
423 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 2, NO. 4, DECEMBER 1994

Distributed Fuzzy Control of
Flexible Manufacturing Systems

Anthony Angsana and Kevin M. Passino, Member, IEEE

Abstract-A flexible manufacturing system (FMS) consists of
a set of machines that are connected via tracks over which
parts may be transported from one machine to another for
processing. As parts arrive at a machine via the tracks, they
are put in a buffer (queue) where they are held before they
are processed. There is a local controller (scheduling policy) at
each machine which uses the machine's buffer levels to decide
which part type to process next; hence the overall controller for
the FMS is physically distributed across the entire FMS with
local schedulers at each machine. In this paper we show bow
to design a fuzzy controller for a single machine and show via
simulation that its performance is comparable to conventional
schedulers. In addition, we introduce an adaptive fuzzy controller
which can automatically synthesize itself (or tune itself if there are
machine parameter variations) to achieve good throughput rates
for the single machine as compared with conventional schedulers.
Next we show via simulations that by using such adaptive fuzzy
controllers in a distributed fashion, we obtain a distributed fuzzy
controller (DFC) which can automatically synthesize itself and
lower the maximum buffer level more effectively than conven
tional schedulers. Finally, we illustrate the ability of the DFC and
conventional schedulers to automatically tune themselves in case
there are unpredictable machine parameter changes in an FMS.
These final results show that while sometimes the DFC performs
in a superior fashion, better scheduling policies are needed to
guarantee high performance FMS operation in case there are
unpredictable machine parameter changes.

I. INTRODUCTION

THE flexible manufacturing system (FMS) that we con
sider is a system composed of several machines such

as the one shown in Fig. 1 and is the same as the ones
studied in [1], [2]. The system processes several different
part-types (indicated by Pi, i=l,2,3 in Fig. 1). Each part-type
enters the system at a prespecified rate and is routed in the
system through a sequence of machines (indicated by Mi, i
1, 2 · · ·, 6 in Fig. 1) over the transportation tracks (the arrows
in Fig. 1). A part-type may enter the same machine more
than once for processing (i.e., the FMS is "nonacyclic"). The
length of processing time for each part-type at each machine
is also prespecified. The same part-type may have different
processing times for the same machine at different visits, i.e.,
a machine may process a part-type longer at its first visit than
at its second. Each part that arrives at a machine is stored in
a buffer until the machine is ready to process the part. There

Manuscript received July I, 1993; revised April 18, 1994. Recommended
by Associate Editor, X.-R. Chen. This work was supported in part by an
Engineering Foundation Research Initiation Grant and by National Science
Foundation Grant IRI-9210332.

The authors are with the Department of Electrical Engineering, Ohio State
University, Columbus, OH 43210 USA

IEEE Log Number 9406339.

Pl

Fig. 1. Typical nonacyclic flexible manufacturing system.

are prespecified "set-up times" when the machine switches
from processing one part-type to another. Each scheduler on
each machine tries to minimize the size of the "backlog" of
parts by appropriately scheduling the sequence of parts to be
processed. The goal is to specify local scheduling policies that
maximize the throughput of each part-type and hence minimize
the backlog and the overall delay incurred in processing parts
through the FMS.

While there has been a significant amount of work per
formed on the development and analysis of conventional
schedulers for FMS [1]-[5], there have also been investigations
into the use of artificial intelligence (Al) based techniques. For
instance, the authors in [6] examine the use of negotiation
as a cooperative problem-solving mechanism for matching
the changing needs of FMS components to available systems
resources. In [7], the authors develop an intelligent flexible
manufacturing system scheduling framework which uses a
hybrid architecture that integrates artificial neural networks
and knowledge-based systems to generate real-time solutions
for real-time scheduling of the FMS. In [8], the authors
introduce "requirement-driven scheduling," an architecture
for real-time distributed scheduling which attempts to satisfy
several objectives on a real-time basis by integrating AI and
operation research techniques to perform scheduling tasks,

1063-6536/94$04.00 © 1994 IEEE

https://1063-6536/94$04.00

424 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 2, NO. 4, DECEMBER 1994

including capacity planning, finite capacity scheduling, and
sequencing for each machine. A detailed description of general
flexible manufacturing systems and the use of knowledge
based systems to optimize the various manufacturing design
and management problems is given in [9]. There exist rela
tionships between the work in this paper and the research
in "distributed intelligent systems" [10]-[17] since we can
view the machines with fuzzy schedulers (fixed or adaptive)
as "intelligent subsystems" and the tracks on which the parts
flow as "communication links" (where an inherent message is
represented by how many parts travel over the track where the
amount dictates how much servicing time must be dedicated to
a part). Each of the intelligent subsystems seeks to efficiently
schedule part processing (a local goal) so that the overall goal
of achieving high throughput rates for the whole FMS are
achieved. More details on the relationships between the results
reported in this paper and the research in distributed intelligent
systems are provided in [18], [19]. While the approach in
this paper is, perhaps, more similar in philosophy to some
of the Al-based approaches, we were primarily motivated by
the work in [1], (2] and our overall goal was to determine if
fuzzy control (one type of "intelligent control") had anything
to offer to the scheduling problem for FMS.

We begin by showing how to design a fuzzy controller
for a single machine. We use simulations to illustrate that
its performance is comparable to conventional scheduling
policies such as the clear a fraction, clear largest buffer,
and the clearing policy of Perkins and Kumar in Section
IV of [1]. Next, we introduce an adaptive fuzzy controller
for the single machine and show via simulation that it can
automatically synthesize a scheduling policy that is as good
as conventional schedulers. Then we show via simulation
that if there are machine parameter changes, the adaptive
fuzzy controller can tune itself so that it performs better
than conventional fixed scheduling policies. Next, we utilize
the adaptive fuzzy controllers as local scheduling policies
on each machine in an FMS and augment each of these
with a universally stabilizing supervisory mechanism from
[2] to ensure stability. Our simulation results indicate that the
resulting distributed fuzzy controller (DFC) can automatically
synthesize itself to provide lower maximum buffer levels than
conventional scheduling policies (sometimes at the expense of
slightly increasing the average buffer levels). Finally we briefly
study the performance of the DFC and conventional scheduling
policies in reacting to machine parameter changes and show
that: i) while the DFC appears promising there is no clear
advantage to using either the DFC or conventional schedulers,
and ii) there is a significant need for better scheduling policies
for FMS which are subject to machine parameter variations.

Note that we consider our evaluation of the performance
of the various intelligent control techniques to be somewhat
preliminary as we only provide simulation results; no math
ematical proof is given that provides general guarantees that
there will be improved performance levels over conventional
schedulers. We do, however, emphasize that the results in
this paper are novel in that they: i) show via simulation how
several intelligent controllers (the fuzzy controller, an adaptive
fuzzy controller, and the DFC) can improve performance of

d1 d2 d3 dp

} i i t
II I

bpb1 b2 b3

I
I I I I

t't 1 t't2 t't 3 t'tP

Fig. 2. Single machine with P part types.

FMS as compared to conventional schedulers and ii) provide
a new approach to (distributed) adaptive fuzzy control which
provides for automatic intelligent controller synthesis and
tuning for performance enhancement in a single machine and
a general FMS.

In Section II we overview conventional scheduling policies,
introduce a fuzzy controller (scheduler) for a single machine,
and compare the fuzzy controller's performance to that of
conventional policies. In Section III we introduce an adaptive
fuzzy controller for a single machine and study its ability
to i) automatically synthesize a fuzzy controller and ii) tune
the fuzzy controller in case there are machine parameter
variations. In Section IV we perform a study analogous to
that in Section III but for FMS topologies rather than a single
machine. Section V contains some concluding remarks and
future directions for research.

