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A Multilayer Perceptron Solution to the Match Phase 
Problem in Rule-Based Artificial Intelligence Systems 

Michael A Sartori, Kevin M. Passino, and Panos J. Antsaklis, 

Abstract- In rule-based artificial intelligence (Al) planning, expert, 
and learning systems, it is often the case that the left-hand-sides of the 
rules must be repeatedly compared to the contents of some "working 
memory." Normally, the intent is to determine which rules are relevant 
to the current situation (i.e., to find the "conflict set"). The traditional 
approach to solve such a "match phase problem" for production systems 
is to use the Rete Match Algorithm. Here, a new technique using a 
multilayer perceptron, a particular artificial neural network model, is 
presented to solve the match phase problem for rule-based AI systems. 
A syntax for premise formulas (i.e., the left-hand-sides of the rules). is 
defined, and working memory is specified. From this, it is shown how to 
construct a multilayer perceptron that finds all of the rules which can be 
executed for the current situation in working memory. The complexity of 
the constructed multilayer perceptron is derived in terms of the maximum 
number of nodes and the required number of layers. A method for 
reducing the number of layers to at most three is also presented. 

Index Terms-Expert systems, multilayer perceptron, neural networks, 
production systems, Rete Match Algorithm. 

I. INTRODUCTION 

IN rule-based artificial intelligence (Al) systems, the problem of 
finding which rules are executable from a given set of rules at 

different instances in time is often encountered. At each time instant, 
the left-hand-side of every rule of a given set of rules is compared 
to the dynamically changing "working memory" of the system. The 
rules whose left-hand-sides are satisfied by the current working 
memory form the "conflict set" at that particular time. The problem 
of determining the conflict set from the contents of working memory 
at a particular time is referred to here as the match phase problem. 
Some of the types of AI systems in which the match phase problem 
occurs include nile-based expert, planning, and learning systems. 
Typically, in such rule based systems, an "inference engine" or some 
other suitable algorithm finds the rules which are executable (in the 
"match phase"), chooses one (in the "select phase"), and executes 
it (in the "act phase"). This paper focuses on a novel technique 
to solve the match phase problem via a multilayer perceptron. The 
problem of choosing which rule to execute (e.g., via an inference 
engine using certainty factors or fuzzy logic) and the problem of 
deciding the manner in which the chosen rule is to be executed are 
not addressed here. Also, the actual implementation of such a system 
is not treated. The purpose of this paper is to present an alternative 
and new approach to performing the match phase for rule-based AI 
systems. A brief overview of where the match phase problem is found 
in rule-based AI systems is now given and is followed by a brief 
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description of the Rete Match Algorithm, the conventional solution 
to the match phase problem. 

A rule-based expert system uses rules, sometimes referred to as 
productions or production rules, to represent knowledge and uses 
an inference engine to perform the actions of the expert system. In 
general, a rule is of the form 

IF (antecedent) THEN (consequence) (1) 

Customarily, the antecedent is referred to as the left-hand-side, and 
the consequence is referred to as the right-hand-side. The working 
memory (data memory) contains dynamic data that is compared to 
the left-hand-side of the rules. The individual elements of the working 
memory are referred to as the working memory clements. The 
inference engine performs the comparison of the working memory 
elements to the left-hand-sides of the rules, chooses which rules are 
executable for the given state of the expert system, chooses one of 
the executable rules, and executes it. Often the inference engine is 
viewed as having a three phase cycle (1], [2]: 

l) Match: Compare the left-hand-side of all of the rules to the 
working memory elements. If the left-hand-side is satisfied, 
include the rule in the conflict set, the set of satisfied rules for 
the present working memory state. 

2) Select: Choose one rule from the conflict set to execute. 
3) Act: Execute the rule in accordance with the right-hand-side of 

the chosen rule. 

The results obtained here are applicable to rule-based expert 
systems in which the match phase can be separated from the select 
and the act phases. It is assumed, without loss of generality, that 
forward chaining instead of backward chaining is used. Rule-based 
expert systems developed with OPS5, EMYCIN, ROSIE, and KEE 
as cited in [1] and Level 5 as described in [3] may benefit from a 
multilayer perceptron implementation of the match phase as described 
in this paper. 

The match phase problem is also encountered in rule-based plan
ning systems and rule-based learning systems. Often, such systems 
can be implemented using the same tools that are listed above for rule
based expert systems. In general, the match phase determines whether 
or not certain patterns match, which is equivalent to finding which 
formulas in a set of logical formulas are true. Such tasks are executed 
by most AI systems including planning and learning systems. Thus, 
the results here are generally applicable to the implementation of a 
wide variety of AI systems. 

Currently, the match phase problem (particularly for rule-based 
expert systems) is often solved via the Rete Match Algorithm [4]. 
If a rule-based expert system's rules arc of the form depicted in (1) 
and if the inference engine explicitly follows the three phase cycle, 
the rules are referred to as "productions" and the inference engine is 
referred to as the "production interpreter." Of the three phases, the 
match phase traditionally consumes the most time of the production 
interpreter. Using conventional approaches, a production interpreter 
can spend more than 90% of its time in the match phase of the 
cycle [4]. The Rete Match Algorithm, introduced in [4] and [5] and 
implemented in the OPS5 expert system building tool in [l], avoids 
the brute force approach by manipulating the rules and the working 
memory elements to form a software tree structure to increase the 
speed of the interpreter. In [5], it was reported that the processing 
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TABLE I 
SUMMARIZED RESULTS OF SPECIAL HARDWARE IMPLEMENTATIONS. 

