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Autonomous control systems are designed 
to perform well under significant uncertainties 
in the system and environment for extended 
periods of time, and they must be able to 
compensate for significant system failures 
without external intervention. Intelligent 
autonomous control systems use techniques 
from the field of artificial intelligence (Al) to 
achieve this autonomy. Such control systems 
evolve from conventional control systems by 
adding intelligent components, and their 
development requires interdisciplinary re
search. Here, we provide an introduction to the 
area of intelligent autonomous control. The 
fundamental issues in autonomous control 
system modeling and analysis are discussed, 
with emphasis on mathematical modeling. 
Some recent results in relevant research areas 
are summarized. 

Introduction 

Autonomous means having the power for 
self government. Autonomous controllers 
have the power and ability for self governance 
in the performance of control functions. They 
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are composed of a collection of hardware and 
software, which can perform the necessary 
control functions, without external interven
tion, over extended time periods. There are 
several degrees of autonomy. A fully 
autonomous controller should perhaps have 
the ability to even perform hardware repair, if 
one of its components fails. Note that conven
tional fixed controllers can be considered to 

have a low degree of autonomy since they can 
only tolerate a restricted class of plant 
parameter variations and disturbances. To 
achieve a high degree of autonomy, the con
troller must be able to perform a number of 
functions in addition to the conventional con
trol functions such as tracking and regulation. 
These additional functions, which include the 
ability to accommodate for drastic system 
failures, are discussed in this article. This ar
ticle is based on the developments in [ll-[3]. 

Autonomous controllers can of course be 
used in a variety of systems from manufac
turing to unmanned space, atmospheric, 
ground, and underwater exploratory vehicles 
(for a description of several applications see 
[4]). This introduction to autonomous control 
will be developed around a space vehicle ap
plication so that a) concrete examples for the 
various control functions, and fundamental 
characteristics of autonomous control can be 
given, and b) so that the development addres
ses relatively well defined control needs rather 
than abstract requirements. Furthermore, the 
autonomous control of space vehicles is high
ly demanding; consequently the developed 
architecture is general enough to encompass 
all related autonomy issues. It should be 
stressed that all the results presented here 
apply to any autonomous control system. In 
other classes of applications, the architecture, 
or parts of it, can be used directly and the same 
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fundamental concepts and characteristics 
identified here are valid. 

We begin by describing the architecture 
of the autonomous controller necessary for 
the operation of future advanced space 
vehicles that was developed in [2],[3]. The 
concepts and methods needed to successfully 
design such an autonomous controller are in
troduced and discussed. A hierarchical func
tional autonomous controller architecture is 
described; it is designed to ensure the 
autonomous operation of the control system 
and it allows interaction with the pilot/ground 
station and the systems on board the 
autonomous vehicle. A command by the pilot 
or the ground station is executed by dividing 
it into appropriate subtasks which are then 
performed by the controller. The controller 
can deal with unexpected situations, new con
trol tasks, and failures within limits. To 
achieve this, high level decision making tech
niques for reasoning under uncertainty and 
taking actions must be utilized. These techni
ques, if used by humans, are attributed to 
intelligent behavior. Hence, one way to 
achieve autonomy, for some applications, is to 
utilize high level decision making techniques, 
'•intelligent" methods, in the autonomous con
troller. Autonomy is the objective, and "intel
ligent" controllers are one way to achieve it. 
The fields of artificial intelligence (Al) [5].[6] 
and operations research offer some of the tools 
to add the higher level decision making 
abilities. 

Autonomous Control Functions 

Autonomous control systems must per
form well under significant uncertainties in 
the plant and the environment for extended 
periods of time and they must be able to com-
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pensate for system failures without external 
intervention. Such autonomous behavior is a 
very desirable characteristic of advanced sys
tems. An autonomous controller provides high 
level adaptation to changes in the plant and 
environment. To achieve autonomy the 
methods used for control system design 
should utilize both a) algorithmic-numeric 
methods, based on the state-of-the-art conven
tional control, identification, estimation, and 
communication theory, and b) decision 
making-symbolic methods, such as the ones 
developed in computer science ( e.g., automata 
theory), and specifically in the field of Al. In 
addition to supervising and tuning the control 
algorithms, the autonomous controller must 
also provide a high degree of tolerance to 
failures. To ensure system reliability, failures 
must first be detected, isolated, and identified 
(and if possible contained), and subsequently 
a new control law must be designed if it is 
deemed necessary. The autonomous controller 
must be capable of planning the necessary 
sequence of control actions to be taken to 
accomplish a complicated task. It must be able 
to interface to other systems as well as with 
the operator, and it may need learning 
capabilities to enhance its performance while 
in operation. It is for these reasons that ad
vanced planning, learning, and expert sys
tems, among others, must work together with 
conventional control systems in order to 
achieve autonomy. 

