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Brief Papers 

Fuzzy Learning Control for Antiskid Braking Systems 
Jeffery R. Layne, Member, IEEE, Kevin M. Passino, Member, IEEE, and Stephen Yurkovich, Senior Member, IEEE 

Abstract- Although antiskid braking systems (ABS) are de
signed to optimize braking effectiveness while maintaining steer
ability, their performance often degrades for harsh road condi
tions (e.g., icy/snowy roads). In this brief paper we introduce 
the idea of using the fuzzy model reference learning control 
(FMRLC) technique [1] for maintaining adequate performance 
even under such adverse road conditions. This controller utilizes 
a learning mechanism which observes the plant outputs and 
adjusts the rules in a direct fuzzy controller so that the overall 
system behaves like a "reference model" which characterizes the 
desired behavior. The performance of the FMRLC-based ABS 
is demonstrated by simulation for various road conditions (wet 
asphalt, icy) and transitions between such conditions (e.g., when 
emergency braking occurs and the road switches from wet to icy 
or vice versa). 

I. INTRODUCTION 

A NTISKID braking systems (ABS) present a challeng
ing control problem since there can be significant 

brake/automotive system parameter variations (e.g., due 
to brake pad coefficient of friction changes or road 
slope variations) and environmental influences (e.g., due 
to adverse road conditions). While conventional control 
approaches [2)-[4] and even direct fuzzy/knowledge based 
approaches [5)-[8] have been successfully implemented, their 
performance may still degrade when adverse road conditions 
are encountered. The basic reason for this performance 
degradation is that the control algorithms have limited ability 
to learn how to compensate for the wide variety of road 
conditions that exist. In this paper we will investigate the 
role that learning controllers can take in enabling ABS to 
compensate for adverse road conditions. 

A "learning system" possesses the capability to improve its 
performance over time by interaction with its environment. 
A learning control system is designed so that its "learning 
controller" has the ability to improve the performance of 
the closed-loop system by generating command inputs to the 
plant and utilizing feedback information from the plant. The 
learning mechanism in the fuzzy model reference learning 
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control (FMRLC) system that we design for the ABS will 
monitor the performance of a fuzzy controller and tune it 
to adapt to adverse road conditions as they are encountered. 
This FMRLC was first introduced in [1], [9], [10) and it grew 
from ideas in linguistic self-organizing control (SOC) [11] and 
conventional model reference adaptive control (MRAC) [12). 
In fact, it has provided significant improvements over the SOC 
approach for enhanced performance feedback and knowledge 
base modification [1], [9] and has compared favorably to the 
MRAC for a ship steering application [13). 

In this paper we illustrate that the FMRLC provides an 
effective solution to the problem of compensating for certain 
adverse road conditions. We begin by describing the ABS un
der consideration. Next, we illustrate the FMRLC performance 
for a vehicle during braking on dry asphalt, wet asphalt, and 
an icy surface. Finally, we study FMRLC performance for 
transitions between such road conditions. In particular, we 
study braking effectiveness when there are transitions between 
icy and wet road surfaces. This paper is an expanded version 
of the work reported in [14). 

In Section II we will overview the FMRLC technique. In 
Section III we describe the ABS problem while in Section IV 
we provide simulation results that give an initial assessment of 
the performance of the FMRLC for ABS. Section V provides 
some concluding remarks. 

II. FUZZY MODEL REFERENCE LEARNING CONTROL 

The FMRLC, which is shown in Fig. 1, utilizes a learning 
mechanism that: 1) observes data from a fuzzy control system 
[i.e., Yr(kT) and y(kT)]; 2) characterizes its current perfor
mance; and 3) automatically synthesizes and/or adjusts the 
fuzzy controller so that some prespecified performance objec
tives are met. These performance objectives are characterized 
via the reference model shown in Fig. 1. In an analogous 
manner to conventional MRAC where conventional controllers 
are adjusted, the learning mechanism seeks to adjust the fuzzy 
controller so that the closed-loop system [the map from Yr(kT) 
to y(kT)] acts like a prespecified reference model [the map 
from Yr(kT) to Ym(kT)]. Next we describe each component 
of the FMRLC in more detail. 