II. DESIGN OF FUZZY CONTROLLERS FOR A SINGLE MACHINE

A. Conventional Scheduling Policies for the Single Machine

In this section, we briefly overview the operation of a
single machine of an FMS of the type described in [l]. Fig. 2
illustrates a single machine that operates on P different part
types. The value of dp represents the arrival rate of part-type
p, and Tp represents the amount of time it takes to process a
part of type p. Parts of type p that are not yet processed by
the machine are stored in buffer bp. The single machine can
process only one part at a time. When the machine switches
processing from one part-type p to another part-type p', it will
consume a set-up time 8P,P'. Here, as in [l], for convenience
we will assume that all the set-up times are equal to a single
fixed value 8 (the conventional schedulers and the intelligent
controllers studied here perform in a similar fashion for non
equal set-up times).

If a scheduling policy does not appropriately choose which
part to process next, the buffer levels of the parts that are not
processed often enough may rise indefinitely high, which can
result in buffer overflow. To avoid that problem, the machine
must have a proper scheduler. In addition to keeping the buffer
levels finite, the scheduler must also increase the throughput
of each part-type and decrease the buffer levels (i.e., decrease
the backlog).

A block diagram of a single machine with its controller
(scheduler) is shown in Fig. 3. The inputs to the controller
are the buffer levels xp of each part-type. The output from the

425 ANGSANA AND PASSINO: FUZZY CONTROL OF FLEXIBLE MANUFACTURING SYSTEMS

p* For any stable scheduling policy, the average weighted
SINGLE buffer level has a lower bound (LB) determined in [1] ofrl__c_o_NTR_o_L_L-ER-- MACHINE

Fig. 3. Single machine with its controller (scheduler).

controller is P*, which represents the next part-type to process.
To minimize the idle time due to setups, the machine will clear
a buffer before it starts to process parts from another buffer.
There are three clearing policies proposed in [1]: clear largest
buffer (CLB), clear a fraction (CAF), and an unnamed policy
in Section IV of [1] which we will refer as "CPK," to name
it after the authors, Perkins and Kumar.

Let xp(Tn) represent the buffer level of bp at Tn, the time
at which the scheduler selects the next buffer of part-type P*
to clear. Let "/p be any positive weighting factors (throughout
this paper, we set the "/p to one so that the AWBL, to be
defined below, is "average work"). Each of the three clearing
policies is briefly described as follows:

1) CLB: Select P* such that xP*(Tn) ~ xp(Tn) for all p.
2) CAF: Select P* such that

p

Xp•(Tn) ~ E I>p(1~)
p=l

where E is a small number, often set to 1/P.
3) CPK: Select P* such that P*

{ Xp(Tn)Hdp } h d
argmaxP dpJ--YPP; 1 (I-pp) , w ere Pp= pTp-

In addition to these clearing policies, there exist many other
policies that are used in FMS such as: first come, first serve
(FCFS), first buffer, first serve (FBFS), last buffer, first serve
(LBFS), least slack policy (LS), and earliest due date policy
(EDD) [3].

A single machine is "stable" if the buffer level for each
part-type is bounded, i.e., if there exists mp > 0, p =
1, 2, • • •, P, such that

supxp(t)::; mp< +oo for p = l, 2, • • ·, P.
t

A necessary condition for stability is that the machine load
p = L:=l Pp < l where Pp = dpTp- For the single machine
case, the authors in [1] prove that all three policies described
above cause the machine to be stable.

There are various ways to measure the performance of a
scheduling policy. We can measure the average delays incurred
when a part is processed in the machine. We can also measure
the maximum value of each buffer level. The performance
criterion proposed in [1] is a quantity called the average
weighted buffer level (AWBL) defined as

AWBL = lirninf ! t [L '°'fpTpxp(s)] ds.
t->= pt lo

8 [Lp ✓'YpPp (1 - Pp)r
LB = ~--------

2(1 - p)

Let 77 = A1J1L be a measure of how close a scheduling
policy is to optimal. An optimal scheduling policy has 77 equal
to one. Any scheduling policy has 77 2'. 1. To compute the value
of A WBL, we will of course have to choose some finite value
oft to terminate our simulations. In [l], the authors compare
the performance of CLB, CAF, and CPK for various machines
and find that quite often the use of CPK results in values of
77 that are closest to one. It is for this reason that we will
pay particular attention to comparing the performance of our
intelligent controllers to CPK. Finally, note that if "idling" is
allowed, the authors in [4] have shown that the bound LB can
be improved. While we do not consider idling here, it does
have the potential to improve performance.

B. Universally Stabilizing Supervisory Mechanism

The universally stabilizing supervisory mechanism (USSM),
introduced in [2], is a mechanism that is used to govern any
scheduling policy. There are two sets of parameters employed
by the mechanism for the single machine, namely "(and Zp

where it must be the case that

Lb maxb' 8b' ,b
'Y > 1 -p

and zpcan be chosen arbitrarily. The single machine will
process parts of type p for exactly "fdpTp units of time unless it
is cleared first (if a part is currently being processed when this
amount of time is up, the processing on this part is finished).
Once the machine takes "(dp Tp units of time to process parts of
type p or the parts of type pare cleared before "(dpTp elapses,
the machine will schedule another part to be processed next.
In addition, the USSM has a first-in-first-out queue Q. When a
buffer level xp exceeds zp and the buffer is not being processed
or setup, that buffer will be placed into Q. When there is
some buffer in the queue overruling the scheduling policy, the
next buffer scheduled to be processed is the first buffer in the
queue. Once that first buffer is processed, it leaves the queue,
then any remaining buffers on the queue are processed. Hence,
the USSM stabilizes any scheduling policy by truncating long
production runs and by giving priority to buffers that become
excessively high. Note that Xp is not exactly bounded by zp

since xp can still increase while it is listed in the queue. On
the other hand, xp is affected by Zp- The larger zp is, the larger
the maximum of Xp tends to be. Also note that if the system
is already stable (i.e., without the USSM) and the values of 'Y
and zp are large enough, the mechanism will not be invoked
[2]. We will have occasion to use the USSM to ensure that
our intelligent controllers are stable for both the single and
multiple machine cases.

C. A Fuzzy Controller for a Single Machine

In this section, we propose a new scheduling policy which
is designed to emulate a human scheduler. In particular,

426 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 2, NO. 4, DECEMBER 1994

Fig. 4. Fuzzy sets for x P.

we will show how to perform scheduling via a class of
intelligent controllers called "fuzzy controllers" (FC); for an
introduction to fuzzy control see [20], [21]. The FC is designed
to be a clearing policy just as are CLB, CAF, and CPK. As
there is no guarantee of stability when operating by itself, the
FC is always augmented with the USSM in this paper.

Similar to the conventional scheduling policies CLB, CAF,
and CPK, the inputs to the FC policy are the buffer levels
Xp. The output of the FC is simply an index P* indicating
which one of the buffers will be processed next. The universe
of discourse for each Xp is [0, oo). The universe of discourse
of each Xp has several fuzzy sets. The membership functions
for each fuzzy set are triangular except at the extreme right
as shown in Fig. 4. Fig. 4 shows the membership functions
µ for the case where the universe of discourse for xp has
three fuzzy sets. These fuzzy sets, indexed as 1, 2, and 3,
indicate how "small," "medium," and "large," respectively,
the value of Xp is. If the buffer level Xp exceeds Mp, the value
of Xp is assumed to be Mp by the FC, where Mp must be
predetermined. We will call this parameter MP the saturation
value of the FC for Xp and will spend a significant amount
of time discussing the choice of Mp in the remaining sections
of this paper.

Table I shows a "complete" rule-base of a FC for a single
machine that has three part-types using the fuzzy sets shown
in Fig. 4. In each rule Ixp represents the index of the fuzzy
set, and J represents the part-type that is selected by the rule.
Then, for instance, rule number 2 takes on the form:

If x 1 is small and x 2 is small and x3 is medium

Then P* = 3.

