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While fuzzy control has 
emerged as an alternative to 

some conventional control 
schemes since it has shown success 
in some application areas (e.g., in 
train control and camera auto-fo
cusing), there are several draw
backs to this approach: a) the design 
of fuzzy controllers is usually per
formed in an ad hoc manner where 
it is hard to justify the choice of 
some controller parameters (e.g., 
the membership functions), and b) 
the fuzzy controller constructed for 
the nominal plant may later perform 
inadequately if significant and un
predictable plant parameter vari
ations occur. While the "fuzzy 
model reference learning control
ler" (FMRLC) introduced in [1], [2] 
and other adaptive fuzzy control 
approaches seek to address these 
issues, they primarily focus on im
proving existing learning control 
approaches or introducing new 
ones. In this article we provide a 
comparative analysis of the 
FMRLC and conventional "model 
reference adaptive control" 
(MRAC) for a cargo ship steering 
application. Our main objective is 
to make an initial assessment of 
what advantages (if any) a fuzzy 
learning control approach has over 
conventional adaptive control ap-
proaches. For the cargo ship steer-
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ing application, our simulation re
sults show that the FMRLC has 
several potential advantages over 
MRAC including a) improved con
vergence rates, b) use of less con
trol energy, c) enhanced 
disturbance rejection properties, 
and d) lack of dependence on a 
mathematical model. Using our 
comparative analysis we discuss 
how the well developed concepts in 
conventional adaptive control can 
be used to evaluate fuzzy learning 
control techniques. 

Learning Control Systems 
In recent years, to improve fuel 

efficiency and reduce wear on ship 
components, autopilot systems 
have been developed and imple
mented for controlling the direc
tional heading of ships. Generally, 
the autopilots utilize simple control 
schemes such as PID control. 
Often, however. the capability for 
manual adjustments of the parame
ters of the controller is added to 
compensate for disturbances acting 
upon the ship such as wind and 
currents. Once suitable controller 
parameters are found manually, the 
controller will generally work well 
for small variations in the operating 
conditions; for large variations the 
parameters of the autopilot must be 
continually modified. Such contin-

ual adjustments are necessary because the dynamics of a ship 
vary with speed, trim. and loading. Also, it is useful to change 
the autopilot control law parameters when the ship is exposed to 
large disturbances which result from changes in the wind, waves, 
current. and water depth. Manual adjustment of the controller 
parameters is often a burden on the crew. Moreover, poor adjust
ment may result from human error. As a result, it is of great 
interest to have a method for automatically adjusting or modify
ing the underlying controller. 

In this article, we investigate the use of a "learning control 
system'' to maintain adequate performance ofa cargo ship autopi
lot when there are process disturbances or variations as men-
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tioned above. In general, a "learning system" possesses the 
capability to improve its performance over time by interaction 
with its environment. A "learning control system" is designed so 
that its "learning controller" has the ability to improve the 
performance of the closed loop system by generating command 

inputs to the plant and utilizing feedback information from the 
plant. The learning control algorithm considered here is based on 
a direct fuzzy controller. In general, a "fuzzy controller" utilizes 
a fuzzy system to capture a human expert's knowledge about how 

to control a process for use in a computer algorithm. Often, the 
human expert's knowledge must be known a priori for fuzzy 
controller design. However, the learning control algorithm pre

sented here automatically generates the fuzzy controller's knowl
edge base on-line as new information on how to control the ship 
is gathered. For instance, the FMRLC can automatically synthe

size a fuzzy controller for the cargo ship and later tune it if there 
are significant disturbances/process variations. 

The FMRLC algorithm employs a reference model (a model 
of how you would like the system to behave) to provide closed 
loop performance feedback for generating and modifying a fuzzy 
controller's knowledge base. Consequently, this algorithm is 
referred to as a "fuzzy model reference learning controller" 
(FMRLC). The FMRLC algorithm, which was first introduced 

in [l]-[3], grew from research performed on the linguistic self
organizing controller (SOC) presented in [4] by Procyk and 

Mamdani and ideas in conventional "model reference adaptive 
control" (MRAC) [5], [6]. Since the basic architecture and func
tionality of the FMRLC is consistent with the prevailing defini
tion of a "learning controller," the term "learning" is used rather 

than "adaptive" (for a more detailed discussion on this issue see 
[3], [7]). A significant amount of research has been done on the 

SOC. For instance, the linguistic SOC has been used in robotics 
applications [8], [9], motor and temperature control [10], blood 
pressure control [ll], and in satellite control [12]-[14]. Other 

relevant literature that focuses on adaptation of a direct fuzzy 
controller includes the work in [ l 5] where an adaptive fuzzy 
system is developed for a continuous casting plant, and the 

approach in fl 6] where a fuzzy system adapts itself to driver 
characteristics for an automotive speed control device. The use 

of fuzzy systems for estimation/identification [ 17]-[23 J is rele
vant, especially if indirect adaptive [5], [6] fuzzy control tech
niques such as those in [24]-[26] are used. Since the introduction 
of the FMRLC in [3] some other relevant new adaptive/learning 
techniques have been developed [27]-[30]. While we describe 
here the application of the FMRLC to cargo ship steering, it has 

also been used for a robotics problem, a rocket velocity control 
problem, and a cart-pendulum system [I], [2] and it has been 

been used to improve the performance of anti-skid brakes in 
adverse road conditions [31 ], [32]. 

