
l11ter11alio11al 

Journal of 
Control 

This article was downloaded by:[Ohio State University Libraries] 
On: 10 October 2007 
Access Details: [subscription number 769788402] 
Publisher: Taylor & Francis 
Informa Ltd Registered in England and Wales Registered Number: 1072954 
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK 

International Journal of Control 
Publication details, including instructions for authors and subscription information: 
http://www.informaworld.com/smpp/title~content=t713393989 

Decidability for a temporal logic used in discrete-event 
system analysis 
J. F. Knight a; K. M. Passino b 
a Department of Mathematics, University of Notre Dame, IN, U.S.A
b Department of Electrical and Computer Engineering, University of Notre Dame, IN, 
U.S.A 

Online Publication Date: 01 December 1990 
To cite this Article: Knight, J. F. and Passino, K. M. (1990) 'Decidability for a 
temporal logic used in discrete-event system analysis', International Journal of 
Control, 52:6, 1489 - 1506 
To link to this article: DOI: 10.1080/00207179008953606 
URL: http://dx.doi.org/10.1080/00207179008953606 

PLEASE SCROLL DOWN FOR ARTICLE 

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf 

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction, 
re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly 
forbidden. 

The publisher does not give any warranty express or implied or make any representation that the contents will be 
complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be 
independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, 
demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or 
arising out of the use of this material. 

http://www.informaworld.com/smpp/title~content=t713393989
http://dx.doi.org/10.1080/00207179008953606
http://www.informaworld.com/terms-and-conditions-of-access.pdf


INT. J. CONTROL, 1990, VOL. 52, NO. 6, 1489-1506 

Decidability for a temporal logic used in discrete-event system analysis 

J. F. KNIGHTt and K. M. PASSINOt 

The type of plant considered is one that can be modelled by a non-deterministic 
finite state machine P. The regulator is a deterministic finite state machine R. The 
closed loop system is formed by connecting P and Rina 'regulator configuration'. 
Formulae in a propositional temporal language are used to describe the behaviour 
of the closed-loop system. It is shown that there is a mechanical procedure which, 
for a given P and R, and a temporal formula 'I', will determine in a finite number 
of steps whether or not 'I' must be true. This 'decidability' result could be proven 
using other known results on temporal logic. The proof given here shows that the 
behaviour of the closed-loop system may safely be assumed to be ultimately peri
odic. Formulae of a given complexity, say n, will be true in all possible 'runs' of the 
system just in case they are true in all ultimately periodic runs, with the period and 
the onset of periodicity bounded by a certain function of n. A 'synthesis' result 
follows immediately from the decidability result. The interpretation of time is dis
cussed at some length. The results are illustrated on two discrete-event system 
examples. This paper is an expanded version of Knight and Passino (1987). 

1. Introduction 
We imagine a plant Pin which the information about current conditions and the 

mechanisms for control are limited, and there are significant unpredictable, uncontrol
lable forces at work. Time is discrete. We assume that the plant P acts as a non
deterministic finite state machine. The regulator will be a deterministic finite state 
machine. For simplicity, we consider only 'full-state feedback' regulator systems here, 
leaving 'output-feedback' systems for a later paper. Thus, the output of the plant, 
which is the input to the regulator, is the full plant state; and the output from the 
regulator, which is the input to the plant, is the full regulator state. Let X denote the 
set of plant states and Q denote the set of regulator states, both finite. The plant and 
regulator models have the following form: 

(a) P =(X, Q, b, X0), where b: Q x X - IP(X)- {0} is the plant transition func
tion, and XO !;;; X is the non-empty set of possible initial plant states; and 

(b) R = (Q, X, e, q0), where e: X x Q-Q is the regulator transition function, and 
q0 E Q is the initial regulator state. 

The closed-loop system is formed by connecting R and P in the regulator con
figuration shown in Fig. 1. The regulator system may be thought of as a non
deterministic 'generator', whose output is the output of the plant. There is no regulator 
system input ( 'reference input'). As the system runs it generates an infinite string of 
elements of X. Because of the non-deterministic nature of P there are, in general, many 
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Figure I. Regulator system. 

(up to 2M0 
) different infinite ·strings of plant states that could be generated by P 

together with R. We shall refer to these as R-allowable strings. (The reason for 
attaching R here is that we shall consider different possible regulators R for a 
fixed plant P.) 

As a simple example, consider a liquid-holding surge tank with sensors distin
guishing among five liquid levels (empty, low, normal, high, and full) and with a fill 
valve that can be closed, or open. Unpredictable users operate another valve to take 
liquid from the tank. In modelling this system we let X be the set of five distinguish
able liquid levels and let Q represent the two settings of the fill valve. When it is 
time to act, the regulator computes the next setting for the fill valve by applying the 
transition function~ to the current liquid level and the current setting of the fill valve. 
The fill valve influences the liquid level but does not determine it completely. The 
unpredictable users determine which one of the set of possible next water levels will 
actually be the next plant output. 

We use a propositional temporal language to describe the behaviour of the closed
loop system in terms of the plant and regulator states. The symbols of the language 
will be as follows: propositional variables (these will be the elements of Q u X), the 
usual propositional connectives (&, , , etc.), temporal 'modal' operators O (next 
time), D (for all times, now and later), ◊ (for some time now or later) and parentheses. 
The language is determined by the pair of sets Q and X. 

We assume that a fixed plant P is given. We shall define what it means for a 
temporal formula ({J to be satisfied by a pair (R, ex), where R is a possible regulator 
for P and ex is an R-allowable string. We say that R makes the formula ({J valid if 
(R, ex) satisfies ({J for all R-allowable strings ex. Saying that the regulator R makes the 
specification ({J valid is a way of saying that the regulator guarantees that the speci
fication will be met. 

Our first main result says that for any R-allowable string ex there is an 'ultimately 
periodic' string /J, also R-allowable, such that (R, ex) satisfies ({J if and only if (R, (3) 
does. Using this, we show that there is a mechanical procedure for deciding in a finite 
number of steps whether a given regulator R makes a given formula ({J valid. From 
this decidability result we obtain a synthesis result, which says that for a given formula 
({J we can effectively either find a regulator R making ({J valid, or else say for sure that 
no such R exists. Our decision procedure is not computationally practical, in general. 
A 'tableau' method would be more efficient (Manna and Wolper 1981). However, 
most specifications of real interest seem to have a simple form (low 'rank'), and if we 
carried out a certain part of the decision procedure we could then easily examine a 
whole family of low-rank specifications. 