A. The Fuu.y Controller 

The process in Fig. 1 is assumed to have r inputs denoted by 
the r-dimensional vector u( kT) = [u1(kT) • • • Ur (kT) ]t (T is 
the sample period) and s outputs denoted by the s-dimensional 
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y(kT) 

Fig. 1. Architecture for the FMRLC. 

vector y( kT) = [Y1 (kT) •.. Ys (kT)jl. Most often the inputs 
to the fuzzy controller are generated via some function of 
the plant output y(kT) and reference input Yr(kT). Fig. l 
shows a special case of such a map that was found useful 
in many applications. The inputs to the fuzzy controller are 
the error e(kT) = [ei (kT) • • • es (kT)jl and change in error 
c( kT) = [c1 (kT) •• • Cs (kTW defined as 

e(kT) = Yr(kT) - y(kT), (l) 

c(kT) = e(kT) - e(kT - T)' (2) 
T 

respectively, where Yr(kT) = [Yr, (kT) ···Yr, (kT)]t denotes 
the desired process output. 

In fuzzy control theory, the range of values for a given 
controller input or output is often called the "universe of 
discourse" [15]. Often, for greater flexibility in fuzzy controller 
implementation, the universes of discourse for each process 
input are "normalized" to the interval [-1, +1] by means of 
constant scaling factors. For our fuzzy controller design, the 
gains Ye, Ye• and Yu were employed to normalize the universe 
of discourse for the error e(kT), change in error c(kT), and 
controller output u(kT), respectively (e.g., Ye = [9e,, • • • 9e,]t 
so that 9ei e; (kT) is an input to the fuzzy controller). The gains 
Ye are chosen so that the range of values of 9e, e; (kT) lie on 
[-1, 1] and Yu is chosen by using the allowed range of inputs 
to the plant in a similar way. The gains Ye are determined by 
experimenting with various inputs to the system to determine 
the normal range of values that c(kT) will take on; then Ye is 
chosen so that this range of values is scaled to [-1, 1]. 

We utilize r multiple-input single-output (MISO) fuzzy 
controllers, one for each process input un (equivalent to using 
one MIMO controller). The knowledge base for the fuzzy 
controller associated with the nth process input is generated 
from IF-THEN control rules of the form: 

If e1 is E{ and · · · and es is e: and 

c1 is Cf and · · · and cs is C;' 
Then Un is ui,--,k,l,---,m 

where ea and Ca denote the linguistic variables associated 
with controller inputs ea and ca, respectively, Un denotes the 

linguistic variable associated with the controller output un, E~ 
and c: denote the bth linguistic value associated with ea 
and Ca, respectively, and ui,---,k,l,---,m denotes the consequent 
linguistic value associated with Un, The above control rule 
may be quantified by utilizing fuzzy set theory to obtain a 
fuzzy implication of the form: 

If E{ and · .. and E: and Cf and .. · and C;' 
Then U~,---,k,l,---,m 

where E:, c:, and ui,--,k,t,---,m denote the fuzzy sets that 
quantify the linguistic statements "ea is e:," "ca is c:," and 
"un is ui,--,k,l,--·,m," respectively. This fuzzy implication can 
be represented by a fuzzy relation 

Rl""·,k,l,-· ,m = (E{ X ·"XE:) X (Cf X "· X C;') 

(3) 

A set of such rules forms the "rule-base" which characterizes 
how to control a dynamical system. We use triangular member
ship functions for the input and output (normalized) universes 
of discourse, Zadeh's compositional rule of inference, and 
the standard center-of-gravity (COG) defuzzification technique 
[15], 

B. The Reference Model 

The reference model provides a capability for quantifying 
the desired performance. In general, the reference model may 
be any type of dynamical system (linear or nonlinear, time
invariant or time-varying, discrete or continuous time, etc.). 
The performance of the overall system is computed with 
respect to the reference model by generating an error signal 
Ye(kT) = [Yei • • • Ye,Jl where 

(4) 

