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Abstract-Fuzzy control has emerged as a practical alternative 
to several conventional control schemes since it has shown success 
in some application areas; however, there are several drawbacks 
to this approach: i) the design of fuzzy controllers is usually 
performed in an ad hoc manner where it is often difficult to 
choose some of the controller parameters (e.g., the member­
ship functions), and ii) the fuzzy controller constructed for the 
nominal plant may later perform inadequately if significant and 
unpredictable plant parameter variations occur. In this paper 
we illustrate these two problems on a two-link flexible robot 
testbed by i) developing, implementing, and evaluating a fuzzy 
controller for the robotic mechanism, and ii) illustrating that 
payload variations can have negative effects on the performance 
of a well designed fuzzy control system. Next we show how 
to develop and implement a "fuzzy model reference learning 
controller'' (FMRLC) [l]-[5] for the flexible robot and illustrate 
that it can: i) automatically synthesize a rule-base for a fuzzy 
controller that will achieve comparable performance to the case 
where it was manually constructed, and ii) automatically tune the 
fuzzy controller so that it can adapt to variations in the payload so 
that it can perform better than the manually constructed fuzzy 
controller. 

I. INTRODUCTION 

FLEXIBLE robotic mechanisms are important in space 
structure applications, where large, lightweight robots are 

to be utilized in a variety of tasks, including deployment, 
spacecraft servicing, space station maintenance, and so on. 
Flexibility is not designed into the mechanism; it is usually 
an undesirable characteristic which results from trading off 
mass and length requirements in optimizing the effectiveness 
of the robot. In this paper we investigate the development of 
controllers for a two-link planar flexible robot. Distinguishing 
features of the robotic mechanism and its operation are the 
use of structure-mounted sensing only (endpoint accelerations 
and joint position information) for feedback control, the focus 
on high speed, gross motion movements in endpoint position­
ing, and performance requirements for carrying of significant 
payloads at the robot endpoint. 

A. Motivation for Fuzzy Leaming Control 

For the two-link flexible robot considered here, our goal 
of achieving fast slews over the entire workspace with a 
minimum amount of endpoint vibration is complicated by: 
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I) the manner in which varying the inertial configuration 
of the links has an effect on structural parameters (e.g., 
its effects on the modes of vibration), and 

2) unknown payload variations which significantly affect 
the plant dynamics. 

Using several years of experience in developing conven­
tional controllers for the robot mechanism, coupled with our 
intuitive understanding of the dynamics of the robot, we 
develop a fuzzy controller that achieves adequate performance 
for a variety of slews. Even though we were able to tune the 
fuzzy controller to achieve adequate performance for varying 
configurations; however, its performance degrades when there 
is a payload variation at the endpoint. 

While some would argue that the solution to such a perfor­
mance degradation problem is to "load more expertise into the 
rule-base" there are several limitations to such a philosophy 
including: 

1) the difficulties in developing (and characterizing in a 
rule-base) an accurate intuition about how to best com­
pensate for the unpredictable and significant payload 
variations that can occur while the robot is in any 
position in its workspace, and 

2) the complexities of constructing a fuzzy controller that 
potentially has a large number of membership functions 
and rules. 

Moreover, our experience has shown that it is possible to 
tune fuzzy controllers to perform very well if the payload is 
known. Hence, the problem does not result from a lack of 
basic expertise in the rule-base, but from the fact that there is 
no facility for automatically re-designing (i.e., re-tuning) the 
fuzzy controller so that it can appropriately react to unforeseen 
situations as they occur. In this paper, we investigate the possi­
bility of using the "fuzzy model reference learning controller" 
(FMRLC) [1)-[5] for automatically synthesizing and tuning a 
fuzzy controller for the flexible robot. 

B. Overview and Related Work 

While most of the work to date for control of flexible­
link robotic systems has used conventional control techniques, 
there has been recent interest in the literature in the use of 
intelligent control methodologies. In particular, the need for 
control theoretic approaches which can incorporate operator 
knowledge for the process being controlled is being recog­
nized by more and more control engineers who apply control 
technologies. Since the literature abounds with work on the 
modeling and control of flexible robots, both from a theoretical 
(simulation-based) and experimental point of view, we refer 

1063-6706/95$04.00 © 1995 IEEE 

https://1063-6706/95$04.00


200 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 3, NO. 2, MAY 1995 

the interested reader to [6, ch. 8) for an overview of the In [19)-[22] a fuzzy logic supervisory level is used for lower 

literature on conventional approaches. In the following, we level controller selection and tuning for the same laboratory 

test bed as is used in the current study. Motivated by thefocus primarily on recent work relevant to the focus of this 

paper, and on previous work for the flexible-link robot under success of those studies, the control scheme of this paper 

study. (which is an expanded version of the work reported in [23)) 

One of the most promising techniques for flexible robot builds on the idea of supervising/tuning lower level controllers 

control used to date is that of input command shaping, where in a hierarchy by investigating the possibility of using a higher 

the system inputs (e.g., motor voltages) are "shaped" in such level learning mechanism to synthesize and tune a rule-based 

a manner that minimal energy is injected into the flexible controller at the lower level. 

modes of the system. So promising is this technology that In Section II we provide a description of the two-link 

a session at the 1993 American Control Conference [7] was flexible robot that we will use in this study and in Section ill 

devoted to the subject. Indeed, very good results using input we explain how intuition and past experiments have provided 

shaping with an outer loop disturbance rejection controller for us with enough information to choose the rule-base and 

the two-link robot of this study were reported in [8). Other membership functions for a fuzzy controller for the two-link 

works employing experimental verifications of input shaping robot. We evaluate the performance of the fuzzy controller 

schemes are appearing, such as the session referred to above for several slews and show that its performance degrades 