In other words, if the buffer levels of b1 and b2 are small
and the buffer level of b3 is medium, then process part-type
3. The part of type J that is selected in each rule has buffer
level XJ that falls into a fuzzy set that has index IxJ the largest
compared to the other indexes. In some rules, there are indexes
of fuzzy sets of several part-types that have equal largest value.
In these cases, one of these part-types is selected arbitrarily
in our rule-base. For example, the first rule in Table I is fixed
to select part-type 1 even though the fuzzy set indexes of all
part-types in the rule are equal to one. Therefore, this rule is
biased toward part-type 1. Throughout this paper, if we use
more fuzzy sets on the universe of discourse we will utilize a
similar structure for the rule-base (i.e., uniformly distributed
and symmetric membership functions). The output universe of
discourse (the positive integers) has P membership functions
denoted by µP where for each p E {l, 2, ... , P}, µp(i) = 1
for i = p, and µp(i) = 0 for i :j; p. We use singleton
fuzzification, max-defuzzification [20], [21] and the standard

TABLE I
COMPLETE RULE BASE OF A FC WITH THREE INPUTS

AND THREE Fuzzy SETS ON EACH UNIVERSE OF DISCOURSE

2 1 1 2 3
3 1 1 3 3
4 1 2 1 2
5 1 2 2 2
6
7

1
1

2
3

3
1

3
2

8 1 3 2 2
9 1 3 3 2
10 2 1 1 1
11 2 1 2 1
12 2 1 3 3
13 2 2 1 1
14 2 2 2 1
15 2 2 3 3
16 2 3 1 2
17 2 3 2 2
18 2 3 3 3
19 3 1 1 1
20 3 1 2 1
21 3 1 3 3
22 3 2 1 1
23 3 2 2 1
24 3 2 3 1
25 3 3 1 1
26 3 3 2 1
27 3 3 3 3

Zadeh's compositional rule of inference [20], [21] to pick P*,
given the rule-base and particular values of xp.

For P buffers and m fuzzy sets, the size of memory needed
to store the rules is on the order of pm; hence, the CLB,
CPK, and CAF policies are simpler than the FC. We will
show, however, that with the use of this slightly more complex
scheduler we can get enhanced performance. It is possible
to expand the FC to use the information about arrival rates,
processing times, and the set-up times also. There may be
significant improvements in performance if this information
is represented with the control rules, however, the memory
size can significantly increase too. In the interest of ensuring
that the FC would be implementable in real-time we did not
pursue this line of research. We note that our FC essentially
"fuzzifies" the operation of the CLB policy in [1]; however
due to the interpolation inherent in the implementation of the
FC it will behave quite differently than the conventional CLB
(as the simulation results below indicate).

Next, we simulate a single machine that uses CLB, CAF,
CPK, and the FC so that we can compare their performance.
Figs. 5 and 6 show the plots of the buffer levels of a single
machine with three part-types for the first 10 production runs
(a production run is defined as setting up for and processing
all the parts in a buffer) and the last 30 production runs.
The machine parameters are: d1 = 7, d2 = 9, d3 = 3,
T 1 = 1/100, T2 = 1/51, T3 = 1/27, and 8 = 1. The
parameters M 1=35, M 2=35, and M3=12 are selected based
upon the maximum value Xp obtains when the CPK policy
is used. Note that the first 10 production runs of the FC are
very different from CPK. For large values oft, however, they
are quite similar but not exactly the same, as indicated by

427
ANGSANA AND PASSINO: FUZZY CONTROL OF FLEXIBLE MANUFACTURING SYSTEMS

first lO production runs last 30 production runs

30

25

20

15

lO

5

o~-~-~~-"-----' o~~~~~~~~~
0 lO 15 1.552 1.553 1.554 1.555 1.556

xl04

Fig. 5. Buffer levels using the CPK scheduling policy.

first lO production runs last 30 production runs

30

25

20

lO

1.553 1.554 1.555 1.556

xl04

Fig. 6. Buffer levels using the FC scheduling policy.

the last 30 production runs when CPK and the FC are used.
Even though the buffer levels are maintained at nearly the
same heights, the periodic sequence of scheduling the part
types by CPK is 1, 3, 2, 1, 3, 2, • • •, whereas the sequence by
FC is 1, 2, 3, 1, 2, 3, · · · .

Among the three schedulers, namely CLB, CAF, and CPK,
CPK often yields the best performance, i.e., its 17 is closest to
one [l]. The performance of the FC is compared to CLB, CAF,
and CPK for several single machines below. The number of
fuzzy sets is set to 3, 5, and 7 for each universe of discourse
Xp so as to observe how the number of fuzzy sets can affect
the performance of the FC. The first two machines are chosen
from Section IV of [l].

Machine 1: d1=1, d2=9, d3=3, T1=1/100, T2=1/51, T3=1/27,
p=0.35758.

• CLB: 17 = 1.0863484
• CAF: 17 = 1.2711257
• CPK: 17 = 1.0262847
• FC: M1 =35, M2=35, M3=12; 1'=34.0, z1=30, z2=30,

Z3=30

For three fuzzy subsets, 17 = 1.0263256
For five fuzzy subsets, 17 = 1.0262928
For seven fuzzy subsets, 17 = 1.0262928

These simulations show that FC can perform nearly as well
as CPK can. Note also that we cannot significantly improve
17 by simply increasing the number of fuzzy subsets for the
same Mp (for this machine).

Machine 2: d1=18, d2=3, d3=1, T1=1/35, T2=1/7, T3=l/20,
p=0.99286.

• CLB: 17 = 1.1738507
CAF: 17 = 1.179065

• CPK: 17 = 1.0017406
• FC: M1=3375, M2=626, M3=665; 1'=1000.0, z1=5000,

z2=5000, z3=5000. For three fuzzy subsets, r7 =
1.0027945
For five fuzzy subsets, ry = 1.0027945
For seven fuzzy subsets, 17 = 1.0013173

These simulations show that with the machine load closer
to one, the FC can even work better than CPK provided that
there are enough fuzzy sets on the input space. Next, we create
a new machine that has a lower machine load, and compare
the performance of the scheduling policies.

Machine 3: d1 =3.5, d2=4.5, d3=1.5, T1=1/100, T2=1/51,
T3 =1/27, p=0.17879.

• CLB: 17 = 1.0841100
• CAF: 17 = 1.3456014
• CPK: 17 = 1.0306833

FC: M1=23.6, M2=25.l, M3=5.6; 1'=100.0, z1=5000,
Z2=5000, Z3=5000.
For three fuzzy subsets, 17 = 1.0307992
For five fuzzy subsets, 17 = 1.0319630
For seven fuzzy subsets, 17 = 1.0306972

• Scheduler: FC with 3 fuzzy subsets; M1 =50, M2=50,
M3=20; 1'=100.0, z1=5000, z2=5000, z3=5000: r7 =
1.2273009

These simulations show that the FC cannot perform any
better than CPK when the machine load is small for this
machine. Also note that if the parameters Mp are not set prop
erly, the performance of the FC can degrade. This provides a
motivation for studying how to tune Mp of the FC to optimize
performance (we examine this in the next section). Next, we
create another new machine that works on more part-types.

Machine 4: d1=1, d2=1, d3=110.9,d4=l, ds=l, T1=0.15,
T2=0.2, T3=0.05, T4=0.l, T5=0.2, p=0.7055556.