Architecture WME Production Hardware 
Reference 

Changes/Sec Cycles/Sec Needed 

CMU-PMS 9400 32 Ps [10) 

DADO 215 85 1023 PE's [21), [10] 

MAPPS 10000 128 PE's [18) 

NON-VON 2000 903 16032 PE's [18] 

Olfazer's 4500 512 Ps [10] 

PESA-1 25000 8000 32 PE's [19] 

WME =working memory element. - =not available. Ps =processors. 
PE's = processing elements 

time for a production interpreter using the Rete Match Algorithm 

for the match phase is dependent on both the number of working 

memory elements and the number of rules. For a production system, 

if W is the number of working memory elements in the working 

memory and A is the number of atomic propositions per rule, the 

effect of the working memory size on the time for one firing using 

the Rete Match Algorithm is 0(1) for the best case and O(W2 
A.-i) 

for the worst case [5] (where the "O" notation denotes "on the order 

of' and is the standard one defined in [6]). If R is the number of 

rules in the production system, the effect of the number of rules on 

the time for one firing using the Rete Match Algorithm is O(log2 R) 

for the best case and O(R) for the worst case [5]. So, the time for 

one firing of the match phase using the Rete Match Algorithm is 

dependent on both the number of rules and the number of working 

memory elements. In the following, it will be shown that when the 

proposed multilayer perceptron solution to the match phase problem 

is used, the processing time is in fact independent of both the number 

of working memory elements and the number of rules. 
Since the introduction of the original Rete Match Algorithm, other 

algorithms, some of which are based on the Rete Match Algorithm, 

have been introduced to increase the speed of the interpreter [7]-[14]. 

To accelerate the performance of the interpreter in the match phase, 

parallel hardware solutions have been developed [10], [15]-[23]. The 

Rete Match Algorithm has also been implemented on a multiprocessor 

machine, and an increase in speed was reported for specific rule-based 

systems [24]. It should be noted that some of these attempts are based 

on the Rete Match Algorithm. These architectures, as reported in the 

literature, strive to decrease the time required in the match phase 

by attempting to match as many rules as possible in parallel and 

by attempting to fire as many rules as possible in parallel. Using 

the YES/OPS production system language and advances in the Rete 

Match Algorithm, a drop in CPU time was reported in [7]. Using 

partitioning of the productions, a reduction in production cycles was 

reported in [11], [12], and [14]. The results from the literature of using 

special hardware are summarized in Table I. The current hardware 

implementations cited in Table I use either many processors or many 

processing elements. 
The method proposed here for the match phase is quite dif

ferent from the Rete Match Algorithm and the above mentioned 

modifications. The novel approach presented in this paper takes 

advantage of the inherent parallelism of the multilayer perceptron 

by simultaneously matching all of the rules to all of the working 

memory elements. By first defining "premise formulas" that represent 

the left-hand-sides of the rules, the match phase problem is defined 
as the determination of the truth of the premise formulas for the 

current working memory. The multilayer perceptron is the vehicle 
used to accomplish this. The input to the multilayer perceptron is 

the working memory, and the output is the conflict set. The specially 

designed multilayer perceptron simultaneously finds all of the rules 

which are executable at any particular time by matching all of the 

rules in parallel to the current working memory. 
The work described in this paper is the first of its kind, and many 

future directions stem from this initial investigation. For instance, 
there are many different models of artificial neural networks that 
could be used for the match phase instead of the chosen multilayer 

perceptron. As an example, the multilayer perceptron trained with the 

Back Propagation Algorithm of [25] appears promising although there 
exist numerous difficulties with such an approach ( e.g., convergence, 

the number of nodes and the number of layers to use, and a long 

training time). Another possible artificial neural network model to use 

is the Hopfield model [26]. If the minima of the energy surface can be 
chosen such that they correspond to the appropriate selection of rules 

given a set of working memory elements, the Hopfield model could 
replace the multilayer perceptron proposed here provided that the 

global stability of the net is ensured and that the number of spurious 
states is minimized. The proposed multilayer perceptron is also rigid 

and not fault tolerant. An investigation into alleviating this is a future 
direction. One possibility might be to use a Hopfield model instead 

of the multilayer perceptron for the match phase. As another future 

direction, the use of the multilayer perceptron, or any other artificial 
neural network model, to implement the other two phases (i.e., the 

select phase and the act phase) is a possibility. Perhaps an artificial 

neural network could even be trained to mimic an entire rule-based AI 

system. Also, the actual implementation of the solution proposed here 
for the match phase problem is an important future direction, as well 

as an investigation of the interfacing of the multilayer perceptron 

with other hardware. In addition, the automation of the design of 

the multilayer perceptron as discussed in Section III-B could be a 
valuable contribution. Next, the contents of the paper are summarized. 

