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In an artificial intelligence (Al) planning system the planner generates a sequence ofactions 
to solve a problem. Similarly, the controller in a control system produces inputs to a dynami
cal system to solve a problem, namely the problem of changing a system's behavior into a 
desirable one. A mathematical theory of Al planning systems that operate in uncertain, 
dynamic, and time-critical environments is not nearly as well developed as the mathematical 
theory ofsystems and control. In this paper relationships and a detailed analogy between Al 
planning and control system architectures and concepts are developed and discussed. These 
results are fundamental to the development ofa mathematical theory for the modeling, analy
sis, and design ofAl planning systems for real-time environments. 

INTRODUCTION 

In an artificial intelligence (AI) planning system the planner generates a 
sequence of actions to solve a problem. It is a type of expert system since it 
emulates the way in which human experts represent and reason about abstract, 
uncertain information to solve a problem in a narrow field of expertise (Char
niak and McDermott, 1985). The essential ideas in the theory of AI planning 
have been developed and reported in the literature. There is, however, a need to 
create a mathematical theory of AI planning systems that operate in dynamic , 
uncertain, and time-critical environments (real-time environments). 

In a control system the controller produces inputs to a dynamical system to 
change its undesirable behavior to a desirable one. In contrast to AI planning, 
there exists a relatively well-developed mathematical systems and control theory 
for the study of properties of systems represented with, for instance, linear 
ordinary differential equations. The objective of this paper is to point out rela
tionships and to develop and discuss an extensive analogy between AI planning 
and control system architectures and concepts. In the process, a foundation of 
fundamental concepts in AI planning systems based on their control theoretic 
counterparts is built. It is hoped that these discussions will help lead to the 
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development of (1) quantitative systematic modeling, analysis, and design tech
niques for AI planning systems; (2) methods for analyzing planning system 
performance; and (3) empirical and/or analytical methods for AI planning sys
tem verification and validation. 

Research from a wide variety of disciplines such as system and control 
theory, operations research, theoretical computer science, and artificial intelli
gence will aid in such studies. It is important to note that planners that operate in 
real-time environments must use feedback information to know where they are 
in their problem solving process. (This is discussed further later in this paper.) 
Feedback has been studied extensively in the field of system and control theory. 
Hence, in solving realistic problems it is logical that results from system and 
control theory will become particularly useful. An outline of the main results of 
this paper follows. 

In the next section, distinctions are drawn between conventional (non-Al) 
and AI problem-solving systems, then between non-AI and AI planning systems. 
The relationship between expert, planning, and scheduling systems is discussed. 
Next, the elements of AI planning systems, their structure and functional com
ponents , are outlined. Issues and techniques from relevant literature on AI plan
ning systems are highlighted. This gives an overview of planning ideas and sets 
the terminology for the paper. 

After this overview, to begin the discussion of the relationships between AI 
planning and control theoretic ideas, it is shown how the AI planning domain is 
analogous to a physical plant in control theory. The plant model is analogous to 
the problem representation. The plant inputs, outputs, and disturbances are real
valued variables that are continuous or discrete in time, while the problem do
main inputs, outputs, and disturbances are represented by symbols. The fact that . 
disturbances will always occur in the problem domain is discussed at length. 

A state of the problem domain is a "snapshot" of its behavior. It is shown 
how one can relate the mathematical models of the plant and problem domain. 
The ideas that are developed for planning theory are independent of both domain 
and representation. Controllability refers to the ability of the inputs of a problem 
domain to change its state. If a problem domain is uncontrollable, there does not 
exist a planner that can achieve arbitrary desired goals. We define two types of 
controllability, of which one is more restrictive than the other. Observability 
refers to the ability to determine the state of the problem domain from the 
inputs, outputs, and model of the problem domain. We also define two types of 
observability. If a problem domain is unobservable, there does not exist a situa
tion assessor that can always determine its state. Minimality of a problem do
main model refers to how well the system was modeled. It quantifies whether 
there are redundancies in the model. 

A problem domain is said to be internally stable if, when the system begins 
in some particular set of states and is perturbed, it will always return to that set 
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of states without control actions. It is said to be input-output stable if, for all 

" reasonable" inputs, the outputs are acceptable. A problem domain is stabiliza

ble if there exists a planner that can make it stable. It is detectable if there exists 

a situation assessor that can determine if it is not stable. The rate of a problem 

domain specifies some measure of the speed of its response. 