We provide a comparative analysis of FMRLC and several 

types of MRAC for a ship steering application. In particular, for 
the ship steering application described in [5], [6] we develop a 
FMRLC and a gradient-based and Lyapunov-based MRAC, 

provide some simulation studies, and compare their perform
ance. We find that for our simulations, the FMRLC learns to 
control the ship faster, does so with less control energy, and 
accomodates for a wind disturbance better than the two types of 
MRAC considered. Moreover, the development of the FMRLC, 

although somewhat ad hoc, does not depend on the form of the 

mathematical model of the cargo ship as the MRAC approaches 

do. 
Next, we interpret the results of our comparative analysis of 

FMRLC and MRAC. First, we emphasize that one must be 

careful not to over-generalize the results of our simulation-based 
analysis for this application. While the results look somewhat 
promising, we have not performed a) a mathematical analysis of 

the stability and convergence properties of the FMRLC, b) an 
analysis of persistency of excitation (which relates to how well 
the knowledge base of the fuzzy controller is "filled in"), c) an 
analysis of the robustness properties of the FMRLC, or d) an 
analysis of the computational properties of the FMRLC. Such 

conventional approaches to the analysis of adaptive systems are 
rarely used for fuzzy learning control ( one exception lies in [29]) 
but they do provide useful directions for future work in the study 

of fuzzy learning control systems. 
In the next section we provide a detailed overview of the 

FMRLC algorithm. Following this, we describe the cargo ship 
steering problem, design an appropriate FMRLC, and develop 
several conventional MRAC designs. Next, we provide the re

sults from several simulations to compare the performance of the 
FMRLC to the MRAC designs. Then we discuss the advantages 
and disadvantages of FMRLC from a control-theoretic perspec

tive in order to lay a foundation for future work in modeling and 
analysis of fuzzy learning control systems. Finally, some con

cluding remarks are given. 

Fuzzy Model Reference Learning Control 
The FMRLC, which is shown in Fig. 1, utilizes a learning 

mechanism that a) observes data from a fuzzy control system 
(i.e., y_,.(k7) and y_(k7)), b) characterizes its current performance, 

and c) automatically synthesizes and/or adjusts the fuzzy con
troller so that some prespecified performance objectives are met. 
These performance objectives are characterized via the reference 

model shown in Fig. 1. In an analogous manner to conventional 
MRAC where conventional controllers are adjusted, the learning 
mechanism seeks to ad just the fuzzy controller so that the closed
loop system (the map from -xi{k7) to y_(k7)) acts like a pre specified 
reference model (the map from -xi{k7) to )lm(k7)). Next we 
describe each component of the FMRLC in more detail. 

Reference 
Model 

Process 

Fig. 1. Architecture for the FMRLC. 
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Fuzzy Controller 

The process in Fig. 1 is assumed to have r inputs denoted by 
the r - dimensional vector 11.(kT) = [111(kT) ... u,-(kT)]1 (Tis the 
sample period) and s outputs denoted by the s - dimensional 
vector y_(kT) = [Y.1(kT) ... Ys(kT)( Most often the inputs to the 
fuzzy controller are generated via some function of the plant 
output y_(kT) and reference input J,{kT). Fig. 1 shows a special 
case of such a map that was found useful in many applications. 
The inputs to the fuzzy controller are the error g(kT) = [e1(kT) ... 
e5(kT)]1 and change in error r,;_(kT) = [c1(kT) ... cs(kT)] 1 defined as 

£(kn = y_,. (kT) - y_(kT) 

kT ill]J - e(kT - T) 
£.( ) - T 

respectively, where 

y_,(kT) = [y,i(kT) ... y,-JkT)]1 

denotes the desired process output. 
In fuzzy control theory, the range of values for a given 

controller input or output is often called the "universe of dis
course" [33]. Often, for greater flexibility in fuzzy controller 
implementation, the universes ofdiscourse for each process input 
are "normalized" to the interval [-1, +I] by means of constant 
scaling factors. For our fuzzy controller design, the gains J!..e, J!,.c, 

and gu were employed to normalize the universe of discourse for 
the error g(kT), change in error r,;_(kT), and controller output 11.(kT), 

respectively (e.g., g_e = [ge1, ... , ge_l so that ge;e;(kT) is an input 
to the fuzzy controller). The gains K.e are chosen so that the range 
of values of ge,e;(kT) lie on [-1, l] and gu is chosen by using the 
allowed range of inputs to the plant in a similar way. The gains 
f,',L· are determined by experimenting with various inputs to the 
system to determine the normal range of values that c(kT) will 
take on; then K.c is chosen so that this range of values is scaled to 
[-1, I]. 

We utilize r multiple-input single-ouput (MISO) fuzzy con
trollers, one for each process input Un (equivalent to using one 
MIMO controller). The knowledge base for the fuzzy controller 
associated with the nth process input is generated from IF-THEN 
control rules of the form: 

If e1 is £1 and ... and es is£? and c1 is C) 
and ... and cs is c;' Then un is U{;· ...kJ.... m 

where ea and ca denote the linguistic variables associated with 
controller inputs ea and Ca, respectively, Un denotes the linguistic 

variable associated with the controller output Un, Et and ct 
denote the bth linguistic value associate associated with ea and Ca, 

respectively, and u{--· ,kJ.....m denotes the consequent linguistic 

value associated with Un. Hence, as an example, one fuzzy control 
rule could be 

If error is positive-large and change-in-error is negative
small Then plant-input is positive-big 

(in this case e1 = "error," £1 = "positive-large", etc.). A set of 
such rules forms the "rule-base" which characterizes how to 
control a dynamical system. 