In Section II, premise formulas and the match phase problem are 
defined in precise mathematical terms. In Section III, a procedure 
for designing a multilayer perceptron for a single premise formula is 
described, extended to one for designing a multilayer perceptron for 

a set of given premise formulas, and related to its use as a solution 

to the match phase problem. The number of nodes and the number of 
layers needed to implement the multilayer perceptron are discussed. A 

method to reduce the number of layers in any multilayer perceptron 

to at most three and a formula for the number of nodes required 

to do so is also presented in this section. Finally in Section IV, 
concluding remarks are made including a citing of some of the 

potential limitations in using the multilayer perceptron solution for 
the match phase. This work is an extension of the research reported 

in [27] via the results in [28] and [29]. The artificial neural network 
used in the previous work was the model termed the "ProNet," which 

was obtained by modifying the Hamming net of [30]. The multilayer 
perceptron was used rather than the ProNet because the multilayer 

perceptron is better able to address a greater diversity of types of 

rules as well as rules which contain real numbers. A shorter version 
of this paper appears in [31], and an example of the forming of 

a multilayer perceptron for a particular rule-based expert system's 

rules (the "Monkey and Bananas Problem" [1]) is included in [32], 
but excluded here due to space limitations. 

II. THE MATCH PHASE PROBLEM 

In this section, the premise formulas for the left-hand-sides of the 
AI system's rules are defined, and the match phase problem is defined 
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Match Phase 
Rule 
to be 

Select Working 
Phase 1---1~ ..---1~ Memory 

Fig. 1. The multilayer perceptron implementation of the match phase in a rule-based AI system. 

in terms of the premise formulas and the working memory. Rule
based systems with left-hand-sides which can be described using the 
premise formulas described below can have the match phase of their 
inference engine performed by a multilayer perceptron as discused 
in the following sections. 

The following describes the syntax of the premise formulas. 
Let ISi denote the number of elements in the set S. Let A = 
{ a 1 , a2, • • • . an} be a nonempty finite set of atomic propositions 
a;, where JAi = n. Such propositions will represent facts that are 
stored in working memory. Let X C JRP, where JR denotes the set 
of real numbers. Each x = [x1, .r2, • • • , x P ]1 E X (where "t" denotes 
transpose) represents numeric information in working memory. The 
standard Boolean connectives (, (negation), /\ (disjunction), and V 
(conjunction)) are used. The rules for forming the premise formulas 
are as follows: 

1) A single atomic proposition a E A is a premise formula. 
2) If (l is a premise formula, then ,(l is a premise formula. 
3) If (l and '¥ are premise formulas, then so are ((l I\ '¥) and 

((l V '¥). 
4) Ifx EX, x = [x1,x2,· ... xpj1, and r E JR, then (x; > r}, 

(x; < r), (x; 2". r), and (x; :,::; r) for any i such that 1:,::; i:,::; p 
are premi~e formulas. 

5) Nothing is a premise formula unless it can be obtained by 
finitely many applications of 1)-4) above. 

If some left-hand-side of a rule has either the Boolean connective 
⇒ (implicatiqn) or¢:> (equivalence), then the following substitutions 
can be made. If (l and '¥ are premise formulas, then ((l ⇒ '¥) can be 
replaced by the equivalent premise formula (,(l V '¥), and ((l ¢:> IJ!) 
by the equivalent premise formula (((l I\ \Jf) V (,(l I\ , IJ!)). If some 
left-hand-side of a rule has either the predicate symbol = (equal) 
or # (not equal), then the following substitutions can be made. If 
x EX, x = [x1,x2, .. ·.xp]1, and r E JR, then (x; = r) can be 
replaced by the equivalent premise formula ((x; :::,: r) I\ (x; :,::; r)), 
arid (x; # r )by the equivalent premise formula ((x; > r )V(x, < r)) 
for 1 :,::; i :,::; p. 

Assume that the working memory for the rule-based system is 
composed of atomic propositions a E A and the current working 
memory information x E X. The output of the working memory is 
specified next. Define the function 

V: A-> {0, 1} (2) 

where V(a) = 1 indicates "a is true" and V(a) = 0 indicates that 
"a is false." Let then-vector vk = [V(a1 ), V(a2), • • • V(an )]1 with 
components V(a;) representing the truth values of all of the atomic 
propositions at step k. Let xk E X denote the value of x at step 
k. At step k, the output of the working memory is defined to be 
the (n +p)-vector "k = [vi:, xi:]1. which contains information about 
both the truth values of atomic propositions and the numeric values of 
the working memory elements. Let U denote the set of all possible . 
working memory outputs. 

Let <I> = {</>1, </J2, • • • , </>rn} denote a finite set of premise formulas. 
Let Y C {O, l}m. Number the rules in the rule base from 1 tom. For 

the ith rule in the rule base form the premise formula </>; and associate 
r/); with a component y, of Yk = [Y1. Y2, • • ·, YrnJ1 for 1 :,::; i :,::; m. 
If y, = 1 for 1 :,::; i :,::; m, then the premise formula rj); is true, and 
the ith rule is executable and included in the conflict set. If y; = 0, 
then the corresponding rule is not included in the conflict set. Hence, 
at step k, Yk E Y represents the conflict set. 