For the planner alone, the fundamental concepts borrowed from control 

theory have a special meaning. The state of the planner is the situation describ

ing the planner's problem solving strategy at a particular instant. Planner ob

servability refers to the ability to determine the planner state using the goal 

inputs, planner outputs, and model of the planner. 

Open-loop planning systems are defined. They do not have a feedback con

nection; consequently, they will fail if there are disturbances in the problem 

domain. They cannot stabilize an unstable problem domain. Open-loop planning 

systems often require the use of more detailed models than are used in feedback 

planning. If controllability studies show the problem domain to be uncontrolla

ble, there may not exist a planner capable of solving the problem. Although the 

rate of the system can be increased in both open- and closed-loop planning, 

open-loop planners are simpler and cheaper to implement than feedback plan

ners. 
In AI feedback planning systems the planner can sense the outputs of the 

problem domain and use them in its decision-making process. Feedback plan

ners perform execution monitoring and replanning. Feedback planners can re

cover from plan failures that occurred because of disturbances in the problem 

domain. Controllability and observability studies can be used for actuator and 

sensor design guidelines. These guidelines show that there is a trade-off between 

expense of planning system implementation and planner complexity. Feedback 

planning systems are characterized as regulatory or goal following. Design is

sues such as stability, disturbance rejection, and rate are discussed. 

For AI feedback planning systems that use situation assessment, observabil

ity studies can show the existence of a situation assessor for state determination 

and suggest its internal structure. An analogy between optimal situation assess

ment and Kalman filtering is shown, and the separation principle is discussed. 

We define adaptive planning systems that have the structure to implement meta

planning. They also allow for human interface to the problem solving process in 

the planner. 
Certain concepts recently introduced in the field of intelligent control are 

helpful here. Planning systems can be viewed as having a three-level hierarchy: 

the execution level, the coordination level, and the management level. Models 

used at higher levels are more abstract. The time scale density and decision rate 

are higher at the execution level. 
For the ideas just outlined to be useful for Al planning system analysis and 

design, there must be appropriate formalisms and methodologies for studying 
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them. They must be able to tell if a particular planning system possesses the 
properties. For instance, we need a simple systematic method for determining 
whether a problem domain is controllable, observable, or stable. The concluding 
remarks discuss the importance of analyzing these properties of planning sys
tems. 

AI PLANNING SYSTEMS: CLASSIFICATION, 
FUNCTIONAL OPERATION, AND OVERVIEW 

In this section the essential components and ideas of AI planning systems are 
outlined briefly and distinctions are drawn between AI planning systems and 
other similar problem-solving systems. This sets the terminology for this paper. 
A planning system reasons from the measured initial state of its problem domain 
and determines and then executes the sequence of actions that will achieve some 
final goal state in the problem domain. Before we discuss the essential elements 
of AI planning systems and describe their operation, the distinctive characteris
tics of AI planning systems that separate them from other planning systems, 
scheduling systems, expert systems, and control systems are outlined. 

System Classification 

In general, it is our view that we can classify problem-solving systems into 
two categories: conventional and AI. Several distinct characteristics distinguish 
these two classes of problem-solving systems. The conventional problem
solving system is numeric-algorithmic; it is somewhat inflexible; it is based on 
the well-developed theory of algorithms or differential/difference equations; and 
thus it can be studied using a variety of systematic modeling, analysis, and 
design techniques. Control systems are an example of conventional problem
solving systems. 

An AI problem-solving system is a symbolic-decision maker. It is flexible 
with graceful performance degradation, and it is based on formalisms that are 
not well developed; actually there are very few methodical modeling, analysis, 
and design techniques for these systems. AI planning system are examples of AI 
problem-solving systems. When comparing the characteristics of AI and non-AI 
systems, one can make the following observations: The decision rate in conven
tional systems is typically higher than that of AI systems. The abstractness and 
generality of the models used in AI systems are high compared with the fine 
granularity of models used in conventional systems. Symbolic, rather than nu
meric, representations are used in AI systems. High-level decision making and 
learning capabilities similar to those of humans exists in AI systems to a much 
greater extent than in conventional systems. The result is that a higher degree of 



5 Artificial Intelligence Planning Systems 

autonomy exists in AI systems than in conventional ones. A general discussion 
on problem solving is given in Shapiro (1987). 