The above control rule may be quantified by utilizing fuzzy 
set theory to obtain a fuzzy implication of the form: 

If £1 and ... and E? and E1
1 and ... and Cf 

Then U/; ... kJ.....m, 

where Et d and u{-- •,k.l .... ,m denote the fuzzy sets that quantify 

the linguistic statements "ea is Et" "cs is C7'," and 

"un is V1;----k.l, ....m," respectively. For the example above, we 
may use fuzzy sets on the e;(t) normalized universes of discourse 
as shown in Fig. 2. Assume that we use the same fuzzy sets on 
the c;(t) normalized universes of discourse. The membership 
functions on the output universe of discourse are assumed to be 
unknown; they are what the FMRLC will automatically synthe
size. In fact, we will initialize the fuzzy controller knowledge 
base with 121 rules (for our examples we utilize the fuzzy sets 
shown in Fig. 2 and use all possible combinations ofrules) where 
all the right-hand-side membership functions are triangular with 
base widths of 0.4 and centers at zero (to model that the fuzzy 
controller initially knows nothing about how to control the plant; 
of course one can often make a reasonable best guess at how to 
specify a fuzzy controller that is "more knowledgable"). For 
example, ifs = I then all rules in our controller will take on the 
form 

if £1 and c'i Then u{1 

where the membership functions for E{ and c'i are shown in Fig. 

2 and u{1is a fuzzy set with triangular membership function with 
base width 0.4 centered at zero. In conventional direct fuzzy 
controller development the designer specifies a set of such con-

trol rules where U{1 are also specified a priori; for the FMRLC, 
the system will automatically specify and/or modify the fuzzy 

sets U{1to improve/maintain performance. Finally, we note that 
we use Zadeh's compositional rule of inference and the standard 
center-of-gravity (COG) defuzzification technique [33]. 

-1 -.8 -.6 -.4 -.2 .2 .4 .6 .8 

Fig. 2. Fuzzy sets on a universe ofdiscourse. 

Reference Model 

The reference model provides a capability for quantifying the 
desired performance. In general, the reference model may be any 
type of dynamical system (linear or nonlinear, time-invariant or 
time-varying, discrete or continuous time, etc.). The performance 
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of the overall system is computed with respect to the reference 

model by generating an error signal 

where 

:!_e(kD =:!_m(kT) - y_(kT). 

Given that the reference model characterizes design criteria such 

as rise time and overshoot and the input to the reference model 

is the reference input y_,{kD, the desired performance of the 

controlled process is met if the learning mechanism forces )l.e(kD 

to remain very small for all time; hence, the error )l.e(kD provides 

a characterization of the extent to which the desired performance 

is met at time t =kT. If the performance is met (Y.e(kD "' 0) then 
the learning mechanism will not make significant modifications 

to the fuzzy controller. On the other hand if )l.e(kD is big, the 
desired performance is not achieved and the learning mechanism 

must adjust the fuzzy controller. 

Learning Mechanism 

As previously mentioned, the learning mechanism performs 

the function of modifying the knowledge base of a direct fuzzy 

controller so that the closed loop system behaves like the refer

ence model. These knowledge base modifications are made by 

observing data from the controlled process, the reference model, 

and the fuzzy controller. The learning mechanism consists of two 

parts: a fuzzy inverse model and a knowledge base modifier. The 

fuzzy inverse model performs the function of mapping )l.e(kD 

(representing the deviation from the desired behavior), to 

changes in the process inputs Jl. =[p1 ... p,y that are necessary to 

force )l.e(kD to zero. The knowledge base modifier performs the 

function of modifying the fuzzy controller's knowledge base to 

affect the needed changes in the process inputs. More details of 

this process are discussed next. 

Using the fact that most often a control engineer will know 
how to roughly characterize the inverse model of the plant, the 

authors in [1] introduce the idea of using a fuzzy system to map 

)l.e(kD and possibly functions of )l.e(kD (or process operating 

conditions), to the necessary changes in the process inputs Jl.(kD. 

This map is called the fuzzy inverse model since information 

about the plant inverse dynamics is used in its specification. Note 

that similar to the fuzzy controller, the fuzzy inverse model 

shown in Fig. 1 contains normalizing scaling factors, namely 

~-,, g_,.,, and gp, for each universe of discourse. Given that 

gy,,Ye, and g_,'<, Ye; are inputs to the fuzzy inverse model, the 

knowledge base for the fuzzy inverse model associated with the 

nth process input is generated from fuzzy implications of the 

form: 

If Y~ 1 and ... and Y~, and Y~ 1 and ... and Y7,'. Then P{;-· .k.l, • .m 

where rt and rt denote the hth fuzzy set for the error Ye,, and 

change in error Ye", respectively, associated with the ath process 

output and P',;··· ,k.l, ••••m denotes the consequent fuzzy set for this 

rule describing the necessary change in the nth process input. As 

with the fuzzy controller, we utilize membership functions for 
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the normalized input universes of discourse as shown in Fig. 2, 

triangular membership functions for the output universes of 

discourse, Zadeh's compositional rule of inference, and COG 

defuzzification. Given the information about the necessary 

changes in the input as expressed by the vector Jl_(kD, the 

knowledge base modifier changes the knowledge base of the 

fuzzy controller so that the previously applied control action will 

be modified by the amount Jl.(kD. Therefore, consider the pre

viously computed control action 11.(kT - D, which contributed to 

the present good/bad system performance. Note that e.(kT - D 
and c(kT - n would have been the process error and change in 

