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In this paper we show that two ellipsoid algorithms can be used to 
train single-layer neural networks with general staircase nonlinearities. 
The ellipsoid algorithms have several advantages over other conven­
tional training approaches including (1) explicit convergence results 
and automatic determination of linear separability, (2) an elimination 
of problems with picking initial values for the weights, (3) guarantees 
that the trained weights are in some "acceptable region," (4) certain 
"robustness" characteristics, and (5) a training approach for neural net­
works with a wider variety of activation functions. We illustrate the 
training approach by training the MAJ function and then by showing 
how to train a controller for a reaction chamber temperature control 
problem. 

1 Introduction ____ _________ __________ 

In this paper we will introduce two ellipsoid algorithms that have been 
used in system identification and parameter estimation to the training of 
artificial neural networks (ANN) (Widrow and Lehr 1990; Barto 1989; 
Lippmann 1987; Beale and Jackson 1990; Antognetti and Milutinovic 
1991) with general staircase nonlinearities. The utility of the ellipsoid 
algorithm [some of the earliest uses for parameter set estimation appear 
in Fogel and Huang (1982)] is motivated by its ease in use and imple­
mentation, where its recursive nature makes the training process very 
attractive computationally. The staircase nonlinearity is a generalization 
of the hard limiter and such a generalization can be useful in classifying 
patterns into several linearly separable regions (such as parallel strips in 
two dimensions). The two ellipsoid algorithms that we propose to use 
for training are the "Optimal Volume Ellipsoid" (OVE) (Cheung 1991; 
Cheung et al. 1993) algorithm and the "Underbounding Ellipsoid" (UBE) 
algorithm introduced here. The OVE algorithm results in an ellipsoidal 
set overbounding the feasible set of weights while the UBE algorithm 
results in an underbounding ellipsoid inscribed inside the feasible set of 
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I
weights consistent with the training data set. It is guaranteed that the 

center of the ellipsoid using the OVE algorithm is a feasible solution af­

ter the algorithm converges (that is, convergence in the weight estimates I 
if there exists a solution). In fact, all weights inside the final ellipsoid 

from the UBE algorithm are feasible if the UBE ellipsoids' final volume 

is nonzero. Several applications are studied and the paper closes with a 

discussion on the advantages / disadvantages of OVE/ UBE. 

2 The OVElUBE Algorithms ________________ 

The objective in parameter set estimation is to identify a feasible set of 

parameters that is consistent with the measurement data and the model 

structure used. One can interpret the set estimate as some nominal pa­

rameter estimate accompanied by a quantification of the uncertainty para­

metrically around the nominal model. An important feature in parameter 

set estimation is the guaranteed inclusion of the true mapping that is not 

exactly known. 
In this section we will provide a brief introduction to the OVE algo­

rithm introduced in Cheung (1991) and Cheung et al. (1993) for parame­

ter set estimation in system identification and a discussion on finding an 

underbounding ellipsoid for the feasible parameter set consistent with 

the training data set. The underbounding ellipsoid (UBE) algorithm is 

similar to the overbounding ellipsoid algorithm (OVE), except that the 

underbounding ellipsoid has the feature that all points in the ellipsoid are 

feasible parameters. In the next section we will show how the algorithms 

can be used to train neural networks. 

Consider the following kth pair of parallel linear constraints 

IYk - WTXkl ::; I 

where Yk E R, 1 E R, Xk E Rr are known, and W E Rr is the unknown 

parameter (weight) vector. Let :Fk c Rr be the set of feasible parameters 

given k constraints. That is, 

:Fk = {W : ly;- WTXd :S 1, i = 1, ... ,k} (2.1) 

Define also 
(2.2) 

and 
(2.3) 

where Wk, the kth estimate of the unknown parameters, is the center of 

an ellipsoid Ek and P-;1 is a positive definite matrix that characterizes the 

size and shape of the ellipsoid. 

Suppose the ellipsoid Ek is an overbounding ellipsoid for :Fk. The 

OVE algorithm finds the smallest volume ellipsoid E k+l containing the 
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intersection of Fk+ I and Ek. The intersection is essentially the portion of
Ek cut out by the two parallel hyperplanes defined in Fk. 

Theorem 1. The OVE algorithm is comprised of the following recursive
equations: 

where if 

(a) ak i= f3k , then 

bk= (Tk + l )2(f3k - ak) - Tk( l + ak)(2/3k - O'.k - 1) , -Tk
(7k= --­

Tk + f3k - O'.k f3k - O'.k 

and Tk is the real solution of 

(b) ak = f3k, then 

1 - r/3'f
O"k = l - /3'f ' 

where ak and f3k are defined as 

Proof. The proof appears in Cheung (1991) and Cheung et al. (1993) and
is available from the authors on request.