Although clear, distinct characteristics separate AI from non-AI planning 
systems, as planning systems evolve the distinction becomes less clear. Systems 
that were originally AI planners evolve to gain more character of non-AI plan
ning systems. An example is a route planner. As problems like route planning 
become better understood, more conventional numeric-algorithmic solutions are 
developed. The AI approaches help to organize and synthesize approaches to 
problem solving, in addition to being problem-solving techniques themselves. 
AI techniques can be viewed as research vehicles for solving very complex 
problems. As the problem solution develops, purely algorithmic approaches, 
which have desirable implementation characteristics, substitute for AI tech
niques and play a greater role in the solution of the problem. 

AI planning systems use models for the problem domain called problem 
representations. For instance, in the past, predicate or temporal logic has been 
used. A planner's reasoning methodology is modeled after the way a human 
expert planner would behave. Therefore, the planning systems use heuristics to 
reason under uncertainty. Conventional expert systems have many of the ele
ments of planning; they use similar representations for knowledge and heuristic 
inference strategies. The planning systems that are studied here, however, are 
specifically designed to interface with the real world, whereas conventional ex
pert systems typically exist in a tightly controlled computer environment. The 
planning system executes actions dynamically to cause changes in the problem 
domain state. The planner also monitors the problem domain for information 
that will be useful in deciding a course of action so that the goal state is reached. 
An explicit loop is traversed between planner-executed actions, the problem 
domain, the measured outputs, and the planner that uses the outputs to decide 
what control actions to execute to achieve the goal. 

In an expert system there exists an analogous loop. The knowledge base is 
the problem domain and the inference strategy is the planner. For rule-based 
expert systems the premises of rules are matched to current working memory 
( outputs are measured and interpreted), and then a heuristic inference strategy 
decides which rule to fire, that is, what actions to take to change the state of 
working memory (the knowledge base) and so on. The expert system has an 
inherent goal of generating some diagnosis, configuring some computer system, 
etc. Some expert systems have more elements of planning than others. For 
instance, some consider what will happen several steps ahead, if certain actions 
are taken. 

A further distinction must be made between AI planning and scheduling 
systems. It is the task of a planner to generate sequences of actions so that some 
goal is attained without expending too many resources. A scheduling system is 
concerned with when the action should be accomplished and uses the availability 
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of resources to assign resources to times and actions (Kempf, 1987). In the next 
section we briefly describe the elements of AI planning systems. 

Elements of AI Planning Systems 

An AI planning system consists of the planner, the problem domain, their 
interconnections, and the exogenous inputs. The outputs of the planner are the 
inputs to the problem domain. They are the control actions taken on the domain. 
The outputs of the problem domain are inputs to the planner. They are measured 
by the planner and used to determine the progress in the problem-solving pro
cess. In addition, there are unmeasured exogenous inputs to the problem do
main, which are called disturbances. They represent uncertainty in the problem 
domain. The measured exogenous input to the planner is the goal. It is the task 
of the planner to examine the problem domain outputs, compare them to the 
goal, and determine what actions to take so that the goal is met. Not all planners 
are completely autonomous. Some provide for human interface, through which 
goals may be generated, and allow varying degrees of human intervention in the 
planning process. 

Problem Domain 

The problem domain is the domain (environment) the planner reasons about 
and takes actions on. The problem domain is composed of a collection of prob
lems that the planner desires to solve. The planner takes actions on the problem 
domain via the inputs to solve a particular problem. The planner measures the 
effect of these actions via the outputs of the problem domain. The disturbances 
represent uncertainty in the problem domain. The solution of a problem is com
posed of the sequence of inputs and outputs (possibly states) generated in achiev
ing the goal. 