The match phase problem can be solved by implementing the 
function 

p: u X <I>-> Y. (3) 

Here, the focus is on the use of the multilayer perceptron to implement 
the function P of (3) (i.e., to perform the match phase in a rule-based 
Al system). This is illustrated in Fig. 1. The input to the multilayer 
perceptron, which describes the working memory, is the vector "k· 
The input vector is compared to the left-hand-sides of the entire set 
of rules described by the set <I> which is stored in the multilayer 
perceptron as its weights, biases, and interconnections. The output of 
the multilayer perceptron is the vector Yk, which denotes the conflict 
set. Thus, the multilayer perceptron specifies the conflict set Yk E Y 
at each time instant k for all possible inputs "k E U and premise 
formulas </> E <I>, and hence implements the function P. 

Following Fig. 1, from the output vector Yk, the conflict set is 
placed in a form which is usable by the select phase. The select 
phase can be implemented in numerous ways; for an explanation of 
some of the possibilities for accomplishing this, see [1 ], [2], and [33]. 
Once the rule is chosen by the select phase, it is executed via the act 
phase. The execution of a rule causes changes to the working memory. 
The vector vk+ 1 is produced by altering the vector vk such that 
some of the elements V (a;) are changed from one to zero (indicating 
that a; becomes false) and others from zero to one (indicating that 
a; becomes true). The vector xk can also be changed according to 
the fired rule to produce the vector xk+ 1 . So, the working memory 
is updated, and the input vector "k is changed to "k+1 · The new 
input vector "k+1 is used as an input to the multilayer perceptron 
which gives the output Yk+ 1 , and the process is repeated. Next, it 
is shown how to construct a multilayer perceptron which implements 
the function P and hence solves the match phase problem. 

III. A MULTILAYER PERCEPTRON SOLUTION 
TO THE MATCH PHASE PROBLEM 

Artificial neural networks are used to perform computations in 
a massively parallel fashion. They are processing models which 
derive their structure and functionality as an interconnected network 
of neurons from models of biological neurons. Each neuron of the 
artificial neural network has many inputs and one output. The output 
of each neuron is generally considered to be the weighted sum of its 
inputs passed through a nonlinear function. The output is then used as 
inputs to other neurons. Artificial neural networks are characterized 
by the type of neurons used, the way in which the weights are 
selected, and the types of interconnections that are allowed between 
neurons. Here, a specific artificial neural network called the multilayer 
perceptron is used as the model for solving the match phase problem. 

T 
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Fig. 2. The multilayer perceptron for two nodes at each layer. 

The multilayer perceptron is a feedforward model which is restricted 
here so that it is partially connected and also so that it does not 
self-adjust its weights or learn. 

As discussed at the end of Section I, instead of using the multilayer 
perceptron, other artificial neural network models may be used for the 
match phase problem, but these do not appear to be as favorable. For 
example, the Hopfield network may be considered [26], but because it 
uses feedback to determine its output, it requires time to converge to 
a minimum. The multilayer perceptron always determines its outputs 
immediately since it is a feedforward network with theoretically no 
significant delays. Also, if the weights for the Hopfield network 
are not chosen properly, spurious states may result. Artificial neural 
networks which use unsupervised training, such as the Kohonen 
network [34], may not be as useful as the multilayer perceptron 
since the input and output relationships for the artificial neural 
network are known a priori, and thus the clustering methodology 
of the unsupervised training is not needed. Artificial neural networks 
that use supervised training, such as the Back Propagation Training 
Algorithm applied to the multilayer perceptron [25], also may not 
be as useful since the weights for the network can be selected as 
explained in Section III-B, and so the training of the weights of the 
multilayer perceptron is not required. The method specified here to 
construct the multilayer perceptron takes advantage of the special 
nature of the match phase problem. In addition, problems that occur 
in learning algorithms that adjust the weights do not occur for the 
weight selection procedure proposed here. For example, in the Back 
Propagation Training Algorithm, the convergence of the weights does 
not always occur, and when they do, it is often after a long time 
[25]. In addition, there exist neither rules nor accurate guidelines 
for choosing the number of nodes and the number of layers needed 
to properly implement the Back Propagation Algorithm. For these 
reasons, the multilayer perceptron was judged to be the most suitable 
artificial neural network model for use in the match phase. This brief 
discussion about artificial neural networks and the various neural 
network models is not meant to be encompassing; the interested 
reader may examine [30] for further information on a number of 
different artificial neural networks used for other applications. 

A. The Multilayer Perceptron 

The multilayer perceptron is a feedforward artificial neural network 
considered here to contain at least one hidden layer between the input 
and the output layers. A multilayer perceptron with one hidden layer 
and with two nodes in each layer is illustrated in Fig. 2. The output 
of one layer is cascaded to the input of the next one. In general, the 
input layer feeds the first hidden layer, and the last hidden layer feeds 
the output layer. The input of the multilayer perceptron is applied to 
the input layeL The input to the multilayer perceptron considered 
here is the vector u with components u;, which contains (n + p) 

continuous real valued elements. The vector z' with components z;, 
which contains q binary elements, is the output of the input layer and 
the input to the hidden layer. The vector z", which contains r binary 
elements, is the output of the hidden layer and the input to the output 
layer. The vector y with components y;, which contains m binary 

(a) (b) 

Fig. 3. Threshold nonlinearities for the multilayer perceptron. 

