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Inverse stable sampled low-pass systems 

K. M. PASSINOt and P. J. ANTSAKLISt 

It is shown that for low-pass systems the fractional-order hold and the pulse 
amplitude modulation signal reconstruction methods produce an inverse stable 
sampled transfer function H(z) in some cases when zero-order hold fails to do so. 
Therefore they may be desirable alternatives to the zero-order hold reconstruction in 
certain control problems. The problem of how well H(z) models the continuous G(s) 
is also discussed. 

l. Introduction 
In the study of sampled systems, given a continuous plant G(s)(y(s) = G(s)u(s)), a 

sampled transfer function H(z) must be determined so that if the sampled input uf..kT), 
where Tis the sampling period, is applied to H(z), the output y(kT) is an acceptable 
approximation of the sampled output y(kT). It is clear that for a successful digital 
control design H(z) should accurately model at least those characteristics of G(s) that 
are important to the control design specifications. We will refer to this accuracy in 
modelling as the accuracy in the discrete equivalence of H(z) to G(s). 

We are interested in using a reconstruction circuit G,.(s) to obtain the sampled 
transfer function H(z). H(z) in this case represents the reconstruction circuit, preceded 
by an impulse modulator, followed in cascade by G(s) and a sampler. It follows that 

H,(z) Z{ G,G(s)} (1) 

where Z{} denotes the z-transform of the corresponding continuous time signal. For 
the zero-order hold (ZOH) case, G,(s) = G0(s) where 

Go(s) = 1 - exp ( - Ts) (l) 
s 

Consequently, 

Ho(z) = Z0(z) =z{(l - exp ( - Ts))G(s)} =(l _ z-i)z{G(s)} (3) 
~zj s s 

Zeros of H(z) inside the unit disc are very desirable in control design (especially 
in adaptive systems). Unfortunately, a G(s) with zeros inside the left half s-plarte is 
not necessarily transformed to an H(z) with zeros inside the unit disc when signal 
reconstruction methods are used. In contrast, the poles p1 of G(s) are transformed as 
p1 ➔ exp (p1T), a transformation which maps the left half-plane onto the unit disc; 
i.e. while a stable G(s) always has a stable discrete equivalent H(z), a minimum phase 
G(s) does not necessarily imply an inverse stable H(z), thus leading to a more difficult 
to control pulse transfer function H(z). 

This problem was studied by Astrom et al. (1984) (also Tuschak 1981, Martensson 
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1982, Keviczky and Kumar 1981) for the case of ZOH reconstruction. Astrom et al. 
(1984) showed that given G(s) with m zeros and n poles (m < n), m zeros of H(z) go to 1 
as T--+ 0, while the remaining n - m - 1 zeros of H(z) go to the zeros of Bn-m(z). These 
Bn(z) polynomials are the numerator polynomials of the ZOH discrete equivalent of 
G(z) = 1/s" 

H(z) = T" Bn(z) (4)
n! (z - l)" 

This implies that in many cases, where T must be chosen relatively small to satisfy 
other criteria, H(z) will be inverse unstable. Working with low-pass G(s), a common 
characteristic of systems in control, and ZOH reconstruction, Tuschak (1981) related 
the magnitude and phase of G(s) to the number of zeros of H(z) outside the unit disc, 
thus establishing results for ZOH and finite T. 

It is shown here that the zeros H(z) can be moved inside the unit circle if other 
reconstruction methods G,(s) are used. Note that the zeros of H(z) can be arbitrarily 
assigned if a reconstruction method is implemented which assigns n (n the order of 
G(s)) appropriate values to the input in one sampling period (Astrom and Witten­
mark 1984). Here, however, we are interested in rather typical reconstruction methods 
that can easily be implemented with 'off-the-shelf' components. In particular, we study 
the fractional order hold (FROH), and a method commonly used in communication 
systems, the pulse amplitude modulation (PAM) reconstruction. The accuracy in the 
discrete equivalence of H(z) to G(s) is also of interest here. Note that an inverse stable 
H(z) is desirable, but not at the expense of the adequacy of the model H(z) (discrete 
equivalence of H(z) to G(s)). For example, Astrom et al. (1984) show that under 
certain assumptions, as T--+ oo in ZOH all the zeros of H(z) go inside the unit disc as 
desired but H(z) becomes a poor approximation of G(s)(H(z) = G(0)z - i). We shall 
use the frequency response of G(s) and H(z) over 0 ~ w ~ n/T to discuss this problem. 
Relation (1) clearly shows the challenge: H,(z) that must model G(s) only, is actually 
the z-transform of the product G,(s)G(s). The reconstruction circuit G,(s) will, in 
general, distort the characteristics of G(s) and H,(z) will only be an approximation. 