Suppose now that the ellipsoid Ek is an underbounding ellipsoid for
F k. The underbounding ellipsoid algorithm finds the largest volume el­
lipsoid Ek+l underbounded in the intersection of Fk+ I and Ek such that
(1) the center of the new ellipsoid is located midway between the par­
allel hyperplanes defined in Fk+i and (2) the new ellipsoid touches both
hyperplanes. 

Theorem 2. The UBE algorithm is comprised of the following recursive
equations: 

W _ W TkPkXk+1 p _ b (p _ <J PkXk+1Xf+ 1Pk) k+1 - k + (XT p X ) 1/2 k+l - k k k xr p X ,k+I k k+I k+1 k k+I 
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where 

and 8k is the solution of 

of + (Tf - (3f - 1 )Ok + (3f = Q 

such that 8kTk/(8k - rmS 1; lYk and f3k are defined as in Theorem 1. 

If ak > 1, reset (3k to f3k - [(ak - 1)/2] and then reset ak to one; on the 

other hand, if 2(3 - ak > l, reset f3k to (1 + ak)/2. 

Proof. In this proof, the same approach in deriving the OVE algorithm is 

used here and therefore one has the same form of updating equations for 

Wk and Pk. Using the affine transformation W = Wk + JW where Pk = ff, 

the ellipsoid Ek is transformed to a unit radius hypersphere denoted as 

and the new ellipsoid may be parameterized as 

• { w• .. (w1 -
2 
Tk)2 + -w~ + .. . + -w~ s 1} 

Ek+I = (3k Dk 8k 

such that the w1 is perpendicular to the transformed parallel hyperplanes. 

Since Tk [given by (ak - f3k )] is the midpoint between the hyperplane 

on w1 axis and since the ellipsoid touches both hyperplanes, the semi­

axial length of the new ellipsoid along w1 axis is therefore f3k as the 

hyperplanes are 2{3k apart in the transformed coordinate. Finding the 

largest volume Ek+I is equivalent to finding the largest 8k such that E k+l 

is still an underbounding ellipsoid. The largest allowable 8k is achieved 

when the surfaces of the two ellipsoids Ek and Ek+1 touch each other. The 

surfaces are 

and 
)2 • 2

( • 
Tk + W 2 + ... + w• 

2
, _ l

W 1 -

/3f Ok Dk -

After some manipulation, one gets 

(2.4) 
(ok - f3f) wi - 2okTkw1+ okTf + /3? - f3f ok = o 

Since the surfaces touch each other, then the discriminant in 2.4 must 

vanish and as a result, one gets 
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Figure 1: Examples of staircase nonlinearities. 

It is obvious that the solution for w1 when the surfaces touch must be 
less than (or equal to) one, and therefore oniy the bk that results in w1 = 
bkTk/ (bk - rm :S 1 is valid. This completes th~ proof of Theorem 2. □ 

The OVE and UBE algorithms can be initialized with a sufficiently 
large E0 containing the feasible parameter set, where W0 = 0 and P0 = 1r 
(with O < E « 1) are typical starting values. Note that for the OVE 
algorithm, if E0 contains the parameter set, so does all other Ek and it 
is therefore important to make sure that E0 is large enough so that the 
new Ek computed are meaningful. For the UBE algorithm, after iterating 
through the entire data set once, the resulting ellipsoid will be an under­
bounding ellipsoid for the data set in which every point in the ellipsoid is 
a feasible parameter vector consistent with the training set. However, the 
underbounding ellipsoid may vanish even though the feasible parameter 
set is nonempty. 

3 Supervised Training of a Single Perceptron via OVE/UBE ____ 

Consider a single-layer perceptron with one neuron that has n inputs, 
x1, ... , Xn, and one output y; w0 is the weight on the fixed bias input 
x0 = 1; w1, ... ,Wn are the weights on the inputs x1, . .. , Xn, respectively; 
z is the output of the summer and the input to f( ·) where f(-) is a fixed 
"staircase nonlinearity function" that has m + 1 distinct quantized steps 
such that f(a;) = b; as shown in Figure la. As a matter of fact, the 
staircase nonlinearity shown in Figure 1 can have arbitrary shape as long 
as the steps have distinct levels, and it can also be used to approximate a 
sigmoid function and other nonlinearities (for example, Fig. lb is another 
possible function). 
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Without loss of generality, assume the nonlinear function/ (·) is com­