The need for quantitative methods to 
model and analyze the dynamical behavior of 
such autonomous systems presents significant 
challenges well beyond current capabilities. It 
is clear that the development of autonomous 
controllers requires significant interdis
ciplinary research effort as it integrates con
cepts and methods from areas such as control, 
identification, estimation, and communication 
theory, computer science, artificial intel
ligence, and operations research. It is also 
important to note that autonomous controllers 
are evolutionary and not revolutionary. They 
evolve from existing controllers in a natural 
way fueled by actual needs, as is now dis
cussed. 

Design Methodology - History 

Conventional control systems are designed 
using mathematical models of physical sys
tems. A mathematical model which captures 
the dynamical behavior of interest is chosen 
and then control design techniques are ap
plied, aided by CAD packages, to design the 
mathematical model ofan appropriate control
ler. The controller is then realized via 
hardware or software and it is used to control 

the physical system. The procedure may take 
several iterations. The mathematical model of 
the system must be "simple enough" so that it 
can be analyzed with available mathematical 
techniques, and "accurate enough" to describe 
the important aspects of the relevant dynami
cal behavior. It approximates the behavior of 
a plant in the neighborhood of an operating 
point. 

The first mathematical model to describe 
plant behavior for control purposes is at
tributed to J.C. Maxwell who in 1868 used 
differential equations to explain instability 
problems encountered with James Watt's 
flyball governor; the governor was introduced 
in 1769 to regulate the speed of steam engine 
vehicles. Control theory made significant 
strides in the past 120 years, with the use of 
frequency domain methods and Laplace trans
forms in the 1930s and 1940s and the intro
duction of the state space analysis in the 
1960s. Optimal control in the 1950s and 
1960s, stochastic, robust and adaptive control 
methods in the 1960s to today, have made it 
possible to control more accurately signifi
cantly more complex dynamical systems than 
the original flyball governor. 

The control methods and the underlying 
mathematical theory were developed to meet 
the ever increasing control needs of our tech
nology. The evolution in the control area was 
fueled by three major needs: 

a) The need to deal with increasingly com
plex dynamical systems. 

b) The need to accomplish increasingly 
demanding design requirements. 

c) The need to attain these design require
ments with less precise advanced knowledge 
of the plant and its environment, that is, the 
need to control under increased uncertainty. 

The need to achieve the demanding control 
specifications for increasingly complex 
dynamical systems has been addressed by 
using more complex mathematical models 
such as nonlinear and stochastic ones, and by 
developing more sophisticated design algo
rithms for, say, optimal control. The use of 
highly complex mathematical models how
ever, can seriously inhibit our ability to 
develop control algorithms. Fortunately, 
simpler plant models, for example linear 
models, can be used in the control design; this 
is possible because of the feedback used in 
control which can tolerate significant model 
uncertainties. Controllers can then be 
designed to meet the specifications around an 
operating point, where the linear model is 
valid and then via a scheduler a controller 
emerges which can accomplish the control 
objectives over the whole operating range. 
This is, for example, the method typically used 

for aircraft flight control. In autonomous con
trol systems we need to significantly increase 
the operating range. We must be able to deal 
effectively with significant uncertainties in 
models of increasingly complex dynamical 
systems in addition to increasing the validity 
range of our control methods. This will in
volve the use of intelligent decision making 
processes to generate control actions so that a 
performance level is maintained even though 
there are drastic changes in the operating 
conditions. 

There are needs today that cannot be suc
cessfully addressed with the existing conven
tional control theory. They mainly pertain to 
the area ofuncertainty. Heuristic methods may 
be needed to tune the parameters of an adap
tive control law. New control laws to perform 
novel control functions should be designed 
while the system is in operation. Learning 
from past experience and planning control 
actions may be necessary. Failure detection 
and identification is needed. These functions 
have been performed in the past by human 
operators. To increase the speed of response, 
to relieve the pilot from mundane tasks, to 
protect operators from hazards, autonomy is 
desired. It should be pointed out that several 
functions proposed in later sections, to be part 
of the autonomous controller, have been per
formed in the past by separate systems; ex
amples include fault trees in chemical process 
control for failure diagnosis and hazard 
analysis, and control system design via expert 
systems. 

Summary 

In the next section the functions, character
istics, and benefits of autonomous control are 
outlined. Next it is explained that plant com
plexity and design requirements dictate how 
sophisticated a controller must be. From this 
it can be seen that often it is appropriate to use 
methods from operations research or com
puter science to achieve autonomy. Such 
methods are studied in intelligent control 
theory. An overview of some relevant research 
literature in the field of intelligent and 
autonomous control is given together with 
references that outline research directions. An 
autonomous control functional architecture 
for future space vehicles is then presented, 
which incorporates the concepts and charac
teristics described earlier. The controller is 
hierarchical, with three levels, the execution 
level (lowest level), the coordination level 
(middle level), and the management and or
ganization level (highest level). The general 
characteristics of the overall architecture, in
cluding those of the three levels are explained, 
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and an example to illustrate their functions is 
given. 