Given that the reference model characterizes design criteria 
such as rise time and overshoot and the input to the reference 
model is the reference input Yr(kT), the desired performance 
of the controlled process is achieved if the learning mechanism 
forces Ye(kT) to remain very small for all time; hence, the 
error Ye (kT) provides a characterization of the extent to 
which the desired performance is achieved at time kT. If the 
performance is met (Ye(kT) ~ 0) then the learning mechanism 
will not make significant modifications to the fuzzy controller. 
On the other hand if Ye(kT) is big, the desired performance 
is not achieved and the learning mechanism must adjust the 
fuzzy controller. Next we describe the operation of the learning 
mechanism. 

C. The Learning Mechanism 

As previously mentioned, the learning mechanism performs 
the function of modifying the knowledge base of a direct 
fuzzy controller so that the closed-loop system behaves like 
the reference model. These knowledge base modifications 
are made by observing data from the controlled process, 
the reference model, and the fuzzy controller. The learning 
mechanism consists of two parts: a fuzzy inverse model and a 
knowledge base modifier. The fuzzy inverse model performs 
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the function of mapping 'Ye(kT) (representing the deviation 
from the desired behavior), to changes in the process inputs 
p = [p1 • · ·Pr]t that are necessary to force 'Ye(kT) to zero. The 
knowledge base modifier performs the function of modifying 
the fuzzy controller•~ knowledge base to affect the needed 
changes in the process inputs. More details of this process are 
discussed next. 

The fuzzy inverse model was developed in [1], [9] by 
investigating methods to alleviate the problems with using 
the inverse process model in the linguistic SOC framework 
of Procyk and Mamdani [11]. Procyk and Mamdani's use 
of the inverse process model depended on the use of an 
explicit mathematical model of the process (and its inverse) 
and ultimately on restrictive assumptions about the underly
ing physical process (which cause significant difficulties in 
applying their approach). Using the fact that most often a 
control engineer will know how to roughly characterize the 
inverse model of the plant, the authors in [ 1 ], [9] introduce 
the idea of using a fuzzy system to map 'Ye(kT) and possibly 
functions of 'Ye(kT) (or process operating conditions), to the 
necessary changes in the process inputs p(kT). This map is 
called the "fuzzy inverse model" since information about the 
plant inverse dynamics is used in its specification. Note that 
similar to the fuzzy controller, the fuzzy inverse model shown 

in Fig. 1 contains normalizing scaling factors, namely 9y,, gYc, 
and 9p, for each universe of discourse. 

Given that 9y,a Yea and 9Yca Yea are inputs to the fuzzy 
inverse model, the knowledge base for the fuzzy inverse model 
associated with the nth process input is generated from fuzzy 
implications of the form 

IfYJ, and· • • and Ye~ and Y}
1 

and • • • and Yer_:' 
Then p~,---,k,l,---,m 

where yeba and Ye: denote the bth fuzzy set for the error Yea 

and change in error Yea, respectively, associated with the ath 
process output and Pf--,k,l,---,m denotes the consequent fuzzy 
set for this rule describing the necessary change in the nth 
process input. As with the fuzzy controller we utilize triangular 
membership functions for both the input and output universes 
of discourse, Zadeh's compositional rule of inference, and 
COG defuzzification. 

The knowledge base modifier for the FMRLC also grew 
from research performed on the linguistic SOC [11], [l], [9]. 
In the linguistic SOC framework, knowledge base modifi
cation was performed on the overall fuzzy relation (Rn = 
Uj,---,k,l,---,mR~---,k,l,---,m) used to implement the fuzzy con

troller. However, this method of knowledge base modification 
can be computationally complex due to the fact that Rn is 
generally a very large array. In [1], [9] the authors presented a 
new knowledge base modification algorithm which increases 
computational efficiency by modifying the membership func
tions of consequent fuzzy sets uf--,k,l,---,m rather than the 
fuzzy relation array Rn, 

Given the information about the necessary changes in the 
input as expressed by the vector p(kT), the knowledge base 
modifier changes the knowledge base of the fuzzy controller 
so that the previously applied control action will be modified 

by the amount p(kT). Therefore, consider the previously 
computed control action u(kT - T), which contributed to the 
present good/bad system performance. Note that e(kT - T) 
and c( kT - T) would have been the process error and change 
in error, respectively, at that time. By modifying the fuzzy 
controller's knowledge base we may force the fuzzy controller 
to produce a desired output u(kT - T) + p(kT). 