In § 2, FROH reconstruction is studied. Note that the FROH depends on a 
parameter /3; for /3 = 0 it reduces to ZOH while for /3 = 1 it becomes a first order hold 
(FOH) reconstruction. New state-space algorithms for the calculation of the FROH 
transformation are first developed. A root locus approach is then developed to deter­
mine /3 (if such /3 exists) so that H(z) can be made inverse stable. Furthermore, it 
is shown that with certain low-pass assumptions on G(s) the FROH can be used to 
move zeros inside the unit disc for any T (Theorem 1). The FROH, however, can 
deteriorate discrete equivalence. The PAM reconstruction is discussed in § 3. PAM 
depends on the parameter i- ( ~ T); when r = T, it becomes a ZOH reconstruction. It is 
shown that i- can be adjusted to reduce the distortion caused by G,(s) in (1), and that 
this choice of i- also moves zeros inside the unit circle for any T (Theorem 2). The 
low-pass assumptions and development are similar to those of FROH. 

2. Fractional order hold signal reconstruction 
Let 

x(t) = Fx(t) + Gu(t), y(t) = Hx(t) (5) 

be a minimal realisation of G(s) and consider the FROH signal reconstruction method 
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described by 

u(t) = u(kT) + t{u(kT) -ikT- T) }t- kT), kT ~ t < kT + T (6) 

where the approximation u(t) is formed from the samples u(kT) of the signal u(t) with
T the sampling period, and Pa real number. In a configuration given by (1), the
sampled system is 

[ 
x(kT + T) ] [</J PA][ x(kT)] + [r-pA]u(kT)x 1(kT+ T) = 0 0 X1(kT) 1 

(7) 
x(kT)]y(kT) = [H 

OJ [ X1(kT) 

where (Franklin and Powell 1980, Passino and Antsaklis 1985) 

</J = exp (FT), r = [LT exp(F17) d11]G, A= [ - J: (1-17/T) exp (F11) d11]G 

(8) 
This represents a more general transformation technique than described by Makhlouf
(1971) and efficient numerical techniques have been developed for its solution by
Passino (1984). Using the fact that the zero polynomial Z 11(z) of (8) is the determinant
of its Rosenbrock system matrix (Rosenbrock 1970) 

H (z) = Zp(z) = P(z - l)Z111(z) + zZ0(z) 
(9)

fl P11 (z) zP0(z) 

where 

zl - </J A
Z111 (z) = - (10)

-H 0 

In the following, the zero polynomial of the FROH discrete equivalent of
G(s) = 1/s" is determined explicitly to compare to ZOH. Consider (5) in control­
lable companion form for G(s) = 1/sn. The expressions for ¢, rand A of (8) are 

1 T rn-l /(n - 1)! 

0 1 r = [Tn/n!, ... , T] 1

<p= (11)
T A= - [Tn/(n + 1)!, ... , T/2!]' 

0 0 1 

The zero polynomial Z 11 (z) has been determined by Passino (1984) using the fact that
the matrix in (10), the determinant of which must be calculated, is in the Hessenberg
form (Franklin 1968). In particular it has been shown that 

r pr r
Zp(z)= 1 (z-P)Bn(z)+( l)'Bn+1(z), Zo(z)= 1 Bn(z) (12)n. n+ . n. 

where Bn(z) are the polynomials in (4). To produce this result a novel recursive 



K. M. Passino and P. J. Antsaklis1908 

relation was introduced (Passino 1984), namely 

( 13) 

In view of (9), ( 12), it is clear that a root-locus approach can be used to determine 
the range of f3 for which the zeros of Zµ(z) lie inside the unit disc. If such fJ exists, the 
corresponding FROH reconstruction will give an H p(z) that is inverse stable. 

If G(s) is a low-pass system then the exact number of zeros of H(z) outside the unit 
disc can be determined in terms of G(s). In particular the following theorem is proved 
in the Appendix. 