elements, is the output of the multilayer perceptron. 
In Fig. 2, the nodes are denoted with circles and the biases with 

arrows that point downwa~d. The biases on the input layer are denoted 
by b;, on the hidden layer by b: and on the output layer by b:'. The 
weights are denoted by all of the other arrows (which are labeled with 
the weights) that are between u and the input nodal layer, between z' 
and the hidden nodal layer, and between z" and the output layer. Note 
that unlike the traditional three layer perceptron used with the Back 
Propagation Algorithm, the input layer can assume non.unity valued 
weights. The element w;1 of the (n + p) x q matrix W denotes the 
weight on the arc from u; to the node with z; as its output. The q x r 
matrix vV' denotes the weights on the arcs from each z'. to the node 
with z? as its output. The r x m matrix W" denotes the weights on 
the arcs from each z;' to the node with Yi as its output. The weights 
on the arcs connecting the output nodal layer to the outputs y; are 
unity. For convenience, if the weight of any arc is zero the arc will 
be omitted from the graphical representation of the perceptron, and 
if the weight of any arc is unity, the arc will be represented with no 
weight denoted. 

Each node produces at its output a summation of its weighted 
inputs and its bias. This summation is passed through a threshold 
nonlinearity. The result is a binary output for each layer. The two 
threshold nonlinearities used in this paper are illustrated in Fig. 3, 
where Ji( z) = 1 if z 2'. 0 and 0 if ;; < 0 and h (z) = 1 if z > 0 
and 0 if z :S 0. In this paper, nodes which use the threshold of Fig. 
3(a) are unshaded and those which use the threshold of Fig. 3(b) are 
shaded. 

The input to the jth threshold nonlinearity of the input layer, 
denoted by zj(k), is the weighted sum of the inputs added to the 
bias 

=1(k) = (tWijU;(k)) + bj, (4) 

If !ti denotes a threshold nonlinearity of type t (where here t = 1 
or 2 following Fig. 3) for the jth node, then the output of the input 
nodal layer is given by 

(5) 

The outputs of the hidden layers and the output layer are given by 
similar relations. With these equations the input-output relationship 
for the multilayer perceptron is specified. Using this description of 
the multilayer perceptron, the technique to determine the weights, 
biases, and number of nodes for the multilayer perceptron used in 
solving the match phase problem is given next. 
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(a) (b) (e) 

Fig. 4. The multilayer pereeptron for premise formulas (a) </>a = ,a, (b) <Pb = ( ( a1 A a2) A a3 ), and ( e) <Pc = ( ( x 1 2:: 2) V ( x2 < -4)). 

B. Construction of the Multilayer Perceptron for the Match Phase 

The construction of a multilayer perceptron for one premise 
formula is examined first. Given a single premise formula ¢ E <I>, 
an artificial neural network is constructed to indicate whether or not 
<P is true for a given situation in working memory uk E U. The 
construction of the multilayer perceptron has two steps: forming the 
nodes and connecting the nodes. The nodes can be one of three types, 
each of which corresponds to a different premise formula type (i.e., 
2, 3, and 4 in the rules for forming premise formulas). 

Negation of Formulas: For a premise formula formed by rule 2, 
form a node with one input and one output. The weight is -1, the 
bias is 0.5, and the nonlinearity used is in Fig. 3(a). The network for 
the premise formula 

</>a = ,a (6) 

is shown in Fig. 4(a), where a is a premise formula. 
Disjunction and Conjunction ofFormulas: For a premise formula 

defined by rule 3, let a; be a premise formula for i = 1, • • • . j, and 
consider premise formulas either of the type (£T1 A £T2 /\ • • • /\ IJ" 1 ) 

or (a1 V a2 V • • • V IJ"j ). Form a node with j inputs and 1 output. 
The weights are unity and the nonlinearity used is in Fig. 3(a). If 
the Boolean connector is /\, then the bias of the node is -(j - 0.5) 
where j is the number of premise formulas in the conjunction. If the 
Boolean connector is V, then the bias of the node is -0.5 no matter 
how many formulas are in the disjunction. The network formed for 
the premise formula 

(7) 

is shown in Fig. 4{b), where £T1, £T2, and a3 are premise formulas. 
Relational Formulas: For a premise formula formed by rule 4 of 

the syntax (e.g., (x; > r), (x; < r), (x; 2 r), and (x, 2 r) 
for 1 ~ i ~ p, where x = [x1. x2, • • • xp] 1 and r E JR) form a 
node with one input and one output. Connect the node's input to 
the appropriate element of the vector x in the input vector u of the 
multilayer perceptron. If the predicate symbol is > or 2, then the 
weight is 1 and the bias is -r. If the predicate symbol is< or~. the 
weight is -1 and the bias is r. If the predicate symbol is ~ or 2, use 
the nonlinearity of Fig. 3(a). If the predicate symbol is < or >, use 
the nonlinearity of Fig. 3(b ). The network for the premise formula 

</>c = ((.r1 2 2) V (.r2 < -4)) (8) 

is shown in Fig. 4(c), where x E X, x = [x1. x2f 
Once the nodes of the multilayer perceptron are formed, the 

connections between them are specified by an inductive process. 
The output of the node describing the outermost parentheses of the 
premise formula is the output of the multilayer perceptron. Let this 
node be the first layer (i.e., the output layer). The connections between 
the first layer and the second layer (i.e., the last hidden layer) are made 
between the inputs of the first layer's node and the outputs of the 
nodes formed for the premise formulas of the second layer. If the first 
layer's node requires an element of the input vector as an input, the 
appropriate connection between the input vector and the node's input 