Temporal logic has been widely utilized in computer science for such purposes as 
concurrent and sequential program verification, hardware verification and design, 
and computer communication protocol verification. A good introduction to temporal 
logic can be found in the work of Manna and Pnueli ( 1983), and a wide variety of 
temporal logics and their applications are discussed in Gaitan (1987) and the refer
ences therein. More recently, temporal logic has been utilized in a control theoretic 
framework (Fusaoka et al. 1983, Ostroff and Wonham 1985, Thistle and Wonham 
1986, Ostroff 1987, Knight and Passino 1987, Ostroff and Wonham 1987, and Passino 
and Antsaklis 1988). 
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The propositional temporal language we use is like that in Manna and Wolper 
(I 981) except that we do not include the 'until' operator. Manna and Wolper obtain 
decidability and synthesis results using the method of semantic tableaus. Our proof 
is closer in spirit to the work of Buchi (1962). Thistle and Wonham (1986) use a 
language with a slightly different syntax. They also allow a more general sort of plant 
and regulator than we do (in particular, the set of regulator states may be infinite). 
They do not prove decidability. Instead, they describe a system of rules of proof, and 
illustrate its use by proving closed-loop specification formulae from axioms for the 
plant and controller in various specific examples. Our work is also related to recent 
work by Ostroff (1987), who extended Thistle and Wonham's work and obtained 
computationally practical decision procedures for a special class of formulae in his 
language. In our treatment, the plant P and the regulator R are incorporated in a 
natural way into the semantics of the language. Our decidability proof, based on the 
fact that an arbitrary string can be replaced by an ultimately periodic one, seems to 
be new. It is completely elementary and self-contained. 

In § 2 we say more about our model and discuss the way that time advances. In 
§ 3 we describe precisely the syntax and semantics of our language and we define a 
notion of 'rank', which quantifies the complexity of a temporal formula. In § 4 we 
give the decidability and synthesis results. Section 5 contains examples of regulator 
system analysis and synthesis, illustrating the various notions and results from the 
earlier sections. 

2. Modelling 
Recall that in our model the regulator system is a pair of finite state machines. 
Let w denote the set of natural numbers. A 'run' of the regulator system yields 

an infinite sequence of pairs (q,, x,),.,,,, where q, is the regulator state at step i and x, 
is the state of the plant at step i. Formally, a run is defined to be a sequence of pairs 
((q,, x,)),.,,, such that q0 is the initial state of the regulator, x0 E X 0 is a possible initial 
state for the plant, and for each i, q1+ 1 = ((x,, q,), and x,+ 1 E D(((x,, q,), x,). The plant 
output sequence derived from the run is (x,),.,,,. Note that if we know~ and q0 , then 
we can recover the run from the output sequence. 

There is a slight asymmetry in the definition of 'run'. If we wished, we could have 
thought of our plant transition function differently, so that X;+ 1 would be the value 
of this function at (q,, x,) rather than at (q1+ 1 , x;). In our formulation, if x 1 is the input 
to the regulator, what comes out will be q1+ 1 . If q,+ 1 is the input to the plant, what 
comes out will be X;+ 1 . We can compute q,+ 1 as soon as we know x 1 and q1, but in 
general we have to wait to find out what X;+ 1 will be. 

In our model of the regulator system, it is clear how time advances. 'Next time' 
means 'for the next pair of states (q1, x;)' (in a run produced by the pair of finite state 
machines). We shall define satisfaction of temporal formulae in terms of our model. 
Suppose that we have in mind a real plant and regulator. Our hope is that the 
temporal formulae say something meaningful about the real system. This means that 
when we choose a pair of finite state machines to serve as a model we have to think 
about the way time advances in the real system. We must try to answer the following 
questions, if we are to arrive at a useful model. 

(a) When does the regulator act? 

(b) When do we measure the resulting plant state? 

There must be some mechanism in the plant that provides a measurement of the 
current plant state x1 and triggers the computation of the next regulator state q,+ 1 . 
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We consider briefly here two versions of the surge tank example, which lead to 
different models. (We shall discuss these surge tanks more fully in § 5.) 

Schedule I 

Suppose that there is a clock in the plant, and each hour, on the hour, there is a 
fresh reading of the liquid level, after which the regulator adjusts the fill valve to the 
position it will maintain during the next hour. 

Schedule 2 
Suppose that regulator activity is tied to changes in the liquid level. Whenever 

the liquid goes from one level to another a device in the plant alerts the regulator. 
The regulator then adjusts the fill valve to the position it will maintain until the 
liquid level changes again. 

For the surge tank that operates on Schedule I, 'next time' means 'next hour'. 
For the surge tank that operates on Schedule 2, 'next time' means 'next time some
thing happens'. Not surprisingly, the two versions of the surge tank give rise to 
different models. For Schedule I, the plant transition function would certainly allow 
the possibility that if the tank is currently high, and the regulator closes the fill valve, 
then the tank will next be high again. For the surge tank operating on Schedule 2, 
the plant transition function would not allow this. 

We could have more complicated schedules. There might be one reading and 
regulator adjustment per minute during certain peak hours and one per hour the rest 
of the day. Here the model for the plant would require more states. The plant 
transition might indicate that the plant state '2 a.m. and empty', could be followed, 
if the fill valve has been opened, by '3 a.m. and full', while '7.02 a.m. and empty', with 
the fill valve open, could not be followed by '7.03 a.m. and full'. Here 'next time' 
means 'next minute' for part of the day and 'next hour' the rest of the day. Always 
'next time' means 'the next time the regulator has acted and the resulting plant state 
has been recorded'. 

3. Formal language 
In this section we describe precisely the syntax and semantics of our propositional 

temporal language. Actually there are different languages for different plants or, more 
precisely, for different pairs of sets X and Q. As we said earlier, the symbols are of 
the following forms. First, there are the propositional variables, which we are taking 
to be the elements of QuX. Next, there are the usual logical connectives, (not), & 
(and), v (or), -> (implies), and <-> (if and only if). Then there are the temporal 
operators 0, D and ◊. Finally, there are pare.ntheses. Now, we tum to the syntax. 

The rules for forming formulae are as follows. 

(a) A single propositional varibable q for q e Q, or x for x e X is a formula. 

(b) If q, is a formula, then so is , q,. 

(c) If q, and 1/J are formulae, then so are (q,&i/J), (q, v 1/J), (q,->i/J) and (q,<->i/1). 

(d) If q, is a formula, then so are O q>, □ q>, and ◊ q,. 

(e) Nothing is a formula unless it can be obtained by finitely many applications 
of (a)-(d) above. 
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The temporal formulae can, for instance, be used to quantify various control
theoretic design objectives (see, for instance, Fusaoka et al. 1983). Let X 5 !;;; X. 
Let <p, = (x, v x2 v ... v x.) where X; e X,. Let <p0 = (x01 v x02 v ... v x0.) where 
the possible initial plant states are x01 , for I .,; i.,; n. Let Qb c Q and <pb = 
(q 1 v q2 v ... v q.) where q; e Qb. The formula <p0-+ ◊<p, can be thought of as 
characterizing a 'reachability' requirement. The formulae 

(i) <p 0 -+ ◊ D <p,, 

(ii) <p0 -+ □ ◊ <p,, and 

(iii) D 'Pb-+ □ <p, 

characterize properties that can be thought of as analogous to 'stability' requirements 
in conventional control theory. The first says that if the plant starts in one of its 
initial states, then after some point in time the state will always be in X,. The second 
says that if the plant starts in one of its initial states it will visit X, infinitely often. 
The third states that if the plant inputs always remain in one set Qb then the plant 
states will always remain in set X,. 