[7], the ongoing study in [9] for controlling the endpoint if a payload is added at the endpoint. Overall, while the 

movement of a large two-link robot, and the innovations of performance of the fuzzy controller compares favorably to 

[10) for an adaptive implementation on a single-link apparatus. the results we have obtained for this flexible-link robot, the 

It is well known, however, that the primary difficulty of payload variation problem dictates the need for re-tuning 

the fuzzy controller during robot operation. Furthermore, wesuch command-shaping schemes lies in the fact that they are 

open-loop strategies that require relatively precise knowledge emphasize the importance of automatically synthesizing fuzzy 

of the system dynamics. Any attempt to improve robustness controllers for such complex systems. 

to uncertainties (such as placing the shaper in the loop, or In Section IV we provide a step-by-step explanation of how 

to construct a FMRLC [1)-[5] that can synthesize/tune theincreasing the filter order) result in delays in the system 

response, which may or may not be tolerable. fuzzy controller for the flexible robot. This involves establish­

It should be mentioned that recent work in the area of ing a structure for the fuzzy controller and choosing a "fuzzy 

two-time scale (singular perturbation) approaches for vibration inverse model." Simple modifications to the knowledge-base 

suppression in flexible mechanical structures show promise. modification procedure in [ 1 ]-[5) were necessary so that the 

The control objective in those investigations is different than heuristic knowledge that we have about how to best control 

that of the present study, since in the former, the primary the robot could be preserved in the rule-base. In particular, we 

focus is on disturbance rejection effects (small deflections), know that if the two links are at their desired locations, the 

after larger slew motions are complete; also, inherent in voltage inputs to the motors should be zero. This information 

these techniques is the need for accurate models of the is loaded into the rule-base initially and we do not allow the 

system dynamics. Some experimental work utilizing embedded knowledge-base modifier to change this basic fact when it 

piezoelectrics and piezoceramics has begun to appear. Other tries to synthesize or tune the direct fuzzy controller. Next, 

recent conventional approaches to the problem of flexible robot we show that for various slewing angles the FMRLC can 

control include [11) for the use of linear (state feedback) automatically synthesize a rule-base for a fuzzy controller that 

techniques where a fast state estimator is employed in small can achieve comparable performance to that obtained via the 

fuzzy controller of Section III that was constructed manually.angle movements, and [12) in which gross motion movements 

for a single flexible link are studied in the case of adaptation Moreover, we show that if the payload is changed, the FMRLC 

for payload tasks. As for previous work in developing conven­ can automatically tune the fuzzy controller so that it will 

tional controllers for flexible robotic test beds at Ohio State perform better than the one studied in Section III. 
Finally, we note that the FMRLC algorithm which was first(including the two-link apparatus of the current study), the 

control developed in [13) used a nonlinear inversion (feedback introduced in [1] and [5] grew from research performed on the 

linearization) control law for rigid dynamics, with separate linguistic self-organizing controller (SOC) presented in [24) 

loops for flexure effects; the study in [14) investigated and by Procyk and Mamdani and ideas in conventional "model 

compared time domain and frequency domain identification reference adaptive control" (MRAC) [25). The effectiveness 

techniques on a single-link robot; and in [15) and [16), de­ of the FMRLC has been demonstrated via simulations for the 

veloped time and frequency domain identification and control inverted pendulum problem, a rocket velocity control problem, 

schemes for payload adaptation, which were later employed a rigid two-link robot, antiskid brakes, fault tolerant aircraft 

on a two-link apparatus [17). control, and cargo ship steering [1)-[5]. The research results 

reported here contain a description of the first implementationAs noted above, the literature has recently seen an emer­

gence of results using intelligent control technologies. Fuzzy results for the FMRLC. The linguistic SOC has been used 

logic, neural networks, and hierarchical schemes have been in robotics applications [26) and [27), motor and temperature 

control [28), blood pressure control [29), and in satelliteinvestigated for flexible robotic mechanisms. For example, a 

recent paper [18) uses fuzzy logic for a fast-moving single­ control [30)-(32). In terms of comparing FMRLC and SOC, 

link apparatus, focusing on smooth rigid body motion control. the authors in [l] and [5] have shown that the FMRLC has 
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Fig. I. Two-link flexible robot setup. 

several advantages over SOC including improved performance 
feedback and lack of dependence on a mathematical model of 
the inverse of the plant. Other relevant literature that focuses 
on adaptation of a direct fuzzy controller includes the work 
in [33] where an adaptive fuzzy system is developed for a 
continuous casting plant, the approach in [34] where a fuzzy 
system adapts itself to driver characteristics for an automotive 
speed control device, and the approaches in [35]-[38]. 

