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Abstract. A discrete event system (DES) is a dynamical system whose evolution in time develops as the result 
of the occurrence of physical events at possibly irregular time intervals. Although many DES's operation is asyn
chronous, others have dynamics which depend on a clock or some other complex timing schedule. Here we pro
vide a formal representation of the advancement of time for logical DES via interpretations of time. We show 
that the interpretations of time along with a timing structure provide a framework to study principles of the ad
vancement of time for hierarchical DES (HDES). In particular, it is shown that for a wide class of HDES the 
event rate is higher for DES at the lower levels of the hierarchy than at the higher levels of the hierarchy. Relation
ships between event rate and event aggregation are shown. We define a measure for event aggregation and show 
that there exists an inverse relationship between the amount of event aggregation and the event rate at any two 
successive levels in a class of HDES. Next, we study how to design the timing structure to ensure that there 
will be a decrease in the event rate (by some constant factor) between any two levels of a wide class of HDES. 
It is shown that if the communications between the various DES in the HDES satisfy a certain admissibility con
dition then there will be a decrease in the event rate. These results for HDES constitute the main results of this 
paper, since they provide the first mathematical characterization of the relationship between event aggregation 
and event rates of the HDES and show how to design the interconnections in a HDES to achieve event rate reduc
tion. Several examples are provided to illustrate the results . 

.Key Words: Discrete Event Systems, Hierarchical Discrete Event Systems, Event Rate, Aggregation, Manufac
turing Systems 

1. Introduction 

In our main results we show that the interpretations of time which characterize the ad
vancement of time in DES (introduced in Section 2) along with a timing structure provide 
a framework to study principles of the advancement of time for hierarchical DES (HOES). 
In Theorem 3.1 it is shown that for a wide class of HOES the event rate is higher for DES 
at the lower levels of the hierarchy than at the higher levels of the hierarchy. Relationships 
between event rate and event aggregation are shown. We define a measure for event aggre
gation and show that a high amount of event aggregation will result in a much lower event 
rate at higher levels in a certain class of HOES while a low amount of event aggregation 
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will result in higher event rates (Theorem 3.2). Event rate reduction in HOES is often desir
able, so the processors implementing the higher level controls are permitted adequate time 
before they must attend to the lower level systems. Next, we study how to design the timing 
structure to ensure that there will be a decrease in the event rate (by some constant factor) 
between any two levels of a wide class of HOES. It is shown that if the communications 
between the various DES in the HOES satisfy a certain admissibility condition then there 
will be a decrease in the event rate (Theorem 3.3). Hence, we show that one only needs 
to restrict the interconnections in the HOES to achieve event rate reduction. The results 
are illustrated with a conventional discrete event control system, a hybrid dynamical system, 
and a manufacturing system. Some of the results in this paper were originally reported 
in [Knight and Passino 1990; Passino 1989; Passino and Antsaklis 1988; 1991]. 

We focus on timing characteristics of single DES or HOES which have as components 
DES that can be accurately modeled with 

P = (X, U, Y, o, :>-, Xo), (1) 

where 

X is the set of plant states x 
U is the set of plant inputs u 
Y is the set of plant outputs y 
o: U X X --. P(X) is the plant state transition function (P(X) denotes the power set of X) 
:>-: U x X --. Y is the plant output function 
Xo C X is the set of possible initial plant states 

The plant state transition function (a partial, point to set function) specifies for each cur
rent input u and state x the set of possible next states x' E o(u, x). The output function 
specifies, for the current input u and state x, the current output symbol y = :>-(u, x). For
mally, P is equivalent to a directed graph with node set X and edges x --. x' labeled with 
u/yfor each triple (u, x, x') such thatx' E o(u,x) andy = :>-(u, x). The model Pis similar 
to a standard automaton, but X, U, and Yare not required to be finite. A run ofPis defined 
as a sequence of triples (u0, x0, y0), (u 1, X1, y1), (u2, x2, y2), ... , such that x0 E Xo, Uo 
is the initial input, xk+I E o(ub xk), and Yk = :>- (ub xd. Notice that since it is possible 
that o(ub xd = 0 for all uk E U at some xk E X, a run may have a finite length. We note 
that our results are not restricted solely to the use of the DES model (1). The above model 
was chosen so that the results here would directly apply to a wide class of systems that 
can be represented with "logical DES models" (e.g., general and extended Petri nets [Peter
son 1981], finite automata, and other DES models [Ramadge and Wonham 1987; Zhong 
and Wonham 1990]). The development of results analogous to ours for hierarchical timed 
or performance models for DES is an important research direction. 
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2. Characterizing the Advancement of Time In DES 

When a physical plant is modeled via (1), the meaning of the advancement of time must 
be defined. If Z is an arbitrary set, then Z" denotes the set of all finite strings of elements 
for Z. If Zand Z' are arbitrary sets, then zZ' denotes the set of all functions mapping Z' 
to Z. Let N denote the set of natural numbers. In order to discuss timing issues for P, an 
index set 1 and index sequences 

are utilized similar to the approach in [Sain 1981]. The index set 1 is thought of as a set 
of times. Let R+ denote the set of strictly positive real numbers and R+ = R+ U {O}, 
the set of nonnegative reals. Note that N or R could be candidates for the set 1. For conve
nience, we assume that 1 = R+. The index sequences a E 2 J* U 1N are sequences of 
time instants that can be of finite or infinite length. For a E f U 1N let Ia I denote the 
cardinality of the size of the string a. Note _that either a: N ---+ 1 or a: [0, a] ---+ 1, where 
[O, a] C N, and a(k) simply denotes an element in 1. An index sequence (function) a 
E 1* U 1N is said to be admissible if 

(i) it is order preserving; i.e., 
(a) if a E 1N, then for all ki, k2 E N, k1 ::5 k2 implies a (k1) ::5 a (k2); 

(b) if a E f, then for all ki, k2 E N with ki, k2 E [O, Ia I - l], k1 ::5 k2 implies a(k1) 

::5 a(k2), and 
(ii) it is injective and if a E 1N then a (k) ---+ oo as k ---+ oo. 