pletely known, and that a; and b; are all given. Let N be the number of 

training data pairs in the data set 

and let 

X = [xo X1 x,, f 

be the input vector. (Note: the parameter r in Section 2 is equal to n + l 

here.)
The generic problem of training a single perceptron is to find a weight 

vector 

such that the perceptron can regenerate the input-output patterns in the 

training set, and generalize so as to capture the complete input-output 

mapping of the underlying process. In this paper, our goals are (1) to 

find an ellipsoidal set using the OVE algorithm to overbound the feasible 

set of weights consistent with the training data set S (the motivation for 

using the OVE algorithm is that intrinsic in the algorithm, the center of 

the resulting ellipsoid is guaranteed to be a feasible solution, after con­

vergence, for designing a perceptron to implement the mapping defined 

by the available input-output patterns), and (2) to find an ellipsoidal set 

that underbounds the feasible set of weights consistent with the training 

data set S using the UBE algorithm. The UBE ellipsoid characterizes a 

feasible set of weights that shows what variations in the weights can oc­

cur for which we are still guaranteed to implement the proper mapping. 

Consequently, the final UBE ellipsoid provides a characterization of "ro­

bustness" of the neural network mapping with respect to variations in 

the weights (in case of uncertainties in the implementation process or 

in case they vary after implementation). The motivation for using the 

UBE algorithm is that the algorithm must be executed only once for the 

training set to give a feasible set for designing a perceptron to implement 

the mapping in interest (the center of the final UBE ellipsoid can be used 

for the weights). 
Suppose a data pair (X k+l , Y k+1) is given and that Y k+ 1 = b;; then the 

interval in which Zk [given by (Xl+10)] lies is known to be [a;, a;+1}. That 

is 

(3.1) 

where a; and a;+1 are known. However, the inequalities in 3.1 define a 

set that is convex but not closed. In order to utilize OVE and UBE that 
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work on convex and closed sets, it is desired to make the set closed by
relaxing the right-hand inequality in 3.1, adding very little conservatism,
as 

a; S:: X[+ 1W :S a;+1 (3.2)
which is a superset of that in 3.1. As a result, the feasible set of weights
can be succinctly defined by the following 2N inequality constraints: a; :::;
X [ W :S a;+1 for k = l , .. . , N , and i E [O , m] is such Yk = b;.

For F k+l which corresponds to the feasible region for the data pair
(Xk+1, YH 1), the constraints are 

Yk+l - 'Y :S xr+l W :S Yk+l + 'Y (3.3) 

Theorem 3. Given that Yk+l = b; or a feasible set of weights defined
by equation 3.2 and a previous bounding ellipsoid defined in equa­
tion 2.3, the OVE/UBE algorithm can be used to find a new overbound­
ing/underbounding ellipsoid with the following definitions of ilk and /Jk :
(a) i =J Oor i =J m 

where Gk= J xI+ iPkX k+l, W k and Pk are the parameters associated with
the previous ellipsoid that is obtained through training the data up to
the kth pair of data. 

(b) i = 0 or i = m 

That is when Yk+ I = b0 (or bm), the first (or the last) quantized output,
then 

Zk < a1 (or > am ) 

Incorporating a small degree of conservatism as 
Zk s; a1 (or 2: a,,,) 

results in 
a1 - X l+ iWk

ilk= ----"-'--'---- (or ilk = l ), /Jk = ilk+ l
Gk 2 

[or /Jk = ~ (1 _ am - ~ :+1W k )] 

Sketch of the Proof. The result in (a) is obtained by comparing the left­
hand sides and the right-hand sides of 3.2 and 3.3, respectively, and then
determining the new parametrizations for ilk and f3k- In case (b), essen­
tially only one hyperplane cuts the previous ellipsoid. Therefore, one can
move the noncutting hyperplane to touch the ellipsoid corresponding to
either one of the following conditions: 

ilk = l or ilk - 2 /Jk = - l 
depending on which hyperplane intersects. For details, see Cheung
(1991) and Cheung et al. (1993). 
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4 Applications _ _ _____________________ 

The OVE algorithm has been shown to be convergent in Cheung (1991) 

and Cheung et al . (1993), in that the volume at each iteration is nonin­

creasing and the center of the elliposid will converge as the size of the 

data set tend1'! to infinity. In our application to ANN where the number 

of data are finite, the convergence property must be maintained. By re­

peatedly applying the OVE algorithm over the entire finite training set, 

it is easy to show that OVE retains its convergence properties. This is the 

case because the OVE algorithm views the repetition of the finite training 

set as a long (possibly infinite) data sequence. Therefore the convergence 

properties are guaranteed and the center of the ellipsoid, after conver­

gence, must be inside the feasible set and be a feasible solution to the 

mapping of the finite data set. If this is not true, then a contradiction 

results since, as shown in Cheung (1991) and Cheung et al. (1993), if the 

center of the ellipsoid does not satisfy one of the parallel hyperplane con­

traints, one is guaranteed that a smaller volume ellipsoid can be found 

implying that the ellipsoids have not yet converged. 

