') -x\(k')] (D2) 


	Lemma I: Ifj e p(i), k1 > k, e~(i)(i) Eek,, and Ej(k) occurs, then E;(k) does not occur for k;;, k 1 + 2B. 
	1

	Proof: Suppose k k, e~ti) and Ej(k occurs. From (C21)
	;;, Eek,, ) 1
	1 
	x;(k1) ;;, min {xn} + yk•-k[x; -min {x.}] (D 3) Subtracting (D 1) with k' = k1 from (D 3) yields 
	x;(k1) -x(ki);;, ( 1 -~ )rk,-k[x1-min {x.}j ;;, ½rk,-k[x; -min {x.}] If we let k' = ki, (D 2) yields ai(i);;, y[x;(k1) -x}(k1)] ;;, ; yk,-k[x; -min {x.}J (D4) According to the restrictions placed on valid event strings by Ea, processor j will receive load ll'j(i) at some time k2, k1 ~ k2 < k1 + B. Hence Xj(k2 + 1):;;, Xj(k2) -~ + ll'j(i) ;;, min {x.(kz)} + ll'i(i) . where ; is the total load (which may be zero) passed by processor j at time k. Using (D 4) this becomes xj(k2 + 1) ;;, min {x.} + ai(i) ;;, min
	1
	2

	;;, min {xn} + ; yk,+l-k[x; min {x.}] 
	Using (C 21) it follows that for all k> k+ 1, 
	3 
	2 

	xj(k3)-" min{xn} + yk,-k,-[xj(k2 + 1) -min{xn}] 
	1

	-" min {xn} + yk,-k,-(min {xn} + (D 5) 
	1

	Lyk,+l-k[x; -min{xn}l -min{xn}l 
	2 
	-" min {xn} + yk,-k[x; -min {xn}J (D6) 
	Because k2 < k1 + B, (D 6) is vaHd for all k3 ;;a, k1 + B. 
	Let k-" k+ 2B such that e~f(,) Eek,· According to the maximum system sensing time, there is some time k5, k4 ;,,, k5 > k4 -B, such that x}(k4) = xj(k5). Equation (D 6) is valid at time k5 and yields 
	4 
	1 

	xj(k4) -min {xn} = xj(ks) -min {xn} -" ; yk,-k[x; -min {xn}] 
	-" Lyk,-k[x; -min {xn}J. 2 
	Therefore, equation (D 1) does not hold at k4 and E(k) does not occur. □ 
	1
	4

	Lemma 2: There exists some YJ > 0 such that for any i E L, k ;,,, 0, j E p(i) and any k';,,, k + 3NB, we have 
	xj(k'):;;, min{xn} + rJyk'-k[x; -min{xn}l 
	Proof: Fix i and k. Let k, ... , kN be times such that e~7;f(i) E ekm and km-I+ 2B <km;;;; km-I+ 3B for all m E {1, 2, ..., N}. According to Lemma 1, if j E p(i) and m *I, then Ei(km) and Ej(k1) cannot both occur. Thus, there is some km, m E {1, 2, .. , N}, such that Ej(km) does not occur for any j E p(i). According to condition. (a)(iii) on eke g(xk), (D 2) must be valid for some j* such that X1•(km);;;; x1(km) for all j E p(i). Because Ei(km) does not occur, (D 3) is violated for j = j*. It follows that f
	1

	(D 7) 
	According to the maximum system sensing time, there is some time k, km-" k1 >km -B, such that x1(km) =xj(k). For any k, k2;,,, k + 3NB, we have k,.;, km,.;, k, and (C21) yields 
	1
	1
	2 
	2 
	1

	xj(k2) -" min {xn} + yk,-k[xj(k1) -min {xn}] 
	1

	Realizing that xj(k ) = x}(km), we employ (D 7) to conclude that 
	1

	xj(k);,,, min{xn} + ykz-k[min{xn} + ; ykm-k[x; -min{x,.}] -min{xn}] 
	2
	1

	;,,, min {xn} + Ly<k,-k)+(km~k,l[x; -min {xn}]] 2 
	;,,, min {xn} + Lykz-ky[x; -min {x,.}]]2 
	8 

	This proves Lemma 1 with YJ = y+1/2. D 
	8 

	K. L. Burgess and K. M. Passino 
	Lemma 3: For any i E L, any k;;.,, 0, any j E L that can be reached from i by rraversing I arcs, and for any k' ;;.,, k + 3/NB, we have 
	xi(k');;.,, min {xn} + (17yk'-k)1(x; -min {xn}] 
	Proof: Lemma 2 establishes Lemma 3 for l = l. Assume that Lemma 3 is true for every j at a distance of l from i. Assume m is at distance l + 1 from i. Then m E p(j) for some j at a distance l from i. It follows from our inductive hypothesis that 
	xj(k + 3/NB) ;;.,, min {xn} + (17y3N)1(x; -min {xn}) 
	1
	8

	If we apply Lemma 2 to processor rn E p(j) at time k ;;.,, k +3/NB + 3NB, we see that 
	1 

	Xm(k1);;.,, min{xn} + 17yk,-k-INB[xj(k + 3/NB) -min{xn}l ;;.,, min {xn} + 1/Yk,-k-3/NB(min {xn} + 8
	3

	(17y3N ) [x; -min {xn}J -min {xn}] 
	1
	1

	;;.,, min {xn} + 17yk,-k-31NB(1/Y3/NB)l[x; -min {xn}] 
	""min{xn} + 1/Yk,-k(1/Yk,-k)[x; -min{xn}) 
	1