Following [Sain 1981], the state of the plant x E Xis associated with the index a(k) 
for some a E1• U 1N and is denotedx(a(k)), meaning "the state at time a(k)." Similar
ly, iputs u E U and outputs y E Y are associated with that same index and denoted u(a(k)) 
and y(a(k)), respectively. The transition to a state in the set o(u, x) can be thought of 
as leading to the next state, with "next" quantified with the index sequence a as a(k + 
1). With this, the transition function is given asx(a(k + 1)) E o(u(a(k)), x(a(k))), which 
is often abbreviatedxk+ 1 E o(ub xk)- Similarly, the output is often denoted by Yk = ")\.(uk, 

xk) fork E N. Each run of P(zto, Xo, y0), (ui, Xi, y1), ... has an associated index sequence 
a E1• U 1N, a = a(O), a(l), ... , specifying the time instants at which the triples are 
defined. Notice that if for some xk E X and all uk E U, o(uk, xk) = 0, then a(k + 1) is 
undefined and in this case a has finite length (in this situation we say that P is 
''deadlocked''). 

A DES often activates or triggers other DES to act. For instance, in the case where 
P represents a plant, P may trigger a controller to generate an input to P. In this case, 
the trigger often represents certain changes that occur in the plant. For instance, events 

can be used as the trigger. Similar to [Ramadge and Wonham 1987], we let E C X x 
X denote the set of events e, where 

E = {(x, x') EX x X: x' E o(u, x)}. (3) 
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An event e = (x, x') is said to occur if the state transition from x to x' E o(u, x) takes 
place. For convenience we shall assume that the event occurs (is defined) at the time in
stant a (k + 1) where the next state is defined. Due to the injective part of the admissibility 
requirement for a the variables x, u, and y are defined at time instants which are distinct 
from one another. By condition (ii) of the admissibility requirement when state transitions 
occur it is guaranteed that time will advance (although it may be a very small amount) 
and if an infinite number of events occur this will take an infinite amount of time. The 
other important implication is that using the definition of events E in (3) it is automatically 
assumed that events occur at distinct times; i.e., simultaneous events are not allowed because 
the index sequences are required to be admissible. Suppose for a moment that condition 
(ii) of the admissibility requirement is omitted, so that for a E .t U 1N it is possible that 
a(k + 1) = a(k) for any k E N such that a(k) and a(k + 1) are defined. This will allow 
events to occur simultaneously at a particular time instant. In fact, for a E 1N it will allow 
even an infinite number of events to occur at one time instant, resulting in the possibility 
that time will not advance. Normally, to treat simultaneous events, only a finite number 
of events are allowed to occur at a single time instant; hence, other events representing 
the case that "several events occur at once" can often be defined. So the problem of deal
ing with simultaneous events is often transformed to the case where only a single event 
occurs at each time instant, so that time is guaranteed to advance and admissibility can 
be assumed (e.g., this can be done for Petri nets [Peterson 1981]). 

The pair / = (A, 1), where 1 is an index set and A C .t U 1N, will be referred to 
as an interpretation of time since it specifies the meaning of the advances in time for the 
occurrence of state transitions; i.e., it specifies the time instants where the variables of 
the DES Pare defined. In general, a system Pis said to have a particular interpretation 
of time I = (A, 1) as long as the time instants associated with the elements of the runs 
of P are elements of1 and the index sequences associated with the runs of P are elements 
of A. The admissible interpretation of time will be denoted lad = (Aad• lad), where lad is 
an index set and 

Aad = {a E -½d U la~ : a is admissible} . (4) 

Most often we can choose lad = 1 = R+ and this is what we will assume here. It is com
mon to discuss the timing characteristics of DES relative to a clock. By a clock we mean 
a device which has a fixed interval T E R + between ticks and which does not stop ticking 
(if there is deadlock, the clock keeps ticking but no events occur). Next we provide defini
tions for several standard interpretations of time used in DES studies: 

DEFINITION 2.1. The asynchronous interpretation of time is Ia = (Aa, la), where la = 
R+ and 

Aa = {a E Aad : a (0) = 0}. 

According to convention la = lad = R+, with the time instant of zero corresponding to 
the case where no state transitions have occurred. Here Ia represents the situation where 
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the plant Pis asynchronous (out of sync, not synchronous) with a clock. For Ia the time 
instants at which the plant variables are defined are at nonuniform (irregular) distances 
from one another along the time line R+. Notice that Aa C Aad if lad = la, so that asyn
chronous interpretations of time are admissible interpretations of time, but not necessarily 
vice versa. 

DEFINITION 2.2. The partially asynchronous interpretation oftime is /pa = (Ayp, lpa), with 
lpa = R+ and A-yp = {a E Aa: a(k) + 'Y =s; a(k + 1) =s; a(k) + /3} for 'Y, (3 E R+, 
where /3 ~ 'Y· 

Here /pa represents the case where we know that the time instant where the next state is 
defined is constrained to occur at least 'Y, and no more than /3 time units later. Notice that 
A-yp C Aa if lpa = la; that is, partially asynchronous interpretations of time are asyn
chronous interpretations of time, but not necessarily vice versa. 