The notion of convergence is difficult to quantitatively guarantee for 

finite sets. For the examples studied below, the following stopping crite­

rion is used along with the OVE algorithm. The OVE algorithm ceases 

if 
V (l) - V (l + 1) 

V(I ) ~ E 

where V(I) denotes the volume of an ellipsoid after sweeping through 

the entire finite data set I times, and E is a small positive number. Note 

that although the choice of E is heuristic, the algorithm is guaranteed to 

meet this condition (for some finite I for some c). However, this does not 

guarantee that the center of the last ellipsoid will be a feasible solution; 

a feasible solution test must be conducted for validation and a smaller 

E may be necessary if the ellipsoid center turns out to be a nonfeasible 

solution. Often V(I) - V(I +1) = 0 for some I implying that the algorithm 

has actually converged with respect to the available data and that repeat­

edly applying OVE over the data set will give no new information about 

the bounding ellipsoid. In other words, the center of the final ellipsoid 

must be a feasible solution. 

In the following two examples, the initial ellipsoid is set to be a sphere 

centered at the origin with radius 10 units for each case. For the OVE 

implementation, E = 0.001 is used and the feasibility test is passed for all 

examples. For the UBE implementation, the algorithm is iterated through 

the training data set once to give an ellipsoidal set of feasible weights. 

4.1 Perceptron with Hard-Limiter as Nonlinearity. It is known (Wid­

row and Lehr 1990; Lippmann 1987) that a single perception can be used 

to linearly classify input patterns into two different groups. Essentially, 
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Table 1: I/ O Table for MAJ Logic 

X1 1 1 1 1 - 1 - 1 -1 -1 
X2 1 1 -1 -1 1 1 - 1 -1 
X3 1 - 1 1 - 1 1 -1 1 - 1
y 1 1 1 -1 1 - 1 - 1 - 1 

the perceptron with a hard-limiter as the nonlinearity divides the in­
put space into two regions separated by a hyperplane (a line in two­
dimensional space). Here, the ellipsoid algorithms with the parametriza­
tions given in Theorem 1 and Theorem 2 are used to train a perceptron to
realize the linearly separable logic functions . The example to be studied
is the MAJ logic function (OR, XOR, and AND logic were also imple­
mented, but not included here) . The functional mapping table is given
in Table 1 where the inputs are denoted as x ; and the output as y.

For training with the OVE algorithm, the entire data set is swept
through five times before satisfying the stopping criterion. The following
result was obtained: 

-0.0671
3.7428
3.7548 
3.7799 

For training with the UBE algorithm, the following results were ob­
tained: 

Ws(MAJ) = [ ti!H ]
3.8127 

and the singular values of the associated Pk matrix which correspond to
the square of the semiaxial lengths are (1.0607, 0.8389, 0.6511, 0.3884).
Without knowing the orientation of the final ellipsoid, the minimum
amount of variation allowed in each weight around the center W k is given
by J a (A )/r where a (Pk) is the smallest singular value of Pk. Hence the
UBE algorithm successfully trained the perceptron and the amount of
variation allowed in each weight is at least 0.3116. This provides a range 
(consistent with the training data) that the weights may vary in the im­
plementation of an ANN when the center estimate is used to implement
the weights (that is, it provides a characterization of the robustness of
the ANN map). 

4.2 Perceptron with a Staircase Nonlinearity-A Control Applica­
tion. Consider a reaction chamber temperature following the control 
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y
....--- Perceptron 

TRc 

Heater/Cooler
Unit 

Figure 2: Temperature following control problem. 

problem shown in Figure 2. TRC is the temperature of the reaction cham­

ber which is desired to follow the reference temperature TRef· The tem­

perature inside the reaction chamber can be controlled by appropriately 

switching on the heater/cooler unit. The following rules for activating 

the heater/cooler unit are given: 

1. If TRC < TRef - 3, turn on the heater; 

2. If TRC > TRef + 3, turn on the cooler; 

3. If /TRc - TRer/ :S: 3, neither the heater nor the cooler is on. 

Assume that the heater/cooler unit is under a single control y, the 

output of a neural net controller or the perceptron, so that when 

y = 1, heater is on; 

y = -1, cooler is on; 

y = 0, the heater/ cooler unit is idle. 