error, respectively, at that time. By modifying the fuzzy control

ler's knowledge base we may force the fuzzy controller to 

produce a desired output 11.(kT - n + Jl.(kD. Assume that only 

symmetric membership functions are defined for the fuzzy con-

troller's output so that cJ,;- •• .k.l••• •.m denotes the center value of the 

membership function associated with the fuzzy set u~---,kJ, ... ,m 

(initially, c/1•· ,u.....m(O) = 0). Knowledge base modification is 

performed by shifting centers of the membership functions of the 

fuzzy sets ul,;· •,k./ ... •.m which are associated with the fuzzy im

plications that contributed to the previous control action 11.(kT -

D (initially possibly shifting them away from having centers at 

zero). This modification involves shifting these membership 

functions by an amount specified by Jl_(kD =[p1(kD ... p,{kD]1 

so that 

The degree of contribution for a particular fuzzy implication 

whose fuzzy relation is denoted Rt .. ,k,I, .. • ,m is determined by its 

"activation level", defined 

(2) 

where µA denotes the membership function of the fuzzy set A. 

Only those rules whose activation level &;---,kJ, ....m(kT- n > 0 

are modified; all others remain unchanged. It is important to note 

that our rule-base modification procedure implements a form of 

local learning and hence utilizes memory. In other words, differ

ent parts of the rule-base are "filled in" based on different 

operating conditions for the system, and when one area of the 

rule-base is updated, other rules are not affected. Hence, the 

controller adapts to new situations and also remembers how it 

has adapted to past situations. This justifies the use of the term 

"learning" rather than "adaptive" (for more details on this point 

see [I], [2], [7]). 
For example, assume that all the normalizing gains for both 

the direct fuzzy controller and the fuzzy inverse model are unity 

and that the fuzzy inverse model produces an output pn(kD =0.5 

indicating that the value of the output to the plant at time kT - T 

should have been u(kT - n + 0.5 to improve performance (i.e., 

to force Yei ~ 0). Next, suppose that e1(kT- D =0.75 and c1(kT 

- D =-0.2. Then rules 
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If EY and CT 1 Then u~,-1, and 

If Et and CT 1 Then u~-- 1 

are the only rules with activation levels greater than zero 

(o~'-1=0.25 and o~·-1=0.75) so these rules will be the only ones 

that have their consequent fuzzy sets (U~·- 1, [In,-!) modified 
(See Fig. 2). To modify these fuzzy sets we simply shift their 
centers according to (1). 

Design Procedure 
Selection of the normalizing gains can impact the overall 

performance so we provide a gain selection procedure in the 
following. Note that although it is often not highlighted, most 
learning/adaptive control approaches assume that you are given 
an initial controller structure and parameters (e.g., initial control
ler gains must be chosen in adaptive control approaches). In what 
follows we provide a procedure to pick such initial parameters 
for the FMRLC. 

1. Select the controller gains g_v, associated with the desired 
output change "j_e(kD such that each universe of discourse is 
mapped to the interval [-1, 1]. 

2. Choose the controller gain g_p to be the same as for the fuzzy 
controller output gain gu. This will allow the elements of p(kD 
to take on values as large as the largest possible inputs. 

3. Assign the numerical value Oto the scaling factors associ
ated with the changes in the desired output changes (i.e., all 
elements of g_,-, are set equal to 0). 

4. Apply a step input to the process which is of a magnitude 
that may be typical for the process during normal operation. 
Observe the process response and the reference model response. 

5. Three cases: 
a) If there exist unacceptable oscillations in a given process 

output response about the reference model response, then in
crease the associated element of 8.Yc- Go to step 4. 

b) If a given process output response is unable to "keep up" 
with the reference model response, then decrease the associated 
element of g_y,. Go to step 4. 

c) If the process response is acceptable with respect to the 
reference model response, then the controller design is completed. 

For the application presented in this paper, the above gain 
selection procedure has proven very successful. However, given 
that the procedure is a result of practical experience with the 
FMRLC rather than strict mathematical analysis, it is possible 
that it will not work for all processes. For some applications 
(although none of the ones studied in [l], [3], [32]), the procedure 
may result in an unstable process. In such situations, it may be 
necessary to modify other controller parameters such as the 
controller sampling period T or the number of fuzzy controller 
rules. Clearly, the stability analysis of the FMRLC is an important 
research direction. 

Learning and Adaptive Autopilots for a Cargo Ship 

Problem Statement 
Generally, ship dynamics are obtained by applying Newton's 

laws of motion to the ship. For very large ships, the motion in the 
vertical plane may be neglected since the "bobbing" or "bounc-
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ing" effects of the ship are small for large vessels, The motion of 
the ship is generally described by a coordinate system which is 
fixed to the ship [5], [6]. See Fig. 3. 

------------ "' 

Fig. 3. Cargo ship, 

A simple model which describes the dynamical behavior of 
the ship may be expressed by the following differential equation: 

~(t) + (1- \Jf(t) + ( 1 J\Jf(t)· •1 J.. = --(13 o(t) + o(t)).. + - -- K 
'ti 't2 'ti 't2 'ti 't2 (3) 

where \JI is the heading of the ship and ois the rudder angle. 
Assuming zero initial conditions, (3) can be written 

<\l(s) K(s--c3+ 1) 

Os s(s--c1 + 1)(s--r2 + 1) (4) 

where K, 'ti, 12, and 't3 are parameters which are a function of the 
ship's constant forward velocity u and its length las expressed below: 

(5) 

't;=--r;0 i=l,2,3.(t} (6) 

where we assume that for a cargo ship Ko= -3.86, --r10 = 5.66, --r20 
=0.38, 130= 0.89, and/= 161 (m) [6]. Also, we will assume that 
the ship is traveling in the x direction at a velocity of 5 m/s. 