DEFINITION 2.3. The general synchronous interpretation of time is ls = (AT, ls) with ls 
= R+ and Ar= {a E Aa: a(k + 1) = a(k) + nT, where n E N-{0}} with TE R+. 

For the general synchronous interpretation of time, the time instants at which the plant 
variables x, u, y are defined are at distances nT, for n E N-{0}, from one another along 
the time line R+. Notice that, in general, a state transition may not occur between any 
two particular ticks of tpe clock (since n > 0), and that after each state transition occurs 
another may not eventually occur. When n = 1, we shall refer to ls simply as the syn
chronous interpretation oftime. For the synchronous interpretation of time it is not necessar
ily the case that IAri = 1 since any finite length index sequence may be possible. Notice 
that if n = 1, Ar C Ayp provided that 'Y =,; T =,; (3 so that the synchronous interpretation 
of time is a partially asynchronous interpretation of time, but not necessarily vice versa. 

Note that it is not, in general, required that the timing characteristics of the plant be 
defined relative to a clock although they are often treated as such. In general, in a manner 
similar to that with the clock, the plant may be in sync (out of sync) with changes in other 
systems. Also notice that for asynchronous time if aa E Aa and the current time is aa(k), 
then the next time is aa(k + 1) = aa(k) + r, where r E R+. On the other hand, for 
general synchronous time if as E Ar the current time is as(k), then the next time is as(k 
+ 1) = as(k) + r', where r' E R1 and R1 = {nT : n E N-{0}} for a given TE R+. 
Since R1 is equinumerous with N-{0}, a proper subset of R+, it is the case that card 
(R+) > card (R1). Hence, no matter what the time interval T, the number of possible 
"next" time instants is always greater if an asynchronous interpretation of time is used 
rather than a synchronous one. This helps to clarify the intuitions we have about the rela
tionships between the synchronous and asynchronous interpretations of time. It is clear 
that synchronous time cannot be used if the underlying system can only be accurately 
represented with an asynchronous intepretation. However, it is possible that the synchronous 
interpretation of time with T very small may result in an accurate model for some asynch
ronous systems. This will depend on the particular plant to be modeled and the design 
objectives to be studied. 
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3. Timing Characteristics of Hierarchical DES 

The formation of a control theory for HOES is just beginning [Zhong and Wonham 1988, 
1989, 1990], even though such systems occur quite frequently. Some principles of the evolu
tion of time in hierarchical systems have been postulated but not fully investigated [Albus 
et al. 1981; Antsaklis et al. 1989; Mesarovic et al. 1970; Passino and Antsaklis 1988; Saridis 
1983; Valavanis 1986]. As in [Gershwin 1989] what these researchers have recognized is 
that "systems usually operate at higher rates at the lower levels in a hierarchical system." 
We shall verify this intuition for a wide class of HOES here. 

3.1. A Hierarchical DES Model 

We shall focus on HOES that have as components two types of DES, Gj, 1 :s; j :s; m, 
and P;, 1 :s; i :s; n, all defined via (1) except with different timing characteristics. We think 
of the P; as modeling the physical system, and hence its timing characteristics are given 
by the interpretation of time for the respective portions of the system modeled by each 
P;. We think of the Gj as modeling controllers and hence as having timing characteristics 
that are influenced by the physical system and the other component controllers in the HOES. 
We introduce what we call a timing structure, which will define how the various components 
of the HD ES influence ( are influenced by) the timing characteristics of other components 
of the HOES. The definition of the timing structure is based on the interpretations of time 
defined in Section 2 and what will be called input and output triggers. Each P;, 1 :s; i 
s n, in the HOES has timing characteristics that are simply specified via their own inter
pretation of time denoted with Ip; = (Ap;, lp;). Roughly speaking, each Gj, 1 :s; j :s; m, 
has timing characteristics that depend on other P; and Gt via the timing structure as we 
now discuss in more detail. 

Let Ep; denote the set of events for P;, and Egj, the set of events for Gj both defined in 
a similar manner to the events E for Pin (3). Let Cp; (Cgj) denote the set of communica
tions that can be transmitted from P; (Gj) via the timing structure to other Gt. The output 
triggers for the P; (resp. for Gj) are defined via 

(or restrictions of these maps). The output triggers define how the P; and Gj connect to 
other components of the HOES to influence their timing characteristics. If c/>;(e) = c or 
1/;j(e') = c', then c and c' are communications that are said to occur due to the occur
rence of event string e ore' (e triggers communication c). We will have occasion below 
to utilize a null communication 0 which cannot cause an event occurrence in any other 
DES in the HOES. We use the standard notation for concatenation; e.g., if e, e' E E;;, 
then ee' denotes the concatenation of e and e'. The time instant at which the communica
tion c (c') occurs is the same time instant that a E Ep; (a' E Egj) occurs where </>;(ea) = 
c (i/;j(e 'a ') = c'). The input triggers for the Gj are defined by the Tj maps for j, 1 :s; j 
:s; m, where 



EVENT RATES AND AGGREGATION IN DISCRETE EVENT SYSTEMS zn 

Tj : cpl X ... X Cpn X Cgl X ... X Cg;-1 X Cg;+I X ... X Cgm -+ {O, l}, (6) 

and Tj(·) = 1 (= 0) indicates that an event egj(a(k + 1)) E Egj, where egj(a(k + 1)) = 
(xgj(a(k)), xgj(a(k + 1))) is forced (not) to occur in Gj. The Tj indicate which P; and G1 
communicate with Gj via the timing structure; hence Tj describes how various components 
of the HDES cause events in Gj(egj(a (k + 1))) to occur at time instant a(k + 1). Equa
tion (6) indicates the form for the Tj maps; the absence of a Cp; or Cgt from the cross prod
uct in the domain of Tj indicates that P; or G1 does not communicate with Gj via Tj. It 
is assumed that the Tj maps form a "tree structured" timing structure as we describe next. 