Recall the example of the surge tank. Let X have elements x 1, ..• , x5, representing 
levels of liquid in the tank (from empty to full). Let Q have elements q0 and q 1 , 

indicating that the fill valve is closed, open, respectively. Here are some sample 
formulae of the language. 

(]) X5-+ ◊(X4 V X3) 

(2) x 3 -+D◊x3 

(3) D((x2 v x4 )-+ Ox3) 

(4) (D(x 1 -+ Oqi)-+ D(x 1 -+ ◊ x2 )) 

Formula I says that if the tank is initially full, then eventually it will become high or 
normal. Formula 2 says that if the liquid level is initially normal it will be normal 
infinitely often (it may in addition be infinitely often in each of the other states). 
Formula 3 says that any time the level is low or high, it will next be normal. Formula 
4 says that if the fill valve opens whenever the tank is empty, then each time the tank 
becomes empty, it will eventually reach low again. 

We next define the rank of a formula <p, denoted by r(<p). The definition proceeds 
by induction on <p. 

(a) r(<p) = 0, if <p consists of a single propositional variable, 

(b) r(, rp) = r(rp), 

(c) r((rp&tf,)) = r((rp v if,))= r((rp-+tf,)) = r((rp<->tf,)) = sup {r(<p), r(tf,)}, 

(d) r(Orp)=r(Drp)=r(◊rp)=r(rp)+ I 

The formulae characterizing reachability and stability and the four sample formu
lae for the surge tank given above all have a rank less than or equal to two, and, in 
fact, the specifications that we have thought of in various natural examples all seem 
to have rank one or two. The temporal operators ◊ and D resemble the quantifiers 
3 and V from first-order predicate logic in some respects. For predictate logic we can 
put any formula in 'prenex normal form'. That is, we can find an equivalent formula 
with all the quantifiers at the front. Then the number of alternations of quantifiers 
provides a useful measure of complexity. There is nothing like prenex normal form 
for temporal logic. In fact, what we have expressed by Formula 3 above could not 
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be expressed by any formula in which all the temporal operators occurred at the 
front. Our notion of rank measures the complexity of a formula by counting the 
number of nested temporal operators without bringing them to the front. 

Rank does not go up when we form complicated boolean combinations (putting 
formulae together with ,, &, v, ->,and<-->). The formulae of rank Oare the ones 
with no occurrences of temporal operators. Let B0 be the set of all formulae of rank 
0. If n > 0 and B. is the set of formulae of the forms Ocp, □ cp and ◊cp, where cp has 
rank n - I, then all formulae of rank n are obtained as boolean combinations of 
formulae from B. and formulae of lower rank. 

Above we described the syntax of the language; we now turn to the semantics. It 
will be helpful to introduce some notation. For any set Z, let zw denote the set of all 
infinite strings of elements of Z. (Formally, these are sequences of length w.) If 
z e zw we shall write z, for the ith term in the sequence (an element of Z). We let z' 
denote the result of dropping the first i terms from z (this is an element of zw). The 
plant P = (X, Q, b, X0 ) is fixed. Let R be a regulator, with initial state q0 and transition 
function ~- If a e xw, a is said to be R-allowable if it is the output sequence derived 
from a run of the regulator system that consists of R and P. 

Let a be an R-allowable string, and let ((u,, a;)),ew be the corresponding run. (As 
we mentioned earlier, we can recover the run from the output sequence.) Let qR·•·• 
denote the state u, reached by R after i steps in the run from which a is derived. 
When we define satisfaction we shall consider families of regulators, all having the 
same transition function as R, but with different initial states. Let R"·' denote the 
regulator whose transition function is the same as that of R and whose initial state 
is qR·•·1. Note that R•-0 is just R. 

We fix the plant P. This fixes the sets Q and X. If R is a regulator for P, and a is 
an R-allowable string, we shall use the notation (R, a) F cp to indicate that the formula 
cp is satisfied by (R, a). The definition of satisfaction proceeds by induction on <(>. 

(i) (R, a) F p if p e Q and p = q0 or if p e X and p = a0 , 

(ii) (R, a) F , cp if it is not the case that (R, a) Fcp, 

(iii) (R, a) F(cp&,jl) if (R, a) Fcp and (R, a) F,jl, 

(iv) (R,a)F(cp v ,jl) if(R,a)Fcp or (R,a)F,jl, 

(v) (R,a)F(cp-+,jl) if(R,a)Fcp implies (R,a)F,jl, 

(vi) (R, a) F ( cp<->i/J) provided that (R, a) F cp if and only if (R, a) F,jl, 

(vii) (R, a) F O cp if (R"·', a') Fcp, 

(viii) (R, a) F□ cp if for all i;, 0, (R"·', a') Fcp, 

(ix) (R, a) F◊ (fl if for some i;, 0, (R"·', a') Fcp. 

From the definition of satisfaction it is clear that for any formula cp, ◊cp is 
equivalent to ,(D(,cp)), so we could have omitted ◊ from the language. Similarly, 
we could have omitted v, ->, and ...... 

An equivalence relation on a set Z is a two-place relation~ ( on Z) that is reflexive, 
symmetric, and transitive. If z e Z, then the ~ -equivalence class of z is the set 
{ye Z: y ~ z}. We may speak of ~-equivalence classes in general (without naming 
elements). We define a family of equivalence relations ~ n.R on the set of R-allowable 
strings, such that ~ n.R-equivalence implies satisfaction of the same formulae of rank 
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at most n. Suppose that IX and Pare R-allowable. Then 

(a) IX~ o.RP if IX0 = Po, and 

(b) IX~ n+ 1.RP if 

(i) IX~ n.RP, 

(ii) qR·•·' =qR.P.I and IX 1 ~n,R•·•P1
, and 

(iii) for all i there exists a j (and for all j there exists an i) such that 
qR,cr,i = and ,y_i ......, n,Ra,ipi.qR./J,j 

Note that IX ~o.RP if and only if IX and P have the same first symbol; IX~ ,.RP if 
and only if IX and p have the same first symbol and the same second symbol, and the 
set of pairs representing a current regulator state and plant state is the same when 
the regulator R is applied to IX and to p. It is easy to see that if m < n and IX ~ n.R P, 
then IX ~m.RP- In general, each ~mxclass will contain many ~.xclasses. For ex-
ample, consider the strings IX= x x,x,x x x x and P = x x x x x x .... Sup-...