Assume that only symmetric membership functions are 
defined for the fuzzy controller's output so that d,;·--,k,l,---,m 

denotes the center value of the membership function associated 
with the fuzzy set Ui, .. ,k,l,---,m. Knowledge base modification 

is performed by shifting centers of the membership functions 
of the fuzzy sets Ui, .. ,k,l,---,m which are associated with the 

fuzzy implications that contributed to the previous control 
action u(kT - T). This modification involves shifting these 
membership functions by an amount specified by p(kT) = 
[pl (kT) .. •Pr (kTW so that 

d,;--•,k,l,---,m(kT) = ct;·--,k,l,---,m(kT - T) + Pn(kT). (5) 

The degree of contribution for a particular fuzzy implication 
whose fuzzy relation is denoted R~---,k,l,---,m is determined by 

its "activation level," defined by 

8~---,k,l, --,m(t) = min{µE; (e1(t)), · · ·, µE} (es(t)), 

µCi (c1 (t) ), .. ·, µc;n (cs (t))} (6) 

where µA denotes the membership function of the fuzzy" set 
A. Only those fuzzy implications R~---,k,l,--•,m(kT-T) whose 
activation level 8~,---,k,l,---,m(kT - T) > 0 are modified; 

all others remain unchanged. It is important to note that 
our rule-base modification procedure implements a form of 
local learning and hence utilizes memory. In other words, 
different parts of the rule-base are "filled in" based on different 
operating conditions for the system, and when one area of the 
rule-base is updated, other rules are not affected. Hence, the 
controller adapts to new situations and also remembers how 
it has adapted to past situations. This justifies the use of the 
term "learning" rather than "adaptive" (for more details on 
this point see [16], [l], [9]). 

D. Design Procedure 

Note that although it is often not highlighted, most learn
ing/adaptive control approaches assume that an initial con
troller structure and parameters are given (e.g., initial gains 
must be known a priori in adaptive control approaches). As 
such initial parameters can impact the overall performance, 
in what follows we provide a procedure to pick such initial 
parameters (i.e., the normalizing gains) for the FMRLC. 

1) Select the controller gains 9y, associated with the de
sired output change 'Ye(kT) such that each universe of 
discourse is mapped to the interval [-1, l]. 

2) Choose the controller gain 9p; to be the same as for the 
fuzzy controller output iain Yu· This will allow p;(kT) 
to take on values as large as the largest possible inputs 
u;(kT). 

3) Assign the numerical value O to the scaling factors as
sociated with the changes in the desired output changes 
(i.e., all elements of gYc are set equal to 0). 
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4) Apply a step input to the process which is of a magnitude
that may be typical for the process during normal op 0.9 

eration. Observe the process response and the reference 0.8 ,//_•• -

model response. 1 0.75) Three cases: f 0.6

a) If there exist unacceptable oscillations in a given 
'o 

-- Dry Asphalt"' 0.5 _________ Wet Asphalt
Iceprocess output response about the reference model -~ 0.4

response, then increase the associated element of IE
~ 0.3

gYc. Go to step 4).
b) If a given process output response is unable to 

0.2 

"keep up" with the reference model response, then 0.1 

decrease the associated element of gYc. Go to step 0"----~-~-~-~~-~-~~~~--'o w w m • ~ w m m oo ~4). 
Brake Slip (%)

c) If the process response is acceptable with re
spect to the reference model response, then the Fig. 2. Road-tire friction coefficients (µ (.X)) versus slip ratio .X for various
controller design is completed. road surfaces. 

