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An Optimal Volume Ellipsoid Algorithm 
for Parameter Set Estimation 

Man-Fung Cheung, Stephen Yurkovich, and 
Kevin M. Passino 

Abstract-In this note, a recursive ellipsoid algorithm is derived for 
parameter set estimation of a SISO linear time-invariant system with 
bounded noise. The algorithm objective is in seeking the minimal volume 
ellipsoid bounding the feasible parameter set. Cast in a recursive frame
work, where a minimal volume ellipsoid results at each recursion, the 
algorithm extends a result due to Khachian in 1979 in which a technique 
was developed to solve a class of linear programming problems. This 
extension and application to the parameter set estimation problem has 
intuitive geometric appeal and is easy to implement. Comparisons are 
made to the Optimal Bounding Ellipsoid (OBE) algorithm of Fogel and 
Huang, and the results are demonstrated via computer simulations. 

I. INTRODUCTION 

The concept of parameter set estimation in system identifica
tion has evolved over the past two decades. The motive in 
parameter set estimation is to identify a feasible set of parame
ters which is consistent with the measurement data and the 
model structure used. One can interpret the set estimate as 
some nominal parameter estimate accompanied by a quantifica
tion of the uncertainty, either parametrically or nonparametri
cally, around the nominal model. An important feature in the 
parameter set estimation is the guaranteed inclusion of the true 
plant which is not exactly known. 

In this note, an optimal recursive ellipsoid algorithm for 
parameter set estimation is developed. This result is based on 
the Khachian ellipsoid algorithm [1] developed for solving the 
linear programming problem. At each recursion, the smallest 
volume ellipsoid bounding a convex polytope defined by the 
bounded noise is found. This result is distinct from the innova
tive OBE algorithm due to Fogel and Huang [2] in that every 
new ellipsoid in the course of updating is optimal under no 
constraints. This is in contrast with the OBE algorithm in which 
the optimization is subjected to the constraint that the center of 
the ellipsoid is a "modified" recursive least squares estimate. 
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Though both the present algorithm and the OBE algorithm have 
similar recursive equations for implementation, the optimal 
bounding algorithm of this note gives an appealing geometrical 
interpretation of the ellipsoid bounding the convex set of inter
est and ultimately results in the true minimum volume bounding 
ellipsoids. 

The main contribution of this note is the extension of the 
single hyperplane cut in Khachian's ellipsoid algorithm to the 
parameter set estimation problem where the feasible set of 
estimates are constrained between two parallel hyperplanes. 
Khachian's ellipsoid algorithm handles multiple constraints 
sequentially whereas here, multiple constraints are handled pair
wise. In fact, our algorithm can be reduced to Khachian's 
ellipsoid algorithm. The algorithm derived in this note offers 1) 
careful and correct development for the parameter set estima
tion problem, with example and convergence result; 2) an entirely 
different proof, offering more geometrical insight into the prob
lem, than the algorithms which have appeared in [3], [4] for 
solving linear programming problems. Moreover, the similarities 
between our algorithm and the OBE algorithm in [2] are noted, 
and a qualitative comparison is included. 

II. PROBLEM STATEMENT 

Consider a SISO ARX model 
n m 

Yk = - L a;Yk-; + L bjuk-j + vk (1) 
i= 1 j= 0 

(2) 

where 9T = [a1,-··, an, b O, .. , bml is the parameter vector to be 
estimated; <Pk= [ -yk_ 1,-··, -Yk-nuk,··, uk-mV is the regres
sion vector containing the past inputs, u(•), and outputs, y( • ); n 
and m are the number of system poles and zeros, respectively; 
vk is a sequence of bounded disturbances/noise corrupting the 
system output with lvkl ;s; -y for all k ;;;: 0. It is assumed that n, 
m, and -y are known a priori. 

Let /TE mn+m+I be a set such that all 0 E/T are feasible 
parameter estimates of the plant which are consistent with the 
measurements. That is 

!T= {0: IYk - 9T4>kl ;s; 'Y, k = 0,---, N}. (3) 

The problem of parameter set estimation is to find !T explicitly 
in the parameter space. In general, /T is an irregular convex set, 
so we wish to find a more manageable convex set to over-bound 
!T for the purpose of system analysis and control. Ellipsoids are 
commonly used to bound !T for their simplicity in mathematical 
representation and manipulation in computation. It is therefore 
desired to find the smallest ellipsoid to contain the set .'T where 
the hyper-volume of an ellipsoid is used to measure "smallness." 