• CLB: 17 = 1.0371536
• CAF: 17 = 1.2328696
• CPK: 17 = 1.0180188
• FC: M1=14.16, M2=13.81, M3=28.06, M4=14.98,

M5=13.63; 1'=100.0, z1=30, z2=30, z3=30, Z4=30, zs=30.
For three fuzzy subsets, 17 = 1.0157503
For five fuzzy subsets, 17 = 1.0157503
For seven fuzzy subsets, 17 = 1.0186198

These simulations show that FC can perform better than
CPK. Note, however, that with seven fuzzy subsets, the FC
performance degrades to be similar to CPK. This confirms the
results of simulating machine 1 that we cannot be guaranteed
that performance will improve by simply increasing the num-

https://M5=13.63
https://M4=14.98
https://M3=28.06
https://M2=13.81
https://M1=14.16

428
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 2, NO, 4, DECEMBER 1994

Adaptation
Mechanism

Single Machine

Fig. 7, Adaptive fuzzy controller (AFC) for a single machine.

ber of fuzzy subsets (this is not surprising as there are no
performance guarantees for the heuristically constructed FC
policy).

Our experience in simulation has shown that it is possible to
tune the FC by choosing the values of MP and the fuzzy sets
to minimize 71. We have used the following procedure to tune
the FC to get smaller 71: i) use i fuzzy sets and set the Mp all to
unity, ii) run a simulation, iii) replace Mp with the maximum
buffer levels obtained in xp and re-run the simulation, and iv)
repeat as necessary with i + 1 fuzzy sets, i + 2 fuzzy sets,
etc. Using this tuning approach for Machines 1, 2, 3, and 4
of previous section we find that for three-buffer machines the
results are as good as those of CPK and for the five-buffer
machine the tuning method converges to a good result, even
though the result is not quite as good as that of CPK. In the
interest of space we omit the results of our detailed simulations
but note that our experiences in tuning allowed us to develop
the on-line tuning technique studied in the next section. It is
interesting to note that other researchers have utilized iterative
techniques for tuning FMS scheduling algorithms [3]. Here,
our iterative tuning technique is for an entirely different class
of scheduling policies than studied there.

III. AN ADAPTIVE Fuzzy
CONTROLLER FOR A SINGLE MACHINE

In this section we develop an adaptive fuzzy controller
(AFC) for scheduling the single machine. In the AFC there is
an adaptation mechanism which can automatically synthesize a
FC policy, independent of the machine parameters. Moreover,
if there are machine parameter changes during operation that
still satisfy the necessary conditions for stability, the AFC will
tune the parameters of the FC so that high performance oper
ation is maintained. The USSM governs the AFC. Therefore,
the complete scheduler consists of three layers. The bottom
layer is simply the FC itself, the middle layer is the adaptation
mechanism to be introduced here, and the top layer is the
USSM which supervises the lower two layers to ensure stable
operation.

If the parameters of the machine change, the USSM may not
guarantee stability anymore since it assumes that the machine
parameters stay constant. The parameter 'Y of the mechanism
is dependent on the parameters of the machine whereas the
parameters z; are not. If the parameter 'Y is chosen large
enough, the USSM may still provide stability over a large class
of machine parameters. Since the USSM assumes constant
machine parameters, however, stability is not guaranteed when

the machine parameters change even if 'Y is large enough for
the new machine parameters. It is for this reason that we split
the adaptation problem into controller synthesis (i.e., determin
ing the positioning of a fixed number of fuzzy sets by automat
ically picking Mp) and controller tuning (i.e., tuning the posi
tioning of the fuzzy sets by changing Mp to react to machine
parameter changes). In synthesis we are guaranteed stability
while in tuning we have no proof that the policy is stable.

A. Automatic Controller Synthesis for a Single Machine

In this section, we introduce the adaptive fuzzy controller
that has an adaptive mechanism which observes xp, p E
{1, 2, 3, •• •, P} and automatically tunes the values of MP.
This adaptation mechanism shown in Fig. 7 adjusts the pa
rameters Mp of the FC by using a moving window. The size
of the window is not fixed, but is equal to the length of time for
a fixed number of production runs. In this section we will use
a window size of 10 production runs, while in the next section
we will use a larger window size. Throughout this window the
buffer levels xP are recorded. The window slides forward at the
end of each production run, and the values of Mp are updated
to the maximum values of xP over the last window frame. As
Mp is updated, the fuzzy sets on the universe of discourse for
Xp are shifted so that they remain symmetric and uniformly
distributed [20], [21]. The fuzzification and defuzzification
strategies, output fuzzy sets, and the rule-base remain constant
so that the adaptation mechanism only adjusts the input fuzzy
sets to improve machine performance. Basically, the AFC
tunes the Mp values in search of a lower 71. It does this by
automatically adjusting the premise membership functions of
the rules in Table I so that the FC policy appropriately fits
the machine (i.e., so that the FC pays particular attention to
part-types whose peak buffer levels have been rising).

Next, we show how the automatic tuning method can be
used to synthesize the FC for the single machine. In particular,
we will show how without any knowledge of the machine
parameters our adaptation mechanism can synthesize a FC
that can perform as well as the CPK policy. We shall first
consider the same machines used in Section II-C. For each
of the following machines, the number of fuzzy sets is set to
five. The parameter Mp is initially set to one. The adaptive
mechanism will adjust Mp at the end of each production run.
The adjustment of Mp is based upon maximum value of the
buffer levels Xp from the last 10 production runs.

Table II shows how each Mp is adjusted for the first 15
production runs in Machine 1. For later production runs, M1

changes up and down slightly around 30.4, M2 around 34.6,
and M3 around 12.45. After 10 000 production runs, we find
that 71=1.0263 which is the same as 71=1.0263 produced by
CPK after IO 000 production runs.

Table III shows that MP for Machine 2 converges slowly
compared to the previous machine. After 10 000 production
runs, 71=1.0993, which is worse than 71=1.0017 produced by
CPK after IO 000 production runs. When Mp is initially
10 000 instead of one and the adaptation mechanism updates
the MP every other 10 production runs, however, 71 from
FC improves to 1.0018. This highlights an inherent problem

429 ANGSANA AND PASSINO: FUZZY CONTROL OF FLEXIBLE MANUFACTURING SYSTEMS

TABLE II

ADJUSTMENT OF Mp FOR MACHINE I

2 7.0000 9.6774 3.2258
3 20.1929 18.6774 7.5599
4 27.1929 18.6774 10.5599
5 27.1929 24.5915 10.5599
6 27.1929 33.5915 12.2766
7 30.1793 33.5915 12.2766
8 30.1793 33.5915 12.2766
9 30.3823 33.5915 12.4396
10 30.3823 34.5243 12.4396
11 30.3823 34.5243 12.4396
12 30.3993 34.5243 12.4519
13 30.3993 34.6050 12.4519
14 30.3993 34.6050 12.4519
15 30.3993 34.6050 12.4519

TABLE III
ADJUSTMENT OF Mp FOR MACHINE 2

10 284.8656 60.3010 25.9070
50 1266.295 253.6234 139.8938
100 2134.125 418.863 229.6020
200 3026.803 594.9258 328.7803
300 3401.508 667.5586 369.9785
400 3558.227 698.0391 386.8477
500 3626.016 710.8359 393.9297
600 3653.156 716.3438 396.9219
700 3664.406 718.5234 398.1875
800 3665.672 718.7578 398.3125
900 3665.672 718.7578 398.3125
1000 3665.672 718.7578 398.3125

TABLE IV
ADJUSTMENT OF ,'vfp FOR MACHINE 3

2 3.5000 4.6632 1:5544
3 4.1897 9.1632 3.3499
4 8.3554 9.1632 4.8499
5 11.8554 10.4087 4.8499
6 11.8554 14.9087 4.8499
7 11.8554 14.9087 5.1652
8 12.3311 14.9087 5.1652
9 12.3311 14.9865 5.1652
10 12.3311 14.9865 5.1751
11 12.3383 14.9865 5.1751
12 12.3383 14.9865 5.1751
13 12.3383 14.9886 5.1753
14 12.3383 14.9886 5.1753

with the adaptation mechanism: the window size and Mp
update strategy must be chosen in an ad hoc manner with
no guarantees on performance levels (the results of this paper
do, however, provide significant insights into the choice of
the window size).