One develops a model of the real problem domain to study planning sys
tems. This is called the problem representation. The real problem domain is in 
some sense infinite; that is, no model could ever capture all the information in it. 
The problem representation is necessarily inaccurate. It may even be inaccurate 
by choice, such as when the planning system designer ignores certain problem 
domain characteristics in favor of using a simpler representation. Simpler 
models are desirable, since there is an inversely proportional relationship be
tween modeling complexity and analysis power. The characteristics of the prob
lem domain that are ignored or missed are collectively represented by distur
bances in the model. The result is that disturbances in general have a 
nondeterministic character. Clearly, disturbances occur in every problem do
main; they can be ignored when they are small, but their effect should always be 
studied to avoid erroneous planner designs. 
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AI Planner 

In this section we describe the functional components of an Al planner. The 
AI planner's task is to solve problems. To do so, it coordinates several func
tions: Plan generation is the process of synthesizing a set of candidate plans to 
achieve the current goal. This can be done for the initial plan or for replanning if 
there is a plan failure. In plan generation, the system projects (simulates, with a 
model of the problem domain) into the future, to determine if a developed plan 
will succeed. The system then uses heuristic plan decision rules based on re
source utilization, probability of success, and so forth to choose which plan to 
execute. The plan executor translates the chosen plan into physical actions to be 
taken on the problem domain. It may use scheduling techniques to do so. Situa
tion assessment uses the problem domain inputs, outputs, and problem represen
tation to determine the state of the domain. The estimated domain state is used to 
update the state of the model that is used for projection in plan generation. The 
term "situation" is used because of the abstract, global view of the system's 
state that is taken here. The term "assessment" is used since the value of the 
state is determined or estimated. Execution monitoring uses the estimated do
main state and the problem domain inputs and outputs to determine if everything 
is going as planned. If it isn't-that is, if the plan has failed-the plan generator 
is notified that it must replan. 

A world modeler produces an update to a world model or a completely new 
world model. The world modeler determines the structure of the problem do
main rather than just the state of the problem domain, as is done by the situation 
assessor. It also determines what must be modeled for a problem to be solved; 
hence it partially determines what may be disturbances in the problem domain. 
The term "world modeler" is thus used to indicate that it must be cognizant of 
the entire modeling process. Its final output is a problem representation. A 
planner designer uses the problem representation produced by the world mod
eler and designs, or makes changes to, the planner so that it can achieve its goal 
even though there are structural changes in the problem domain. The planner 
designer may not need a new problem representation if there are not structural 
changes in the problem domain. It may decide to change the planner's strategy if 
some performance level is not being attained or if certain events occur in the 
problem domain. 

Issues and Techniques in AI Planning Systems 

In this section we briefly outline some of the issues and techniques in AI 
planning systems, giving reference to the relevant literature. General informa
tion is given in Charniak and McDermott (1985), Nilsson (1980), Barr and 
Feigenbaum (1981, 1982), Cohen and Feigenbaum (1982), Wilensky (1983), 
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Shapiro (1987), Gevarter (1984), Fu et al. (1987), and Tanimoto (1987). Plan
ning has its roots in the study of problem solving (Ernst and Newell, 1969). A 
relatively complete summary of planning ideas and an extensive bibliography on 
planning are given in Tate (1985). The goal of this section is to set the terminol
ogy of the report, not to create an extensive bibliography. As active research is 
progressing in many areas of planning, the terminology is also evolving; conse
quently, the definitions and terminology used here are tentative. 

Representation is fundamental to all issues and techniques in Al planning. It 
refers to the methods used to model the problem domain and the planner and it 
sets the framework and restrictions on the planning system. Often, it amounts to 
the specification of a formalism for representing the planner and problem do
mains in special structures in a computer language. Alternatively, it could con
stitute a mathematical formalism for studying planning problems. Different 
types of symbolic representations such as finite automata and predicate or tem
poral logics have been used. Some methods allow for the modeling of different 
characteristics. Some do not allow for the modeling of nondeterminism. Repre
sentational issues are examined in Charniak and McDermott (1985), Nilsson 
(1980), Barr and Feigenbaum (1981), Wilensky (1983), Tanimoto (1987), Fu et 
al. (1987), McDermott (1982, 1985), Warren (1974), Hayes-Roth (1979), Ro
senschein (1981), Allen and Koomen (1983), Wilkins (1983), Firschein et al. 
(1986), Chapman (1987), Stephanopoulos et al. (1987), Hodgson (1987), Drum
mond et al. (1987), and many others. One should be very careful in the choice 
of how much detailed mathematical structure or modeling power is allowed, 
since too much modeling power can hinder the development of some functional 
components of the planner and of the analysis, verification, and validation of 
planning systems. 