Ill. THE OVE ALGORITHM 

In this section, Khachian's ellipsoid algorithm is extended to 
the problem of parameter set estimation. For convenience, we 
will refer to the new algorithm as the Optimal Volume Ellipsoid 
(OVE) algorithm. For the set of inequality constraints in !T 
defined in the last section, consider a pair of constraints 

(4)IYk+l - 9T<Pk+1I ;$; 'Y 

and let the set !7ic+ 1 be defined as follows: 

!7ic+1 = {0: IYk+l - 9T<Pk+1I ;$; -y}. (5) 
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Geometrically, Yi+ 1 is the region between the two parallel 
hyperplanes defined in (4). The set estimation problem is then 
stated as: Given an ellipsoid Ek, find another ellipsoid Ek+ 1 
with minimal volume, such that Ek+ 1 contains Ek n Yi+ 1, for 
k = 0, .., N, where N is the number of data records. Mathemati
cally, the optimization problem becomes 

min{vol(Ek+ 1): Ek+I :->Ek n9i+ 1}. 

Define Ek and Ek+ 1 as 

Ek= {e: (0- eklP; 1(0- ek) :s; 1; 0Effi'} (6) 

and 

Ek+1 = {0: (0 - ek+1lP;)1<0 - ek+1) :s; 1; 0 E ffi'} (7) 

where r = n + m + l and ek is the center estimate of the 
ellipsoid at time k. 

In the derivation of the OVE algorithm, an affine transforma
tion [1], 

(8) 

is used to simplify the analysis where 0 E ffi' is any vector in the 
parameter space, 0 is the parameter vector in the affine trans
formed coordinate and Pk= JJT. Through this transformation, 
the ellipsoid Ek is mapped to the unit radius hypersphere 
centered at the origin. The set estimation problem for a specific 
value of k reduces to finding the minimal volume ellipsoid 
containing the intersection between a unit radius hypersphere 
and two parallel hyperplanes defined by .%, the affine transfor
mation of Yi+ 1. Let 

(9) 
and 

where J, is the transformed <l>k+ 1, and a, {3 are parameters 
defining the location of the two parallel hyperplanes defined in 
.% which are 2 {3 ( {3 > 0) apart ( we will define these parameters 
later as related to the original parameter set estimation prob
lem). In what follows, we wish to find an ellipsoid 

)TA { A ( A A A 1 ( A A ) }E = 0: 0 - 0o A - 0 - 0o :s; 1 (11) 

such that .:fan .i- c E and the volume of E, vol(£), is 
minimized. 

For the purpose of analysis, define 

A A cf,Ar,;e ) 
Hz= 0: (J,TJ,t2 ~ a - 2{3 •( 

If we denote the superscript * as the boundary, then from these 
definitions, .% is the region between the two hyperplanes, Ht 
and Hi are the two hyperplanes 2 {3 apart with Ht at a 
distance a from the origin of .:fa, and the vector J, is orthogonal 
to both the hyperplanes. Fig. 1 depicts the scenario. Before we 
proceed, we need the foll~win&_ lemma and theorem. A 

Lemma 1: Given that ..9" n % is symmetrical about the 01 axis 
(one of the coordinate axes in 0 system), achieved by adding one 
more rotation to the affine transformation to align J, with the 

,. ""·H,.? 

Fig. 1. Ellipsoid bounding the intersection of a hypersphere and two 
parallel hyperplanes. 

coordinate axis 01, the minimal volume ellipsoid containing 
.:fan.% must also be symmetrical about the 01 axis. 