II. LABORATORY TEST BED 

The two-link flexible robot shown in Fig. 1 consists of three 
principle parts: the robot with its sensors, the computer and 
the interface to the robot, and the camera with its computer 
and interface. The robot is made up of two very flexible links 
constrained to operate in the horizontal plane. The "shoulder 
link" is a counter-balanced aluminum strip 75 cm long, 12.7 
cm tall and 0.23 cm thick and is driven by a DC direct drive 
motor with a stall torque of 4.802 N-m. The "elbow link" 
mounted on the shoulder link endpoint is an aluminum strip 
50 cm long, 3.8 cm tall and 0.1 cm thick. The actuator for the 
elbow link is a 28 volt DC, geared motor ( 30 : 1) with a stall 
torque of 2.53 x 10-3 N-m. The sensors on the robot are two 
optical encoders for the motor shaft positions 0 1 and 0 2 , and 
two accelerometers mounted on the link endpoints to measure 
the accelerations a1 and a2 . The inputs to the robot are the 
two voltage signals v1 and v 2 at the motor terminals. 

A Reticon LC-310 line scan camera interfaced to an IBM 
PC XT is used to monitor the endpoint position of the 
robot for plotting; this data is not used for feedback. For 
comparative purposes, in this paper we use the camera data 
for robot movements which end in a fully extended position 
and which begin in some position to approximate equal 
movements in each joint. When responses are plotted, the 
final endpoint position is nominally indicated (on the plot) 
to reflect (approximately) the total movement, in degrees, of 
the shoulder joint. Because movements are constrained to the 
horizontal plane, there are no gravity effects on the motors, 
and therefore it is appropriate to express performance (set 
points) in terms of joint angles. We note that constraining the 
robot to operate in the horizontal plane is done precisely for 

Control Computer 

these reasons (to remove gravity effects), since the primary 
application for this work is large, lightweight robots in space. 

The control computer for the robot is a PC with an Intel 
80386SX operating at 25 mHz. The computer interface hard­
ware used by the control computer is a Keithley MetraByte 
DAS1600 and a Scientific Solutions Lab Tender card. The 
camera computer uses a Scientific Solutions Lab Tender card. 
The camera interface and the encoder interface are additional 
circuits designed and built in house [39] for signal condition­
ing. 

The primary objective of this research is to develop a 
controller that makes the robot move to its desired position 
as quickly as possible, with little or no endpoint oscillation. 
To appreciate the improvement in the plant behavior due to the 
application of the various control strategies we will first look 
at how the robot operates under the "no control" situation; 
that is, when no external digital control algorithm is applied 
for vibration compensation. To implement the no control case 
we simply apply v1 = v2 = 0.3615 volts at t = 0 seconds 
and return v1 and v2 to zero voltages as soon as the links 
reach their setpoints. Note that for this experiment we monitor 
the movement of the links but do not use this information as 
feedback for control. 

The result of the "no control" experiment is shown in Fig. 
2 where the endpoint position is shown. The response shows 
a significant amount of endpoint oscillation and steady state 
error. Here, as in all plots to follow, endpoint position refers 
to the position of the elbow endpoint. In the ideal case, the 
shaft should stop moving the instant the voltage signal to the 
motor amplifier is cut off. But the arm had been moving at 
a constant velocity before the signal was cut off, and thus 
has a momentum which will drag the shaft past the point it 
was to stop. This movement depends on the speed at which 
the arm was moving, which in turn depends on the voltage 
signal applied. Clearly there is a significant need for vibration 
damping in endpoint positioning. 

III. DIRECT Fuzzy CONTROL 

We begin our experiments with an investigation into the 
performance of the direct fuzzy controller shown in Fig. 3. 
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Fig. 2. "No control" response. 
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Fig. 3. Fuzzy control system design for direct fuzzy controller design. 

Let 01d and 02d be the desired positions of the shoulder and 
the elbow links, respectively, (i.e., the commanded slew). We 
use one fuzzy controller for each link with position error 
ei(t) = 0id(t) - 0i(t) and acceleration inputs ai(t), i = 1, 2 
to each.1 In addition, since the acceleration of the shoulder 
link can significantly affect the behavior of the elbow link 
(but not vice versa) we use the acceleration a 1 ( t) of the 
shoulder link endpoint as an input to the elbow-link controller. 
This allows the elbow-link controller to compensate for the 
coupling effects from the shoulder link and hence reduce 
endpoint vibrations in the elbow link. 

The input and the output universes of discourse of the fuzzy 
controllers are normalized on the range [-1, 1]. The gains 
9el,9e2, 9a12,9al, and 9a2 are used to map the actual inputs 
of the fuzzy system to the normalized universe of discourse 
and are called "normalizing gains." Similarly 9vl and 9v2 are 
the output gains to scale the output of the controllers. We use 
singleton fuzzification, center of gravity defuzzification, and 
the min operator to implement the premise and implication 
throughout this paper [40]. 

1 We experimented with using the change in position error of each link 
as an input to each of the link controllers, but found that it significantly 
increased the complexity of the controllers with very little if any improvement 
in overall performance; hence, we did not pursue the use of this controller 
input. Typically, we use filtered signals from the accelerometers, prior to 
processing, to enhance their effectiveness. 

Fig. 4. Membership functions for the shoulder controller. 

A. Rule-Base 

The shoulder controller uses triangular membership func­
tions as shown in Fig. 4. Notice that the membership functions 
for the input fuzzy sets are uniform, but the membership 
functions for the output fuzzy sets are narrower near zero. 
Experience has shown that this serves to decrease the "gain" 
of the controller near the setpoint so we can obtain good 
steady state control and yet avoid excessive overshoot. For the 
shoulder controller the universe of discourse for the position 
error is chosen to be [-250, +250] degrees.2 The universe of 
discourse for the endpoint acceleration of the shoulder link is 
[-4, +4] g. This width of 8 g was picked after experimentation 
with different slews at different speeds, upon observing the 
output of the acceleration sensor. The output universe of 
discourse of -0.8, +0.8 volts was chosen so as to keep the 
shaft speed within reasonable limits. 