2 2 3 3 3 2 1 2 3 3 3 

pose that these are both R-allowable, and let ,(x;, q0 ) = q0 for i = I, 2, 3 (where , is 
the transition function for R). Then IX~ o,RP and IX~ i.RP, but not IX~ 2 ,RP· 

4. Decidability and synthesis results 
The decidability and synthesis results are given in this section. The proofs are 

based on three lemmas. The first lemma says that strings that are ~ n,R-equivalent 
will satisfy the same formulae of rank at most n. 

Lemma I 
Let <p be a formula such that r(cp),,; n, and let IX and pbe R-allowable strings such 

that IX~ n,RP. Then (R, 1X) F <p ifand only if (R, Jl) F <p. 

Proof 

We use induction on n. Note that for any regulator Rand any R-allowable strings 
IX, p, the set of formulae <p such that (R, 1X) F <p if and only if (R, P) F <p is closed under 
boolean combinations. Hence, the only rank n formulae we really need to look at are 
the basic ones; that is, the elements of B •. Moreover, by symmetry it is enough to 
show that if IX~ n,RP and (R, 1X) F <p, where <p E Bn, then (R, P) F <p. 

We start with n = 0. Suppose C< ~o.RP and (R, C<) F p, where p E XuQ. Ifp EX, then 
by the definition of satisfaction, p = C<0. By ~ 0xequivalence, IX0 = Po, so (R, P) F p. If 
p E Q, then by the definition of satisfaction, p = q0 , and then (R, P) F p. Therefore the 
lemma holds for n = 0. Supposing that the lemma holds for n, consider n + I. Let <p 
have rank n and suppose that IX ~n+ I.RP· If (R, 1X) F Ocp, then by the definition of 
satisfaction,(R"· 1, C< 1) F <p. By ~n+i.R-equivalence,qR·•· 1= qR.P.I and1X 1~,.R··•P 1. Then 
by the induction hypothesis, we have (RP- 1

, P') F <p, so (R, P) F Ocp. Let(R, 1X) F □ cp. By 
the definition of satisfaction, for all i ;;, 0, (R".i, C<i) F <p. By ~" +1 xequivalence, for each 
j;;, 0 there is some i;,, 0 such that qR••• i = qR.P.i and C<; ~" R'·',pi. Then by the induction 
hypothesis, ( RP-i, pi) F<p, so (R, P) F □ cp. Finally, let (R, ;) F O <p. There is some i ;;, O 
such that (R"·', 1X') Fcp. Then for some j;;, 0, qR •• ,; = qR,P.i and C<i ~ n.R'·'pi, so by the 
induction hypothesis, (RP-i, pi) Fcp. Therefore, (R, /3) F O cp. This completes the proof. 

□ 
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A string a e X"', is said to be ultimately periodic, with period n2 and onset of 
periodicity n1, if a has the form v·,·,·,· ... , where v and r are finite strings of 
lengths n1 and n2 , respectively. We say that a is determined by the pair (v, r). Then v 
gives the transient behaviour and r gives the behaviour during one period. (It is 
possible for different pairs (v, r) to determine the same a. If we wished, we could avoid 
this by choosing v and r to minimize first n1 and then n2 .) For ultimately periodic 
strings it is relatively easy to answer questions about satisfaction. 

Lemma 2 
We can effectively decide, given a formula <p, a regulator R and a pair of finite 

strings (v, r) determining a string a e X"', whether (R, a) F <p. 

Proof 
First of all, note that we can tell whether the ultimately periodic string a deter

mined by (v, r) is R-allowable. Now we proceed by induction on formulae <p, describ
ing a method for deciding whether (R, a) F <p if a is an R-allowable string determined 
by (v, r). We start with <p of the form p for p e Xu Q. Let a be determined by (v, r). 
If p e X, then (R, a) F p if and only if p = a0 , where a0 is the first symbol of v I\ r. If 
p e Q, then (R, a) F p if and only if p = q0 . There is no difficulty in deciding satisfaction 
for boolean combinations of formulae that we can deal with, so let us turn to the 
temporal operators. 

Suppose that we have a procedure for deciding satisfaction for <p. We must say 
how to deal with O<p, □ <p and ◊<p; we consider O<p first. If a is the ultimately 
periodic string determined by (v, r), then et: 1 is also ultimately periodic, determined 
by (vl, r), where v1 is the result of dropping the first term of v if v # e and of r if v = 
e (c denotes the empty string). We have qR·•· 

1 = ~(a0 , q 0 ). By the definition of satisfac
tion, ( R, a) F O cp if and only if (R"· 1, a1

) F <p, and we know how to decide this. Next, 
consider □ <p. Let m = n1+ IQI • n2 . By the definition of satisfaction, (R, a) F □ <p if and 
only if for all i;;, 0, (R"·', a') F <p. For each i;;, 0, there is some j < m such that 
qR·•·• = qR ••• j and a'= aj, so it is enough to check that (R"·j, aj) F <p for all j < m. In 
terms of R and (v, r), we can figure out what qR.o,j is, and we can also find a variant 
,J of v such that (~, r) determines aj. By our induction hypothesis, we can decide 
whether <pis satisfied by the pairs (R•·i, aj) for allj < m. Finally, consider ◊<p. Letting 
m be as above, we have (R, a) F ◊<p if and only if(R•·i, aj) F cp for somej < m, and we 
can check this. This completes the proof of the lemma. □ 

If R is a regulator and <p is a formula, then R is said to make <p valid if (R, a) F <p 
for all R-allowable strings a. There may in general be 2M0 R-allowable strings. Only 
countably many are ultimately periodic. The next lemma is our first main result. It 
implies that to decide whether R makes <p valid, we need not look at all R-allowable 
a, or even at all ultimately periodic a. It is enough to consider a particular finite 
collection with bounded period and onset of periodicity. 

Lemma 3 
For any regulator R, any new, and any R-allowable string a, there is an ultimately 

periodic string fJ such that a~ n,RfJ. Moreover, given n (and IQI and IXI), we can 
compute bounds on the onset and period. 



Decidability using temporal logic in system analysis 1497 

Proof 

We shall define L. and K. for new such that K. is an upper bound on the number 
of ~ •.R-classes (for any regulator R), and for any R-allowable string CL, there exist v 
and r such that v'r has length at most L. and (v, r) determines an R-allowable 
string P such that P ~ .,RCL. For n = 0, we can take K0 to be IXI (since the ~ 0 xclass 
of CL is determined by the first symbol of CL). We must say what L0 is. For any R
allowable string CL, there exist i <j,;;; IQI • IXI such that qR·•·• = qR.o.j and CL;= CLj. Let 
CL t k denote the finite string consisting of the first k symbols of rL If v = CL ti and 
u'r = CL tj, then (D, r) determines an ultimately periodic R-allowable p such that 
P ~o.RCL. Therefore, we can take L0 to be IQI • IX!. 