A training data set of 12 data pairs is used which is generated ac­

cording to the rules above, and shown in Table 2. Figure 3 shows the 

training data pattern on the TRC - TRef plane. The solid parallel lines 

separate the plane into three regions: Region A corresponds to case (1) 

with y = l; Region B corresponds to case (2) with y = -1; and Region C 

corresponds to case (3) with y = 0. The problem here is to use a percep­

tron with a staircase nonlinearity to classify the input pattern into three 

different classes. The staircase nonlinearity used here has the following 

= - 3, a 2 = 3, b0 = - 1, b1 = 0 and b2 = 1; x1
parameters: m = 2, a1 
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Table 2: Training Set for the Heater /Cooler Unit Activation 

TRc 3 1 0 1.5 9 0 -3 2 1 -3 4 5 

TRef 5.5 4.5 1 -2 14 2.4 -3.9 5.4 -3 7 -2 1.5 

y 0 1 0 -1 1 0 0 1 -1 1 -1 -1 

10 
Region A 

u 5 
~ 
6. 
E o 
~ 

Region C 

10 

Temp-Ref 

Figure 3: Training data pattern for temperature control problem. 

and x2 correspond to TRef and TRc, respectively. The training data set is 
swept through 48 times until the OVE algorithm stops (convergence is 
achieved); the following results were obtained: 

-1.0296 l
Ws76 = -1.5859

[ 1.4492 

The parallel separating lines from the perceptron using W576 are indi­
cated as dash-dot lines shown in Figure 3. Clearly, the perceptron can 
categorically separate the training set appropriately. In fact, if a larger 
set of training instances is used, the classification boundaries from the 
perceptron will closely match the desired ones (solid parallel lines). 
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For the training with UBE in this example, no feasible solution was 

obtained. This can happen as each time the UBE algorithm is used, part 

of the feasible parameter set may be discarded and eventually an inter­

mediate underbounding ellipsoid may not contain any feasible solutions. 

5 Discussion _______________________ 

In this paper we have examined how two ellipsoid algorithms that are 
1; I

useful in general system identification studies can be used for the train­

ing of neural networks. Both ellipsoid algorithms provide their unique I' I
1·'

features to neural net training and implementation. In particular: 

1. The choice of the initial ellipsoid E0 in both the OVE and UBE algo­

rithms can be used as an instrument to confine the consideration of I, 

physical realizable weights in an ANN. This may bear some practi­

cal significance when hardware implementation is considered. The 

ellipsoid algorithm approach to training a perceptron has another 

distinct advantage over other training algorithms in that it solves 

the problem of choosing initial weights. One merely needs to pick 

a large enough initial ellipsoid that guarantees the overbounding 

of the feasible set. 

2. The OVE algorithm gives a convergent estimate and can be used 

as an automatic test for linear separability of input-output map­

pings. However, this is not necessarily true for the UBE algorithm 

as indicated in the control example of the last section. 

3. The results from the UBE algorithm give a characterization of the 

feasible weights to indicate the flexibility in implementing a per­

ceptron to realize a certain mapping; it may have a strong bearing 

on the robustness of a perceptron with respect to disturbances in 

the inputs as well. The center of the UBE ellipsoidal set could be 

the best choice of weights as they may vary slightly during imple­

mentation. 

4. The UBE algorithm needs to be executed the same number of times 

as the number of data patterns available for training to give a fea­

sible set. However, the UBE algorithm may fail to characterize a 

feasible ellipsoid even though the feasible set is nonempty (again as 

indicated in the control application example). Nevertheless, this can 

be complemented by using the OVE algorithm as it is guaranteed 

that the center of the overbounding ellipsoid is a feasible solution 

if the feasible set is nonempty, after the algorithm has converged. 

5. For training of multilayer perceptrons, because of the nondifferen­

tiability of the activation function, a heuristic approach has been 

used (but not reported on here due to space constraints) to train 
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each perceptron independently. This required assigning input-out­
put patterns for each perceptron appropriately so that the entire 
ANN works in the manner desired. 

6. Finally, we note that the complexity of the OVE and UBE algorithms 
is discussed in detail in Cheung et al. (1993) . 

In this initial investigation into using ellipsoid algorithms for train­
ing ANN we have shown several advantages of OVE/ UBE; however, 
much work remains. For instance, there is the need to extend the results 
(including the desirable convergence and robustness properties) to the 
training of general multilayer perceptrons with general staircase nonlin­
earities. 
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