The rule-base array that we use for the shoulder controller 
is shown in Fig. 5. The rule-base is an 11 x 11 array, as we 
have 11 fuzzy sets on the input universes of discourse. The top 
most row shows the indices for the eleven fuzzy sets for the 
acceleration input a 1 and the column at extreme left shows the 
indices for the eleven fuzzy sets for the position error input e1. 

The body of the array shows the indices m for vr in fuzzy 
implications of the form 

If Ef and At Then V1m 

where E{, A{, and vi; (i = 1, 2; -5 $ j $ +5) denote the jth 
fuzzy sets associated with ei, ai, and vi, respectively. Notice 
the uniformity of the indices in Fig. 5 and that for the row 
j = 0 there are three zeros in the center. These zeros have 
been placed so as to reduce the sensitivity of the controller to 
the accelerometer signal which is somewhat noisy. 

The membership functions for the elbow controller are 
shown in Fig. 6. The universe of discourse for the position 

2 Note that in this paper we will refer to [X, Y] as being the universe of 
discourse while in actuality the universe of discourse is made up of all reals 
(e.g., in Fig. 4 we will refer to the universe of discourse of e1 (t) as [-250, 
+250]). In addition, will refer to Y - X as being the "width" of the universe of 
discourse (so that the width of the universe of discourse [-250, +250] is 500). 
Moreover, note that by specifying the width for the universes of discourse, we 
are also specifying the corresponding scale factor. For example, if the input 
universe of discourse for e1 (t) is [-250, +250) then ge1 = 2~0 , and if the 
output universe of discourse for v1 (t) is [-0.8, +0.8) the gv1 = 0.8. 
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Fig. 5. Rule-base for the shoulder link. 

error is [-250, +250] degrees, and for the elbow link endpoint 
acceleration is [-8, +8] g. The universe of discourse for the 
shoulder link acceleration is [+2, -2] g. This small range 
was chosen to make the elbow-link controller sensitive to 
small changes in the shoulder link endpoint oscillation. The 
universe of discourse for the output voltage is [-4, +4] volts. 
Fig. 7(a)-(g) depicts a three dimensional rule-base. Fig. 7(d) 
represents the case when the acceleration input from the 
shoulder link is zero and is the center of the rule-base (the 
body of the table denotes the indices m for vr). Fig. 7(a)-(c) 
are for the case when the shoulder endpoint acceleration is 
negative and Fig. 7(e)-(g) are for the case where the shoulder 
endpoint acceleration is positive. The central portion of the 
rule base makes use of the entire output universe of discourse. 
This is the portion of the rule base where the acceleration input 
from the shoulder link endpoint is zero or small. As we move 
away from the center of the rule base (to the region where 
the shoulder link endpoint acceleration is large), only a small 
portion of the output universe of discourse is used to keep the 
output of the controller small. Thus the speed of the elbow 
link is dependent on the acceleration input from the shoulder 
link endpoint. The speed of the elbow link is decreased if the 
acceleration is large and is increased as the acceleration input 
decreases. Also note in Fig. 7(c)-(e) that there are three zeros 
in the middle rows to reduce the sensitivity of the controller to 
the noisy accelerometer signal. This noise is not a significant 
problem when the endpoint is oscillating and so the rule-base 
does not have the zeros in the outer region. Taking the rule­
base as a three dimensional array we get a central cubical core 
made up of zeros. Also notice that some parts of the rule­
base, especially toward the extremes of the third dimension, 
are not fully uniform. This has been done to slow down the 
elbow link when the acceleration input from the shoulder link 
is very large. 

The direct fuzzy controller seeks to vary the speed of the 
elbow link depending on the amplitude of oscillations in the 
shoulder link. If the shoulder link is oscillating too much, 
the speed of the elbow link is reduced so as to allow the 
oscillations in the shoulder link to be damped, and if there 
are no oscillations in the shoulder link then the second link 
speed is increased. We do this to eliminate the oscillation 
of the elbow link close to the set point where the control 
voltage from the elbow controller is small. The number of 

-250 -1•.11 -13.33 0 

Fig. 6. Membership functions for the elbow controller. 

rules used for the direct fuzzy controller is 121 for shoulder 
controller, plus 343 for elbow-link controller, for a total of 464 
rules. Experiments showed that use of fewer rules resulted in 
degraded performance. We used a sampling period T = 15 ms. 

Obviously, much effort and experience has gone into the 
construction of the rule base for this fuzzy controller; hence, 
the ability to automatically synthesize this rule base would be 
a definite improvement. Results below will show that good 
performance is achieved for no payloads, and presumably 
equally good performance is possible if the controller could 
be tuned for varying payloads. 

B. Results 

The experimental results obtained using direct fuzzy control 
are shown in Fig. 8. The slew requested here is shown by the 
inset (90 degrees for each link). Note that there is no overshoot 
in the response, with negligible residual vibrations. The dip in 
the curve in the initial part of the graph is due to the first link 
"braking" as it reaches the set point, primarily because of the 
deadzone nonlinearity in the gears. As the shoulder link brakes, 
the elbow link is accelerated due to its inertia. The elbow link, 
which was at one end of its deadzone while the shoulder was 
moving, shoots to the other end of the deadzone causing the 
local maxima seen in Fig. 8(a) at around 0.9 seconds. The link 
recoils due to its flexibility and starts moving to the lower 
end of the deadzone. By this time the elbow motor speed 
increases and prevents further oscillation of the elbow link in 
the deadzone. 