In the following section the fundamental 
issues and attributes of intelligent autonomous 
systems are described. Then we discuss math
ematical models for autonomous systems in
cluding '·logical" discrete event system 
models. An approach to the quantitative, sys
tematic modeling, analysis, and design of 
autonomous controllers is also discussed. It is 
a "hybrid" approach since it is proposed to use 
both conventional analysis techniques based 
on difference and differential equations, 
together with new techniques for the analysis 
of systems described with a symbolic for
malism such as finite automata. The more 
global, macroscopic, view of dynamical sys
tems taken in the development of autonomous 
controllers, suggests the use of a model with a 
hybrid or nonuniform structure, which in tum 
requires the use of a hybrid analysis. Finally, 
several major relevant research areas are indi
cated. In particular, some interesting recent 
results from the areas of planning and expert 
systems, machine learning, artificial neural 
networks and the area of restructurable con
trols are briefly outlined. The last section 
provides some concluding remarks. 

Functional Architecture of an 
Autonomous Controller 

Intelligent Autonomous Control 

Motivation: Sophistication and Com
plexity in Control: The complexity of a 
dynamical system model and the increasingly 
demanding closed loop system performance 
requirements, necessitate the use of more 
complex and sophisticated controllers. For ex
ample. highly nonlinear systems normally re
quire the use ofmore complex controllers than 
low order linear ones when goals beyond 
stability are to be met. The increase in uncer
tainty, which corresponds to the decrease in 
how well the problem is structured or how 
well the control problem is formulated, and the 
necessity to allow human intervention in con
trol, also necessitate the use of increasingly 
sophisticated controllers. Controller com
plexity and sophistication is then directly 
proportional to both the complexities of the 
plant model and of the control design require
ments. 

Based on these ideas, the authors in [7] and 
[8J suggest a hierarchical ranking of increas
ing controller sophistication on the path to 
intelligent controls. At the lowest level, deter
ministic feedback control based on conven
tional control theory is utilized for simple 
linear plants. As plant complexity increases, 

such controllers will need for instance, state 
estimators. When process noise is significant, 
Kalman or other filters may be needed. Also, 
if it is required to complete a control task in 
minimum time or with minimum energy, op
timal control techniques are utilized. When 
there are many quantifiable, stochastic char
acteristics in the plant, stochastic control 
theory is used. If there are significant varia
tions of plant parameters, to the extent that 
linear robust control theory is inappropriate, 
adaptive control techniques are employed. For 
still more complex plants, self-organizing or 
learning control may be necessary. At the 
highest level in their hierarchical ranking, 
plant complexity is so high, and performance 
specifications so demanding, that intelligent 
control techniques are used. 

In the hierarchical ranking of increasingly 
sophisticated controllers described above, the 
decision to choose more sophisticated control 
techniques is made by studying the control 
problem using a controller of a certain com
plexity belonging to a certain class. When it is 
determined that the class of controllers being 
studied (e.g., adaptive controllers) is inade
quate to meet the required objectives, a more 
sophisticated class of controllers (e.g., intel
ligent controllers) is chosen. That is, if it is 
found that certain higher level decision 
making processes are needed for the adaptive 
controller to meet the performance require
ments, then these processes can be incor
porated via the study of intelligent control 
theory. These intelligent autonomous control
lers are the next level up in sophistication. 
They are enhanced adaptive controllers, in the 
sense that they can adapt to more significant 
global changes in the plant and its environ
ment than conventional adaptive controllers, 
while meeting more stringent performance 
requirements. 

One turns to more sophisticated controllers 
only if simpler ones cannot meet the required 
objectives. The need to use intelligent 
autonomous control stems from the need for 
an increased level of autonomous decision 
making abilities in achieving complex control 
tasks. In the next section a number of intel
ligent and autonomous control research 
results which have appeared in the literature 
are outlined. 

A Literature Overview: In [2],[3] the 
authors provided a relatively complete list of 
references for the field of autonomous control. 
Here we provide references which we feel will 
provide the reader with an introduction to 
autonomous control. First, there are several 
relevant books: Hierarchical systems are 
treated in [9],[ 1 0]. In [11] the authors explain 
how a wide variety of AI techniques will be 

useful in enhancing space station autonomy, 
capability, safety, etc. Aerospace applications 
are also discussed in [ 12]. For a book on Al 
and autonomous systems see [ 13], and for one 
on cybernetics and intelligent systems see 
[14]. For a book on intelligent manufacturing 
systems see [ l 5]. 