Let each DES component P;, 1 :5 i :5 n, or Gj, 1 :5 j :5 m, of the HDES represent 
a node (e.g., denoted with boxes as in Figure 1) of a directed graph S and let the Tj define 
the arcs (e.g., denoted with shaded arcs in Figure 1) that connect the P; and G1 to Gj in 
the following manner: Let il, i2, £1, £2 E N. If there exists i(t) such that Tj : CP11 x 
... X C · X ... X C i2 X C ,1 X ... X C , X ... X C ,2 -+ {0 l} then there exists an

pl pl g, g, g, ' ' 
arc pointing from P; to Gj (G1 to Gj)- In this paper we assume that the HDES has a tree 
structured timing structure; i.e., we assume that S has no closed cycles. In this way we 
eliminate the possibility that some Gj can directly force its own events to occur via the 
timing structure. Although this limits the manner in which the various P; and Gj can in
fluence the timing characteristics of other G1, it does not restrict the manner in which the 
inputs and outputs of the various P; and Gj are connected. Notice that the P;, 1 :5 i :5 

n, are the "leaves" of the tree structured timing structure. 
Intuitively, the</>; and Vlj specify what each DES will communicate (Cp; and Cg;) to the 

other DES in the HDES. The Tj define communication channels (the arcs and paths in 
S) and where the communications are distributed in the HDES. Next, we define the time 
instants at which events occur when they are forced to do so by other DES components 
of the HDES via the timing structure. 

Whereas the interpretation of time is always specified for the P;, 1 :5 i :5 n, the inter
pretations of time for the Gj are specified in terms of the other G1 and the P; via the tim
ing structure. Let Ol.cp;(k + 1) and Ol.cgt(k' + 1) denote the time instants at which com
munications cp; E Cp; and Cgt E Cgt occur, respectively. Suppose that at some time instant 
ag;(k + 1), rj(·) = 1 so that eg;(ag;(k + 1)) E Eg; occurs. This time instant at which 
eg;(ag;(k + 1) occurs is given by 

,, ...!. ... ;«..!... 
...•· ....... 

I p:···T ··· ··j··----~ I 
Figure I. Hierarchical DES with single-branch. 
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<Xgj(k + 1) = max {acp;(k + 1), <Xcgt(k' + 1) : 

3 an arc in S from P; or Gt to Gi} (7) 

and corresponds to the time instant at which the last communication accessible to Gi oc
curred and caused 7j(•) = 1. Each time a communication occurs which forces 7/·) = 1, 
an event occurs in Gi; hence the "1" represents a pulse sent to Gi via 7j which forces an 
event to occur. Hence, if 7j(•) is set equal to 1 at some time instant, an event in Gi must 
occur at that time instant (unless Gi is deadlocked); if every communication in a sequence 
of communications all cause 7/·) = 1, then there is one event occurrence in Gi for each 
communication in the sequence. The interpretation of time for any Gi is found by executing 
all possible runs (in all possible orders) of the P;, 1 :5 i :5 n, and Gt for which there 
exists a path in S from P; or Gt to Gi. Then via (7), the time instants and hence index 
sequences and interpretations of time for the Gi are specified. We shall study HOES where 
there is at least one P; and the intepretations of time for the Gi can be uniquely defined 
in terms of the P;. 

Note that although we consider only tree structured timing structures we place no restric
tions on the manner in which the DES inputs U and outputs Y are connected. This allows 
our results to apply to a large class of HOES with a wide variety of input/output connec
ting structures. Tree structured timing structures allow us to study properties of what has 
been called a "time scale hierarchy" [Antsaklis et al. 1989]. In this hierarchy a DES com
ponent is "higher in the hierarchy" than another DES component if its timing characteristics 
can be influenced by the other DES (i.e., there exists a path in S from one to the other). 

3.2. Lower Event Rates at Higher Levels in the HDES 

To analyze the timing characteristics ofHDES we study one fundamental component (shown 
in Figure 1) of the HOES defined above. Even though we consider only P; at the lower 
level, it requires only a simple modification to consider a mix of P; and Gi at the lower 
level, and all of our results below are still valid. Moreover, our results easily generalize 
to the fully interconnected HOES by repeated application of the derived relationships which 
pertain to the two levels in Figure 1. 

Let the admissible interpretation of time for P; be Ip; = (Ap;, Ip;), 1 :5 i :5 n, with 
Jpi = R+, and for G1 let it be lg1 = (Ag1, lg1). For any possible run made by the P; with 
an index sequence ap; E Ap;, the corresponding run in G1 has index sequence denoted by 
<Xgl E Agl· 

DEFINITION 3.1. The event occurrence rate (event rate) in P; or Gi is the number of events 
that occur in the time interval Tu = (r1, r2], where (r1, r2] C R , and it will be denoted 
#(P;, Tu) and #(Gj, Tu), respectively. 