In normal steering, a ship often makes only small deviations 
from a straight line path. Therefore, the model in (3) is obtained 
by linearizing the equations of motion around the zero rudder 
angle (o = 0). As a result, the rudder angle should not exceed 
approximately 5°, otherwise the model will be inaccurate. For 
our purposes, we need a model which is suited for rudder angles 
which are larger than 5°; hence, we use the model proposed by 
Bech and Smitt in [34]. This extended model is given by 

~(t) + - + - \Jf(t) + -- H(\Jf(t)) =--(13 o(t) + o(t)).. (' 1J.. 1 J - K •l
'ti 't2 'ti 't2 'ti 1:2 

(7) 
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where H(\j1) is a nonlinear function of \j,(t). The function H(\j,) 

can be found from the relationship between 8 and \j, in steady 

state such thatiJ!: = 'V = 8 =0. An experiment known as the"spiral 

test" has shown that H(\j,) can be approximated by 

(8) 

where a and b are real valued constants such that a is always 

positive. For our simulations we choose the values of both a and 

b to be 1. 

FMRLC Design 

In this section we present a FMRLC algorithm for controlling 

the directional heading of a cargo ship. The inputs to the fuzzy 

controller are the heading error and change in heading error 

expressed as 

e(kT) = \Jf,(kT) - \Jf(kT) 

and 

e(kT) - e(kT - T)
c(kT) 

T 

respectively, where \jfr(kT) is the desired ship heading (T =50 

ms). The controller output is the rudder angle, o(kT), of the ship. 

Here we assume that the dynamics of the actuator which is used 

to position the rudder are much faster than the ship dynamics so 

that they may be neglected. In this fuzzy controller design, 11 

fuzzy sets are defined for each controller input such that the 

membership functions are triangular shaped and evenly distrib

uted on the appropriate universes of discourse (as shown in Fig. 

2). The normalizing controller gains for the error, change error, 

and the controller output are chosen to be ge = I /re, gc = 100, 

and gu = Src/18, respectively, according to the design procedure 

above. The fuzzy sets for the fuzzy controller output are also 

assumed to be triangular shaped with a width of0.4, and centered 

at zero on the normalized universe of discourse. The reference 

model was chosen so as to represent somewhat realistic perform

ance requirements as 

\VU)+ 0.1 \j!m(t) + 0.0025 \Jfm(t) =0.0025 \j/r(t) (9) 

where \jfm(t) specifies the desired system performance for the ship 

heading \j/(t). 
The input to the fuzzy inverse model includes the error and 

change in error between the reference model and the ship heading 

expressed as 

\Jfe(kT) = \Jfm(kT) - \jf(kT) 

and 

\Jfe(kT) - \Jfe(kT - D 
\Jfc(kT) 

T 

respectively. For these inputs, 11 fuzzy sets are defined with 

triangular shaped membership functions which are evenly dis

tributed on the appropriate universes of discourse (as shown in 

Fig. 2). The normalizing controller gains associated with \jfe(kT), 

\jfc(kT), and p(kD are chosen to be 

respectively, according to the design procedure above. For a 

cargo ship, an increase in the rudder angle o(kD, will generally 

result in a decrease in the ship heading angle. The knowledge 

base array shown in Table I was employed for the fuzzy inverse 

model for the cargo ship (for more details on how to choose the 

fuzzy inverse model for other plants see [l], [2], [32]). In Table 

I, \JI{ denotes thejth fuzzy set associated with the error signal \j/e 

and \JI~ denotes the kth fuzzy set associated with the change in 

error signal \jfc. The entries of the table represent the center values 

of triangular membership functions with base widths 0.4 for 

fuzzy sets pf'k on the normalized universe of discourse. 

It is important to note that in designing the FMRLC, the only 

ways in which the design procedure relied on the plant model 

was in the choice of the normalizing gains and in the specification 

of the fuzzy inverse model. Although the design procedure for 

the FMRLC is somewhat ad hoc it does have the advantage that 

it neither relies on the explicit mathematical model of the process 

nor on the form of such a model. 

Model Reference Adaptive Control 

In this section we present two MRAC designs which utilize 

an underlying proportional derivative (PD) control law for the 

direct controller. The PD control law is used to obtain a fair 

comparison with FMRLC algorithm where error and change in 

error are employed as controller inputs. We will consider both 

the gradient method and the Lyapunov stability method for 

MRAC design. 

Gradient Approach. The controller parameter adjustment 

mechanism for the gradient approach to MRAC can be imple

mented via the MIT rule. For this, the cost function 

where 

\jfe(t) = \jfm(t) - \jf(t) 

is used and 

so that 

d8 cl'V,(t) 
- = -y \jfe(t)--
dt ae 
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Table I 
Knowledge Base Array Table Employed 

in the Fuzzy Inverse Model for a Cargo Ship 

q,~ 
p/k 

-5 -4 -3 -2 -1 +0 +1 +2 +3 +4 +5 

-5 +1.0 +1.0 +1.0 +1.0 +1.0 +1.0 +0.8 +0.6 +0.4 +0.2 0.0 

-4 +1.0 +1.0 +1.0 +1.0 +1.0 +0.8 +0.6 +0.4 +0.2 0.0 -0.2 

-3 +1.0 +1.0 +1.0 +1.0 +0.8 +0.6 +0.4 +0.2 0.0 -0.2 -0.4 

-2 +1.0 +1.0 +1.0 +0.8 +0.6 +0.4 +0.2 0.0 -0.2 -0.4 -0.6 

q,j -1 +1.0 +1.0 +0.8 +0.6 +0.4 +0.2 0.0 -0.2 -0.4 -0.6 -0.8 

0 +1.0 +0.8 +0.6 +0.4 +0.2 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 

+1 +0.8 +0.6 +0.4 +0.2 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 -1.0 