	;;.,, min {xn} + (17yk 1-k)1+ [x; -min {xn}) Hence, the induction is complete and we have proven Lemma 3. D Fix i E L and k;;.,, 2B -L Because every processor is at a distance of less than N from i, Lemma 3 yields 
	1

	Xj(k');;;, min {x,,} + (17yN'B+ZB)N[x; -min {xn}] for all j, for all k' E [k + 3NB, k + 3NB + 2B]. Hence 
	3
	2 
	2 

	min{xn(k + 3NB + 2B)};;;, min{xn} + (17y3N'B+ B)N[x; -min{xn}J This relation is true for all i E L. Thus 
	2
	2

	min{x,.(k + 3NB + 2B)};;.,, min{xn} + (17yN'B+ )N[max{x;} -min{xn}l 
	2
	3
	28 

	I 
	;;;, min {xn(k -2B + l)} + (r,y3N'B+2B)N x [max {x;} -min {x(k -2B + 1)}] (D 8) 
	11

	I 
	Invoking the definition of the state, it is clear that 
	max{xn} max{x;(k -rn)} for some rn E {0, 1, ..., 2B -1}. 
	i 
	Equation (C 21) and the above equation imply that 
	max {x;} ;;.,, min {x.(k -m)} + y'"[max {x;(k -rn)} min {xn(k -m)}] 
	I I 
	Manipulating further, we obtain max{x;} -min{xn(k -m)};;;, ym[max{xn} -min{xn(k -m)}J 
	I 
	max {x;} -min {xn(k -2B + 1)} ;;,,, y2-[max {xn} -min {xn(k -m)}) 
	8
	1

	l 
	From (D 8) and (D 9), it follows that 
	min {xn(k + 3NB + 2B)} ;;;, min {xn(k -2B + 1)} 
	2

	+ 1'2B-l(!Jy3N"B+2B)N[max {xn} -min {xn}] 
	and 
	min {xn(k + 3NB + 2B)} -min {xn(k -2B + l)} ;;,,, y2s-1(71y3N'B+2B)N[max {xn} -min {xn}l From ( C 1) it is apparent that 
	2

	V(xk+3N'B+2B) = --Ix, -min {xn(k + 3NB + 2B)}NB 
	1
	2

	and 
	V(xk-2B+i) = --Ix, -min {xn(k -2B + l)}NB 
	1

	Clearly, then 
	V(xk-28+1) V(xk+3N'B+2B) = min {xn(k + 3NB + 2B)} -min{xn(k -2B + l)} ;;,,, y2s-1(r1Y3N8+1B)N. 
	1 
	2

	[max {xn} -min {xn}l (D 10) for all k ;;,,, 2B -l. In the proof of asymptotic stability it is shown that 
	max {x.} -min {x.} ;;,,, ..!..p(xk, lfb) B 
	for all xk 1; 2eb. Hence, (D 10) becomes 
	V(xk-28+1) -V(xk+3N'B+2B>:;,. ..!..y2s-(71y3N'B+lB)Np(xk, 2eb) (D 11) B 
	1

	Lemma 4: The closed, invariant set lfm E If is exponentially stable with respect to Ea if there exists a V defined on S(~m; r), constants ci, Cz, C3 > 0, and constants D, Di such that D > Di and D, Di e N such that 
	(i) V(xk+i),:,;; V(xk) for all k:;,. 0 
	(ii) cp(x, ~m),,; V(x),,; Czp(x, ~m) for all x E S(2em; r) 
	1

	(iii) V(xk) V(xk+D)"" c3p(xk+D,, ?em) for all k ""'0 
	K. L. Burgess and K. M. Passino 
	Proof: Conditions (i), (ii) and (iii) imply that 
	C3 
	-" -V(xk+D) 
	c2 
	C3 -" -V(xk+D) (D 12) C2 
	We now show via induction that for all integers m ;;a, 0 
	(D 13) 
	Our induction hypothesis is that (D 13) is valid for some m ;,, 0. From (D 12) and our induction hypothesis it follows that 
	C3 
	V(Xmo) -V(X(m+l)D) ;,, -V(X(m+l)D) 
	c2 
	V(Xmo)-" (1 + ::)V(x(m+l)D) 
	C3)-l ( C3)-(m+l) 
	V(X(m+l)D) ~ 1 + c V(Xmo) ~ l + c V(xo)
	( 
	2 2 
	and (D 13) is valid for m + 1. If we let k = 0 in (73) 
	V(xo)-" (1 + ::)v(xv) 
	V(xv) ~ (1 + ::r\(xo) 
	we see that (D 13) is valid for m = l. Therefore (D 13) is valid for all m ;;;, 0 ((D 13) is trivially satisfied for m 0). Equation (D 13) and condition (i) imply that for all k such that (m -l)D ~ k ~ mD 
	V(xk) ~ (1 + ::)-(m-l)V(x) 
	0

	Because (k/D) -1 ~ m -l for all k such that k ~ mD, it follows from the above equation that 
	(D 14) 
	From (D 14) and condition (ii), we see that 
	C3) k
	c1p(xb i:'rm) ~ 1 + c f3 V(xo)
	( 
	2 
	C3) k
	,;; c2 1 + c~ f3 p(xo, i!em)
	( 
	where f3 = (l + cJ/c)-1° < 1. Therefore, there is some ct> 0 such that e-"' ;a, f', and 
	2
	1

	p(xk, 'lem) ,;; ci (1 + CJ) e-<>k p(xo, 2em), D 
	CJ C2 
	Clearly, (D 11) satisfies condition (iii) of Lemma 4. Conditions (i) and (ii) of Lemma 4 are satisfied in the proof of stability. D 
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