Fig. 9 shows the response of the robot to a counter-relative 
slew (i.e., links moving in opposite directions). The requested 
slews were 90 degrees for each link as shown in the inset. The 
response shows similar performance to that obtained for the 
previous slew even though it is known that performance for 
counter-relative slews can degrade. The initial hump seen in 
the plot at 0.5 seconds is due to the nature of the commanded 
slew. As seen from the inset, the shoulder link is commanded 
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Fig. 7. Rule-base array for the elbow link. 
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the links have completed their slews, the tip of the elbow link 

endpoint is pointed directly at the camera. The shoulder link Fig. 10. Endpoint position for small slews using direct fuzzy controller. 

moves so as to bring the endpoint into the visual range of the 

camera, but at the same time the elbow link is moving in the Fig. 11 shows the endpoint response of the robot with a 30 
opposite direction. If the speed of the elbow link is greater gram payload (assumed unknown) attached to its endpoint. The 

than the speed of the shoulder link at that point it appears as commanded slew is 90 degrees on each link as shown in the 

a hump in the data collected by the camera. Fig. IO shows inset. Notice that the dip in the curve (between 1.0 to 1.5 sec) 

the response of the robot to a small slew. The comman~ed is reduced as compared to the case without payload. This is due 

slew is 20 degrees for both the links and is shown in the inset. to the increased inertia of the elbow link, which reduces the 

We see that as expected we get even higher performance for frequency of oscillation of the link and the elbow link motor 
speeds up at this point preventing further oscillations. Note,smaller angles. 
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Fig. 11. Endpoint position for fuzzy controller with payload. 

however, that the amplitude and duration of the vibrations is 
significantly degraded compared to the case where there is 
no payload (see Fig. 2); we see that there is a need to tune 
the fuzzy controller so that it can compensate for the effects 
of the unknown payload variation. This is investigated in the 
next section. 

IV. Fuzzy LEARNING CONTROL 

While the fuzzy control approach in Section III offers 
adequate performance for the robot it still has several disad­
vantages including: i) the problems one encounters in trying 
to manually synthesize the rule-base, and ii) the possible 
performance degradations that can occur due to unpredictable 
and unknown plant parameter variations or disturbances (e.g., 
due to payload variations). In this section we will study the 
use of the FMRLC [l]-[5] for automatically synthesizing and 
tuning the rule-base of a direct fuzzy controller to alleviate 
these two problems. 

A. Fuzzy Model Reference Leaming Control 

The FMRLC shown in Fig. 12 utilizes a learning mechanism 
that observes data from a fuzzy control system, characterizes 
its current performance, and automatically adjusts the knowl­
edge base of the fuzzy controller so that the closed-loop system 
performs according to the specifications given by the reference 
model. Next, we will describe each component of the FMRLC 
for the two-link robot. 

1) The Fuzzy Controller: We used the same basic structure 
for the fuzzy controller as was used in Section III with the 
same input fuzzy sets as shown in Figs. 4 and 6, but the 
difference here is that the output fuzzy sets for both controllers 
are all initially centered at zero resulting in rule-bases filled 
with zeros. This implies that the fuzzy controller by itself has 
no knowledge about how to control the plant. As the algorithm 
executes, the output fuzzy sets are rearranged by the learning 
mechanism, filling up the rule-base. For instance, once a slew 
is commanded the learning mechanism described below will 
move the centers of the activated rules away from zero and 
begin to synthesize the fuzzy controller. 

The universe of discourse for the position error input 
e1 to the shoulder link controller was chosen to be [-100, 

+100] degrees, and the universe of discourse for the endpoint 
acceleration a 1 is [-10, +10] g. For the elbow-link controller 
the universe of discourse for the position error e2 is [-80, +80] 
degrees and the universe of discourse for the acceleration input 
a2 is [-10, +10) g. The universe of discourse for the shoulder 
link acceleration input a 12 to the elbow-link controller is [-8, 
+8] g. We choose the output universe of discourse for v1 and 
V2 by letting 9vl = 0.125 and 9v2 = 1.0. We determined all 
these values from our experiences in experimenting with the 
fuzzy controller in Section III and in our experiments with the 
FMRLC. 

2) The Reference Model: The reference model is a model 
of how we would like the closed-loop system to behave. The 
reference model may be any type of dynamical system either 
linear or nonlinear. It is used to characterize closed-loop spec­
ifications such as rise-time, overshoot, and settling time. The 
performance of the overall system is computed with respect 
to the reference model by generating error signals between 
the reference model output and the plant outputs (i.e., Yel 

and Ye2; see Fig. 12). To achieve the desired performance the 
learning mechanism must force Yel ( kT) ~ 0 and Ye2 ( kT) ~ 0 
for all k ~ 0. It is important to make a proper choice 
for a reference model so that the desired response does not 
dictate unreasonable performance requirements for the plant 
to be controlled. Through experimentation we determined that 
( 3 / ( s + 3)) is a good choice for the reference models for both 
the shoulder and the elbow links. 