+2 +0.6 +0.4 +0.2 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 -1.0 -1.0 

+3 +0.4 +0.2 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 -1.0 -1.0 -1.0 

+4 +0.2 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 -1.0 -1.0 -1.0 -1.0 

+5 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 

which is commonly referred to as the M.I.T. rule. where p is the differential operator. The reference model for this 
For developing the M.I.T. rule for the ship we assume that the process is chosen to be 

ship may be modeled by a second order linear differential equa
tion. This model is obtained by eliminating the process pole Wn

\j/m(t) = \j/r(t),resulting from 1:2 in (3) since its associated dynamics are signifi 2 2 
P + SWnP + Wn (14) 

cantly faster than those resulting from 1:1. Also, for small heading 

variations the rudder angle derivative 8 is likely to be small and where to be consistent with the FMRLC design we choose s= I 
may be neglected. Therefore we obtain the following reduced and Wn = 0.05. Combining (14) and (13) and finding the partial 
order model for the ship 

derivatives with respect to the proportional gain kp and the 
derivative gain kd we find that 

\\f(t) + \\f(t) ~•• ( 1 J • ~ =(KJ b(t) 
(10) 

The PD-type control law which will be employed for this process d\\fe [ ~ 
may be expressed by dkp = 2 (1 + K kdJ (K kpJ (\\f - ljf,.)p + --- p+ --

'ti 'CJ (15) 

b(t) =kp (\\fr(t) - \j/(t)) - kd \j,(t) (11) 
and 

kp and kd are the proportional and derivative gains, respectively, 
and \j/,{t) is the desired process output. Substituting (10) into (11) 
we obtain d\\fe ,,

KP 

"'' ~ p' + ( I .,~ ,,lp f ,:,ll ~.[ (16)
\V(t) + (1 +T~ kd J\f(t) + (~~P J\j/(t) =(\:P J\jlr(t). (12) 

In general, (15) and (16) cannot be used because the controller 
It follows from (12) that parameters kp and kd are not known. Observe that for the "optimal 

values" of kp and kd we have 
~ 

'CJ 

\j/(t) = (1 + K kdJ (K k J \j/,-(t) (17)p2+ --- p+ __p 

Tl 'ti (13) 

Furthermore, the term KI t I may be absorbed into the adaptation 

gain y. However, this requires that the sign of K/t1 be known 
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since, in general, yshould be positive to ensure that the controller and where to be consistent with the FMRLC design we choose 

updates are made in the direction of the negative gradient. For a 1; = 1 and ron = 0.05. 
The dynamical equation which describes the error (\jle(t) =

forward moving cargo ship the sign of Kit, happens to be 
\jlm(t) - \j/(t)) may be expressed by

negative which implies that the term y with K/11 absorbed into 

it must be negative to achieve the appropriate negative gradient. 
ie =Am(t)~e + (Am(t) - Ac(t))~ + (Bm(t) - Bc(t))~r

After making the above approximations we obtain the following 

differential equations for updating the PD controller gains: 
(25) 

d kp ( 1 )dt =-y, 2 r 2 (\j/ - \jfr) \jfe (18) The equilibrium point \jle = 0 in (25) is asymptotically stable if
p + 2~ronp + ron 

we choose the adaptation laws to be 

d kJ ( 1 Jw 
Ac(t) = yP~e~ (26)

dt =-y
2 p2 + 2t,ronp + ro~ ) •e (19) 

• T 

where y1 and "(2 are negative real numbers. After many simula

tions, the best values that we could find for the Yi are y1 = -0.005 (27) 
and "(2 = -0.1. 

where P E 9\nxn is a symmetric positive definite matrix which is
Lyapunov Approach. Examples of Lyapunov based MRAC 

a solution of the Lyapunov equation A~P + PA m = -Q < 0. As
designs are illustrated by Narendra and Annaswamy in [5] and 

by Amerongen and Cate in [35]; here we utilize the approach in suming that Q is a 2 x 2 identity matrix and solving for P we find 

[5] to design our Lyapunov-based MRAC. Recall from the that 

Problem Statement section that the ship dynamics may be ap

proximated by a second order linear time-invariant differential p =[Pl! p12] =[25.0015 200.000] 
equation given by (10). Once again, we use the PD control law p21 p22 200.000 2005.00 (28) 

defined in (11). The dynamical equation which describes the 

compensated system is Solving for kp and kJ in (26) and (27), respectively, the adaptation 

law in (26) and (27) may be implemented as 

(29) 

where~= [\JI \jJf and 
(30) 

Of course, (29) and (30) assume that the plant parameters and 

disturbance are varying slowly. In obtaining (29) and (30) the 

(20) term Klt1 was absorbed into the adaptation gains y1 and "(2. 