Fig. 5. The multi-layer pereeptron for the premise formula of (9). 

is made. Next, the connections between the first and second layer and 
the third layer (i.e., the second to the last hidden layer) are made. If 
the second layer's node requires an element of the input vector as 
an input, the appropriate connection between the input vector and 
the node's input is made. This process continues for each successive 
layer until all inputs for all nodes are connected. Notice that given 
any premise formula, the method used here to form the nodes and the 
interconnections of the multilayer perceptron can be mechanized. The 
entire process for constructing a multilayer perceptron for a premise 
formula is illustrated in Fig. 5 with the premise formula 

(9) 

where A= {a1,a2,a3} and x = [xi]. 
Using the steps detailed above to produce a neural network for 

an individual premise formula, the multi-layer perceptron for every 
premise formula ¢ E <I> is formed by repeating the above procedure 
for every premise formula. If two or more premise formulas share 
a similar premise formula, the node for that premise formula can 
be shared by the other premise formulas. For example, if premise 
formulas c/)9 and 

(10) 

are given, the node formed for the premise formula ,(a1 I\ a2) can 
be shared by the multilayer perceptrons constructed for both <jJ 9 and 
</>10. Thus one combined multilayer perceptron implements all of the 
premise formulas in the set <I>. Notice that the possibility exists for 
automating the development of the multilayer perceptron once the set 
<I> of premise formulas is given, but this is left as a future research 
direction. 

As stated in Section I, the time for the multilayer perceptron to • 
process the match phase is independent of both the number of working 
memory elements and the number of rules. Using the multilayer 
perceptron solution to the match phase problem, the working memory 
size does not affect the time required to perform the match phase. 
This is the case because the working memory is processed in parallel 
as the input vector uk of the multilayer perceptron, and thus the 
working memory size does not affect the time required to process the 
match phase. In addition, the number of rules (premise formulas) also 

T 
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does not affect the time required to perform the match phase since the 
truth value of the rules with regard to the current working memory 
are represented as the parallel elements in the output vector Yk of 
the multilayer perceptron. If the multilayer perceptron is physically 
implemented, only the number of layers adversely affects the time 
needed for the multilayer perceptron to process. This problem is 
addressed in Section III-C. 

Given any premise formula, the maximum number of nodes needed 
to implement the premise formula with a multilayer perceptron can 
be found. This is accomplished by using the function 

.v: <l'>-; JR (11) 

which is defined to represent the maximum number of nodes needed 
to implement the match phase for one o E <l'>. Let O, a-, and l)i be 
premise formulas. 

1) If¢= a where a EA, then N(¢) = 0. 
2) If¢= ,a-, then N(6) = 1 + N(o-). 
3) If¢= (o-VIJi) or¢= (o-1\IJi), then N(¢) = l+N(o-)+N(l)i). 
4) If G.> = (.r;6r) where X = [.r1 . .r2.···..rpr, 1::::: i::::: p,r E 

JR , and 6 E { <. >. :::;. 2:}, then N(¢) = 1. 

The .number N (o) does not include subtracting the number of 
nodes shared by premise formulas. Hence, the number IV (¢) is 
the maximum number of nodes needed to implement a multilayer 
perceptron for the premise formula ¢. Using (9) as an example, 
N(cj,g) = 6. Clearly, the maximum number of neurons needed to 
implement the function P for the entire match phase is given by 

(12) 

If <l'> { </>g, 610}, then 

10

L N( G.>;) = 10. (13) 
i=9 

If the node for the premise formula ,(a1 /\ a2) is shared by <pg 

and ¢10, then the actual number of nodes needed to implement the 
multilayer perceptron is 8, which is less than the maximum predicted 
in (13). 

The match phase problem as formulated here appears to be 
implementable with standard logic gates. This is not true since 
premise formulas following rule 4 of the syntax are allowable. If 
premise formulas following rule 4 are not allowed, then clearly 
this solution to the match phase problem can be implemented using 
Boolean logic gates. The multilayer perceptron proposed here is also 
similar to the threshold logic circuits (networks) described in [35], 
except that in these circuits the theory only allows a finite number 
of discrete inputs. However, such threshold logic networks could be 
used to implement the match phase. 

C. Reducing the Number ofLayers in the Multilayer Perceptron 

One problem with the multilayer perceptron solution is the potential 
for many hidden layers in the multilayer perceptron. For example, a 
multilayer perceptron which implements the premise formula 

614 =((((,a/\ b I\ c I\ (d 2: 5)) Ve)/\ f) V g) (14) 

where A = {a. b. c. e. f, g} and x = [d] would require five layers 
and six nodes. The more layers a multilayer perceptron has, the 
longer it will take the multilayer perceptron to process an output. 
If a fast processing time is an important design criterion for the 
finding of the conflict set, then any possible reduction in the number 
of layers needed to implement the multi-layer perceptron should be 
used (provided that it does not require the addition of too many more 
nodes). 