3) The Leaming Mechanism: The learning mechanism 
performs the function of modifying the knowledge base of the 
fuzzy controller so that the closed-loop system behaves like the 
reference model. The learning mechanism essentially consists 
of two parts: a "fuzzy inverse model" and a "knowledge-base 
modifier" as we discuss next. 

a) The Fuzzy Inverse Model: The fuzzy inverse model 
makes an assessment of the deviation of the current closed­
loop system behavior from the behavior specified by the 
reference model (the desired closed-loop system behavior) and 
decides how to change the plant command inputs (controller 
outputs) so that this deviation goes to zero.3 Successful fuzzy 
inverse model designs have been completed for several ap­
plications including a cart-pendulum system [1], cargo ship 
steering [2], and antiskid brakes [3]. In the cart-pendulum 
application the fuzzy inverse model indicates how to change 
the force being applied to the cart so that the pendulum will 
balance whether the pendulum is in the upright or downward 
position. In the cargo ship steering application, the fuzzy 
inverse model simply indicates how to change the way the 
rudder input is being generated so that the ship heading tracks 
the desired heading. In the antiskid brakes application the 
fuzzy inverse model characterizes the knowledge we have 
about how to change the way braking torque is being applied 
so that the slip can be regulated to an optimum point. Hence, 
knowledge similar to what is used for standard direct fuzzy 
control design is used to construct the fuzzy inverse model. 

3By providing an association between plant output deviations and changes 
in plant inputs it models an "inverse behavior" of a dynamical system; hence, 
as it is explained in more detail in [l]-(3], we use the term "fuzzy inverse 
model." 
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Fig. 12. Fuzzy model reference learning control. 

From this perspective, the fuzzy inverse model acts as a Clearly on-line design can sometimes have advantages over 
controller in the adaptation loop to try to reduce the deviation off-line design if information about the on-line performance 
in the closed-loop system behavior from the desired behav­ is used appropriately. 
ior by changing the underlying fuzzy controller. Essentially, In summary, it is the goal of the design of the fuzzy inverse 
the fuzzy inverse model constructs (via the knowledge-base model to capture the best way to incorporate i) the a priori 
modifier described below) the fuzzy controller using on-line knowledge that we have about how to control the plant, and ii) 
data from the closed-loop system so that the behavior specified the on-line performance information that is gathered while the 
in the reference model is achieved. Having knowledge about closed-loop system operates. It is important to note that as with 
how to specify the fuzzy inverse model does not imply that conventional fuzzy control, ultimately the design of the fuzzy 
we know how to specify a fixed (nonadaptive) direct fuzzy inverse model relies on heuristic expertise that we have about 
controller that can perform at similar levels since i) the fuzzy how to best control the plant. Experience with the FMRLC 
inverse model initially synthesizes the direct fuzzy controller [1]-[3] has shown that by using such heuristic expertise (which 
by also using information gathered during on-line operation, at times is not completely accurate), the fuzzy inverse model 
and ii) subsequent tuning of the fuzzy controller can occur can achieve very efficient and high performance adaptation for 
by using on-line information about plant behavior changes. the FMRLC approach. Next, we explain how we designed the 
Moreover, whether in an initial synthesis stage or turring fuzzy inverse model for the two-link flexible robot. 
phase (which blend together for real applications), the fuzzy For our robot there are two fuzzy inverse models, each with 
inverse model acts to construct the fuzzy controller so that the three inputs Yei(t), Ycj(t), and aj(t) (j = 1 corresponding to 
specifications modeled with the reference model are achieved the shoulder link and j = 2 to the elbow link as shown in 
(often, off-line design of direct fuzzy controllers requires Fig. 12). Several issues dictated the choice of these inputs: i) 
many iterations to achieve a specified behavior-the FMRLC we found it easy to specify reference models for the shoulder 
folds such iterations into its on-line operation). Hence, the and elbow link position trajectories (as it was discussed above) 

FMRLC uses similar a priori knowledge to that used in the and hence the position error signal is readily available, ii) we 
off-line design of conventional fixed direct fuzzy controllers, found via experimentation that the rates of change of position 
coupled with performance information that is gathered on-line, errors, Yci(t),j = 1, 2, and acceleration signals aj(t),j = 1, 2 
to decide how to synthesize/adjust the direct fuzzy controller. were very useful in deciding how to adjust the fuzzy controller, 
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and (iii) we sought to minimize the number of inputs to the 
fuzzy inverse models to ensure that we could implement the 
FMRLC with a short enough sampling interval (in our case, 
15 ms). The direct use of the acceleration signals ai(t),j = 1, 
2, for the inverse models actually corresponds to choosing 
reference models for the acceleration signals that say "no 
matter what slew is commanded, the desired accelerations of 
the links should be zero." While it is clear that the links cannot 
move without accelerating, with this choice the FMRLC with 
attempt to accelerate the links as little as possible to achieve 
the command slews, thereby minimizing the amount of energy 
injected into the modes of vibration (investigations into the use 
of other reference models for the acceleration signals is an 
important future direction). Next, we discuss rule-base design 
for the fuzzy inverse models. 

For the rule-bases of the fuzzy inverse models we use rules 
similar to those described in Fig. 7 for both the shoulder and 
elbow links except that the cubical block of zeros is eliminated 
by making the pattern of consequents uniform. These rules 
have premises that quantify the position error, the rate of 
change of the position error, and the amount of acceleration in 
the link. The consequents of the rules represent the amount of 
change that should be made to the direct fuzzy controller by the 
knowledge-base modifier. For example, fuzzy inverse model 
rules capture knowledge such as: i) if the position error is large 
and the acceleration is moderate, but the link is moving in the 
correct direction to reduce this error, then a smaller change 
( or no change) is made to the direct fuzzy controller than if 
the link is moving to increase the position error; and ii) if the 
position error is small but there is a large change in position 
error and a large acceleration, then the fuzzy controller must 
be adjusted to avoid overshoot. Similar interpretations can be 
made for the remaining portions of the rule-bases used for 
both the shoulder and elbow link fuzzy inverse models. 