Notice that if P; has a synchronous interpretation of time with TE R+ and we choose 
Tu such that Ir2 - r1 I = T, then #(P;, Tu) = 1; i.e., there is one event occurrence in the 
time interval Tu no matter what the values of r1 and r2 are. If P; has an asynchronous 



EVENT RATES AND AGGREGATION IN DISCRETE EVENT SYSTEMS Zl9 

interpretation of time, then no matter how Tu is chosen it is possible that #(P;, Tu) = 0, 
since we cannot guarantee that an event will occur in the given time interval Tu. In fact, 
we do not know how many events will occur in Tu. It would appear that our definition 
of event rate is too restrictive. This is, however, not the case, since the focus here is on 
comparing the event rates of different DES components in the HOES, and this comparison 
is made relative to Tu, an interval of the real time line. 

THEOREM 3.1. 
n 

~ #(P;, Tu) .::: #(G1, Tu) .::: 0 for all Tu. 
i=l 

Proof Suppose that an event e E Ep; occurs at time Olp;(k) in some P;, 1 ::5 i ::5 n, resulting 
in 71(·, ·, ... , </,;(ee), ... , ·, ·) = 1. If another event e' E Ept occurs in some P1 at time 
Olpt(k') resulting in 71(·, ·, ... , </,1(e'e'), ... , ·, ·) = 0, then the index sequence ag1 will 
contain Olp;(k) but not a81 (k'). If [a] denotes the set of elements that make up a, then 
[a 8i] C U; [ ap;], so clearly for any Tu the relationship holds ( even if there is deadlock 
in any P; or simultaneous events occurring in any number of P;). 

Theorem 3.1 states the intuitively clear fact that the timing structure can mask events and 
hence remove the time instants at which events occur in higher levels of the hierarchy. This 
means that the event rate is lower in DES at the higher levels of the HOES and higher in lower 
levels of the HOES no matter what the interpretations of time are for the P;, 1 ::5 i ::5 n. 

Remark 3.1. Repeated application of Theorem 3.1 to the multi-level hierarchy in Figure 
2 results in #(P1, Tu) .::= #(G1, Tu) .::: ... .::: #(Gm, Tu) .::= 0 for all Tu. This result sup
ports the studies in [Gershwin 1989], where the author assumes that the event rates can 

Figure 2. Multi-Level hierarchical DES with m + 1 levels. 
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be split into "spectra" according to the level in the hierarchy. It also shows that in the more 
general case, e.g., for P1 with any admissible interpretation of time, the event rates in DES 
at the higher levels are also less than or equal to the event rates at the lower levels. 

Example 3.1. (Conventional Discrete Event Control System) Consider the controlled DES 
shown in Figure 3. We have c/)1 : E;, ..... Cp1 and r 1 : CP1 ..... {O, 1}, and for the standard 
control configuration it is most often assumed that for all e E E;, such that e = e'e (e 
E Ep1), r1 (cp 1(e'e)) = 1, so that each time an event occurs in P1, G1 is forced to act by 
having an event in G1 occur (it is normally assumed that one always exists). Clearly, then 
if lp1 = (Ap1, Jp1) is the interpretation of time for P1 and 181 = (A81, 181 ) for G1 where 

= lp1, then A81 = AP1. The interpretaion of time for the plant and controller are the181 
same. In this way we think of specifying the interpretation of time for G1 by IP1 and P1 
via r 1 and ¢ 1. Via Theorem 3.1, for general ¢ 1 and r 1 we see that we can expect fewer 
events to occur in G1 than in P1, since P1 may not communicate the occurrence of an event 
or G1 may not recognize the communication. 

Example 3.2. (Hybrid Dynamical System) Let n = 1 in Figure 1 and for P1 = (Xp, Up, 
Yp, Op, Ap, Xop) let xp = R"P, up = RmP, yp = R'P, and /pl be an admissible interpreta
tion of time, so that P1 is a model for a nonlinear discrete time system. For instance, P1 
could represent a zero-order-hold followed by a nonlinear continuous time system and a 
sampler. We think of G1 as our DES model. For instance, G1 can model any system that 
can be represented by a General or Extended Petri net [Peterson 1981], and P1 and G1 con
stitute a hybrid dynamical system. Theorem 3.1 shows that if the event rate for P1 is the 
number of state transitions per unit time, then the event rate in the higher level DES model 
G1 will be lower no matter how the communications are defined. 

Remark 3.1 and Examples 3.1 and 3.2 illustrate the generality of Theorem 3.1; the result 
applies to hierarchical DES currently being studied (in additional to the work in [Gershwin 
1989] the result also applies to the work in [Zhong and Wonham 1988, 1989, 1990]),the 
standard discrete event control systems, and to hybrid dynamical systems. Example 3.3 
(a manufacturing system) in Section 3.4 is used to further illustrate the use of Theorem 3.1. 

UE U yeY_...
Gi Pi ... 

tf ___ ,,:L_,, _,, -- ,,\ 

Figure 3. Discrete event control system. 
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3.3. Event Rates and Aggregation in a Class of HDES 

Next we study how aggregation affects the event rates in HDES. Again we shall focus on 
the HDES component shown in Figure 1, but note that the result easily generalizes to a 
fully interconnected HDES. Let It;,; C e;,; and</>;' : It;,; --+ Cp; for all i, 1 ::5 i ::5 n, denote 
restrictions of</>;. We use </>;' maps for aggregation rather than the </>;; if e E E;;, e ¢ E';,;, 
then</>; is said to ignore e (rather than mask e). Let Bi C N-{0} for j, 1 ::5 j ::5 n. 