Table IV shows how each Mp is adjusted for the first 14
production runs of Machine 3. For later production runs, M1
remains around 12.338, M2 around 14.9886, and M3 around
5.1753. After 10 000 production runs, we find that 17=1.031
which is the same as the 1/ produced by CPK after 10 000
production runs.

B. Automatic Controller Tuning for a Single Machine

In this section we investigate whether the AFC and CPK can
adjust themselves to disturbances/failures that may occur dur-

ing the operation of a single machine. The disturbance/failure
may be in the form of changes in arrival rates, processing
times, and/or set-up times. To observe how FC and CPK
adjust to machine parameter changes, first we use the same
machine parameters and part-types and switch the part-types
to arrive at different buffers. Following this, we will investi
gate the tuning capabilities of the adaptation mechanism by
examining the effects of changing the machine load. In the
simulations, the machine parameters stay constant for the first
1 0 000 production runs, and then the machine parameters are
changed and remain constant at different values for the next
10 000 production runs. When the parameters are changed,
the parameters Mp of the FC are continued from the last
production run. For the last 10000 production runs, the CPK
schedules based upon the former machine parameters while
the AFC adjusts itself to improve performance.

]) Switching Buffers: Case 1 Old Machine: di =7, d2=9,
d3=3, Ti=l/100, T2=1/51, T3=1/27. New Machine: d2=1, d3=9,
d1=3, T2=1/100, T3=1/51, T1=1127.

The AFC maintains the same 1/ at 1.026 whereas 1/ of CPK
becomes worse from 1.027 to 1.237.

Case 2 Old Machine: d1=l8, d2=3, d3=l, T1=1/35, T2=1/7,
T3=1120. New Machine: d2=18, d3=3, d1=l, T1=1135, T2=1/7,
73=1/20.

The value of 1/ of the AFC improves from 1.0993 to 1.0018
whereas 1/ ofCPK becomes worse from 1.0017 to 1.1965. The
AFC is expected to perform similarly since the parameters of
the machines are similar. 1

2) Machine Load Variations: Case 3 Old Machine (p =
0.99286): d1=l8, d2=3, d3=l, T1=1/35, T2=1/7, T3=1/20.
New Machine (p = 0.35758): d1=1, d2=9, d3=3, T1=l/l00,
T2=1/51, T3=1/27.

This is a transition from a high to a low machine load. 1/ of
the AFC changes from 1.0993 to 1.0263 as expected. On the
other hand, 1/ of CPK changes from 1.0017 to 1.0477 instead
of 1.0263. Note that CPK can still perform reasonably well
as the machine parameters change from highly loaded to a
lightly loaded machine.

Case 4 Old Machine (p = 0.35758): d1=1, d2=9, d3=3,
Ti=l/100, T2=1/51, T3=1/27. New Machine (p = 0.99286):
d1=l8, d2=3, d3=l, T1=1/35, T2=1/7, T3=1/20.

This is a transition from a low to a high machine load. 1/ of
the AFC changes from 1.0263 to 1.0993 as expected. On the
other hand, 1/ of CPK changes from 1.0263 to 1.106 instead
of 1.0017, i.e., its performance degrades.

The results show that the AFC we have developed has
the capability to maintain good performance even if there
were significant changes in the underlying machine parameters
(representing, e.g., machine failures). CPK is dependent on the
exact specification of the machine parameters and hence its
performance can degrade if the parameters change. We found
similar improvements in performance as compared to CLB
and CAF but do not report these here in the interest of space.
While these results are encouraging we have only considered

1Recall, however, that in Section II-C we describe that there are some rules
in the rule-base of the FC that are biased toward some part-types. Therefore,
when we switch the order of indexing the part-types, the performance of the
FC can be different.

430 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 2, NO. 4, DECEMBER 1994

the single machine case up till now (and only for a limited
number of types of machines in simulation). In the next section
we will show how adaptive fuzzy controllers placed at each
machine in an FMS can adapt to changes in many machine
parameters and achieve high performance operation.

IV, DISTRIBUTED Fuzzy CONTROL FOR FMS

In this section, we will extend the use of the adaptive fuzzy
controller to general FMS consisting of several distributed
interconnected machines by applying an adaptive fuzzy con
troller to each machine to obtain a distributed (adaptive) fuzzy
controller. We will investigate whether each adaptive fuzzy
controller can achieve its local goal which is to minimize the
backlog of each machine and hence achieve the overall goal
of minimizing the backlog for the entire FMS.

A. Nonacyclic FMS

A nonacyclic manufacturing system, which consists of sev
eral interconnected machines, is described as follows [l], [2]:
There are P part-types, with each type labeled 1, 2, ... , P.
There are M machines, with each machine labeled 1, 2,-. •, M.
A part of type p enters the system at machine µp,l · Thereafter,
it visits µp,2, µp,3, • • • and exits the system from machine
µp,np where nP is the total number of times part p visits
the machines in the system and µp,i E {1, 2, .. •, M}. A part
p can visit a machine more than once, i.e., it can be that
µp,i = µP,i for i -:/= j. Part-type p arrives at the system
at the rate dp parts/time-unit. Parts that arrive at µp,i are
not necessarily processed immediately; they may be stored at
buffer bp,i for some length of time. Once they are scheduled
for processing, each part-type p requires a processing time
Tp,i at the ith machine in its processing path µp,i· The buffers
Bm := {bp,i : µp,i = m} serve machine m. When machine m

switches from processing parts in buffer b E Bm to processing
parts in buffers b' E Bm such that b' -:/= b, it requires a set-up
time 8b,b'. There is a transportation delay when a part is moved
from one machine to another. For convenience we assume that
the delay is zero in this paper. Fig. 1 shows an example of
a nonacyclic manufacturing system. There are three different
part-types and six machines. For part-type 1, the sequence of
machines it visits is µ 1,1 = 1, µ 1,2 = 2, µ 1,3 = 4, µ 1,4 = 3,
and µ1,5 = 4. Note that part-type 1 visits machine 4 twice.

A necessary condition for stability is that the machine load
of each machine (Pm) for m = 1, •• • , M

Pm = L dpTp,i < 1.
{(p,i):µp,;=m}

The three clearing policies CLB, CAF, and CPK can cause a
general nonacyclic FMS to be unstable. For general cases, a
CAF policy can still be employed to make the system stable,
but the policy must be modified. Such a modified CAF policy
is introduced in [1] and is called distributed CAF policies
with backoff (DCAF).

We will use the maximum buffer level denoted by ep,i

and average weighted buffer level denoted by 0m for local
performance measures to indicate how well each scheduler

performs locally on each machine. The 0m is defined as

0m = liminf ! f [~ Tp iXp i(s)] ds.
t----.oo t 1 . L.., • •0 (p,,):µ(p,,)=m

m,We will use avg{0m} = I::;M, 0
the average of the av

erage weighted buffer levels and maxp,i{ep,i}, the maximum
of the maximum buffer levels as global performance measures
for the entire FMS. Let Op(t) denote the total number of parts
of type p leaving the FMS up to time t. Let Ip(t) denote the
total number of new parts of type p entering the FMS up to
time t. Let {Jp (t) denote the backlog of part-type p at time t,

then {Jp(t) is simply {Jp(t) = Ip(t) - Op(t). Let 'lf;p(t) denote
the average backlog of part-type p at time t, then 'lf;p(t) is
defined as

'lf;p(t) = ! t {Jp(T)dT.
t lo

Let avg{'lf;pt} denote the average of average backlogs,

. { I:;-! ,Pp(tl
1.e., avg 'lf;p(t)} = P . Let '¥p(t) = supt {Jp(t)

denote the maximum backlog of each part-type p up to time
t and maxP { 1¥P} denote the maximum of the maximum
backlogs. We will use '1/Jp(t), avg{'lf;p(t)}, and '¥p(t) as global
performance measures for FMS.