Journals with papers relevant to the area of 
intelligent autonomous control are The Jour
nal of Intelligent and Robotic Systems, IEEE 
Transactions on Systems, Man, and Cybernet
ics, IEEE Transactions on Pattern Analysis 
and Machine Intelligence, Journal ofApplied 
Artificial Intelligence, and the standard AI and 
control theoretic journals. The reader should 
also consult some of the recent conference 
proceedings: Proceedings of the 1985 IEEE 
Workshop on Intelligent Control, Proceedings 
of the 1986 Intelligent Autonomous Systems 
Conference, Proceedings of the Space 
Telerobotics Workshop, and the Proceedings 
of the IEEE International Symposium on In
telligent Control in 1987, 1988, 1989, and 
1990. 

In [2],[3] the authors introduce an intelli
gent autonomous controller and discuss in 
detail the fundamental characteristics of 
autonomous control. In [16J the author offers 
a decentralized control-theoretic view on in
telligent control. Functional and structural 
hierarchies are studied in [ 17]. Fundamentals 
of intelligent systems such as the principle of 
increasing intelligence with decreasing 
precision, are discussed in [18],[l 9], and [20]. 
The work in [I 8].[19] and [21]-[26] probably 
represents the most complete mathematical 
approach to the analysis of intelligent 
machines. In [27] and the references therein 
the authors study distributed intelligent sys
tems. In [28] the author introduces a theory of 
intelligent control that has received consider
able attention since then. There have been 
numerous studies on the use ofexpert systems 
to control various processes; in [29] expert 
systems have been used in chemical process 
control. There are interesting relationships be
tween the type of problems examined in intel
ligent autonomous control, "fuzzy control" 
[30]. and ··automated reasoning" [31]. 
Simulation of autonomous systems and re
lated issues has been studied extensively in 
[32],[33] and the references therein. 

An Intelligent Autonomous Control 
Architecture For Future Space Vehicles 

Here, a functional architecture of an 
autonomous controller for future space 
vehicles is introduced and discussed. This 
hierarchical architecture has three levels, the 
execution level, the coordination level, and the 
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management and organization level. The ar
chitecture exhibits certain characteristics, as 
discussed below, which have been shown in 
the literature to be necessary and desirable in 
autonomous systems. Based on this architec
ture we identify the important fundamental 

middle level, called the coordination level, 
provides the link between the execution level 
and the management level. Note that we fol
low the somewhat standard viewpoint that 
there are three major levels in the hierarchy. It 
must be stressed that the system may have 

Pilot and Crew/Ground Station/OnBoard Systems 

Management and 
Organization Level 

Coordination Level 

Execution Level 

Upper Management
Control Executive Decision Making and 

Learning 

Middle Management
Control Manager Decision Making, Learning, 

and Algorithms
Control Imp. Supervisor 

Lower Management 

Adaptive Controller & Algorithms In 
Identification Hardware and Software 

Vehicle and Environment 

Fig. I. Autonomous controllerfunctional architecture. 

issues and concepts that are needed for an 
autonomous control theory. 

Architecture Overview: Structure and 
Characteristics: The overall functional ar
chitecture for an autonomous controller is 
given by the architectural schematic of Fig. 1; 
for more detailed description see [2),[3]. This 
is a functional architecture rather than a 
hardware processing one, therefore it does not 
specify the arrangement and duties of the 
hardware used to implement the functions 
described. Note that the processing architec
ture also depends on the characteristics of the 
current processing technology; centralized or 
distributed processing may be chosen for 
function implementation depending on avail
able computer technology. 

The architecture in Fig. 1 has three levels. 
At the lowest level, the execution level, there 
is the interface to the vehicle and its environ
ment via the sensors and actuators. At the 
highest level, the management and organiza
tion level, there is the interface to the pilot and 
crew, ground station, or on board systems. The 

more or fewer than three levels. For instance, 
see the architecture developed in [34). Some 
characteristics of the system which dictate the 
number of levels are the extent to which the 
operator can intervene in the system's opera
tions, the degree of autonomy or level of intel-
1igence in the various subsystems, the 
dexterity of the subsystems, the hierarchical 
characteristics of the plant. Note however that 
the three levels shown here in Fig. 1 are ap
plicable to most architectures of autonomous 
controllers, by grouping together sublevels of 
the architecture if necessary. Notice that as it 
is indicated in the figure, the lowest, execution 
level involves conventional control algo
rithms, while the highest, management and 
organization level involves only higher level, 
intelligent, decision making methods. The 
middle, coordination level is the level which 
provides the interface between the actions of 
the other two levels and it uses a combination 
of conventional and intelligent decision 
making methods. 

The sensors and actuators are implemented 
mainly with hardware. They are the connec-

tion between the physical system and the con
troller. Software and perhaps hardware are 
used to implement the execution level. Mainly 
software is used for both the coordination and 
management levels. There are multiple copies 
of the control functions at each level, more at 
the lower and fewer at the higher levels. For 
example, there may be one control manager 
which directs a number of different adaptive 
control algorithms to control the flexible 
modes of the vehicle via appropriate sensors 
and actuators. Another control manager is 
responsible for the control functions ofa robot 
arm for satellite repair. The control executive 
issues commands to the managers and coor
dinates their actions. 