Theorem 1: Given .:fa and %, the minimum volume ellipsoid E 
bounding .:fan.% must satisfy the following conditions: 

Ht n .:fa= Ht n E and Hi n .:fa= Hi n £. (12) 

Essentially, these conditions imply that E*, the surface of E, 
must pass through the intersecting points between .:fa* (the 
surface of .9') and the two parallel hyper-planes, Ht and Hi. 
Qualitatively, since .:fa n .% is symmetrical about J,, the smallest 
volume ellipsoid must also be symmetrical about J,, and given 
any ellipsoid symmetrical about J, and containing .:fan.% but 
not satisfying (12), a smaller ellipsoid can be constructed such 
that it not only contains .:fan.%, but also satisfies (12). For the 
proof of Lemma 1 and Theorem 1 (as well as for subsequent 
proofs), the reader is referred to [5]. We now state the main 
result for the OVE algorithm. 

Theorem 2: For the sets .:fa and%, if Ia I :s; 1 and 12 /3 - a I :s; 1, 
then the following parameters will result in a minimal volume E 
that contains .:fan.% 

(13) 

(14) 

provided a ~ 0 where 
i) if a -:f. {3: 

(T+ 1)2(13- a)- TO+ a)(2{3- a-1)
8=--------------- (15)

T+/3-a 
-T 

a=-- (16)
/3 - a 

and T is the real solution of 

(l+a)(a-2{3+1) }
(r + l)T 2 + ------- + 2[r( {3 - a)+ 1] T{ - a/3 

+ ra ( a - 2 {3 ) + 1 = 0 (17) 

such that a - 2 {3 < T < a; 
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ii) if a= {3: 
IV. OVE CONVERGENCE

Theorem 4: Consider the OVE Algorithm and define ther 28 = --(1 - /3 ) (18) Lyapunov function
r - l 

and
1 - r/3 2 

u=--- (19) Ok= 8* - (Jkl - /3 2 

where 8 * is the true parameter vector. Then
i) vk+1 =,; vkT= 0. (20) ii) lekl < 'Y as k -+ 00 

In the above, note that I is an r by r identity matrix and 
iii) IIBkll~ =,; u(Pk) where u(Pk) denotes the largest singular

r = n + m + 1; moreover, if u < 0, the minimal volume Eis .Y value of Pk. 

itself. Further, if there exists an integer N1 (~ r, the number of
unknown parameters), and positive real numbers c1 and c2 suchProof The proof is divided into two parts: i) the parameters

r~quireq for a minimal volume AE to contain Hf n ~ an~ 
that 

H{ n Y, ii) the condition for E to actually contain Y n %. 
k+N1 

Details of the proof appear in [5]. C1l ='> L 'P;'Pr ='> Czl 

Remarks: i-k+l 

for all k, then1) When lal =,; 1, it means that Hf must cut, or at least
touch, the hyper-sphere .Y, whereas 12 f3 - a I =,; 1 means thatii; must cut, or at least touch theAhyper-iphere .Y. The casf
a > l or 2 f3 - a > l means that Hf or H{ does not cut Y, ask-+ oo.respectively. In the first case, f3 can be reset to f3 - ( a - 1)/2 Proof Details appear in [5) and are omitted here.and then reset a to 1 if a > l to make up a new hyper-plane
parallel to Hf but touching .Y. In the second case, f3 is set to V. COMPARISONS TO OBE(1 + a)/2 if 2{3 - a> 1 to make up a hyper-plane parallel toii; but touching .Y. The OBE algorithm in [2] is based on the result in [7) to find

2) If 2/3 - a= 1, then T = 1 - (2r{3/r + 1), and if o: = 1, 
an ellipsoid to contain the intersection of another two ellipsoids,

then T = 2rf3/(r + 1) - 1 for a minimal volume ellipsoid. These 
and a modified RLS type update of the center of ellipsoids is

special cases are equivalent to those using the Khachian algo
adopted. The derivation of the OVE algorithm takes on a

rithm in [6]. different approach based on a geometrical point of view. The
similarities in the form of the expression for Pk+ 1 indicate thatTheorem 3 (The OVE Algorithm): For the system in (2) with

the bounded noise constraint (3), the equations for 8k+ 1 and 
Ek+ 1 in both the OVE and QBE algorithms pave the same
orientation with one of the axes parallel to ¢ in the affinePk+ 1 that result in the minimal volume ellipsoid Ek+ 1 bounding

the intersection between the given -9.t+ 1 and Ek defined in (5) 
transformed coordinate, given the same Ek. From the geometri:

and (6), respectively, are as follows: cal viewpoint, if Ek is mapped to a unit radius hypersphere Y
and Ek+ 1 to £ through anA affine transformation, it is seen that
the center of ellipsoid E in the QBE algorithm does not
necessarily lie on the vector cl, because of the dependence o!
8k+ 1 on Pk+ 1, ;Vhereas in the QVE algorithm the center of E
always lies on ¢. The main difference, and this is of paramount
importance, is the location of the center of the ellipsoid. The
extra RLS type constraint that is imposed on the center estimate
of the ellipsoids in the QBE algorithm essentially precludes the
satisfaction of the necessary condition for a minimal volume

where Tk, Bk, uk are, respectively, equivalent to T, 8 and u in ellipsoid Ek+ 1 to contain Ek n -9.t+ 1, where Ek n .'Jfi'+ 1 =
(15)-(17) or (18)-(20) depending on the values of o: and f3 Ek+ 1 n .'Jfi'+ 1 in which .'Jfi'+ 1 is the boundary of -9.t+ 1•
in Theorem 2. These values of o: and f3 are given by The QVE algorithm also applies to the case when one of the

hyperplanes does not cut the recursive ellipsoid which may be
crucial when the goal is to find the smallest set; this is also

and 0: = studied for the Modified QBE (MQBE) algorithm in [8]. Essen
tially, QBE and MQBE are equivalent except when one of the
hyperplanes does not cut the recursive ellipsoid. Both the QVE
and QBE algorithms update estimates selectively according toIf a> 1, reset f3 to f3 - (a - 1)/2 and then reset o: to 1; on the received data.the other hand, if 2/3 - a> 1, reset f3 to (1 + o:)/2. The As a final note on comparing the OBE and the QVE algoalgorithm can be initiated with a sufficiently large E0 containing rithms, the numbers of multiplication and addition operationsthe feasible parameter set, where 80 = 0 and P 0 = (1/e)/ (with required in the information evaluation are on the order of r2 for0 < e « 1) are typical starting values. both algorithms where r is the number of unknown systemProof Consider the affine transformation discussed earlier parameters. However, for updating estimates the QBE algorithmand let Pk+ 1 = JAJT and 'Pk+ 1 = 1-TJ,, then Ek is mapped to requires 6r 2 multiplications whereas in the QVE algorithm, only.Y and Ek+ 1 is mapped to £. Through some algebraic mani 5r2 multiplications are required (and no more additions arepulations, the result follows [5]. required for the QVE algorithm). The extra computation for the 

,,---
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QBE algorithm is basically due to the need to compute Pk+l· 

The performance of both algorithms is compared by way of 
examples in the next section. 

VI. SIMULATION RESULTS 

Consider a second-order system which represents a flexible 
structure truss model containing only the first x-bending mode 
[9] with the following discretized transfer function 

0.1156(z - 1) 
Y(z) = z 2 -1.55z + 0.8267U(z) 

1 
+ z 2 - 1.55z + 0.8267 V(z). (21) 

In the simulation, lvkl ~ 0.05 and the S/N is 20 dB, N = 100 
data points are taken. To compare the QVE and QBE algo
rithms, the same input sequence and noise sequence are used in 
the two simulations. The following notation is adopted: 01,ue is 
the true estimate, of!BE is the center estimate of the ellipsoid 
associated with the QBE algorithm and of!VE is the center 
estimate of the ellipsoid associated with the QVE algorithm at 
time k; the parameter interval associated with the ellipsoids are 
denoted as JOBE and JOVE accordingly for the final ellipsoids. 
The results of the two algorithms are as follows 

-1.55 ]
0.8267 (22)

IJtrue = 0.1156 ' 
[ 

-0.1156 

-1.538 ] -1.5455] 
IJOBE = 0.8226 IJ OVE = 0.8244 (23) 

N 0.1155 ' N 0.1157[ [
-0.1158 -0.1182 

and the parameter intervals are 

+--+ -1.356 ]
+--+ 0.9751

IOBE = r- ~:~~02 (24)
0.1004 +--+ 0.1311 ' 

-0.1405 +--+ -0.0905 

-1.6596 +--+ -1.4341] 
IOVE = 0.7223 +--+ 0.9266 (25)

0.1062 +--+ 0.1253 •[ 
-0.1347 +--+ -0.1016 

Note that both of the intervals contain the true parameters. Fig. 
2 shows the volume of ellipsoids, Ef!VE, Ef!BE and Ef0BE due 
to the QVE algorithm and the QBE algorithm, respectively, over 
100 data points. It is clear from the figure that ellipsoids from 
the QVE algorithm are always smaller than that from the QBE 
or MQBE algorithm (they are always less than half of the 
volume of the QBE ellipsoids). The MQBE algorithm improves 
only slightly over the QBE algorithm. However, all these algo
rithms guarantee monotonic nonincreasing volume of the ellip
soids, consistent with the theory. 