B. Automatic Synthesis/Tuning ofDistributed Fuzzy Controllers

In this section, we develop a technique to automatically
synthesize distributed fuzzy controllers for a nonacyclic FMS.
The DFC consists of a set of AFC policies each assigned to
control a machine in the FMS. The number of inputs to each
AFC depends on the number of buffers on the machine at
which the AFC is scheduling. Each AFC has the same rule
base structure and are all initialized with the same membership
functions. The number of fuzzy sets is set to five (unless
indicated otherwise) for each universe of discourse for Xp,i·

The parameters of each FC will change as each AFC adjusts
itself to control its machine. As in the single machine case,
we utilize USSM's to ensure stability; therefore there will be
as many AFC' s and USSM' s as the number of machines.

Let Mp,i be the saturation value for xp,i as Mp was the
saturation value for xp in single machine case. The FC for
each machine is automatically synthesized in a similar manner
to how it was for the single machine described in Section
III-A. The parameters Mp,i of each FC are initially set to
an arbitrary large number (we use 10 000). Each AFC also
utilizes a moving window. The size of the window is the
same as the length of time for 40 production runs (unless
we indicate otherwise). The window slides forward at the end
of each production run and the values of Mp,i of each FC

are updated to the maximum buffer level xp,i during the last
window frame.

Again we note that we split "synthesis" from "tuning"
to i) illustrate how the technique can be used to automatically
generate controllers that can perform better than the scheduling
policies in [1], and ii) to illustrate how the DFC can learn to
accommodate for parameter changes/failures in the machines.

https://t----.oo

431 ANGSANA AND PASSINO: FUZZY CONTROL OF FLEXIBLE MANUFACTURING SYSTEMS

TABLE V
PERFORMANCE COMPARISON FOR FEEDFORWARD STRUCTURE

Sum of All

CAF 2298 494 132.7
CPK 1631 468 132.4
DFC 1589 359 1121.21
DFC* 114961 134.7
DFCll 1558 8 121.6;
DCAF 2559 192.3

d1 d2 d3

t t t

71,MT F1
t

t t
Machine 2

Fig. 8. Feedforward structure.

Moreover, we split the two cases since for case i) we are
guaranteed stability while in case ii) we are not.

1) Automatic Synthesis ofDistributed Fuzzy Controllers: In
this section, we show the results of performing automatic
DFC synthesis for several FMS structures. We compare the
performance of the DFC with other scheduling policies such
as CLB, CAF, CPK and distributed CAF with backoff. In
each structure of FMS that we consider, the parameters of the
USSM are set large enough so that the USSM never intervenes
(we have found that if the parameters of the USSM are chosen
too small the USSM can adversely affect performance).

a) Feedforward Structure: For the FMS shown in Fig. 8,
the arrival rates are d1=7, d2=9, d3=3, d4=8, ds=6, and d5=5.
The processing times for part-type 1 are T1,1 =11100, and
T1,2=l/100. The processing time for part-type 2 is T2,1=1151.
The processing time for part-type 3 is T3,1=l/27. The process
ing time for part-type 4 is T4,1=1160. The processing time for
part-type 5 is Ts,1 =1140. The processing times for part-type 6
are T6,1=1/45, and T6,2=1/100. The set-up times are all 8=5.0.

Each machine in this FMS is similar to a single machine
with the exception that the arrival rate of parts in one of
the buffers in each machine is not fixed since these parts
are from another machine. The primary objective in studying
this structure is to investigate how the scheduling in each
machine is affected by these non-fixed arrival rate parts. Table
V shows the comparison of the performance measures of
each scheduling policy. For the DFC policy, we update the
parameters Mp,i based upon the buffer level xp,i over the
last 100 production runs. The DFC* denotes a similar DFC
except that Mp,i is fixed with the values from the end of
the simulation for the DFC. The DFCl 1 denotes a similar

Maximum of All

2910 431 7.2
1933 425 6.8

6.6
8 3Him ~ ~ 1879 326

3196 675 ~

d1

Fig. 9. Cellular structure I.

DFC as the first which has the Mp,i arbitrarily initialized to
1O000 as in the first DFC, but the number of fuzzy sets of
DFCl 1 is increased from five to 11. The table indicates that:
i) these nonfixed arrival rate parts do affect the scheduling
of each machine, ii) the CPK policy that performs the best
in the single machine case is no longer the best scheduler,
iii) the DFC dominates all conventional schedulers in almost
all performance criteria, except that the sum of all maximum
backlogs of DFC (1589) is slightly larger than that of CLB
(1580), iv) the sum of all maximum backlogs of the DFC is
reduced when the initial values of Mp,i are properly set (i.e.,
in DFC*), but in this case the average of all average backlog
increases from 121.2 to 134.7, and v) increasing the number
of fuzzy sets can also improve performance. Overall, we see
that DFC* dominates all the conventional schedulers for all
performance criteria except for the average of the average
backlogs.

b) Cellular Structure I: For this FMS shown in Fig. 9,
the arrival rates are d1=0.5, d2=2, and d3=l. The processing
times for part-type 1 are T1,1=0.4, T1,2=0.2, T1,3=0.4, and T1,4
= 0.5. The processing times for part-type 2 are T2,1 =0.15,
T2,2=0.05, and T2,3 = 0.05. The processing times for part-type
3 are T3,1=0.1, T3,2=0.05, T3,3=0.2, T3,4=0.l, and T3,5 = 0.05.
The set-up times are all 8=10.

Table VI shows the comparison of the scheduling policies
CLB, CAF, CPK, DFC, and DCAF. DFC40 represents DFC
schedulers that adapt their Mp,i parameters based upon the
buffer levels xp,i over the last 40 production runs. DFCIO
represents the same, but only over 10 production runs. Note
that I: '11p of DFC40 is the smallest and I: Wp of DCAF is

https://T3,2=0.05
https://T2,2=0.05

432 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 2, NO. 4, DECEMBER 1994

TABLE VI
PERFORMANCE COMPARISON FOR CELLULAR STRUCTURE I

Sum of All Sum of All Muimum Maximum of All

585 245 92.2 1525 208 10.2
548 275 90.8 1243 198 9.7
495 226 99.0 1309 201 10.8

1~M1 1~~g1 YllJ 1?486~1 l~y~I ~

TABLE VII
PERFORMANCE COMPARISON FOR CELLULAR STRUCTURE II

Sum of All Maximum of All Average of All
Maximum Backlog Average Backlog

Ew av t/;
CLB 144 42 18.4
CAF 249 76 23.2
CPK 159 51 22.7
DFC 149 50 11s.1 I
DFC* 18.8
DCAF 11~~1 ~ 85.4

the largest. This table indicates that: i) for this FMS that is
inherently stable, DCAF is not desired since the policy wastes
too much idle time, ii) the size of the window that is used
to adapt Mp,i can affect the performance of the DFC (we
have not found a method to select the optimal size for the
window automatically, so far, we can only set the window
size in an ad hoc manner), iii) the CPK again does not
perform as well as expected from the single machine case,
iv) among the conventional schedulers, the CLB is better than
the CAF and CPK in almost all performance criteria, and v)
the DFC40 totally dominates the conventional schedulers for
this particular FMS.

c) Cellular Structure II: For this FMS shown in Fig. 10,
the arrival rates are d1 =1.0, d2=l.0, d3=1.0, and d4=1.0.
The processing times for part-type 1 are T1,1=0.2, T1,2=0.l,
T1,3=0.l, and T1,4=0.05. The processing times for part-type 2
are T2,1=0.15, T2,2=0.15, T2,3=0.l, and T2,4=0.l. The process
ing times for part-type 3 are T3,1 =0.25, T3,2=0.2, and T3,3=0.15.
The processing times for part-type 4 are T4,1=0.3, T4,2=0.1,
T4,3=0.05, and T4,4=0.05. The set-up times are all 8=1.0.