Note that the autonomous controller is 
only one of the autonomous systems on the 
vehicle. It is responsible for all the functions 
related to the control of the physical system 
and allows for continuous online development 
of the autonomous controller and to provide 
for various phases of mission operations. The 
tier structure of the architecture allows us to 
build on existing advanced control theory. 
Development progresses, creating each time, 
higher level adaptation and a new system 
which can be operated and tested inde
pendently. The autonomous controller per
forms many of the functions currently 
performed by the pilot, crew, or ground sta
tion. The pilot and crew are thus relieved from 
mundane tasks and some of the ground station 
functions are brought aboard the vehicle. In 
this way the degree ofautonomy ofthe vehicle 
is increased. 

Functional Operation: Commands are is
sued by higher levels to lower levels and 
response data flows from lower levels up
wards. Parameters of subsystems can be al
tered by systems one level above them in the 
hierarchy. There is a delegation and distribu
tion of tasks from higher to lower levels and a 
layered distribution of decision making 
authority. At each level, some preprocessing 
occurs before information is sent to higher 
levels. If requested, data can be passed from 
the lowest subsystem to the highest, e.g., for 
display. All subsystems provide status and 
health information to higher levels. Human 
intervention is allowed even at the control 
implementation supervisor level, with the 
commands however passed down from the 
upper levels of the hierarchy. 

The specific functions at each level are 
described in detail in [2],[3). Here we present 
a simple illustrative example to clarify the 
overall operation of the autonomous control
ler. Suppose that the pilot desires to repair a 
satellite. After dialogue with the control ex-
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ecutive, the task is refined to "repair satellite 
using robot A". This is arrived at using the 
capability assessing, performance monitoring, 
and planning functions of the control execu
tive. The control executive decides if the 
repair is possible under the current perfor
mance level of the system, and in view of near 
term planned functions. The control execu
tive, using its planning capabilities, sends a 
sequence of subtasks sufficient to achieve the 
repair to the control manager. This sequence 
could be to order robot A to: "go to satellite at 
coordinates xyz", "open repair hatch", 
"repair". The control manager, using its plan
ner, divides say the first subtask, "go to satel
lite at coordinates xyz", into smaller subtasks: 
"go from start to X1Y1Z1," then "maneuver 
around obstacle," "move to x2y2z,," ... , "arrive 
at the repair site and wait." The other subtasks 
are divided in a similar manner. This informa
tion is passed to the control implementation 
supervisor, which recognizes the task, and 
uses stored control laws to accomplish the 
objective. The subtask "go from start to 
X1Y1Z1," can for example, be implemented 
using stored control algorithms to first, 
proceed forward 10 m, to the right 15°, etc. 
These control algorithms are executed in the 
controller at the execution level utilizing sen
sor information; the control actions are imple
mented via the actuators. 

Some Design Guidelines for Autonomous 
Controllers 

There are certain functions, characteristics, 
and behaviors that autonomous systems 
should possess [I0],(34]. These are outlined 
below. Some of the important characteristics 
ofautonomous controllers are that they relieve 
humans from time consuming mundane tasks 
thus increasing efficiency, enhance reliability 
since they monitor health of the system, en
hance performance, protect the system from 
internally induced faults, and they have con
sistent performance in accomplishing com
plex tasks. 

There are autonomy guidelines and goals 
that should be followed and sought after in the 
development of an autonomous system. 
Autonomy should reduce the work load re
quirements of the operator or, in the space 
vehicle case discussed here, of the pilot/crew
/ground station, for the performance of routine 
functions, since the gains due to autonomy 
would be superficial if the maintenance and 
operation of the autonomous controller taxed 
the operators. Autonomy should enhance the 
functional capability of the system. Since the 
autonomous controller will be performing the 
simpler routine tasks, persons will be able to 
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dedicate themselves to even more complex 
tasks. 

There are certain autonomous system ar
chitectural characteristics that should be 
sought after in the design process. The 
autonomous control architecture should be 
amenable to evolving future needs and up
dates in the state of the art. The autonomous 
control architecture should be functionally 
hierarchical; for lower level subsystems to 
take some actions, they have to clear it with a 
higher level authority. The system must, how
ever, be able to have lower level subsystems, 
that are monitoring and reconfiguring for 
failures, act autonomously to certain extent to 
enhance system safety. There are also certain 
operational characteristics of autonomous 
controllers. Persons should have ultimate su
pervisory override control of autonomy func
tions. Autonomous activities should be highly 
visible, "transparent", to the operator the max
imum extent possible. 

Finally, there must be certain features in
herent in the autonomous system design. 
Autonomous design features should prevent 
failures that would jeopardize the overall sys
tem mission goals or safety. These features 
should enhance safety, and avoid false alarms 
and unnecessary hardware reconfiguration. 
This implies that the controller should have 
self-test capability. Autonomous design fea
tures should also be tolerantoftransient errors, 
they should not degrade the reliability or 
operational lifetime of functional elements, 
they should include adjustable fault detection 
thresholds, avoid irreversible state changes, 
and provide protection from erroneous or in
valid external commands. 