Suppose that for k,;;; n, the lemma holds and we have determined K, and L •. If 
CL is R-allowable, we write q·• for the ~ k.R··•-class of CL'. We may refer to the pair 
(qR·•·•, q·j) as the k-class of the term CL;. Note that for two R-allowable strings CL and 
p, CL ~•+t.RP if and only if the following three conditions hold: 

(a) c:,o = ce,o 

(b) c:· 1 = C!·1, and 

(c) {(qR,o,i, C:·'): i E w} = {(qR,P,i, C!·'): i E w}. 

Condition (a) says that CL~ •.RP, and this implies that qR·•· 1 = qR.P, 1. If 

qR·•· 1 = qR,P, 1, then condition (b) says that CL 
1 ~" R'·' p1. Condition (c) says that for each 

i there is some j (and also for each j there is· some i) such that qR·•·• = qR.P,i and 
CL'~ n,R'·'pi. This analysis shows that we can take K.+ 1 to be K; • 2', where r = 

K. • IQI- I. 
Next, we describe a method for finding an ultimately periodic string p that is 

~ •+ t ,R-equivalent to a given string CL. Having done this, we shall be able to say what 
L.+ 1 is. There are at most IQI •K. different n-classes. We mark any term CL; such that 
there is no j < i with CL, and CL; representing the same n-classes. It may be that some 
n-classes only occur finitely many times, but at least one n-class occurs infinitely often 
in CL. Let CL, be the first term representing an n-class that occurs infinitely often. Of 
course, CL, is marked. Let CL, be the first term, after all of the marked ones, such that 
CL, represents the same n-class as CL,. 

If we choose v and r such that v = CL tr, u' r = CL ts, and let y be the ultimately 
periodic string determined by (u, r), we could show (with effort) that y ~•+t,R/3. 
However, u'r might be very long. We now reduce the length. Suppose that we have 
CL; and CLj representing the same n-class, where i <j < s, and for all k such that i,;;; k ,;;;j, 
CL• is not marked. Then we close up the interval, leaving out of v'r all terms CL• for 
i < k ,;;;j. When we have closed up as much as possible in this way, v'r will consist 
of at most IQI •K. marked terms plus at most IQI •K. additional symbols after each 
marked one. We take L.+ 1 to be IQI •K. +(IQI •K.)2

. 

Let p be the ultimately periodic string determined by (v, r) (after the shortening 
process). All that remains to be done is to prove that CL ~.+i.RP· Each term Pm of p 
corresponds to a particular term CL, from CL (one that was included in v or r). 

Proposition 

If Pm corresponds to CL;, then (I) qR·•·• = qR,P,m, and (2) for each k,;;; n 
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Suppose for the moment that the proposition is true. Then we can easily show 
that /3 ~•+ i.Roc. Recall the three conditions above. Condition (a) will hold because 
/3 0 corresponds to oc0 . If we only marked one term, then oc is constant (it consists of 
infinitely many repetitions of a single symbol) and /3 = oc. If there is more than one 
term marked, then we saved oc 1 (whether or not we marked it) and /3 1 corresponds 
to oc 1 ; therefore condition (b) holds. Condition (c) holds because we marked represent
atives of all n-classes in oc. Therefore, if the claim is true, then /3 ~.+ I.Roe, and to 
complete the proof of the lemma, all that remains is to prove the proposition. 

Proof 
Suppose f3m corresponds to oc, and /Jm+ 1 corresponds to oc;. There are three cases: 

(i) j = i + I, (ii) j > i + I, and (iii) j < i. Case (ii) indicates that we closed up the interval 
between oc, and oc;. Then oc, and oc;- 1 represent the same (n - I) class. Case (iii) indicates 
that oc, is the last term of r and OC; is the first (i.e. i =sand j = r). Then oc,+ 1 and oc; 
represent the same n-class. 

It is easy to check that if /Jm corresponds to oc,, then qR·•·• = qR,P.m, and the terms 
f3m ar.d oc, match. Therefore we have part (1) of the proposition in general, and part 
(2) for k = 0. We continue with the proof of part (2) by induction on k. We show that 
if (2) holds for k, where k < n, then it also holds for k + I. Let /Jm correspond to oc,. 
To show that /Jm and oc, represent the same k + I-class, we verify the three conditions 
given earlier. By the induction hypothesis, /Jm and oc, represent the same k-class. This 
is condition (a). 

To verify the condition (b), we consider f3m+ 1 and show that in the three cases (i), 
(ii) and (iii) above, Pm+ 1 and oc1+ 1 represent the same k-class. Suppose /Jm+ 1 corre
sponds to oc;. By the Induction Hypothesis, f3m+ 1 and OC; represent the same k-class, 
so we will be done if we can show that oc; and oc1+1 represent the same k-class; this is 
trivially true if j = i + I. If j > i + I, then we are in case (ii) described above, and 
oc, +1 and oc; represent the same n - I-class. Since k .;;; n - I, it follows that oc, +1 and oc; 
represent the same k-class. Finally, if j < i, we are in case (iii), and again oc1+ 1 and oc; 
represent the same n-class. We have shown that in all cases f3m+ 1 and oc1+ 1 represent 
the same k-class. 

To prove the condition (c) we must show that the k-classes represented by /Jm· for 
m' > m are the same as the k-classes represented by oc,. for i';?: i. First, take i';?: i. If r 
includes some oc; representing the same k-class as oc,, then we have /Jm· representing 
this k-class for arbitrarily large m'. Suppose that r does not include any such oc;. It 
will follow that the k-class of oc, is represented only finitely many times in oc; the reason 
for this is as follows. If the k-class were represented infinitely often, then some n-class 
in the k-class would be represented infinitely often. Let oc, .. be the first representative 
of this k-class. By our choice of r, we have r.;;; i", and the k-class is represented in r, 
a contradiction. Since the k-class of oc,. is represented only finitely many times in oc, 
there is a largest j such that oc; represents the k-class. If j;?: r, then for each of the 
infinitely many r' > r such that oc,. represents the same n-class as oc,, there would be 
j';?: r' representing the same n - I-class, and, hence, the same k-class, as oc;, This 
cannot happen, so we have j < r. 

Since OC; is the last representative of its k-class it is also the last representative of 
its (n - 1)-class. Then it is easy to check that OC;+ 1 is the first representative of its n
class. This means that OC;+ 1 is marked and corresponds to some (first) element of /3, 
which we call /Jm· + 1 . (There cannot be more than one element of f3 corresponding to 
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ai+ 1 unless j + 1 = r.) The symbol /Jm• + 1 has an immediate predecessor, which we call 
/Jm·· We have i ~ i' ~j <j + 1 ~ r, and /Jm· corresponds to some ai. where i ~j' ~j (see 
Fig. 2). 