For the application presented in this paper, the above gain
selection procedure has proven very successful. However, and Fig. 2 observe that O % slip represents the free rolling 
given that the procedure is a result of simulation experience wheel condition (ww = Wv and µ(A) = 0) while 100 % slip 
with the FMRLC rather than strict mathematical analysis, it corresponds to a wheel that is locked (ww = 0). 
is possible that it will not work for all processes. For some From Fig. 2 we see that for the three road conditions
applications (although none of the ones studied in [l], [9], shown, µ(A) is maximized for A ~ 20 %. Although an ideal
[13), [10)), the procedure may result in an unstable process. In situation would be to maximize the road/tire friction regardless
such situations, it may be necessary to modify other controller of A, for this study we seek to regulate slip to 20 % to
parameters such as the controller sampling period T or the maximize the coefficient of friction between the tire and the
number of fuzzy controller rules. Clearly, the stability analysis road. While the "target slip" value is a subject of debate (many
of the FMRLC is an important research direction. Additional ABS engineers use a more conservative 15 to ensure stable
research directions, a discussion of the limitations of the operation), our algorithm will perform similarly if designed for
FMRLC, and a comparative analysis of FMRLC and MRAC another target value. Regardless of the design target chosen,are provided in [l], [9], and [13). the important point is that during normal vehicle operation, the

road conditions are constantly changing. Since the road surface
directly affects the braking characteristic, a controller designIII. ANTISKID BRAKING SYSTEMS which compensates for all possible types of road conditions is

The objective of the FMRLC-based ABS system is to difficult (especially for transitions between road conditions).
regulate wheel slip to maximize the coefficient of friction A greatly simplified model for a vehicle, a single wheel,
between the tire and road for any given road surface. In and its braking system was employed for this research (wegeneral, the coefficient of friction µ during a braking operation ignore actuator dynamics for this initial study). The processcan be described as a function of slip A, which for a braking model contains linearized vehicle dynamics and one-wheeloperation is defined as 

rotational dynamics, where wirid resistance effects and all the
vertical dynamics associated with the suspension system are

Vv(t) _ w (t) assumed negligible. The differential equation which describesRw w ,
A(t) = (7) the motion of the wheels can be determined by summing the

Vv(t) rotational torques which are applied to the wheel; hence
Rw 

where Ww (t) is the angular velocity of the wheel, Vv (t) is the
velocity of the vehicle, and Rw is the radius of the tire. Since
the term (Vv (t) / Rw) is the angular velocity of the vehicle with
respect to the tire angular velocity, we will sometimes denote where lw is the rotational inertia of the wheel, Bw is the 
this quantity by wv(t). The braking coefficient of friction as a viscous friction of the wheel, n(t) is the braking torque (in
function of slip µ(A) was measured in [17), [18). The results N-m), and Tt(t) is the torque generated due to slip between
of these experiments were approximated for dry asphalt, wet the wheel and the road surface. In general, Tt(t) is a function 
asphalt, and ice as shown in Fig. 2 (we use these data in all our of the force Ft (t) exerted between the wheel and the road
simulations in Section IV). As one would expect, the braking surface, or Tt(t) = RwFt(t), where Rw is the radius of the 
coefficient of friction is largest for dry asphalt, slightly reduced wheel. The vehicle dynamics are determined by summing the
for wet asphalt, and significantly reduced for ice. From (7) total forces applied to the vehicle during a normal braking 
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operation to obtain 

where Mv is the mass of the vehicle, Bv is the vehicle viscous 
friction, g is the gravitational acceleration constant, F0(0) is 
the force applied to the car which results from a vertical 
gradient in the road so that F0(0) = Mvgsin(0(t)) where 
0 is the angle of inclination of the road. The force Ft (t) is 
generally expressed as a function of the coefficient of friction 
and the normal force on the wheel, or Ft(t) = µ(>..)Nv(0) 
where Nv(0) is the normal force applied to the tire. For this 
model we assume that the vehicle has four wheels and the 
weight of the vehicle is evenly distributed among these wheels. 
As a result, the normal force Nv(0) may be expressed by 
Nv(0) = (Mvg/4) cos(0(t)). 