Characteristics of Autonomous 
Control Systems 

Based on the architecture described above 
we identify the important fundamental con
cepts and characteristics that are needed for an 
autonomous control theory. Note that several 
of these have been discussed in the literature 
as outlined above. Here, these characteristics 
are brought together for completeness. Fur
thermore, the fundamental issues which must 
be addressed for a quantitative theory of intel
ligent autonomous control are introduced and 
discussed. 

There is a successive delegation of duties 
from the higher to lower levels; consequently 
the number ofdistinct tasks increases as we go 
down the hierarchy. Higher levels are con
cerned with slower aspects of the system's 
behavior and with its larger portions, or 
broader aspects. There is then a smaller con
textual horizon at lower levels, i.e. the control 

decisions are made by considering less infor
mation. Also notice that higher levels are con
cerned with longer time horizons than lower 
levels. Due to the fact that there is the need for 
high level decision making abilities at the 
higher levels in the hierarchy, there is increas
ing intelligence as one moves from the lower 
to the higher levels. This is reflected in the use 
of fewer conventional numeric-algorithmic 
methods at higher levels as well as the use of 
more symbolic-decision making methods. 
This is the "principle of increasing intel
ligence with decreasing precision" described 
in (23]. The decreasing precision is reflected 
by a decrease in time scale density, decrease 
in bandwidth or system rate, and a decrease in 
the decision (control action) rate. (These 
properties have been studied for a class of 
hierarchical systems in [35],[36].) All these 
characteristics lead to a decrease in granular
ity of models used, or equivalently, to an in
crease in model abstractness. Model 
granularity also depends on the dexterity ofthe 
autonomous controller as discussed in (2],[3]. 
The execution level of a highly dexterous 
controller is very sophisticated and it can ac
complish complex control tasks. The control 
implementation supervisor can issue high 
level commands to a dexterous controller, or 
it can completely dictate each command in a 
less dexterous one. The simplicity, and level 
of abstractness of macro commands in an 
autonomous controller depends on its dex
terity. The more sophisticated the execution 
level is, the simpler are the commands that the 
control implementation supervisor needs to 
issue. Notice that a very dexterous robot arm 
may itself have a number ofautonomous func
tions. If two such dexterous arms were used to 
complete a task which required the coordina
tion of their actions then the arms would be 
considered to be two dexterous actuators and 
a new supervisory autonomous controller 
would be placed on top for the supervision and 
coordination task. In general, this can happen 
recursively, adding more intelligent autono
mous controllers as the lower level tasks, ac
complished by autonomous systems, need to 
be supervised. 

There is an ongoing evolution of the intel
ligent functions of an autonomous controller 
and this is now discussed. It was pointed out 
above that complex control problems required 
a controller sophistication that involved the 
use of AI methodologies. It is interesting to 
observe the following [37]: Although there are 
characteristics which separate intelligent from 
non-intelligent systems, as intelligent systems 
evolve, the distinction becomes less clear. 
Systems which were originally considered in
telligent evolve to gain more character ofwhat 

9 



are considered to be non-intelligent, numeric
algorithmic systems. An example is a route 
planner. Although there are AI route planning 
systems, as problems like route planning be
come better understood, more conventional 
numeric-algorithmic solutions are developed. 
The AI methods which are used in intelligent 
systems, help us to understand complex 
problems so we can organize and synthesize 
new approaches to problem solving, in addi
tion to being problem solving techniques 
themselves. AI techniques can be viewed as 
research vehicles for solving very complex 
problems. As the problem solution develops, 
purely algorithmic approaches, which have 
desirable implementation characteristics, sub
stitute AI techniques and play a greater role in 
the solution ofthe problem. It is for this reason 
that we concentrate on achieving autonomy 
and not on whether the underlying system can 
be considered "intelligent". 

Mathematical Models for 
Autonomous Systems 

For autonomous control problems, nor
mally the plant is so complex that it is either 
impossible or inappropriate to describe it with 
conventional system models such as differen
tial or difference equations. Even though it 
might be possible to accurately describe some 
system with highly complex nonlinear dif
ferential equations, it may be inappropriate if 
this description makes subsequent analysis 
too difficult to be useful. The complexity of 
the plant model needed in design depends on 
both the complexity of the physical system 
and on how demanding the design specifica
tions are. There is a tradeoff between model 
complexity and our ability to perform analysis 
on the system via the model. However, if the 
control performance specifications are not too 
demanding, a more abstract, higher level, 
model can be utilized, which will make sub
sequent analysis simpler. This model inten
tionally ignores some of the system 
characteristics, specifically those that need not 
be considered in attempting to meet the par
ticular performance specifications. For ex
ample, a simple temperature controller could 
ignore almost all dynamics of the house or the 
office and consider only a temperature 
threshold model of the system to switch the 
furnace off or on. 