Cl.i Cl.i' Cl.j, Cl.j Cl.l+l 
j j j I j ! I 1 

~ ~ ,J 
~m ~m' ~m'+l 

Ct.r 

j I 

Figure 2. 

We may be lucky and have j' = j. If j' < j, then we close up the interval between 
ai' and ai+ 1 . Then ai, and IY.i represent the same 11-class, and, hence, the same k-class. 

Now, take m' ~ m. We must find i' ~ i such that /J,., and o:r represent the same k
class. Let Pm· correspond to ai. Then /Jm· and ai represent the same k-class. If j ~ i, 
then we are done. Suppose j < i. This means that /Jm and /Jm· lie in different copies of 
r, and r ~j < i < s. Since o:, and as represent the same n-class, there must be an i1 ~ s 
such that aJ and ai, represent the same k-class (the same (n - 1 )-class, in fact), We have 
now verified the condition (c), completing the proof that if /Jm corresponds too:;, then 
the k + I-classes match. This was all that remained to prove to lemma. □ 

Theorem I: Decidability 

Given a plant P, a formula <p, and a regulator R for P, we can effectively decide 
whether an R makes <p valid. 

Proof 

The decision procedure is as follows. First, compute r(<p): say this is 11. Next, list 
the pairs (u, t) such that 

(a) u·r has length at most L0 (where L. is as in the proof of Lemma 3), and 

(b) the ultimately periodic string determined by (u, r) is R-aJlowable. 

Then test whether (R,a) I= <p for the strings o: determined by the pairs on the list, using 
the procedure from Lemma 2. By Lemmas 1 and 3, R makes <p valid if and only if 
(R, rx) l= <p for these strings. 

Recall that P = (X, Q, b, X 0 ). Suppose we wish to meet a particular specification 
<p. Theorem I says that for a given regulator R = (Q, X, t q0) we can determine 
whether R makes <p valid. If R does not make q> valid, then we may try a different 
regulator. In fact, since there are only finitely many regulators altogether (differing 
only in transition function and initial state), we can try them all. By doing so, we will 
either find one that works or else determine that they all fail. We have established 
the following. 

Theorem 2: Synthesis 

Given a formula <p, we can effectivcely either find a regulator R making <p valid, 
or else say for that that no such R exists. 

The theorems above say that we can, in principle, do a really thorough job of 
regulator system analysis and also mechanically carry out regulator synthesis for the 
type of plant that we have described. 
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S. Examples 
In this section we describe in detail some examples and determine what the 

results of the previous section mean for these examples. The first two examples, from 
chemical process control, are versions of the surge tank described briefly in§§ I and 
2. In both versions the surge tank, shown in Fig. 3, has sensors distinguishing five 
liquid levels (empty, low, normal, high, and full). The regulator can only open or close 
a fill valve. Users operate an empty valve to take liquid from the tank. 

Fill Valve 

Nonnal 

Liquid 
Af'Level 

lDw
Empty ___...... 

Figure 3. Surge tank. 

The first version of the surge tank follows the first schedule described in § 2. Once 
an hour there is a reading of the liquid level, followed by an adjustment of the fill 
valve. We assume that in one hour, if the empty valve remains closed and the fill 
valve is open the liquid level will rise just one level, except that if the tank is full, the 
level cannot rise. With both fill and empty valves open, the liquid level stays constant, 
except that if the fill valve is open, so that liquid is ·coming in, the level will be read 
as low rather than empty, even when the depth of the liquid is essentially zero. 

The set of plant states is X = {xi, x2 , x 3 , x4 , x 5 }, where x1 is the ith liquid level, 
from lowest to highest. The set of regulator states is Q ={q0 , q1 }, where q0 and q1 

stand for 'fill valve closed', and 'fill valve open', respectively. The non-deterministic 
finite state machine representing the plant is P = (X, Q, 8, X 0), where the set of initial 
states is XO ={x1 , x 3 } and the transition function 8 may be read from the graph in 
Fig. 4(a). 

The graph has nodes representing the plant states. The arrows, labelled by regu
lator states q, that emanate from a node x lead to the possible next states; i.e. the 
elements of cl(x, q). For example, if the plant state is x3 (normal liquid level) and the 

ql '\i qi 

Iii <\) 

q, 

'\ 

'b 'b 

(a) (b) 

Figure 4. Surge tank state transition graphs. 
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regulator responds with q1 (fill valve open), then by the next hour the plant state may 
still be x3 (if, for instance, users are drawing liquid from the tank), or the output may 
be x4 (high). 

One possible regulator is R =(Q, X, ~, q0 ), where the initial state is q0 (fill valve 
closed), and the transition function ~ is given in Fig. 5. 

Figure 5. Regulator state transition graph 

This graph is interpreted much like the one for the plant transition function. The 
nodes represent the regulator states. The arrow that comes from node q and is labelled 
by the plant state x leads to ~(x, q), the next regulator state. For example, if the 
regulator state has been q0 (fill valve closed) and the plant has been in state x 2 (low), 
then the next regulator state is q1 (fill valve open). 

Let us see what our results mean for rank I formulae. By Lemma 3, for any R
allowable string ex there is some R-allowable string fJ ~ I.Rex such that fJ is ultimately 
periodic, and by Lemma I, for any rank I formula qi, (R, ex) F qi ifand only if (R, /J) F cp. 
The R-allowable string ex= x 1x 2 x 3 x 4 x 3 x 3 x 4 x 3 x 3 x 3 x 4 x 3 ... , with the symbol 
x3 repeating, once, twice, three times, etc., is not ultimately periodic. If /3 = 
x 1x 2 x 3 x 4 x 3 x 4 x 3 x 4 x 3 ... , then fJ is ultimately periodic-it is determined by the 
pair (u,r), where v=x1x2 and r=x3 x4 . It is easy to see that fl~ 1,Rex. 

A list of pairs is said to be n-complete (for R) if each R-allowablc string is ~n,R
equivalent to the string determined by one of the pairs (v, r) on the list. The proof of 
Lemma 3 tells us that we can obtain an n-complete list by looking at all pairs (v, r) 
such that v'r has length at most L., and taking ihose which determine R-allowable 
strings. Since L1 = 110, even the I-complete list obtained by this method would be 
quite long, and some of the pairs on the list would be complicated. Here is a simpler 
list which is !-complete: (x1 , x 2), (x 1 x 2 , x 3), (x 1x 2 , x 3 x 4 ), (x 1x 2 x 3 x 4 , x 4 x 3 ), 

(X1X2X3, X4), (&, X3), (x3, X3X4), (X3X3, X4), (X3X4, X3), (x3, X4), (X3X4X3X3, X4), 

(e, x3 x4 ). This list has the feature that distinct pairs determine ~ 1,R-inequivalent 
strings. 