Theorem I 
Assume that G(s) is a low-pass system satisfying conditions (A 10), and that 

FROH is imple!T)ented. Let µ and v denote the number of poles and zeros of H p(z) 
outside the unit circle. Then as /3--+ - l with T fixed and finite 

v =µ+A- 1, -(A+ 1)n < arg [G(jn/ T)J,,,; -J.n (14) 

This represents an improvement over the ZOH case (v =µ+A). Notice thatµ is 
known ( due to the exp ( - P; T) transformation of the poles) and A is determined by the 
phase of G(s) via ( 14). Hence determining the number of zeros outside the unit circle 
can be accomplished by drawing a Bode plot of the phase of the plant and using (14). 
Also note that by varying n/ T on the Bode plot one can determine the range of T for 
stable zeros (v = 0). 

The FROH reconstruction was applied to several transfer functions and some of 
the results are reported below. First consider the case for G(s) with T-> O; i.e. G(s) = 
1/s" (see discussion above). Using root locus it can be shown that if n = 1, all zeros are 
inside the unit disk for fJ < 4. Hµ(z) is also inverse stable when n = 2 for - 1 < fJ < 0 
(see discussion in the Appendix); for example, for /3 = - 0·3 the zeros are at - 0·666 
and - 0·333. However, if n = 3 or higher there is no f3 that will bring all of the zeros 
inside the unit circle. Compared to the ZOH where H0 (z) is inverse unstable for n ~ 2 
(Astrom et al. 1984), the FROH reconstruction offers some advantages when n is 
small; in other words, if T must be chosen small to satisfy other criteria, the FROH 
reconstruction will produce inverse stable Hµ(z) for a wider class of plants G(s). 

Consider now finite T and low-pass G(s) . In view of Theorem 1 FROH can make 
H(z)inverse stable where ZOH cannot. Using FROH reconstruction the minimum T 
for stable zeros can be reduced compared to ZOH. With G(s) = 1/(s + 1) 3 it was 
shown (Astrom et al. 1984) that the ZOH equivalent H 0(z) has a zero outside the unit 
disc ifO,,,; T < Tmin, Tmin = 1·8399. Using FROH with T = 1·5 ( < Tmin) and /3 = - 0·5 
the zeros are at - 0· 117, - 0·589 ± j0·274. When T = I and ZOH is used the zeros are 
at 0, - 0·124, - 1·8 while if FRPH is used with fJ = - 0·6 the zeros are at - 0·19, 
-0·769±j0·216 and with /J= - 0·8 the zeros are at - 0·18, -0·736±j0·666. 

Analysis in the frequency domain can give further insight into our problem. G0(s) 
(in (2)) has magnitude and phase given by 

IG0(jw)I = Tl sinc (wT/2)1, phase [G0(jw)] = - wT/ 2 ( 15) 

H0(z), which should match G(s) over the range - n/ T,,,; w,,,; n/ T, is determined from 
G0 G. Notice that H 0( exp (jwT)) will only approximate G(jw) with the approximation 
becoming worse as w approaches n/ T. For ZOH the poles ( p;) of G(s) transform as 
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exp ( - p;T). Therefore, the zeros and the gain in H 0(z) must be so that the discrete 
equivalence between H 0(z) and G0 G(s) required by (3) is attained. This often requires 
(Passino 1984) the addition of small amounts of phase lead; the zeros of Ho(z) to 
produce this small amount of lead must be outside the unit circle. In the FROH 
transformation the parameter fJ can be chosen to give phase lead (see the Appendix); 
consequently it can move zeros inside the unit disc. However, some choices of fJ to 
obtain inverse stable Hp(z) can destroy the accuracy of discrete equivalence between 
Hp(z) and G(s) over an important frequency range, e.g. the 1/(s + 1) 3 example above 
(Passino and Antsaklis 1985). 

3. Pulse amplitude modulation reconstruction 
Consider the PAM signal reconstruction method described by 

u(kT) kT~ t < kT + r 
u(t) = (16){ 0 kT+r~t<kT+T 

The continuous transfer function Gp(s) of the PAM reconstruction is 

1-exp ( -rs)
Gp(s)=-----, 0<r~T (17) 

s 

and we define the PAM discrete equivalent of G(s) according to (1) as Hp(z). 
It is of interest to determine what happens to HP(z) as r ➔ 0 (T fixed). We shall 

assume that the PAM circuit also includes a normalization gain 1/r. For the practical 
cases to be considered, this gain will not become excessively large. The transfer 
function (17) now becomes 

1) [ (rs) (rs)
3 

]Gp(s) = rs [1-exp (-rs)]= 1- 2! + 3! - ... (18)( 

We are interested in frequencies satisfying - n/T ~ w ~ n/T. For r ➔ 0, rs ➔ 0 and 
Gp(s) ➔ 1, and in the limit the PAM discrete equivalent is Z{G(s)}. This relation 
implies that evaluating the zeros of H p(z) when r ➔ 0 is quite straightforward. Z{G(s)} 
can be either found in transform tables directly or after using partial fractions. 