Recall that for the cargo ship Kit, happens to be a negative 

quantity. Therefore, both YI and "(2 must be negative to compen

sate for this fact. Again we found that y1 = -0.005 and "(2 = -0.1 

were suitable. See Narendra and Annaswamy [5] for more details 

about obtaining (29) and (30). 
(21) 

Comparative Analysis of FMRLC and MRAC: 
The reference model is given by Simulation Results 

For the simulations for all three adaptive control methods 

(22) presented above (FMRLC, gradient MRAC, and Lyapunov 

MRAC) we use the nonlinear process model given in (7) to 

emulate using the "true" ship dynamics. Fig. 4 shows the results
where ~m = [\jfm 'Vml and 

for the FMRLC controller. Recall that initially the right-hand

sides of the control rules have membership functions with centers 

all at zero (i.e., initially, the controller knows little about how to 
(23) control the plant). Note in Fig. 4 that the FMRLC algorithm was 

quite successful in generating the appropriate control rules for a 

good process response since the reference model and the ship 

heading track almost perfectly. In fact the maximum deviation 

between the two signals was observed to be less than 1°. As a
(24) 

result, the system exhibits a fast transient response with no 

overshoot. Also note that the rate ofconvergence for the FMRLC 
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Cargo Ship Response - FMRLC 
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Fig. 4. Simulation results.for the FMRLC algorithm when employed 
for a cargo ship. 

algorithm was very fast. In the last plot of Fig. 4 two large spikes 
of a magnitude of about 1 ° occur after the first two step input 
changes. However, as time progresses the spikes resulting from 
subsequent step input changes are reduced to less than 0.5° as a 
result of learning. 

Compare the results for the FMRLC with those obtained for 
the gradient and the Lyapunov approach to MRAC shown in 
Figs. 5 and 6, respectively. The controller gains kp and kd for both 
MRAC algorithms where initially chosen to be 5. This choice of 
initial controller gains happens to be an unstable case for the 
linear second order process model (in the case where the adap
tation mechanism is disconnected). However, we felt this to be a 
fair comparison since the fuzzy controller is initially chosen so 
that it would put in zero degrees of rudder no matter what the 
controller input values were. We would have chosen both con
troller gains to be 0; but, this choice resulted in a very slow 
convergence rate for the MRAC. It is easy to show that the 
compensated second order process model (described by Ac and 
Be) is equal to the reference model in (22) if the controller gains 
are chosen to be kp = -3.8 and kd = -143.7. In Table II, we 
summarize the final values of the process gains shown in Figs. 5 
and 6. Although the process gains for both algorithms converged 
to values relatively close to the optimal values, they do not match 
exactly. This reason for this may be explained by a few simple 
facts: 
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Cargo Ship Response - Gradient Approach to MRAC 
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Fig. 5. Simulation results.for the gradient approach to MRAC when 
employed.for a ca,~[(O ship. 

• Both MRAC algorithms are designed to minimize the error 
signal (j)e. This does not necessarily mean that the process pa
rameters will also converge. 

• The reduced second order linear process model, for which 
the controller designs and the "optimal" process gains are based, 
is not a completely accurate characterization of the third order 
nonlinear process model used in simulation. 

For both the gradient approach and the Lyapunov approach, 
the system response converged to track the reference model. 
However, the convergence rate of both algorithms was signifi
cantly slower than the FMRLC method. 

Another significant advantage of the FMRLC algorithm may 
be seen in the amount of input energy which was spent at the 
system input to obtain accurate tracking with the reference 
model. Due to the fact that for our simulations the magnitude of 
the rudder angle is generally larger for both MRAC approaches 
than for the FMRLC algorithm, we may suspect that the input 
energy for the FMRLC is significantly less. The rudder angle 
plots shown in Figs. 4, 5, and 6 for each of the adaptive control 
algorithms represent 1200 sampled data points. We may obtain 
a measure of the input energy if we think of these data points as 
a vector o = [(0) o(T) o(2T) ... o(l 199T){, where the energy is 
the square of the 2-norm for this vector (i.e., energy= ◊T◊). Upon 
performing this for the data shown in Figs. 4, 5, and 6 in radians 
rather than degrees, we obtain the result shown in Table III. As 
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Cargo Ship Response - Lyapunov Approach to MRAC 
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Fig. 6. Simulation results for the Lyapunovapproach to MRAC when 

employed for a cargo ship. 

expected, the process input energy for the FMRLC was signifi
cantly less than that obtained for both MRAC approaches. 

The final set of experiments performed for this process were 

designed to illustrate the ability of the learning and adaptive 

controllers to compensate for disturbances at the process input. 

Fig. 7 illustrates the results obtained for this simulation. The 

disturbance added at the rudder was chosen to be be a sinusoid 

with a frequency of one cycle per minute and a magnitude of 2° 

with a bias of 1°. The effect of this disturbance is similar to that 

of a gusting wind acting upon the ship since wind effects are 

generally modeled as a rudder disturbance. To provide a fair 

Table II 
Final Values of Controller Gains k;i and kJ 

in the Simulation Results for the 
Gradient and Lyapunov Approach to MRAC 

MRAC Avoroach 

Controller Parameter Gradient Lvaounov 

kn(6000) -4.7752 -3.0974 

kd(6000) -171.8580 -105.0242 
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Table III 
Comparison of the Process Input Energy 

for the FMRLC, the Gradient MRAC, and the Lyapunov MRAC 
when Employed as an Autopilot for a Cargo Ship 

Process Input Energy ( 11811 2 
) 

FMRLC I Gradient MRAC I Lvaounov MRAC 

17.3368 I 458.6324 I 425.7801 

comparison with the FMRLC algorithm, we initially loaded the 

PD controllers in both MRAC algorithms with the controller 

gains shown in Table II, which were previously found by each 

method. However, the centers of the right-hand-sides of the 

membership functions for the knowledge base of the fuzzy 

controller in the FMRLC algorithm were initialized with all zeros 

as before (hence, we are giving the MRAC an advantage). Notice 

that the FMRLC algorithm was nearly able to completely cancel 

the effects of the disturbance input. However, the gradient and 

the Lyapunov approaches to MRAC where not nearly so success

ful. 