Moreover, from the viewpoint of the parameter interval, by 
putting an orthotope which is orthogonal to the parameter axes 
and tightly overbounding the ellipsoid, Fig. 3 shows the interval 
for each parameter at each iteration for the two algorithms. In 
the plot, the upper and lower intervals of each parameter are 
indicated for each algorithm. It can be seen that the QVE 
algorithm almost always gives tighter parameter bounds than 
does the QBE algorithm. Exceptions to this occur when the size 
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Fig. 2. Volume of EfvE, Ef8E, and Ef08E. 
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k 
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k 

Dotted Line -- OBE 
Solid Line - OVE 

Fig. 3. Parameter intervals for both algorithms. 

of some of the axes of an ellipsoid are reduced, while other axes 
are expanded to contain a certain convex set, possibly causing a 
larger bound in some of the parameters at early iterations. 
Eventually, tighter bounds are noted in the recursion as in Fig. 3 
and (25). 

VII. CONCLUSION 

In this note, the Khachian ellipsoid algorithm for the linear 
programming problem is extended to the problem of parameter 
set estimation with bounded noise. We first showed that a 
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minimal volume ellipsoid bounding the intersection between a for parameter set estimation," in IEEE Proc. Int. Con[. Contr.
hypersphere and two parallel hyperplanes must tightly contain Appl., Dayton, 1992.
the intersecting points between the surface of the hypersphere [12] L. Pronzato, E. Walter, and H. Piet-Lahanier, "Mathematical

equivalence of two ellipsoid algorithms for bounded error estimaand the hyperplanes. Using this result, we derived the minimal tion," in Proc. IEEE Conf. Decision Contr., Dec. 1989, pp.volume ellipsoid containing the intersection between a hyper 1952-1955.
sphere and two parallel hyperplanes, resulting in the new recur
sive algorithm, OVE, for parameter set estimation. Convergence
results of the OVE algorithm are also given. It is noted that the
OVE algorithm has similar form to the well known OBE algo
rithm. The OVE algorithm possesses several attractive features Optimal Use of an Extra Server in a Two Station
in comparison to the OBE algorithm: 1) the OVE algorithm is Tandem Queueing Network
rich in geometrical interpretations; 2) the formulation of OVE
algorithm is flexible enough to accommodate the case when one Timothy M. Farrar
of the hyperplanes defined in 5'k:+ 1 does not cut the ellipsoid
Ek; 3) the OVE algorithm requires no additional computational Abstract-Consider a two station tandem queueing system, with given
complexity than the QBE algorithm; 4) The OVE algorithm numbers of customers initially at each station and no arrivals. There is

a fixed server at each station, but also an additional server that can beresults in the smallest volume ellipsoid Ek+ 1 bounding Ek n dynamically allocated to wherever its use will do most good. There are5'k:+ 1 without any constraints. Several extensions to the OVE differing linear holding costs at each station, and the aim is to u_se the
algorithm for parameter set estimation and control are under extra server to miiumize the expected total holding cost incurred until
investigation, including an application to interconnected systems the systeni empties. We show that if either the extra server. may be 
[10], time-varying noise bounds, input synthesis, and ARMAX 

switched between the two stations at any time, or if it is restricted in use
to just one station, where it may be turned on or off, then the optimalmodels with measurement noise [11]. use of the server is such that after a service completion at one station,