The membership functions for both the shoulder and el­
bow link fuzzy inverse models are similar to those used for 
the elbow-link controller shown in Fig. 6 except that the 
membership functions on the output universe of discourse 
are uniformly distributed and there are different widths for 
the universes of discourse as we explain next (these widths 
define the gains 9y,J, gYcj, 9iaj, and 9pj for j = 1, 2). We 
choose the universe of discourse for Yei to be [-80, +80] 
degrees for the shoulder link and [-50, +50] for the elbow 
link. We have chosen a larger universe of discourse for 
the shoulder link inverse model than the elbow link inverse 
model because we need to keep the change of speed of 
the shoulder link gradual so as not to induce oscillations in 
the elbow link (the elbow link is mounted on the shoulder 
link and is affected by the oscillations in the shoulder link). 
The universe of discourse for Yc1 is chosen to be [-400, 
+400] degrees/sec for the shoulder link and [-150, +150] 
degrees/sec for Yc2 of the elbow link. These universes of 
discourse were picked after experimental determination of 
the angular velocities of the links. The output universe of 
discourse for the fuzzy inverse model outputs (p1 and p2 ) 

is chosen to be relatively small to keep the size of the 
changes to the fuzzy controller small which helps ensure 
smooth movement of the robot links. In particular, we choose 

the output universe of discourse to be [-0.125, +0.125] for 
the shoulder link inverse model, and [-0.05, +0.05] for the 
elbow link inverse model. Choosing the output universe of 
discourse for the inverse models to be [-1, +1] causes the 
learning mechanism to continually make the changes in the 
rule-base of the controller so that the actual output is exactly 
equal to the reference model output, making the actual plant 
follow the reference model closely. This will cause significant 
amounts of speed variations in the motors as they try to track 
the reference models exactly, resulting in chattering along 
a reference model path. The choice of a smaller width for 
the universe of discourse keeps the actual output below the 
output of the reference model until it reaches the setpoint. 
This increases the settling time slightly but the response is 
much less oscillatory. This completes the definition of two 
fuzzy inverse models in Fig. 12. 

b) The Knowledge-Base Modifier: The knowledge-base 
modifier performs the function of modifying the fuzzy con­
troller so that better performance is achieved. Given the 
information (from the inverse models) about the necessary 
changes in the input needed to make Ye1 ~ 0 and Ye2 ~ 0, 
the knowledge-base modifier changes the knowledge-base of 
the fuzzy controller so that the previously applied control 
action will be modified by the amount specified by the inverse 
model outputs Pi, i = 1, 2. To modify the knowledge-base, 
the knowledge-base modifier shifts the centers of the rules 
(initialized at zero) that were "on" during the previous control 
action by the amount p1(t) for the shoulder controller and 
p2 ( t) for the elbow controller. Suppose we have some nonzero 
error Yei(t), i = 1, 2 between the reference model and the 
actual plant output. This will normally produce some finite 
nonzero fuzzy inverse model output Pi(t), i = 1, 2. The 
knowledge-base modification procedure consists of two steps: 
i) determine the rules that are "on," i.e., the rules that produced 
the previous control action that produced the error Yei (t), i = 
1, 2 and, ii) modify the entries in the knowledge-base array for 
those rules by the amount Pi (t), i = 1, 2. Via such knowledge­
base modification the learning mechanism is able to force the 
fuzzy controller to produce the desired output given the similar 
controller inputs. For more details, including a mathematical 
description of the knowledge-base modifier, see [l]-[3]. 

Note that via experimentation we found that certain en­
hancements to the FMRLC knowledge-base modification pro­
cedure were needed. In particular, based on the physics of 
the flexible robot, we know that if the errors e 1 and e2 are 
near zero, the fuzzy controller should choose v1 = v2 = 
0.0. Hence, using this knowledge about how to control the 
plant, we use the same FMRLC knowledge-base modification 
procedure as in [1]-[3] except that we never modify the rules 
at the center of the rule-base so that the fuzzy controller 
will always output zero when there is zero error. Essentially, 
we make this adjustment to the knowledge-base modification 
procedure to overcome a high gain effect near zero that we 
observed in the previous experiments. 

Finally, we note that the total number of rules used by 
the FMRLC is 121 for the shoulder controller, plus 343 for 
the elbow controller, plus 343 for the shoulder fuzzy inverse 
model, plus 343 for the elbow fuzzy inverse model, for a total 
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Fig. 13. (a) Endpoint position for FMRLC design. (b) Shoulder link input 
voltage v1, (c) Elbow link input voltage v2 . 

of 1150 rules. Even with this number of rules we were able 
to keep the same sampling time of T = 15 ms that was used 
for the direct fuzzy controller in Section III. 