Logical discrete event system (DES) 
models such as those used in the Ramadge
Wonham framework (e.g., [38]) or such as 
Petri nets [39] are quite useful for modeling 
the higher level decision making processes in 
the intelligent autonomous controller. It was 
shown in [40],[41] that DES-theoretic models 

can be used to represent AI planning systems 
which are an important component of the in
telligent autonomous controller. Also, it was 
shown in [ 42] that Petri nets can be used as 
knowledge representation tools in AI. In par
ticular the authors showed that knowledge that 
can be represented with semantic networks, 
scripts, and production rules in an expert sys
tem can also be clearly represented with Petri 
net models. The "timed" or "performance" 
models from DES-theoretic research will also 
prove useful in modeling components of the 
higher levels in the intelligent autonomous 
controller. For instance, q4euing network 
models, Markov chains, etc. will be useful. 
The choice ofwhether to use such models will, 
of course, depend on what properties of the 
autonomous system need to be studied. 

The quantitative, systematic techniques for 
modeling, analysis, and design of control sys
tems are ofcentral and utmost practical impor
tance in conventional control theory. Similar 
techniques for intelligent autonomous con
trollers do not exist. This is of course because 
of their novelty, but for the most part, it is due 
to the "hybrid" structure (nonuniform, non
homogeneous nature) of the dynamical sys
tems under consideration. The systems are 
hybrid since in order to examine autonomy 
issues, a more global, macroscopic view of a 
dynamical system must be taken than in con
ventional control theory. Modeling techniques 
for intelligent autonomous systems must be 
able to support this macroscopic view of the 
dynamical system, hence it is necessary to 
represent both numeric and symbolic informa
tion. We need modeling methods that can 
gather all information necessary for analysis 
and design. For example, we need to model 
the dynamical system to be controlled (e.g., a 
space platform), we need models of the 
failures that might occur in the system, of the 
conventional adaptive controller, and of the 
high level decision making processes at the 
management and organization level of the in
telligent autonomous controller (e.g., an AI 
planning system performing actions that were 
once the responsibility of the ground station). 
The nonuniform components ofthe intelligent 
controller all take part in the generation of the 
low level control inputs to the dynamical sys
tem, therefore they all must be considered in 
a complete analysis. For an extended discus
sion on the modeling of hybrid systems con
sult [43]. 

It is our viewpoint that research should 
begin by using different models for different 
components of the intelligent autonomous 
controller. Full hybrid models that can repre
sent large portions or even the whole 
autonomous system should be examined but 

much can be attained by using the best avail
able models for the various components of the 
architecture and joining them via some ap
propriate interconnecting structure. For in
stance, research in the area of systems that are 
modeled with a logical DES model at the 
higher levels and a difference equation at the 
lower level should be examined. In any case, 
our modeling philosophy requires the ex
amination ofhierarchical models. Much work 
needs to be done on hierarchical DES model
ing, analysis, and design, let alone the full 
study of hybrid hierarchical dynamical sys
tems. Some research has begun to address 
hierarchical DES [38]. 

A practical but very important issue is the 
simulation of hybrid systems. This requires 
simulation of both conventional differential 
equations and symbolic decision making 
processes or DES. Normally, numeric-algor
ithmic processing is done with languages like 
FORTRAN and symbolic decision making 
can be implemented with LISP or PROLOG 
while DES are often simulated with SLAM. 
Sometimes several types of processing are 
done on computers with quite different ar
chitectures. There is then the problem of com
bining symbolic and numeric processing on 
one computer. If the computing is done on 
separate computers, the communication link 
normally presents a serious bottleneck. Com
bining AI, DES, and conventional numeric 
processing is currently being addressed by 
many researchers and some promising results 
have been reported. Some very promising 
results have been reported in [32],[33] and the 
references therein. 

Planning and Expert Systems, 
Learning and Neural Networks, 

Restructurable Control 

In this section we will discuss results ob
tained on the analysis and design of several 
components of the intelligent autonomous 
controller architecture. One can roughly 
categorize research in the area of intelligent 
autonomous control into two areas: conven
tional control theoretic research, addressing 
the control functions at the execution and 
coordination levels, and the modeling, 
analysis, and design of higher level decision 
making systems found in the management and 
organization level, and the coordination level. 
Below we provide only a sampling of the 
results to introduce the reader to these research 
areas. 

To determine how to utilize AI techniques 
it is productive to study the relationships be
tween AI and conventional control methods. 
In this way one can determine what AI techni-
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ques have to offer over conventional control 
methods. For instance, the authors in [40] have 
provided a systems and control theoretic 
perspective on AI planning (and expert) sys
tems. In this work, the authors explain how AI 
planning systems are in fact control systems 
where the input and output variables are sym
bols rather than numbers. It is shown that the 
techniques used in the implementation of AI 
planning systems are actually generalized 
open and closed loop control, state estimation, 
system identification, and adaptive control. 