For the DFC policy, we update the parameters Mp,i based
upon the buffer level Xp,i over the last 60 production runs.
Table VII shows the comparison of the performance measures
of each policy for Cellular Structure II. There are some
performance measures of the DFC that are better than those of
CLB, but there are also some that are worse. The DFC* (DFC
with Mp,i initialized in the same manner as for the feedforward
structure) almost totally dominates CLB with the exception
that the average of all average backlogs and the average of all
average weighted buffer levels of CLB are slightly better. This
indicates that DFC* attempts to maintain smaller values of
the maximum of each buffer level by allowing slightly higher
average buffer levels.

Sum of All Maximum Maximum of All Average of All Average

Buffer Level Maximum Buffer Level Weighted Buffer Level

1:ei i e
374 31
613 63
368 44 3.8
346 39 3.3

3.3in~i ~ 12.0

: I Machine 1
'I

~-~~- ------1
'----j---+------acE-lf---Eh--~

I
I

,,.
I

/
',1

Machine 3

/')
I /

I /
I /

/
Machine 2

Fig. 10. Cellular structure II.

d) Reentrant Structure: For the FMS shown in Fig. 11,
the arrival rate is d1=4/3. The processing times are T1,1 =0.3,
T1,2=0.25, T1,3=0.1, T1,4=0.l, T1,5=0.2, T1,5=0.2, T1,1=0.05,
T1,8=0.1, and T1,9 = 0.05. The set-up times are all 8=50.0.

Table VIII shows the comparison of the performance mea
sures of each policy for the Reentrant Structure. DFC40
represents DFC schedulers that adapt their Mp,i parameters
based upon the buffer levels Xp,i over the last 40 production
runs. DFC120 represents the same, but over 120 production
runs. The table indicates several ideas that we have seen
from the last two structures which are i) the window size
for adapting the parameters of the DFC must be large enough,
and ii) the DFC120 almost dominates all performance criteria.

https://T1,1=0.05
https://T1,2=0.25
https://T4,4=0.05
https://T4,3=0.05
https://T3,3=0.15
https://T2,2=0.15
https://T2,1=0.15
https://T1,4=0.05

- -

433 ANGSANA AND PASSINO: FUZZY CONTROL OF FLEXIBLE MANUFACTURING SYSTEMS

TABLE VIII
PERFORMANCE COMPARISON FOR REENTRANT STRUCTURE

71.2
CPK 2247 1392.5 6511 1499
CAF 2089 I1333.61 6126 1251

1n:~1DFC40 2216 1412.1 6042 1338
DFC120 1350.5 72.3
DCAF '1~~~1 3862.9 '@~~:1 1N1~ 159.4

TABLE IX
PERFORMANCE COMPARISON FOR CELLULAR STRUCTURE III

Sum of All Average of All

Maximum Backlog

r:w
CLB 447
CAF 445
CPK 761 214.5
DFC 135.1

1fg~1DCAF 335.3

d1

~

d==: ~ ~
Machine 1

~ ~~
Machine 2

II ! ; I
I

I I LJ ! ~ ~ ~ I
Machine 3 I

I

Fig. II. Reentrant structure.

It has the smallest maximum backlog and maximum buffer
levels, but the average backlog and the average of average
weighted buffer levels are slightly worse than CAF and CPK
respectively (again the DFC is lowering some performance
measures at the expense of others).

e) Cellular Structure III: For this FMS shown in Fig. 12,
the arrival rates are d1=5/6 and d2=4/3. The processing times
for part-type 1 are T1 1 =0.4, T1 2=0.4, T1 3=0.2, T1 4=0.2,
T1,5=0.l, T1,5=0.4, T1,1=0.3, T1,s=0.15, and T~, 9=0.1. The pro
cessing times for part-type 2 are T2,1=0.5, T2,2=0.2, T2,3=0.1,
T2,4=0.2, T2,5=0.3, T2,5=0.4, T2,1=0.3, T2,s=0.l, and T2,g=0.l.
The set-up times are all 8=2.0.

Table IX shows the comparison of the performance mea
sures of each policy for cellular structure III. The buffer levels
xp,i of the last 100 production runs are used to update the Mp,i

for the DFC. Again, the DFC dominates the maximum criteria,
but the average criteria are slightly worse than those of CLB.

Sum of All Maximum Maximum of All Average of All Average

Buffer Level Maximum Buffer Level Weighted Buffer Level

r:e i ie a
1394 160
1425 140
2475 275 16.1

10.6'}g~~I 1rn~1 22.7

Machine 4 Machine 5 Machine 6
- ~- icrm=-

.... ,__d -I --..J..
Machine 2 Machine 3 Machine 1

Fig. 12. Cellular structure III.

2) Automatic Tuning of Distributed Fuzzy Controllers: In
this subsection, we show that the DFC can automatically retune
if there is a change of machine parameters in the reentrant
structure above (we have performed similar studies for the
other FMS structures in the previous section but omit the
details in the interest of space). We have two sets of machine
parameters for the reentrant structure. To model the occurrence
of machine parameter changes, in the simulation we initialize
all the Mp,i to 10 000 for one set of parameters. After 10 000
production runs from the first machine we change the machine
parameters to another set and continue the simulation for
another 10 000 production runs from the first machine. All
the performance measures are initiated at the instant of the
occurrence of the machine parameter changes. We repeat the
same process for other scheduling policies such as CLB, CAF,
and CPK. We do not include DCAF because the simulations
above indicate that it performs relatively poorly even without
any change of machine parameters.

For the reentrant structure that we consider, we will first
describe two sets of parameters and then illustrate the perfor
mance of each policy for each set of parameters separately.
Finally, we show the performance of each policy when the
FMS changes its parameters from the first set to the second

https://T1,s=0.15

434 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 2, NO. 4, DECEMBER 1994

TABLE X
PERFORMANCE COMPARISON FOR REENTRANT STRUCTURE, SET II

Sum of All Maximum Maximum of Ali Average of Ali Average

Average Backlog Bwfer Level Weighted Buffer Level

1/J 0m
CLB 2185.0 .8
CAF 2407.5 111.5
CPK 2481.1 11831 110.4
DFC 2176.8 8241

TABLE XI
PERFORMANCE COMPARISON FOR REENTRANT STRUCTURE FROM SET I TO SET II

Sum of Ali Maximum Maximum of All Average of Ali Average

Average Backlog Buffer Level

1/J I:
CLB 2636.8 92
CAF 2734.1 12194
CPK 3173 2633.5 9528 106.2
DFC 2033.1 105.9

TABLE XII
PERFORMANCE COMPARISON FOR REENTRANT STRUCTURE FROM SET II TO SET I

Sum of All Maximum Maximum of Ali Average of All Average

CAF 1439.8
CPK 1530.0
DFC 1306.3

set and also from the second set to the first set. For the first set
of parameters (Set I), we use the same parameters as in Section
IV-B-1) "Reentrant Structure." The second set of parameters
(Set II) is also similar to the first set, except that the arrival
rate d1 is changed from 4/3 to 2, T1,5 from 0.2 to 0.1, T1,9

from 0.05 to 0.15, and the set-up times 8 from 50.0 to 25.0.
For Set I: Pl = 0.600, P2 = 0. 733, and p3 = 0.467. For Set
II: P1 = P2 = p3 = 0.9 (more heavily loaded machines).