Control Engineering Perspective 

We now summarize and more carefully analyze the conclu

sions from our simulation studies. Our goal is to provide an 

objective control-theoretic assessment that will identify research 

directions focusing on a careful engineering evaluation of the 

FMRLC. The results in the previous section indicate the follow

ing advantages of the FMRLC: 

• Fast convergence compared with MRAC. 

• Minimal amount of control energy needed as compared to 
MRAC. 

• Good disturbance rejection properties compared to MRAC. 

• The FMRLC design is independent of the particular form 

of the mathematical model of the underlying process (in the 

MRAC designs we need an explicit mathematical model of a 

particular form). 

0.5.----~-~--...---,--~-~-~-~-
Lyapuno Approach to MRAC Gradient Approach to MRAC FMRLC 

\cii 

~ 01----+-----4-------'~'------1-
:? 
~ 
a, 
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0 200 400 600 800 1000 1200 1400 1600 1800 2000 
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1:E-J
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Fig. 7. Simulation results compare disturbance rejection for the 

FMRLC, the gradient approach to MRAC, and the Lyapunov ap

proach to MRAC. 
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Overall, the FMRLC provides a method to synthesize (i.e., 
automatically design) and tune the knowledge base for a direct 
fuzzy controller. As the direct fuzzy controller is a nonlinear 
controller, some of the above advantages may be attributed to the 
fact that the underlying controller that is tuned inherently has 
more significant functional capabilities as compared to the PD 
controllers used in the MRAC designs. 

While our application may indicate that FMRLC is a promis
ing alternative to conventional MRAC, we must emphasize that: 

• We have compared the FMRLC to only two types of 
MRACs, for only one application, for a limited class of reference 
inputs, and only in simulation. There are a wide variety of other 
adaptive control approaches that deserve consideration (e.g., 
those of the self-tuning regulator type [6], [5]). 

• There are no guarantees of stability or convergence; hence, 
we can simply pick a different reference input and the system 
may be unstable (we have not found this in other simulations, but 
it is possible). 

• There seem to be no investigations into persistency of 
excitation issues for the FMRLC or any other fuzzy learning 
control technique. Persistency of excitation is related to the 
learning controller's ability to always generate an appropriate 
plant input and its ability to generalize the results of what it has 
learned earlier and apply this to new situations. In this context, 
for the ship we ask the following questions: 

- What if we need to tum the ship in a different direction -
will the rule base be "filled in" for this direction? 

- Or will it have to learn for each new direction? 
- If it learns for the new directions, will it forget how to 

control for the old ones? 
• In terms of control energy we may have just gotten lucky 

for this application and for the chosen reference input. There 
seem to be no analytical results that guarantee that the FMRLC 
or any other fuzzy learning control technique minimizes the use 
of control energy for a wide class of plants. 

• This is a very limited investigation of the disturbance 
rejection properties (i.e., only one type of wind disturbance is 
considered). As ofyet there seem to be no results on mathematical 
robustness analysis for a wide class of plants for the FMRLC or 
any other fuzzy learning control technique. 

• The design approach for the FMRLC, although it did not 
depend on a mathematical model, it is somewhat ad hoc. Will 
there be fundamental limitations on the FMRLC imposed by 
nonminimum phase systems? Certainly there will be limitations 
for classes of nonlinear systems. What will these limitations be? 
It is important to note that the use of a mathematical model helps 
to show what these limitations will be (hence it cannot always be 
considered an advantage that many fuzzy control techniques do 
not depend on the specification of the mathematical model). Also 
note that due to our avoidance of using a mathematical model of 
the plant, we have also ignored the important "model matching 
problem" in adaptive control. 

• There may be gains in performance, but are these gains being 
made by paying a high price in computational complexity for the 
FMRLC? The FMRLC is somewhat computationally intensive 
as are many neural and fuzzy learning control approaches but we 
have neither performed a careful study of the computational 
properties of the MRAC versus the FMRLC nor investigated 
techniques to simplify the FMRLC computations. 

All things considered, the major conclusions one can draw 
from this work are: a) that the FMRLC looks promising and 
deserves further attention - especially analysis in a control
theoretic framework, and b) the conventional control-theoretic 
viewpoint is quite useful for the study of this class of intelligent 
controllers. 

Laying Foundations for Comparative Analysis 
We have provided a detailed description of the FMRLC 

algorithm, and developed a FMRLC and two MRACs for a ship 
steering application. Then we conducted some simulation studies 
to evaluate the performance of the FMRLC as compared to a 
gradient-based and Lyapunov-based MRAC design. Moreover, 
we discuss the results from a control-theoretic perspective to 
provide an objective assessment of the FMRLC and to indicate 
future research directions. 

We want to emphasize the importance of laying foundations 
for comparative analyses of conventional and "intelligent" con
trol techniques. Many concepts and results from conventional 
control (e.g., stability and stability analysis) can provide for a 
more careful engineering evaluation of intelligent control tech
niques and provide for productive research directions. At the 
same time, the intelligent control techniques have much to offer 
conventional control by infusing new concepts, approaches to 
control, and new design methodologies. In this article we have 
made a small move in the direction of bridging the gap between 
fuzzy learning control and conventional adaptive control; it is 
hoped that this will be beneficial to both fields. 
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