DEFINITION 3.2. {Pi = (Xi, ui, yi, {,i, )I/, Xoj), </>1 : 1 ::5 j ::5 n} satisfies the ('ir1
' rr2, 

... , 11"")-event aggregation property if for each j, 1 ::5 j ::5 n, 

(i) there exists a family of sets Xii c Xi, i E Bi such that 
(a) Xii n Xki = 0 for all i '¢ k, and Xoi n Xii = 0 for i E Bi; 
(b) if Pi first enters a state x E Xii for some i E Bi, it will take (for all possible runs) 

at least 1ri > 0 state transitions before the state of Pi, say x ', is such that x' ¢ Xii; 
( •• ) ,1,. ' .• E* CPi• h E* - {e E E* • - ' ' .,.. d e -- x, x ') w1n 'I" i ai --+ w ere ai - Pi . e - e e, e E nai an ( "th x 

E Xij, x' ¢ Xii for some i E Bi}. 

THEOREM 3.2. If {Pi = (Xi, Ui, Yi, oi, }./, Xoi), </> 1 : 1 ::5 j ::5 n} satisfies the (1r1, 1r2, 

... , 71"")-event aggregation property and Tu = (r1, r2] and Ir2 - r1 I is sufficiently large, 
then 

(8) 

Proof To prove the Theorem it must be shown that there exists a time interval Tu such 
that (8) holds under the stated assumptions. It is first shown how to construct such a Tu. 
Assume that a run is made in each of the Pi, 1 ::5 j ::5 n and that the corresponding index 
sequences are a.Pi E APi; the corresponding run in G1 has index sequence a.8 1 E A8 1. Let 
a 81 (k') and a 81(k' + 1) be two elements on some a.81 such that la81(k' + 1) -E A81 
a.81 (k')I is an upper bound on the time between sequential events (that actually occurred) 
in G1 for all possible runs in the Pi. Let Tu = (ri, r2] such that Ir2 - r1 I > I<x.8 1 (k' 
+ 1) - a.81 (k') I. Next, it is shown that this choice of Tu results in the satisfaction of (8). 
Assume that f > 0 events occur in G1 in Tu, where f = £1 + £2 + ••• + fn and fi is the 
number of events in G1 that occurred due to a communication from Pi (if simultaneous 
events occur in Pi and Pk> j '¢ k, causing an event occurrence in Gi, then the event oc
currence can be attributed to either Pi or Pk and counted only once in f). For each fi, 
at least (fi - 1),ri events have occurred in Pi, 1 ::5 j ::5 n. Therefore #(Pi, Tu) ~ (fi -
l)1ri so that 

n

b fi = f = #(G1, Tu). (9) 
i=I 
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Clearly if any Pj deadlocks it can be the case that fj = 0, but relationship (8) sti ll holds. 

COROLLARY 3.1. If {Pj = (Xj, uj, yj, oj, >J, x()j), <!>1: 1 ~ j ~ n} satisfies the (1r 1, 1r2, 
... , ?T'')-event aggregation property and Tu = (r1, r2] with r1 = 0, then for all r2 > 0, 

(10) 

Remnrk 3.2. For the multi-level HDES in Figure 2, if the (1rj)-event aggregation property 
holds for each successive level and Tu = (r1, r2] with r 1 = 0, then for all r2 > 0, and 
for j, 1 < j ~ m, 

(11) 

The </>j, lfj, and rj can be viewed as maps that cause event aggregation; consequently, 
Theorem 3.2, Corollary 3.1, and Remark 3.2 provide a relationship between event aggregation 
and event rates for one class of HDES. If there is a high measure of aggregation at level 
j (large 1rj), then there will be far fewer events occurring at level j + 1. This illustrates 
that there is an inverse relationship between event aggregation and event rate between two 
levels of a HDES. In general, hierarchical systems researchers have observed a similar 
inverse relationship between "time scale density" ("time granularity") and "model abstract
ness" [Antsaklis et al. 1989; Saridis 1983]. The above results provide the first mathematical 
validation of these researchers' intuition about relationships between event aggregation and 
event rates for a class of HDES. Example 3.3 in Section 3.4 is used to illustrate the use 
of Theorem 3.2. 

3.4. HDES Timing Structure Design for Event Rate Reduction 

Theorem 3.2 and its use above provides a characterization of how event rates are affected 
by aggregation for one class of HDES. In this section we study the program of how to 
design the timing structure to ensure that there is a decrease (by a some constant factor) 
in the event rate between any two levels of a wide class of HDES. A reduction in event 
rate is often desirable so that the processors implementing the higher level controls are 
permitted adequate time before they must attend to the lower level systems (e.g. , take ac
tions based on the occurrence of an event string). 

Let 

(12) 

and let the communications be defined by 

(13) 
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The notation e E e' will be used to denote the fact that e is a substring of e' (of course, 
we are abusing the notation here since e' is not a set). Consider the case where the output 
trigger is defined so thats E c/>;(e) ifs Ee ands E Sp; (s' E c/>;(e) ifs' E e ands' E Sgj). 
This output trigger initiates a communication the first time an event string occurs and 
Ic/>;(e')I ;;?; Ic/>;(e)I if le' I ;;?; lei. Hence, if the same event string occurs twice (or more) 
in some run this fact cannot be reported by this output trigger. Similar problems can exist 
if we define the output trigger so that s E c/>;(e) if e = e1ei, p ;;?; le2 1 > 0, and s E e2 . 