It is also important to study how to use 
conventional control techniques in conjunc
tion with AI techniques to perform autono
mous control functions. For instance, in 
[44],[45] the authors introduce a fault detec
tion and identification (FDI) system that is 
composed of AI decision making mechanisms 
and conventional FDI algorithms. The 
"hybrid" algorithmic-decision making FDI 
system detects and identifies failures for an 
intelligent restructurable controller on board 
an advanced aircraft. 

Some control theoretic techniques offer 
modeling, analysis, and design techniques for 
the higher level decision making mechanisms 
in the intelligent autonomous controller. For 
instance, in [41],[46],[47] the authors show 
that AI planning problems can be studied in a 
discrete event system (DES) theoretic 
framework by utilizing the A' algorithm. 
Moreover, there are many recent results 
developed in a DES-theoretic framework that 
can be used for the study ofcomponents of the 
intelligent autonomous controller (e.g., results 
from the Ramadge-Wonham formulation for 
the study of "logical" DES models). 

It is important to note that in order to obtain 
a high degree of autonomy it is absolutely 
necessary to, in some way, adaptor learn [48]. 
Although the literature on higher.level learn
ing performed in conjunction with low level 
adaptation is limited, in [49]-[51] the authors 
show how an expert learning system can be 
used to tune the parameters of an adaptive 
controller for a large flexible space antenna so 
as to optimize its performance and then also 
enhance the operating range of the system by 
storing this information for future use. Neural 
networks also appear to offer methodologies 
to perform learning functions in the intelligent 
autonomous controller (see for instance, the 
April issues of the IEEE Control Systems 
Magazine in 1987, 1988 and the Special Issue 
of April 1989 [52]; also the new IEEE Trans. 
on Neural Networks). Neural networks can 
also be used to implement certain components 
of the intelligent autonomous controller. For 

instance, the authors in [53],[54] investigate 
how to implement the match phase of expert 
systems with a "multi-layer perceptron". 

We stress that in autonomous control we 
seek only to significantly widen the operating 
range of the system so that significant failures 
and environmental changes can occur and per
formance will still be maintained. All of the 
conventional control techniques are useful in 
the development of autonomous controllers 
and they are relevant to the study of 
autonomous control. It is the case however, 
that certain techniques are more suitable for 
interfacing to the autonomous controller and 
for compensating for significant system 
failures. For instance the area of "restruc
turable" or "reconfigurable" control systems 
[45],[55] studies techniques to reconfigure 
controllers when significant failures occur. 
Recently there have been advances in the 
theory of restructurable controls [56],[57] 
where the authors develop stability bounds on 
the allowable parameter variations, induced 
by system failures. 

It is our viewpoint that conventional 
modeling, analysis, and design methods 
should be used whenever they are applicable 
for the components of the intelligent 
autonomous controller. For instance, they 
should be used at the execution level of many 
autonomous controllers. We propose to aug
ment and enhance existing theories rather than 
develop a completely new theory for the 
hybrid systems described above; we wish to 
build upon existing, well understood and 
proven conventional methods. The symbolic/
numeric interface is a very important issue; 
consequently it should be included in any 
analysis. There is a need for systematically 
generating less detailed, more abstract 
models from differential/difference equa
tion models to be used in higher levels of the 
autonomous controller (coordination level). 
There is also a need for systematically ex
tracting the necessary information from 
lower level symbolic models to generate 
higher level symbolic models to be used in 
the hierarchy where appropriate. Tools for 
the implementation of this information ex
traction also need to be developed (see for 
instance [58]). In this way conventional 
analysis can be used in conjunction with the 
developed analysis methods to obtain an 
overall quantitative, systematic analysis 
paradigm for intelligent autonomous con
trol systems. In short, we propose to use 
hybrid modeling, analysis, and design tech
niques for nonuniform systems. This ap
proach is not unlike the approaches used in 

the study of any complex phenomena by the 
scientific and engineering communities. 

Concluding Remarks 

The fundamental issues in autonomous 
control system modeling and analysis were 
identified and briefly discussed, thus provid
ing an introduction to the research problems 
in the area. A hierarchical functional 
autonomous controller architecture was also 
presented. It was proposed to utilize a hybrid 
approach to modeling and analysis of 
autonomous systems. This will incorporate 
conventional control methods based on dif
ferential equations and new techniques for the 
analysis of systems described with a symbolic 
formalism. In this way, the well developed 
theory of conventional control can be fully 
utilized. It should be stressed that autonomy is 
the design requirement and intelligent control 
methods appear, at present, to offer some of 
the necessary tools to achieve autonomy for 
some classes of applications. A conventional 
approach may evolve and replace some or all 
of the "intelligent" functions. Note that this 
paper is based on the development in [2],[3]. 
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