With regard to other similar results which have recently the effort devoted there never increases, and the effort devoted to the
appeared, the OVE algorithm offers correct development for other station never decreases. 
the parameter set estimation problem in a geometrical approach I. INTRODUCTION• with example and convergence result, as distinct from the results
in [3], [4]. Moreover, the note by Pronzato, et al. [12], alludes to Consider a system of two queues in tandem, with no arrivals
the EPC (parallel cut) algorithm for bounded error estimation, after time zero. Linear holding costs, of c1 and c2 per customer,
which is in fact equivalent to the OVE algorithm (as opposed to are incurred at the first and second stations, respectively. There
the OBE algorithm), in that both were derived from the Khachian is a fixed server at each of the stations, and an additional server
algorithm. However, we have developed the OVE algorithm that may either be switched off, or whose effort may be dynami
entirely from a geometric point of view, with convergence results, cally allocated between the stations. The objective is to minimize
and offer the novel application to the parameter set estimation the expected total holding cost until the system empties, subject
problem in this note. possibly to the constraint that the extra server may not be used

at one of the stations. This is an example of what have been
called clearing systems. Service times of customers served by the

REFERENCES two fixed servers and the additional server are exponentially
[1] B. Aspvall and R. E. Stone, "Khachiyan's linear programming distributed with parameters µ, 1, µ, 2 and µ,, respectively. Allalgorithm," J. Algorithms, vol. 1, pp. 1-13, 1980. service times are independent. We assume that movement of the[2] E. Fogel and Y. F. Huang, "Ori the value of information in system

identification-bounded noise case,'' Automatica, vol. 18, no. 2, pp. 
additional server may take place instantaneously and without

229-238, 1982. penalty, and that no cost is imposed for use of the servers. Thus,
[3] H. Konig and D. Pallaschke, "On Khachian's algorithm and mini we have three possible cases to consider: a) the additional server

mal ellipsoids," Numer. Math., vol. 36, pp. 211-223, 1981. is constrained so that it may be used only at the upstream queue
[4] R. G. Bland, D. Goldfarb, and M. J. Todd, "The ellipsoid method: or not at all; b) the server is constrained to operate only at theA survey," Op. Res., vol. 29, no. 6, pp. 1039-1091, 1981. downstream queue; and c) the allocation of the server is unre[5] M. F. Cheung, "On optimal algorithms for parameter set estima

tion," Ph.D. dissertation, The Ohio State University, Columbus, 
stricted. In Fig. 1, these correspond respectively to the con

OH, Dec. 1991. straints a2 = 1, al = 1 and a1 + a 2 = 1. We see that case b) is
[6] D. Goldfarb and M. J. Todd, "Modifications and implementation trivial, as the additional server will never be idle while it is

of the ellipsoid algorithm for linear programming," Math. Program possible to reduce the instantaneous holding cost, and in case c)ming, vol. 23, pp. 1-19, 1980. it is also never optimal for the extra server to be idle, so the[7] W. Kahan, "Circumscribing an ellipsoid about the intersection of decision problem is simply whether it should be working attwo ellipsoids," Canad. Math. Bull., vol. 11, no. 3, pp. 437-440,
1968. station 1 or 2. 

[8] M. Milanese and R. Tempo, "Optimal algorithms theory for robust Control of a two station tandem queueing systeni was first
estimation and prediction," IEEE Trans. Automat. Contr., vol. discussed by Rosberg, Varaiya and Walrand [5]. In the context ofAC-30, no. 8, pp. 730-738, 1985.

[9] U. Ozguner, S. Yurkovich, and R. W. Gordon, "A case study in Manuscript received April 7, 1992; revised August 5, 1991 and Marchdesign and implementation for flexible structure control," in Proc. 15, 1992. This work was supported by the Science and EngineeringAmer. Contr. Con[., Pittsburgh, PA, 1989, pp. 2085-2090. Research Council. Paper recommended by Past Associate Editor, K. W.[10] M. F. Cheung and S. Yurkovich, "On the parameter set estimation Ross.problem in interconnected systems," in Proc. Amer. Contr. Con[., The author is with the Department of Engineering, University ofChicago, 1992, pp. 1172-1176; expanded version also to appear in Cambridge, Management Studies Group, Mill Lane, Cambridge CB2Int. J. Contr., 1994. 9RX England.
[11] J. M. Gassman and S. Yurkovich, "An ellipsoid algorithm IEEE Log Number 9208672. 

0018-9286/93$03.00 © 1993 IEEE 