The braking system parameters used in this study are vehicle 
mass Mv = 4 x 342 kg, viscous friction associated with the 
linear motion of the vehicle Bv = 6 N • s, rotational inertia 
of the wheel Jw = 1.13 N • m • s2 , rolling radius of the wheel 
Rw = 0.33 m, viscous friction associated with the motion of 
the wheel Bw = 4 N • s, and g = 9.8 m • s2 [4]. 

Since slip is the controlled parameter of the braking system, 
we desire to measure this quantity. However, currently it is 
difficult to accurately measure slip directly, so an estimation 
scheme is necessary. We will assume that sensors for mea
suring vehicle acceleration and wheel speed are available for 
estimating slip as is done in [5], [7]. 1 Equation (7) may be 
rewritten to obtain 

Ww(t) = (1 - >..(t))wv(t). (10) 

Taking the time derivative of (10) yields 

ww(t) = (1 - >..(t))wv(t) - ).(t)wv(t) (11) 

where Ww (t) is related to the vehicle linear acceleration av (t) 
by 

(12) 

Using (12) and the fact that Wv = (Vv/ Rw), we obtain 

ww(t) = (1 - >..(t)) a~~) - ).(t) v~~). (13) 

Thus, by r~arranging (11) we can solve for the wheel slip 
derivative >..(t) which yields 

(14)).(t) = (1 ;v~\t))av(t) - ( V~~))ww(t) 

as a general approach for estimating slip (we used simple Euler 
integration for the implementation of this technique in our 
simulations). Above we have illustrated one possible method 
for approximating slip; other investigations have indicated that 
the FMRLC also works well for other slip estimation methods 
similar to those described in [2], [3], and [19]. 

1The use of an accelerometer for ABS systems raises issues of noise, road 
gradient effects, and integration error which need to be more fully investigated 
in future work. 

IV. Fuzzy MODEL REFERENCE 
LEARNING CONTROL FOR ABS 

A. FMRLC Design 

For the FMRLC-based ABS we use e(kT) = >..r(kT) -
>..(kT) where >..r(kT) = 20 % (T = 1 ms) and c(kT) is 
defined in (2). We utilize a direct fuzzy controller that has 11 
fuzzy sets with membership functions uniformly distributed on 
each (normalized) input universe of discourse. All membership 
functions used in our FMRLC are triangular shaped with 
a base-width of 0.4 (except when it is appropriate to use 
trapezoidal shapes for the outermost regions of the universes 
of discourse). The triangular membership functions for the 
fuzzy controller output (normalized) universe of discourse are 
initially set to be centered at zero indicating that the fuzzy 
controller initially does not know how to specify the control 
input (this is what the FMRLC will learn how to do). The 
normalizing controller gains for the error, change in error, and 
the controller output are chosen to be 9e = l, 9c = 1/1000, 
and 9u = 2200. 

The reference model for this process was chosen to be 

The inputs to the fuzzy inverse model include the error and 
change in error between the reference model and the wheel 
slip expressed as 

Ae(kT) = Am(kT) - >..(kT), (16) 

Ac(kT) = Ae(kT) - ~e(kT - T)' (17) 

respectively. For these inputs, 11 fuzzy sets are defined with 
triangular shaped membership functions which are evenly 
distributed on the appropriate universes of discourse. The 
normalizing controller gains associated with >..e(kT), >..c(kT), 
and p;(kT) are chosen to be 9>.e = l,g>.c = 1/1000, and 
gp, = 2200 using the gain selection procedure described 
above. In a typical braking system, an increase in the braking 
torque n(kT), will generally result in an increase in the wheel 
slip. This implies that the incremental relationship between 
the process inputs and outputs is monotonically increasing. 
Consequently, the knowledge base array shown in Table I 
was employed for the fuzzy inverse model. In Table I, M 
is the jth fuzzy set associated with the error signal Ae and 
A~ is the kth fuzzy set associated with the change in error 
signal Ac- For convenience, rather than listing the indexes i 
for Pj·k in the body of the table, we list the center values of 
triangular membership functions corresponding to the fuzzy 
inverse model output fuzzy sets Pj-k. 