This output trigger does, however, have the interesting property that it will "forget" about 
event strings in the past (depending on the choice for p). Here, we shall define the output 
trigger so that 

s E c/>;(e) ife = e's ands E Sp; (14) 

(s' E i/;/e) if e = e"s' ands' E Sgj). By definition, if c/>;(e) = 0 (i/;/e) = 0), a "null com
munication" occurs which cannot directly cause an event occurrence in any other DES 
in the HOES (hence r/0, 0, ···, 0) = 0 for allj). These assumptions about Cp; (Cgj) and 
c/>; (if;j) in (12)-(14) are only mildly restrictive, since it is possible that there can be a dif
ferent communication representing each possible set of finite event strings that have just 
occurred. Moreover, there will be no particular assumptions about the rj maps, and the 
definition for the output triggers via (14) and communications via (12)-(13) is quite prac
tical since each component DES is allowed to communicate the fact that sequences of events 
have just occurred; other DES in the HOES can then act based on such behavior. 

The design of the timing structure entails choosing the proper Sp; and, hence, the com
munications Cp; that can occur between the various DES in the HOES. It is shown that 
by restricting the choice of what communications are allowed, one can achieve a decrease 
in the event rate at the higher levels of the HOES. In this way we achieve event rate reduc
tion by restricting the manner in which the DES communicate and not by making par
ticular assumptions about the dynamics of each component DES (as was done for Theorem 
3.2). As in Section 3.2 and 3.3, we shall focus only on the HOES of Figure 1, and the 
results easily generalize to fully interconnected tree-structured HOES. First, we introduce 
a fundamental property of communications within the HOES: 

DEFINITION 3.3. The set Sp; is said to be "(;-admissible if for all s, s' E Sp; such that s = 
ab, s' = cd, and b = c with lbl = lei ;;?; 0 it is the case that ldl ;;?; 'Y; > 0. 

A similar definition can be given for the Sgj. Clearly, there may not exist Sp; C E;; such 
that Sp; is "(;-admissible for some given 'Y;; but there always exists some 'Y; > 0 such that 
Sp; is "(;-admissible. Hence, for some DES one may be able to achieve more event rate 
reduction than for others and "(;-admissibility characterizes this property. Intuitively, if the 
behavior of some DES P; is such that it generates event strings which do not frequently 
cause communications to other DES than 'Yi is large. Next, we provide several examples 
of Sp; C E;; that are "(;-admissible: 

1. Assume that for all s E Sp;, Isl ;;?; 'Yi· If for all s E Sp; and all e E s where e E Ep;, 
there does not exist s' E Sp;, s' ;c s, such that e E s' then Sp; is "(;-admissible. 
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2. If for alls E Sp; there exists e E Ep; and s2 such thats = es2 and ls21 ~ 'Yi - 1, and 
there does not exists' E Sp;, s' ;e s, such that e Es', then Sp; is "(;-admissible (similarly 
for s = s2e). And more generally: 

3. If for all s E Sp; there exists Sz, s2 such thats = s1s2, ls1I ~ 1, and ISzl ~ 'Y; - 1, 
and there does not exists' E Sp;, s' ;e s, such that s1 E s', then Sp; is "(;-admissible. 

It is important to note that for a given Sp; that might be chosen in the design of a timing 
structure it is not difficult to test whether Sp; is "(;-admissible for some 'Y; (of course, this 
may be computationally intensive). 

THEOREM 3.2. If Sp; is "(;-admissible for all i, 1 :5 i :s; n, and the output triggers are given 
by (14), then 

L..J""·=nt { #(P~; Tu) } _> #(G1, Tu ) tior all Tu· (15) 
I 

Proof Consider the case of n = 1; the case for all n follows immediately in a manner 
similar to that in the proof of Theorem 3.2. Clearly the relationship holds when no events 
have occurred in G1. Assume that an event occurs in G1, i.e., that e E E; 1 is a sequence 
of events in P1 such that T1(ct>1(e)) = 1. It must be the case then that there exists s E ct> 1(e) 
such that s' E SP 1. Let e' be an event string such that ee' E E; 1. By 'Y1-admissibility and 
assuming that an output trigger defined via (14) is utilized, there does not exist s' E Sp; 

such thats' E ct> 1(ee') unless le'I ~ -y1. Therefore, T1(ct>1(ee')) = 0 so long as le'I < 
'Yt, and, hence, #(P1, Tu) ~ -y1#(G1, Tu) and the relationship (15) holds. 

Theorem 3.3 shows that if each Sp;, for i, 1 ::5 i :s; n, is "(;-admissible then there results 
a special type of aggregation between two levels of a HOES so that event rate reduction 
can be obtained. It is important that this aggregation is achieved via conditions on the com
munications and not on the structure of the P;, 1 :5 i :s; n. Of course, for a given set 
of lower level P; one may be able to achieve lower event rates than for another set of P;; 
Theorem 3.3 shows how to design the communications in the timing structure to achieve 
event rate reduction for a given set of P;. 

Remark 3.3. For a conventional discrete event control system as in Example 3.1, Theorem 
3.3 shows the conditions under which G1 will be guaranteed to have to generate a new 
control action only after at least 'Y; events have occurred in P1. For the hybrid dynamical 
system of Example 3.2, "(;-admissibility places restrictions on how the higher level G1can 
observe state trajectories in P1 to ensure that G1 will act more slowly that P1. 