B. Results 

Experimental results obtained from the use of FMRLC are 
shown in Fig. 13 for a slew of 90 degrees for each link. 
The rise time for the response is about 1.0 second and the 
settling time is approximately 1.8 seconds. Comparing this 
response to the direct fuzzy control response (Fig. 8) we see 
an improvement in the endpoint oscillation and the settling 
time. Note that the settling time for the robot is slightly larger 
than that of the reference model (1.5 seconds). This is because 
of the way the learning mechanism modified the rule-base of 
the controller to keep the response below that of the reference 
model. Fig. 14 shows the response of the controller for a 
counter-relative slew. The commanded slew is 90 degrees for 
each link, and has a geometry as shown in the inset. The local 
maxima appearing in the plot at 0.7 seconds is due to the 
geometry of the slew as was explained in Section ID. The 
results are comparable to the direct fuzzy control (see Fig. 9). 
Fig. 15 shows the response for small angle slew of 20 degrees 
for each link. The response is comparable but has slightly more 
oscillations compared to the responses obtained from the direct 
fuzzy control algorithms in Fig. 10. This is expected due to 
the fact that the controller starts off with no knowledge in 
its knowledge base and learns as it executes the algorithm. 
In the case of small angles, it does not get enough samples 
to learn the dynamics of the plant completely, resulting in 
slightly more oscillations. 

Fig. 16 shows the robot response for the loaded endpoint 
case. The elbow link endpoint is loaded with a 30 gram 
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Fig. 14. Endpoint position for counter-relative slew for FMRLC. 
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Fig. 15. Endpoint position for small angle slew for FMRLC. 

mass of aluminum and is commanded to slew 90 degrees 
at each link. The response with the payload is superior to 
the direct fuzzy controller (see Fig. 11). To achieve the 
improved performance shown in Fig. 16 the FMRLC exploits 
i) the information that we have about how to control the 
flexible robot that is represented in the fuzzy inverse model 
(see discussion in Subsection A above) and ii) data gathered 
during the slewing operation as we discuss next. During the 
slew, the FMRLC observes how well the fuzzy controller is 
performing (using data from the reference model and robot) 
and seeks to adjust it so that the performance specified in 
the reference model is achieved and vibrations are reduced. 
For instance, in the initial part of the slew the position errors 
are large, the change in errors are zero, the accelerations 
are zero, and the fuzzy controller has all its consequent 
membership functions centered at zero. For this case, the 
fuzzy inverse model will indicate that the fuzzy controller 
should generate voltage inputs to the robot links that will 
get them moving in the right direction. As the position errors 
begin to change and the change in errors and accelerations 
vary from zero, the fuzzy inverse model will cause the 
knowledge-base modifier to fill in appropriate changes to the 
fuzzy controller consequent membership functions until the 
position trajectories match the ones specified by the reference 
models (note that the fuzzy inverse model was designed so 
that it will continually adjust the fuzzy controller until the 



209 MOUDGAL et al.: FUZZY LEARNING CONTROL 

90 

80 

60 

50 

40 

Time(seconds) 

Fig. 16. Endpoint position for loaded elbow link for FMRLC. 

reference model behavior is achieved). Near the end of the 
slew (i.e., when the links are near their commanded positions) 
the FMRLC is particularly good at vibration damping since in 
this case the plant behavior will repeatedly return the system 
to the portion of the fuzzy controller rule-base that was learned 
the last time a similar oscillation occurred (i.e., the learning 
capabilities of the FMRLC enable it to develop, remember, 
and re-apply a learned response to plant behaviors). Different 
payloads change the modal frequencies in the link/payload 
combination (e.g., heavier loads tend to reduce the frequencies 
of the modes of oscillation) and the shapes of the error and 
acceleration signals e1(t), e2(t), and a1(t) (e.g., heavier loads 
tend to slow the plant responses). Hence, changing the payload 
simply results in the FMRLC developing, remembering, and 
applying different responses depending on the type of the 
payload variation that occurred. Essentially, the FMRLC uses 
data from the closed-loop system that is generated during on­
line operation of the robot to specially tailor the manner in 
which it designs/tunes the fuzzy controller. This enables it to 
achieve better performance than the direct fuzzy controller in 
Section III where no on-line information is used. 

V. CONCLUSIONS 

We have explained how we can use intuition and expe­
rience from previous experiments to manually construct a 
fuzzy controller for a two-link manipulator. Moreover, we 
have shown how to develop and implement a FMRLC that 
can: i) automatically synthesize a fuzzy controller to achieve 
comparable performance to that obtained with a manually 
constructed fuzzy controller, and ii) automatically tune a fuzzy 
controller so that it can maintain high performance operation 
even when there are variations in the payload. 

A comprehensive study for this problem, which is beyond 
the scope of this paper, would attempt to compare conven­
tional adaptive techniques, as well as other nonconventional 
techniques (such as those outlined in the introduction). We 
note, however, that several studies using controller auto­
tuning and conventional identification for flexible-link robot 
systems (e.g., [IO], [14]-[17]) have met with varying degrees 
of success. While the FMRLC approach presented here shows 
considerable promise as compared to these approaches, sev­
eral issues remain for further study including: i) a detailed 

comparative analysis between conventional and fuzzy control 
approaches for the two-link flexible robot, ii) a mathematical 
analysis of the fuzzy controller and FMRLC to prove that the 
system possesses certain stability and convergence properties, 
iii) a careful theoretical and experimental investigation into 
persistency of excitation issues and how they can influence 
the performance of the FMRLC, iv) an investigation into 
alternative choices for the fuzzy controller used to initialize 
the FMRLC, v) an investigation into the possibility of using 
reference models for the acceleration signals, and vi) investiga­
tions where gravity effects (motion in the vertical plane) come 
into play, in which case steady-state positioning errors would 
dictate the need for clever estimation schemes to account for 
effects of gravity loading (i.e., "drooping" effects) on the links. 
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