One way to reduce the number of layers is to place all of 
the premise formulas in an equivalent disjunctive or conjunctive 
normal form. By doing this, the maximum number of layers for any 
premise formula is guaranteed to be at most three. This however may 
increase the number of nodes per layer. Regardless of this possible 
increase, the processing time for the multilayer perceptron will not 
increase beyond that of one with three layers and a single node 
per layer. Intuitively, converting premise formulas to a disjunctive 
or conjunctive normal form places the premise formulas in a form 
most suitable for exploring the parallel processing capabilities of the 
multilayer perceptron in finding the conflict set. 

By using existing algorithms, a premise formula can (off-line) be 
placed in disjunctive or conjunctive normal form [36]. Note that the 
algorithm in [36] does not produce a unique disjunctive or conjunctive 
normal form. In using these algorithms, treat both a single proposition 
symbol a EA as a proposition symbol and a premise formula (x;6r) 
where x EX, x = [x1,x2,· • • ,xpj1,r E IR, and 6 E {<, >, 2:, :S:} 
for 1 :S: i :S: p is a proposition symbol. If (31 = ,(x;6r) is a 
resultant premise formula, then interchange< with 2:; and> with :S:; 
and remove the negation. For example, (x; 2: r) becomes (x; < r). 
Following the algorithm in [36], an equivalent disjunctive normal 
form for the premise formula in (12) is 

c/>14d = ((,a I\ b I\ c I\ (d 2: 5) /\ f) V (e /\ f) V g), (15) 

and an equivalent conjunctive normal form is 

<Pl4c =((,a Ve V g) I\ (b Ve V g) I\ (c Ve V g) 

I\ ((d 2: 5) Ve V g) I\ (f V g)). (16) 

Finding the number of layers and the maximum number of nodes 
needed to implement the premise formulas of (15) and (16) with a 
multilayer perceptron, both equations require a three layer perceptron 
and, using the function Nin (11), N(<P14d) = 5 and N(<P14c) = 8. 
For this example, the disjunctive normal form requires less layers and 
less nodes compared to the original form (14), while the conjunctive 
normal form needs less layers and more nodes. As another example, 
a disjunctive and a conjunctive normal form for the premise formula 

rp17 = ((((,a Vb V c V (d 2: 5)) /\ e) V f) I\ g) (17) 

are 

<t> 1 7 d = ( ( ,a I\ e I\ g) V ( b I\ e I\ g) V ( c I\ e 

I\ g) V ((d 2: 5) /\ e /\ g) V (f I\ g)) (18) 

and 

<PJnc = ((,a Vb V c V (d 2: 5) V f) I\ (e V f) I\ g), (19) 

respectively. If all three were implemented with multilayer percep
trons, cf>17 would require five layers while <P11d and <P11c would 
require only three, and N(<t>n) = 6 while N(c/> 17d) = 8 and 
N(<l>nc) = 5. In this example, the disjunctive normal form requires 
less layers and more nodes compared to the original form, while the 
conjunctive normal form needs less layers and less nodes. These two 
examples illustrate that placing a formula in either a disjunctive or 
conjunctive normal form reduces the number of layers to a maximum 
of three but does not necessarily guarantee a reduction in the total 
number of nodes. 

Next, for a premise formula already in the disjunctive or con
junctive normal form, the maximum number of layers required for 
the premise formula's multilayer perceptron is shown to be three, 
and the maximum number of nodes needed is explicitly stated. If 
a premise formula <Pd E <l'> is in disjunctive normal form, then 
c/Jd = hi V --Y2 V • • • V --Yk), --Yi = (/3;,1 /\ /3;,2 /\ • • • /\ /3i,hi) for 
1 :S: i :S: k, and /3;, 1 = a or /3;,1 = ,a where a E A for 1 :S: j :S: h; 
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Fig. 6. The multilayer perceptrons for (21) and (22). 

(b) 

or .3;_1 = (.rr6r) wherex E X,x = [.r1 ..r2.--· ..r1,it.r E lR, 
j h, rs; p.and 6 E {<.>-S:-2} for 1 S: s; and for 1 S: For 

further simplification, if 3,. 1 = ,( .r; 6r ), interchange the appropriate 
predicate symbols and remove the negation as described above. 
Therefore, if the premise formula is in disjunctive normal form, a 
maximum of three layers are needed in the multilayer perceptron: 
the output layer for the disjunction of formulas, one hidden layer for 
the conjunction of formulas, and the input layer for the negation of 
formulas and relational formulas. The number three is a maximum 
since a premise formula is not required to have a conjunction, a 
disjunction, and either a negation or a relational formula in its 
structure. 

Using (12), the maximum number of nodes needed by a premise 
formula in disjunctive normal form is derived. The output layer has 
one node with k inputs corresponding to the conjunction of the 
premise formula, so 

k h,The hidden layer has a maximum of nodes with inputs for 
1 S: i S: for each node corresponding to the disjunctions of premisek 

formulas, so 

.\'(Od) =1 + [1 + .\'(1Ji I)+··.+.\'( Ji /q )] 

+ [1 + .Y(,h1) + · · · + .Y(,12 ,,2 l] 

+···+[l+_Y(,h1) 

+ ... + .Y( h hk )]. 