One particular closed-loop specification that we should like to meet is the formula, 
qi= x3 ➔ □ (,(x 1 v x 5 )), which says that if the liquid level is normal initially, then it 
will never be empty or full. Note that r(qi) = I. Therefore, to decide whether the 
regulator R makes qi valid it is enough to decide whether (R, a) F qi for the strings a 

determined by the 12 pairs on the I-complete list above. Suppose (v, r) determines 
the string ex. Let n 1 be the length of v, let n2 be the length of r, and let m = n1 + 2n2 . 

Looking at the form of qi, and using the definition of satisfaction and the proof of 
Lemma 2, we see that (R, ex) F qi if and only if for each i ;;, 0, (R•·', ex") F , (x 1 v x5 ) if and 
only if for each i,;;; m, (R•·', ex") F ,(x1 v x5 ) for all i,;;; m if and only if for each i,;;; m, 
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neither (R"·0 
, IX;) Fx1 nor (R"·', IX') Fx5. For all the pairs (u, r) above, m,;; 8, and there 

are no occurrences of x 1 or x5 . Hence, R makes tp valid. 
Another specification is the formula i/J = (x 1 -+ ◊ □ (x3 v x4 )), which says that if 

the liquid level is initially empty, then after some point in time the level will always 
be normal or high. Note that r(i/J) = 2. Certain strings which are ~ 1xequivalent are 
not ~ 2 .R-equivalent. For example, the string determined by (x3 x3 , x4 ) is ~ 1xequiv
alent, but not ~ 2xequivalent, to the string determined by (x3 x3 x3 , x4 ). The strings 
determined by (x3 x 3 , x4 x 3 x 3 ) and (x3 x 3 x 3 , x4 x3 x 3 ) are both ~ 1xequivalent to the 
one determined by (x3 , x 3 x 4 ), but no two of these three are ~ 2 .R-equivalent. We 
could form a minimal 2-complete list, starting with the members of the I-complete 
list above, and adding, for each of these pairs, just enough new pairs to represent all 
of the ~ 2.R-classes in the ~i .R-class. In general, using higher-rank formulae, we can 
describe more subtle features of plant behaviour, and for larger n, we should not be 
surprised that even the shortest and simplest n-complete lists become unmanageable. 

The regulator R makes the formula 1/1 = x 1 -+ ◊ □ (x 3 v x 4 ) valid if and only if 
(R, IX) F i/J for all IX determined by the pairs on a 2-complete list. By the definition of 
satisfaction, and the proof of Lemma 2, we see that if IX is an R-allowable string 
determined by the pair (u, r), then (R, IX) F i/J if and only if either the first symbol of IX 

is not x 1 or else (R, IX) F ◊ D(x3 v x4 ), and this holds if and only if either the first 
symbol of u'r is not x 1 or else r has no other symbols than x 3 and x 4 . When we 
come to the pair (x 1 , x2 ), we find that for the string IX= x 1x 2 x 2 x 2 x 2 ... , determined 
by this pair (R, 1X) fails to satisfy i/J. The string IX represents a possible output string 
for the system in which the specification is not met. 

We have seen that the regulator R above does not make the formula i/J = 
x 1 -+ ◊ D (x3 v x4 ) valid. If we apply the method of Theorem 2 (testing all possible 
regulators), we shall either find a regulator that makes i/J valid, or else know for sure 
that no regulator does this. Even for this relatively simple example that mechanical 
procedure is long. Allowing ourselves to think about the reason for the failure of the 
first regulator, we arrive more quickly at the conclusion that no regulator works. 
Consider the various possibilities for the initial regulator state and for the value of 
the regulator transition function on (x 1 , q0 ), (x 1 , qi), (x2 , q0 ), and (x2 , q2 ). With just 
this information, we can check that for each regulator R', at least one of the following 
pairs determines an R'-allowable string: (xi, x 2 ), (e, xi), (x 1xi, x2 ), (x 1, x 1x 2 ). If pis 
an R'-allowable string determined by one of these pairs, then, by the reasoning above, 
(R', P) fails to satisfy i/J. 

As another regulator synthesis example suppose that we wish to satisfy tp' = 
x 1 -> ◊ D(x2 v x 3 ), i.e. 'if initially the tank is empty, then eventually there will be a 
time such that from then on, the liquid level will be low or normal'. This rank 2 
formula is invalid for the regulator R above, with a counter-example determined by 
the pair (x 1x 2 x 3 x 4 , x 4 ). Theorem 2 says that an exhaustive search will produce a 
regulator to make tp' valid if one exists. As a synthesis heuristic, we examine some of 
the (u, r) pairs used in the above analysis. For the string (x 1x 2 x 3 x4 , x 4 ), the sequence 
of associated states is q0 q1q1q1q0 q0 q0 q0 .... With this and the plant model P, we see 
that if we changed ~ so that the regulator responsed to the plant output symbol x3 
with a q0 rather than a q1 , the specification might be met. Name this new regulator 
transition function ~• and the corresponding regulator R'. For R' with initial state q0 

as above, some of the (u, r) pairs representing different ~ 2.R-equivalence classes are: 
(X1, X2), (X1, X2X3X3X2), (x 1, X2X2X3X2), (x 1 X2X3, X3), (x 1 X2X2, X3 ). Examining (u, r) 
pairs representing all ~ 2 .w-equivalence classes would show that the synthesized 
regulator R' makes the formula tp' valid. 
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We now consider briefly a second version of the surge tank. The plant states and 
the regulator states are the same as in the first version, so the possible regulators are 
the same. However, the schedule is different, and this difference is reflected in the 
plant transition function. Some device in the plant drives the regulator to respond 
whenever the liquid level changes from one level to another, and in two additional 
special circumstances: (a) if the level has been empty, and the response was fill valve 
closed (a situation that would never lead to a change from empty to low), then 
whenever a frustrated user opens the empty valve and gets nothing, the regulator is 
notified that the tank is empty; (b) if the level has been full, and the response was fill 
valve open (a situation that would never lead to a change from full to high), then 
whenever a user closes the empty valve, liquid spills out of the tank, and the regulator 
is notified that the tank is full. We assume that the empty valve will be opened and 
closed infinitely often. Again we take the initial plant states to be x1 and x3 . The 
plant function is given in Fig. 4(b). 

Let i/J be x1 -+ ◊ D(x3 v x4 ), as above, and suppose we want to find (if possible) 
a regulator that will make i/J valid. The proof of Theorem 2 suggests that we make 
a list of all possible regulators, and test them, one by one, until we find a regulator 
that works or finish testing them all without finding one that works. As it turns out, 
the regulator R that was described above makes i/J valid. For the first version of the 
surge tank, the string determined by the pair (x 1 , x2 ) served as an example showing 
that R did not make i/J valid. For the second version of the surge tank, this string is 
not R-allowable. 