B. Performance for Various Road Conditions 

The FMRLC described above was simulated for the automo
tive ABS system. The results of this simulation for wet asphalt 
and for an icy surface are shown in Figs. 3 and 4, respectively. 
For these simulation results, only one brake was applied. The 
braking action was initiated when the vehicle was moving 25 
mis (appoximately 56 mph) on a level surface (0 = 0) and we 
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TABLE I Anti-Skid Braking System Response on Ice - fMRLC 
INVERSE MODEL KNOWLEDGE BASE ARRAY: 

OUTPUT MEMBERSHIP FUNCTION CENTER VALVES 
0.45: 

P/'k A~ -- Ref. Model Response
-5 -4 -3 -2 -1 -1-0 ---------- ABS Response+1 +2 +3 -t4 +5 

-5 -1 -1 -1 -1 -1 -1 --0.8 --0.6 --0.4 --0.2 0 
-4 -1 -1 -1 -1 -1 --0.8 --0.6 --0.4 --0.2 0 0.2 
-3 -1 -1 -1 -1 --0.8 --0.6 --0.4 --0.2 0 0.2 0. 4 
-2 -1 -1 -1 --0.8 --0.6 --0.4 --0.2 0 0.2 0.4 0. 6 
-1 -1 -1 --0.8 --0.6 --0.4 --0.2 0 0.2 0.4 0.6 0.8 

AJ., 0 -1 --0.8 --0.6 --0.4 --0.2 0 0.2 0.4 0.6 0.8 1 

+l --0.8 --0.6 --0.4 --0.2 0 0.2 0.4 0.6 0,8 1 1 
+2 --0.6 --0.4 --0.2 0 0,2 0.4 0.6 0.8 1 1 1 
+3 --0.4 --0.2 0 0.2 0.4 0.6 0.8 1 1 1 1 

Time (sec)-t4 --0,2 0 0,2 0.4 0.6 0.8 1 1 1 1 1 
+5 0 0.2 0.4 0.6 0.8 1 1 1 1 1 1 

Anti-Skid Braking System Perfonnance on Wet Asphalt - fMRLC
0.45.-----~---~--~---~--~ t~~I
0.4 -- Ref. Model Response 0 I 2 3 4 5 6 7 8 9 10

---------- ABS Response Time(sec) 

0.35 

l~i ~~!
0 2 3 4 5 6 7 8 9 10 

Time(sec) 

0.2'-----=----'---~---~--__J 
Fig. 4. Simulation results for FMRLC of a vehicle braking system on a

0 0.5 15 2.5 level icy surface. 
Time(sec) 

point where the vehicle is slowed to approximately 5 mis.
Note that for the wet asphalt case, the braking system slip

value tracked the reference model output almost perfectly. As
a result, the system does not exhibit the limit cycle effect
for which many ABS systems are designed (of course, when
implemented the algorithm would exhibit some type of cycling

Time (sec) 
to achieve regulation). It is an important future direction to
fully investigate the implications of using an ABS system
that is not specifically designed to "cycle" in the conventional
manner (for example, the effects on steerability). Also note
that the braking torque for this case was very smooth. The
controller seems to have found the appropriate level of braking 

1.5 2.5 torque which needs to be applied to the wheels to maintain a
Time (sec) 

• slip of 20 %.
Fig. 3. Simulation results for FMRLC of a vehicle braking system on a Although the simulation results for the icy surface shown inlevel wet asphalt surface. 

Fig. 4 are likely to be considered acceptable by most control
engineers, they are not as good as the results obtained for

desire to regulate slip to 20 % (we initialize the slip at 50 %, wet asphalt road conditions. In general, it is very difficult to
a typical point where the ABS may be engaged). Due to the control slip on an icy surface due to the fact that a very small
fact that the wheel and vehicle velocity are nearly zero at low braking torque is likely to cause lock-up. In fact, to avoid lock
speeds, the magnitude of slip tends to infinity as the vehicle up the controller sets Tb(t) = 0 initially, then once the slip
speed approaches zero. This often causes determination of the goes below the setpoint, the controller applies an appropriate
slip to become very sensitive at slow speeds and as a result input to regulate the slip to 20 %. Notice that the control input
slip is very difficult to control at slow speeds. Therefore, as is increases linearly in Fig. 4 for t ::::: 3 sec. due to the increasing
standard in the literature, simulations are conducted up to the viscous friction term in (8). 
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TABLE II 
STOPPING DISTANCE FOR A SINGLE WHEEL ABS SYSTEM IMPLEMENTED 
USING FMRLC VERSUS A SINGLE WHEEL LOCK-UP BRAKING SYSTEM 