From (18) we see that the choice of r small gives an accurate discrete equivalent 
H p(z). Furthermore, in view of the fact that the ZOH (3) involves Z{G(s)/s}, the zero 
properties of Hp(z) as r ➔ 0 will, in many cases, improve because they involve Z{G(s) }, 
a lower relative degree transfer function. Comparing to (4) we see that zero properties 
are improved by moving the zeros from the zeros of Bn to Bn- i · This implies that for 
n = 2, the inverse unstable ZOH equivalent H0(z) becomes inverse stable if PAM with 
r ➔ 0 is used. The analogue to Theorem 1 for PAM is also proven in the Appendix. 

Theorem 2 

Assume G(s) is a low-pass system satisfying conditions (A 10), and that PAM is 
implemented. Letµ and v denote the number of poles and zeros of Hp(z) outside the 
unit circle. Then as r/T ➔ 0 with T fixed and finite 

v = µ +il- 1, -(il + l)n < arg [G(jn/T)] < - iln (19) 
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Remark 
A similar result to (19) can be shown for 

with T0 > 0 if T0 --+ 0; which is just a sample and hold circuit with time constant T0 . 

Similar to FROH, this represents an improvement over the ZOH case. As shown 
in the examples below, r:/T need not approach zero. In applications of PAM to 
communication, r:/T= 1/16 is quite common. Again, if the proper low-pass conditions 
(A 10) are met, one can use a Bode phase plot and (20) above, to find the proper value 
of n/T and thus J to obtain no inverse unstable zeros (v = 0). Alternatively, the 
above also suggests the following procedure: given G(s), determine the zeros of the 
ZOH equivalent H0(z)(r: = T). If improvement is desirable, determine the zeros 
of Z{G(s)}(r:--+0). Then choosing r: between 0 and Tone could achieve good zero 
properties with acceptable r:. 

In view of Theorem 2, PAM can make H{z) inverse stable when ZOH cannot. As 
an example of this, again consider G(s) = 1/(s + 1) 3

. When T = 0·5 the zeros of the 
ZOH equivalent H0(z) are outside the unit disc, namely at -2·58 and -0·183 
{Tmin = 1·8399). Using PAM reconstruction with r: = 0·1, the zeros of Hp(z) are inside 
the unit disc at -0·873 and -0·007106 with poles at the same locations as for the 
ZOH. When r: = T/16 = 0·03125 the zeros are at -0·68444 and -0·7516 x 10- 3 _ In 
short we see that with PAM one can get an inverse stable discrete equivalent for a 
larger range of T (e.g. T < Tm;0), and a more accurate discrete equivalent Hp(z). 
For more discussion on this see Passino and Antsaklis (1985). 

4. Concluding remarks 
Motivated by the work of Astrom et al. (1984) and Tuschak (1981), two 

alternatives to the ZOH reconstruction method, the FROH and the PAM, were 
studied. It was shown that they can be used to move the zeros of H(z) inside the unit 
circle when the plant is oflow-pass character. H(z) should also be a good model of the 
continuous plant G(s), the desired accuracy of course depending on the particular 
application. Although both the FROH and PAM can move zeros inside the unit circle, 
FROH may impair discrete equivalence, but PAM always improves it compared with 
ZOH. 
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Appendix 

Proof of Theorems I and 2 
Based on methods developed for ZOH (Tuschak 1981) the number of unstable 

zeros of H(z) is determined in terms of the magnitude and phase of G(s). Let 

(A 1) 
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with m < n. Then, in view of (1) 

H,(z) = Z{G,G(s)} = K* (z - ui)(z - u2) ... (z - O"q-d (A 2)(z - z1 (z - z2 ) ... (z - Zq) 

where q = number of poles of H,(z), depends on both G(s) and G,(s). Using sampled 
data analysis (Franklin and Powell 1980) 