Example 3. 3. (Manufacturing System) A simple manufacturing system will be used to il
lustrate the results from Sections 3.2, 3.3, and 3.4. We consider a manufacturing system 
which consists of a machine that can process parts of two types, one at a time. The machine 
outputs each type part into a particular output bin and the machine can be idle. Let X = 
{MI, M1, M2, OUT1, OUT2} be the set of states, where MI means "machine idle", M; 
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means the machine is busy processing part type i, and OUT; means that the machine out
puts part type i. Let U = {ui, Uz}, where u; means input part type i into the machine. 
Let Y = {Yb, Y1t1, Y2d}, where Yb indicates that the machine is busy processing a part of 
either type, and Yid indicates that the machine is done processing a part of type i. The 
transition function oand the output function A for the manufacturing system are specified 
via the bottom of Figure 4. We let X0 = {MI} and consider Pi = (X, U, Y, o, A, X0) 

to be our plant. 
There is a higher level mechanism which forces the alternate processing of one part of 

type 1 and then two parts of type 2. This device is pictured in the top of Figure 4 and 
will be referred to as Gi. We have Gi = (Xg, Ug, Yg, bg, Ag, Xo8 ) and X = {xi , x2 , x3},8 
Ug = Y - {Yb} , Yg = U, and Xoc = {x1}. Also, initially the input to the plant is ui. 
Notice that G1 completely ignores output Yb, as it is unimportant in coordinating the alter
nation of processing. (Hence, the inputs and outputs are not connected in a conventional 
manner where in Gi, o8 (u, x) must be defined for all u.) 

Suppose we let 7 1 : CP 1 -> {O, 1}, CP 1 = Epi, and <t> 1(ee) = e for all ee E £; 1 such 
that e = (OUT;, MI) for i = I, 2 (otherwise, <t>1(ee) = 0 so that no event occurs in Gi)
If the manufacturing system operates asynchronously (synchronously) then the coordina
tion mechanism will operate asynchronously (with a general synchronous interpretation 
of time). Via Theorem 3.1, #(P1, Tu) ~ }(G1, Tu) for all Tu. In particular we see that 
since event strings ending with (MI, Mi) and (M;, OUT;) for i = 1, 2 are masked, a 
greater number of events will occur in the plant P 1 (lower level system) than in the con
troller G1 (higher level system). Hence, for this simple manufacturing system the event 
rate at the higher level is lower no matter what the interpretation of time in P 1 is. Also, 

OUT1 

Figure 4. Model of a manufacturing system. 
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noticethatifwechooseB1 = {l, 2}, and Xii= {M;, OUT;} fori EB, then Eal= Epi,

Fa 1 C E; 1 (given via Definition 3.3), and ifwe use the input trigger <f,'1 : E: 1 -+ {0, 1}, 
a restriction of <f, 1, and initial state as defined above, the conditions of Theorem 3.2 are 
satisfied with 71"

1 = 2, so #(Pi, Tu)/2 + 1 .:: #(Gi, Tu) for the proper Tu and all r1. Hence, 
via Theorem 3.2 we find an inverse relationship between even aggregation and event rate 
for this simple manufacturing system. 

Next, we show how Theorem 3.3 applies to this manufacturing system. Suppose that 
the same models for the manufacturing system and its controller are used but with a dif
ferent interconnecting timing structure. In particular, using the approach of this section 
to specify the timing structure, we let Sp 1 = {MI, M 1)(Mi, OUT1)(OUT1, Ml), (Ml, 
M 2)(M2, OUT2)(OUT2, Ml)}, Cp; = P(Sp;), r1 : CP 1 -+ {0, l}, and <f,1 be defined as in 
(14). Notice that SP 1 is 3-admissible (case (1) above) so that #(Pi, Tu)l3 .:: #(G1, Tu) for 
all Tu. We see that Theorem 3.3 can be used to produce a tighter bound on the number 
of events that occur in G1; hence, the design of the timing structure via the Theorem 3.3 
results in the guarantee of an even lower event rate in G1. 

4. Conclusions 

We have provided a mathematical representation of the advancement of time in DES via 
index sets, index sequences, and interpretations of time. We discussed how deadlock and 
simultaneous events are characterized in our framework. In our main results we showed 
that the interpretations of time along with a timing structure provide a framework to study 
principles of the advancement of time for HDES. It was shown that for a wide class of 
HDES the event rate is higher for DES at the lower levels of the hierarchy than at the 
higher levels of the hierarchy. Our results support the assumptions in [Gershwin 1989] that 
the levels of an HDES have different event rates, with lower rates at higher levels, and 
show how similar timing characteristics also hold for asynchronous systems (and other system 
that have any admissible interpretation of time). Relationships between event rate and event 
aggregation were shown. We defined a measure for event aggregation and showed that a 
high amount of event aggregation will result in a much lower event rate at higher levels 
in a certain class of HDES, while a low amount of event aggregation will result in higher 
event rates. In order to study how aggregation effects event rates in more general HDES 
we studied how to design the timing structure to achieve event rate reduction. It was shown 
that if the communications between the various DES in the HDES satisfy a certain admis
sibility condition then there will be a decrease in the event rate. Hence, we showed that 
one only needs to restrict the interconnections in the HDES to achieve event rate reduc
tion. The results were illustrated via several important application areas, including a manufac
turing system and hybrid dynamical systems. 

In a "time scale hierarchy" - what we have been using here - the inituition that event 
rates are higher for lower levels in the hierarchy has been verified here for a class of HDES, 
but the results here are relative to this paraticular type of hierarchy. If one defines a hier
archy relative to, for instance, the functional architecture of a system [Antsaklis et al. 
1989], then clearly at the higher levels of the functional architecture there may be systems 
that are operating at higher rates than at the lower levels of the functional architecture. 
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It may take a rearrangement of the system components to place the system in a time scale 
hierarchy so that our results apply. 
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