Stopping Distance (meters) 

Road Surface FMRLC Lock-Up 
Dry Asphalt 32.721 38.421 

Wet Asphalt 35.300 39.863 

Ice 151.070 247.257 

ABS Response for a Wet Asphalt/Icy Transition 
0.45 

WET 

0.4 

ICE 
0.35 

0.3 Ref. Model Response 
-- ABS Response 

0.25 

0.2 

I 
0.15 I 

0 

Time (sec) 

Time(sec) 

j 

7 

Time (sec) 

Fig. 5. Simulation results for FMRLC of a vehicle braking system for a wet 
asphalt/icy transition. 

Table II illustrates the potential of the ABS system described 
above by comparing the stopping distance which resulted for 
the FMRLC algorithm with the case where the wheel is locked. 
Note that a substantial decrease in the stopping distance is 
obtained on all road surfaces which were considered in Fig. 2 
(the plots for dry asphalt were omitted in the interest of space 
as they were similar in shape to the wet asphalt case). 

C. Transitions Between Road Conditions 

The next set of simulations illustrates the effectiveness of 
the FMRLC algorithm for transitions between various road 
conditions. Here we consider two very likely real world 
scenarios. The first involves the situation where the brakes 
are applied on wet asphalt and during the braking action the 
vehicle moves onto an icy surface. Notice that during the initial 
braking action, the wet asphalt would allow for a relatively 

ABS Response for an Icy/Wet Asphalt Transition 

-- Ref. Model Response 
--------- ABS Response 

ICE WET 

0.2 

Time (sec) 

I 
~ 40 - ____(_ 

.el 1----
ii, 20 1 ----------:! ICE WET

0 
0 

Time (sec) 

Time (sec) 

Fig. 6. Simulation results for FMRLC of a vehicle braking system for an 
icy/wet asphalt transition. 

large braking torque without lock-up occurring. However, 
when the vehicle reaches the icy road condition braking torque 
must be reduced quickly to prevent lockup. This large system 
variation requires a very demanding controller modification on 
the FMRLC algorithm. However, the simulation results for this 
scenario shown in Fig. 5 illustrate that the FMRLC algorithm 
is capable of dealing with such drastic process variations. 

The second case involves the reverse of the situation de
scribed above. In this case, the brakes are applied on an 
icy surface and during the braking action the vehicle moves 
onto wet asphalt. This situation would require the FMRLC 
to reconfigure itself to increase the torque when the vehicle 
reaches the wet asphalt. Fig. 6 illustrates the simulation result 
for this scenario. Once again the FMRLC was successful in 
learning to compensate for the adverse road conditions. 

V. CONCLUSIONS 

The principal objective of this paper was to illustrate the 
design methodology and application of the new FMRLC 
algorithm for an automotive antiskid braking system which 
is subjected to harsh road conditions. While the behavior of a 
conventional braking system varies significantly for different 
road and operating conditions, the results obtained in this 
paper (although somewhat preliminary) indicate that the FM-
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RLC provides a promising approach to maintaining effective 
braking even under adverse road conditions. Directions for 
future research include: 1) testing the FMRLC design for 
other harsh road conditions (e.g., snowy roads, transitions 
in road conditions involving snow); 2) fully comparing the 
approach to conventional control algorithms for ABS (such 
as a gain-scheduled PD controller); 3) testing the approach 
with a full nonlinear dynamical vehicle simulation; and 4) 
studying implementation characteristics of the FMRLC-based 
ABS system. 
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