00 

H:'(jw) = T
1 

k=~ G,(jw + jk2n/T)G(jw + jk2n/T) (A 3) 
00 

In view of the equality of phase of H:'(jw) and G,G(jw), an exact relationship between 
the magnitude and phase of a low-pass G(s) and the number of unstable zeros of H,(z) 
can be found (Tuschak 1981). Consider the phase at w = 0 and n/T 

ex'== arg [G,G(0)] = arg [K] (A 4) 

ex== arg [G,G(jn/T)] = arg [K] + arg [H:;,(jn/T)] (A 5) 

where H:;,(jw) == (1/K)H:'(jw) of (A 3). Note that ex and ex' are equal to the phase of 
H,(z) at z = 1 and z = - 1, respectively. Therefore 

ex'= arg [H,(1)] = (q - 1 -vu -vRI -vw)n -(q - µLI - µRI - µw)n + arg [K*] 

(A 6) 

ex= arg [H,( -1)] = (q- 1 - vw)n -(q- µw)n + arg [K*] (A 7) 

where vw = number of zeros in the Left half z-plane Outside the unit circle, µRI= 
number of poles in the Right half z-plane Inside the unit circle, etc. In view of 
(A 4)-(A 7) 

(A 8) 

whereµ= µLO+ µRo and v = vLo + vRo· 
Consider now the primary (k = 0) and first components (k = - 1) of the spectrum 

of H:;,(jw) 

H:;,(jw) = T1 [ G,(jw)Gn(jw) + G,(jw -Tj2n) Gn(jw -Tj2n) + e] (A 9) 

where Gn(s) = (1/K)G(s) and e denotes the remaining terms. If Gn(s) and G,(s) are 
low-pass systems then 

6 ~ 0 IG(jw - j2n/TI~ 1 (A 10)
' G(jw) "' 

Fractional-order hold reconstruction 
For this reconstruction method 

G,(s) = Gp(s) = (1- Pexp ( -Ts)) l - exps ( -sT) + /s (1- exp ( -Ts))2 
2 (A 11) 

In view of (A 2) and (9) 

q=n+l (A 12) 
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Using (2), (A 3), (9), (10), (11) 

Hl(jw) = g1 G(jro) {1 + /J[g1 - exp ( -jwT)]} 

jw-j2n)+g2 G T { 1 + /3[ 1 - exp ( - jwT)]} (A 13)
( 

where g 1 = [1-exp (-jwT)]/jwT and g2 = [1-exp (-jwn]/T(jw-j 2"/n. Also 

Ht(;)=~ exp (-Jn),af;)[1 - [~~~:~~;] (A 14) 

where ( = (1 + {3- j2{3/n), and[, G indicate conjugates. Plotting arg [(] vs. {3 for G(s) 

satisfying (A 10) yields the Figure. 
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Phase versus beta. 

Let 

arg [G(jn/n] = - (ln + 0), l integer (A 15) 

Since 

arg [1 + exp (2j0)] = 0, arg [Gip- -1 = 2
1T. 

(A 14) simplifies to 

(A 17) 

Equating (A 8) and (A 17) yields 

(A 18) 

This proves Theorem 1 whereµ, v are the number of unstable poles, zeros of Hp(z), 

respectively; l is found using (A 15). 
For the ZOH case this equation is v =µ+A (Tuschak 1981); this implies that using 

FROH and varying /3 from {3 = 0 (ZOH) to {3 = - 1 one additional zero can be 
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brought inside the unit circle for fixed and finite T. Notice that the choice of - 1 < p 
< 0 yields a FROH that contributes the necessary phase lead to move zeros inside the 
unit circle (see the Figure and discussion at the end of § 2); for p> 0 FROH 
contributes lag and the zero properties of Hp(z) are not necessarily improved. As an 
illustration consider P - 1 (FOH); proceeding as above 

(A 19) 

This shows that if a FOH is used on a low-pass G(s) it will not change the number of 
zeros of the discrete equivalent outside the unit circle compared with ZOH. Examples 
to illustrate this are given by Passino (1984, Table 3.2). 

Pulse amplitude modulation reconstruction 
Similar to FROH, here G,(s) is given by (18), q = n, and (A 3), (9), (10). Then 

H*(J"w) = _!_ 1 -exp_ (-jwr) [l + G(jw-_j2n/T)]G(J"w) 20P T JW, G(Jw) (A ) 

For r/T-+ 0 with T fixed and finite we get ( A 18) for PAM, which proves Theorem 2. 
D 
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