The next example is a manufacturing system. In the plant, there is one machine 
which must process two types of parts. A part of the first type, from producer PI, 
waits in buffer BI until it is permitted to enter the processing machine. When the 
processing is completed, the part goes into the first of two output bins. A part of the 
second type, from producer P2, waits in buffer B2 until it is permitted to enter the 
processing machine. When the part comes out of the processing machine, it goes into 
the second output bin. The regulator must ensure mutual exclusion in the machine, 
i.e. only one part is processed at a time. The regulator must also ensure that producer 
Pl gets priority in the use of the machine. The plant state indicates whether there is 
a part in a given buffer, and whether there is a part of a given type in the machine. 
The regulator acts to allow parts from the different buffers to enter the machine. The 
manufacturing system is shown in Fig. 6 below. 

We use four-bit binary strings to represent the plant states. The first bit is I if 
there is a Pl part in the machine and O otherwise. The second bit indicates the 
presence or absence of a P2 part in the machine. The third and fourth bits represent 

Figure 6. Manufacturing system. 
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the presence or absence of parts in buffers B 1 and 82, respectively. For example, the 
plant state 'I 00 I' indicates that (i) there is a P 1 part in the machine, (ii) there is not 
a P2 part in the machine, (iii) there is not a Pl part in buffer BI, and (iv) there is a 
P2 part in buffer P2. There are 16 plant states in all. The states of the regulator are 
q1 (allowing a part from Pl, presently in Bl, to enter the machine), q2 (allowing a 
part from P2, presently in 82, to enter the machine), and q3 (not allowing any parts 
to enter the machine). We have X = {0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 
1000, 1001, 1010, 1011, 1100, I 101, 1110, 1111} and Q = {qi, q2 , q3 }. We suppose that 
XO = {0000} and that the initial regulator state is q3 . 

We suppose that there is a clock in the plant, and each second, on the second a 
device provides a measurement of the manufacturing system state and the regulator 
is triggered to act so as to allow parts to enter the machine. The plant transition 
function is given by Table I, and the regulator transition function is given by Table 2. 

Plant input 

Plant state qi q1 q3 

0000 0000, 0001, 0010, 0011 
0001 0100, 0101, 0110, Olli 0001, 001 I 
0010 1000, 1001, 1010, 1011 0010, 0011 
0011 1001, 1011 0110, Ol l l 001 I 
0100 0100, 000 
0101 0100, 0101, 0110, Ol 11 l 0001, 0011, 0101, Olli 
0110 1000, 1001, 1010, 1011 0010, 0011, 0!00, 0111 

1100, l l O I, 1110, 1111 
0111 1001, 1011, 1101, 1111 0010, 0011, 0110, 0111 011 l, 0011 
1000 0000, 000 l , 0()10, 00 I I 

1000, 1001, 1010, 1011 
1001 0100, 0101, 0110, 0111 0001, 001 I, 1011, 1001 

1100, 1101, 1110, 1111 
!010 1000, 1001, 1010, 101 I 0010, 0011, 1010, 1011 
101 I 1001, 1011, l 101, 1111 0100, 0101, 0110, 0111 IOI 1, 0011 

1100, 110 I, 1110, 1111 
1100 all symbols possible 
1101 0100, 0101, 0110, 0111 0001, 0011, 0101, 0111 

1100, 110 I, 1110, 1111 1001, 1011, 1101, 1111 
1110 1000, 1001, 1010, 1011 0010, 0011, 0110, 0111 

1100, 1101, 1110, 1111 1010, 1011, 1110, 1111 
11111 1001, 1011, 1101, 1111 0110, Olli, 1110, 1111 0011,0111, 1011, 1111 

Table I. Manufacturing system (plant). Possible next plant states arc shown. 

Regu- Regulator input 
lator 
state 0000 0001 0010 0011 0IO0 0IOI 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 

q. q3 qi qi qi q3 q3 q3 q3 q3 q3 q3 q3 q3 q3 q3 q3 

ql q3 ql qi qi q3 q3 q3 q3 q3 q3 q3 q3 q3 q3 q3 q3 
q3 q3 q2 qi qi q3 q3 q3 q3 q3 q3 q3 q3 q3 q3 q3 q3 

Table 2. Manufacturing system regulator. Next regulator states are shown. 
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We consider two closed-loop specification formulae. The mutual exclusion speci
fication, which we verify first, is cp = 0(,(1100 v 1101 v 1110 v 1111)). To avoid con
fusion, since we now have to deal with output strings whose terms are (finite) strings, 
we write x x 2 , x instead of x 

1 
x x We also write (v; r) instead of(v, r). Some, , ... , .... 

1 3 2 3 

pairs, determining strings in different ~t.R-classes, are: (e; 0000, 0001, 0100), 
(0000; 0001, 0101), (0000, 0010; 1000), and (0000, 0011; IOI I). Let a be the string deter
mined by a pair (v; r). Suppose v has length n1 and r has length n2 and let m = n1 + 3n2 . 

To show that (R, a) Fcp (following Lemma 2, and the definition of satisfaction), it is 
enough to test that for all j,:;; m (R"-i, ai) F1100 or (R"-i, ai) F 1101 or (R•-i, ai) F1100 or 
(R"•i, ai) F1111. It is clear that for the (v; r) pairs above and all others this is satisfied. 
Hence the formula is valid. 

The priority specification is cp = 0(0011---+ 0(1001 v 1011)). Since this has rank 2, 
the mechanical procedure would be to examine all pairs on a 2-complete list. Again 
it is clear just from examining the initial states and transition functions for the plant 
and regulator that the specification is met. As in the surge tank example, we could 
take new closed-loop specifications and synthesize regulators to meet them, if possible. 
For example, we might change the priority from producer Pl to P2. We could also 
consider a second version of the manufacturing system where the plant states and 
regulator states are the same as in the first version above but the schedule is different. 
We could have some device in the plant which drives the regulator to respond 
whenever the manufacturing system state changes; hence the plant operates in an 
asynchronous fashion relative to a clock. This will result in a different plant state 
transition function and interpretation of the priority specification above. 

The manufacturing example above is similar to the Two Class Parts Processing' 
example in Thistle and Wonham (1986). There, however, Thistle and Wonham allow 
an arbitrary finite number of parts of one type to enter the machine. This forces their 
controller to have an infinite number of states, so that our decision procedure does 
not apply to their example. There are, however, many practical problems that are 
finite-state. The examples originally given in Knight and Passino ( 1987), which are 
studied above, have also been examined using a branching-time temporal logic frame
work (Passino and Antsaklis 1988). 
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