The performance for the first set of parameters of the
Reentrant Structure is shown in Table VIII and the second
set in Table X. In this case, the DFC updates its Mp,i over
the last 120 production runs of xp,i· Table X indicates that for
this particular structure and parameters, the DFC is similar to
CLB and both are better schedulers than CAF and CPK. The
sum of all maximum buffer level of CLB is smaller, however,
than that of the DFC.

a) Reentrant structure, changing from set I to set II: Table
XI shows the performance measures after 10 000 production
runs from the instant the machines change their parameters.
Each machine load increases to 0.9 and the set-up times are
reduced to half of the old ones. These tables indicate that the
DFC adjusts to changes better than any of the other clearing
policies. It adjusts better than CLB even though they perform
similarly in Reentrant Structure, Set II. Both have the same
maximum backlog, but the DFC has less average backlog than
CLB and slightly more average of all average weighted buffer
levels.

Weighted Buffer Level

0m

1H:1 1

73.6

b) Reentrant structure, changing from set II to set I: Table
XII shows the performance measures after lO000 production
runs from the instant the machines change their parameters.
The table indicates that the DFC adjusts to machine parameter
changes better than tile others according to all performance
measures except the last one.

While the above results seem to indicate that the DFC is the
preferred scheduling policy, clearly they are not conclusive. In
fact, in other simulations for other FMS structures and different
machine parameter variations we found certain cases where
some of the conventional policies out performed the DFC in
several respects. Hence, the only conclusion that we can draw
from the simulation results of this subsection is that while the
DFC looks promising there is a need for a significant amount
of work on the development of scheduling policies for the case
where FMS are subject to machine parameter variations.

V. CONCLUDING REMARKS

We found that the fuzzy controller and adaptive fuzzy
controller can show definite performance enhancements, and
in most cases the DFC was the best scheduler among all
scheduling strategies in the sense that it attempted to make the
peak value of each buffer level and maximum backlog smaller
by sometimes allowing their averages to be slightly larger.
The DFC performed the best as long as the window size for
updating the parameters Mp,i was selected appropriately. We

435 ANGSANA AND PASSINO: FUZZY CONTROL OF FLEXIBLE MANUFACTURING SYSTEMS

did not develop· a method to automatically select the window
size for a given FMS, however, in general the performance
of the DFC could be improved by enlarging the size of the
window. In some cases, the DFC performed slightly worse
than one of the conventional schedulers, but once we selected
proper initial values for the parameters Mp,i of the DFC,
it outperformed the conventional schedulers. We emphasize
that the distributed intelligent controllers for the FMS were
designed so that they could automatically synthesize/tune
themselves. We have illustrated that although this form of
distributed adaptive system can offer improvements in the
performance for FMS in certain cases, it is, in general, hard to
choose certain parameters in the DFC and its performance
is not always as good as conventional schedulers. Clearly
there is the need for future work in i) developing scheduling
policies for FMS subject to machine parameter variations and
failures, ii) determining explicit mathematical conditions under
which the FC, AFC, and DFC policies are known to perform
better than conventional schedulers, and iii) investigating
how information from multiple machines can be exploited in
scheduling FMS via distributed intelligent control.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their helpful comments.

REFERENCES

[I] J. R. Perkins and P.R. Kumar, "Stable, distributed, real-time scheduling
of flexible manufacturing/assembly/disassembly systems," IEEE Trans.
Automat. Contr., vol. 34, pp. 139-148, Feb. 1989.

[2] P.R. Kumar and T. I. Seidman, "Dynamic instabilities and stabilization
methods in distributed real-time scheduling of manufacturing systems,"
IEEE Trans. Automat. Contr., vol. 35, pp. 289-298, Mar. 1990.

[3] S. H. Lu and P. Kumar, "Distributed scheduling based on due dates
and buffer priorities," IEEE Trans. Automat. Contr., vol. 36 no. 12, pp.
1406-1416, 1991.

[4) C. Chase and P. Ramadge, "On real-time scheduling policies for flexible
manufacturing systems," IEEE Trans. Automat. Contr., vol. 37, pp. 1-9,
1991.

[5) K. L. Burgess and K. M. Passino, "Stable distributed scheduling
policies for manufacturing systems," in Proc. IEEE Conj Decis. Contr.,
Orlando, FL, 1994.

[6) I. MacLeod and V. Lun, "An assessment of the negotiation metaphor
for flexible manufacturing system control," Eng. Appli. Artificial Intel
ligence, vol. 37 no. 3, pp. 167-175, 1991.

[7) L. C. Rabelo and S. Alptek.in, "A hybrid neural and symbolic processing
approach to flexible manufacturing systems scheduling,'' in Hybrid
Architectures for Intelligent Systems, A. Kandel and G. Langholz,
Eds. Florida: CRC Press, 1992, ch. 18.

[8) K. Hadavi, W.-L. Hsu, T. Chen, and C.-N. Lee, "An architecture for
real-time distributed scheduling," AI Mag., vol. 13, no. 3, pp. 46-56,
1992.

[9] A. Kusiak, Intelligent Manufacturing Systems. Englewood Cliffs, NJ:
Prentice-Hall, 1990.

[!OJ R. G. Smith and R. Davis, "Frameworks for cooperation in distributed
problem solving," IEEE Trans. Syst. Man, and Cybernetics, vol. SMC-
11 no. I, pp. 61-69, Jan. 1981.

[11) M. S. Fox, "An organizational view of distributed systems," IEEE
Trans. Syst., Man, Cybernetics, vol. SMC-11, no. !, pp. 70-80, Jan.
1981.

[12) V. R. Lesser and D. D. Cork.ill, "Functionally accurate, cooperative
distributed systems," IEEE Trans. Syst., Man, Cybernetics, vol. SMC-
11, no. I, pp. 81-96, Jan. 1981.

[13) V. R. Lesser and D. D. Cork.ill, "The use of meta-level control for
coordination in a distributed problem solving network,'' in Proc. 8th
Int. Joint Conj Artificial Intelligence, Karlsruhe, West Germany, 1983,
pp. 748-756.

[14) S. C. Shapiro, "Distributed problem solving," in Encyclopedia of
Artificial Intelligence. Canada: Wiley, 1987, pp. 245-251.

[15) E. H. Durfee, V. R. Lesser, and D. D. Corkill, "Cooperation through
communication in a distributed problem solving network,"Distributed
Artificial Intelligence, M. N. Hunhs, Ed. London: Pitman, 1987, ch. 2.

[16) A.H. Levis, "Modeling and design of distributed intelligence systems,"
in An Introduction to Intelligent and Autonomous Control, P. J. Antsaklis
and K. M. Passino, Eds. Boston, MA: Kluwer Academic, 1993.

[17) E. H. Durfee, ''The distributed artificial intelligence melting pot,'' IEEE
Trans. Syst., Man, Cybernetics, vol. 21, pp. 1301-1306, Nov./Dec. 1991.

[18] A. Angsana and K. M. Passino, "Distributed intelligent control of
flexible manufacturing systems," in Proc. Amer. Contr. Conj, San
Francisco, CA, 1993, pp. 1520-1524.

[19) A. Angsana, "Distributed intelligent control of flexible manufactur
ing systems," Master's thesis, Dept. Elec. Eng., Ohio State Univ.,
Columbus, 1992.

[20) C. C. Lee, "Fuzzy logic in control systems: Fuzzy logic controller-part
I," IEEE Trans. Syst., Man, Cybernetics, vol. 20, no. 2, pp. 404-418,
Mar./Apr. 1990.

[21) __ , "Fuzzy logic in control systems: Fuzzy logic controller-part
II," IEEE Trans. Syst., Man, Cybernetics, vol. 20, no. 2, pp. 419-435,

Anthony Angsana was born in Medan, Indonesia.
He received the B.S. degree and the M.S. degree
in electrical engineering in 1990 and 1992, respec
tively, from Ohio State University, Columbus, Ohio.
His areas of interest include fuzzy control, intelli
gent control, and scheduling flexible manufacturing
systems.

Kevin M. Passino for a photograph and biography, please see this issue,
p. 405.

Mar./Apr. 1990.

https://Alptek.in