The input layer has a maximum of (h 1 + h 2 + · · · + I, kl one input 
nodes where each node either corresponds to a negation of a premise 
formula or a relational premise formula. Thus, the maximum number 
of nodes needed to implement a premise formula in disjunctive 
normal form is 

S(od) = 1 + [1 +hi]+ [1 + h2] + ... + [1 + h,] 
k 

=l+ldLh,. (20) 
i=l 

As an example, the formation of a multilayer perceptron for a premise 
formula in the disjunctive normal form is illustrated in Fig. 6(a) for 
the premise formula 

(21) 

where A= {a 1.a2} and x = [.r1]. 
If a premise formula Ur E 4' is in conjunctive normal form, then 

Oc = h1 /\ 12 /\ ••• /\rd, r, = (3,_i V .J,.2 V ••• V .3;.h,) for 
1 S: i s; k, and 3, _1 for 1 s; j s; h, are the same as above for the 
disjunctive normal form. Clearly, as stated above for the disjunctive 
normal form, if the premise formula is in conjunctive normal form, the 
multilayer perceptron has a maximum of three layers: the output layer 

for the conjunction of formulas, one hidden layer for the disjunction 
of formulas, and the input layer for the negation of formulas and 
relational formulas. In addition, the maximum number of nodes which 
are needed to construct a multilayer perceptron for a conjunctive 
normal premise formula, .Y(or), is given by (20). As an example, 
the formation of a multilayer perceptron for a conjunctive normal 
form premise formula is illustrated in Fig. 6(b) for 

(22) 

where A= {a1.a2} and x = [.r1]. 
So, given a premise formula, it has been shown that the number 

of layers in the multilayer perceptron implementation can be reduced 
to at most three if the premise formula is placed in a disjunctive 
or conjunctive normal form. In doing this, the processing time for 
the conflict set is inherently decreased if the number of layers in the 
original premise formula was greater than three. Although the number 
of layers can always be decreased to three or less, the possibility of 
increasing the number of nodes per layer may exist. 

IV. CONCLUDING REMARKS 

This paper presented the use of a multilayer perceptron to perform 
the match phase of rule-based AI systems (which include rule-based 
expert, planning, and learning systems). Using the proposed approach, 
the match phase is performed by matching in parallel all of the rules 
to all of the working memory elements. The result is the formation of 
the conflict set for the current situation of working memory. Given 
a set of rules with left-hand-sides following the prescribed syntax, 
the construction of a multilayer perceptron which implements the 
match phase was described. In addition, a formula for the maximum 
number of nodes needed to implement the multilayer perceptron 
and a procedure to reduce the number of layers of the multilayer 
perceptron were also given. The multilayer perceptron match· phase 
approach was compared to a conventional match phase interpreter for 
production systems, the Rete Match Algorithm. As an example, the 
process for forming the multilayer perceptron is illustrated using a 
rule-based expert system in [32]. Next, some potential limitations to 
the multilayer perceptron approach are discussed. 

Comparing the types of rules used by the multilayer perceptron 
match phase to the types of rules used by the Rete Match Algorithm 
match phase, the multilayer perceptron approach is able to represent 
many rules that can be described in OPS5. This approach can thus 
be used as the match phase for many production systems which have 
been described using OPS5. For a description of OPS5 rules, see [1 ]. 
To use the multilayer perceptron approach, an OPS5 rule's left-hand
side needs to be transformed into the appropriate premise formula. 
One limitation of this approach is that the left-hand-side of an OPS5 
rule cannot contain certain variables (for example, a symbolic variable 
which takes on an infinite number of values). This limitation can 
be overcome, however, if these variables can be redefined so that 
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they take on only a finite number of values, and new rules formed 
per the finite values. Hence, the multilayer perceptron approach can 
implement the matching of variables for this case, but the number of 
new rules may become large, which does not decrease the speed of 
the multilayer perceptron but does increase its size. 

Another potential limitation of the multilayer perceptron solution 
to the match phase problem, as well as another difference between 
the two match phase implementations (the. multilayer perceptron 
and the Rete Match Algorithm), is the procedure for the adding of 
new working memory elements and new rules (sometimes referred 
to as "learning rules" or "automatic knowledge acquisition") while 
the inference process is executing. The Rete Match Algorithm uses 
extensive changes in its underlying software tree structure to represent 
added working memory elements and rules (as well as deleted rules). 
When a completely new working memory element or rule is added 
using the multilayer perceptron approach, new arcs, nodes, weights, 
and biases are augmented to the existing multilayer perceptron as 
required by the new working memory element or rule. (In a similar 
manner, old rules can be deleted by removing the appropriate parts of 
the multilayer perceptron.) When a new working memory element or 
rule is added, the time for the multilayer perceptron to process may 
not be affected because the depth of the network may not increase, 
but the size of the neural network will increase. If a rule needs to be 
changed, arcs, nodes, weights, and biases associated with the changed 
rule are affected, and the time and space required by the multilayer 
perceptron may increase. If the multilayer perceptron is implemented 
with hardware, as discussed in the future directions section of the 
Introduction, the adding, changing, or even deleting of a rule could 
be costly. For this reason, a rule-based AI system which requires a 
fast match phase should first be developed using software. Then once 
it is in its final form, the rule-based Al system can be implemented 
with a multilayer perceptron for greater processing efficiency. 
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