The generality of developed planning techniques depends heavily on 
whether the approach is domain dependent or domain independent. Techniques 
developed for one specific problem domain without concern for their applicabil
ity to other domains are domain dependent. An example of domain-dependent 
work is given in Stefik (1981), and Dudziak et al. (1987). An example of a more 
general domain-independent planner is given in Sacerdoti (1975), Fikes and 
Nilsson (1971), or McDermott (1985). Other work that examines domain depen
dence is given in Wilkins (1983, 1984). The results in the next section of this 
paper are both domain independent and problem representation independent. 

Planners can be classified broadly as either hierarchical or nonhierarchical. 
A nonhierarchical planner makes all of its decisions at one level, while in a 
hierarchical planner there is delegation of duties to lower levels and a layered 
distribution of decision making. Their fundamental operation is explained in 
Tate (1985), Cohen and Feigenbaum (1982), and Nilsson (1980). Characteristics 
of and a comparison between these two types of planners are given in Stefik 
(1981). Some of the original work was done in Sacerdoti (1973). Other impor-
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tant work is given in Tate (1977), Adams (1985), Hayes-Roth (1979), Fikes 
(1971), Sacerdoti (1975), Chamiak and McDermott (1985), and Stefik (1981). 

Planners can also be classified as linear or nonlinear. A linear planner 
produces a strict sequence of actions as a plan, while a nonlinear planner pro
duces a partially ordered sequence where coordination between the tasks and 
subtasks to be executed is carefully considered. The original work on nonlinear 
planning is given in the classic work of Sacerdoti (1975). Extensions to this 
work are given in Tate (1977), Allen and Koomen (1983), Vere (1983), and 
Wilkins (1983, 1984). A good summary is given in Tate (1985). 

Several types of interactions can occur in planning. One is the interaction 
between subtasks or subplans that requires their proper coordination. Another is 
between different goals we might want to achieve, Waldinger (1975). Still an
other is between different planning modules or with the human interface. Impor
tant work in this area is found in Broverman and Croft (1987), Bruce and 
Newman (1978), and Hayes (1987). A nice categorization of types of interac
tions and summary of ideas is given in Tate (1985). 

Search is used in planning systems, for instance, to find a feasible plan. 
There are many types of search, such as the heuristic search algorithms called 
A* and AO*. A good introduction to the topic is given in Pearl (1984), Nilsson 
(1980), or Barr and Feigenbaum (1981). A summary of search techniques used 
in planning is given in Tate (1985) or in Shapiro (1987). In Korf (1987) the 
author uses results from the theory of search to quantify some time and space 
complexities of planning. In Passino and Antsaklis (1988a, 1988b) planning 
problems are solved using heuristic search in a Petri net framework. An applica
tion to a robot problem is given in Graglia and Meystel (1987) and to mission 
control/decision support in Deutsch et al. (1985). 

Skeletal plans, plan schemata, and scripts are all representations of plans 
with varying degrees of abstraction. Skeletal plans are plans that to some extent 
do not have all the details filled in. A script is a knowledge structure containing 
a stereotypic sequence of actions. Plan schemata are similar. Often planners that 
use these forms for plans store them in a plan library. Hypothetical planning is 
planning where the planner hypothesizes a goal, produces a subsequent plan, 
and stores it in a plan library for later use, all while the current plan is execut
ing. Good explanations of some of these ideas are given in Shaprio (1987), 
Cohen and Feigenbaum (1982), and Adams et al. (1985). 

Replanning is the process by which plans are generated so that the system 
recovers after a plan has failed. There are two types of plan failures. One occurs 
in plan generation, where the planner fails to generate a plan. In this case, 
replanning can be successful only if a planner redesigner makes some changes to 
the planner strategy. The second type of plan failure occurs in the execution of 
the plan and is due to disturbances in the problem domain. This plan failure can 
be accommodated by replanning in the plan generation module, if the failure is 
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not due to a significant structural change in the problem domain. If it is, then the 
world modeler will produce a new world model and the planner designer will 
make the appropriate changes to the planner so that it can replan. Some of these 
ideas are discussed in Chamiak and McDermott (1985). 

Projection is used in plan generation to look into the future so that the 
feasibility of a candidate plan can be decided. If it is assumed that there are no 
disturbances in the problem domain, and a plan can be generated, then it can be 
executed with complete confidence in plan success. Disturbances cannot be ig
nored in problem domains associated with real-world dynamic environments; 
therefore, complete projection is often futile. The chosen projection length 
(number of steps in symbolic simulation) depends on the type and frequency of 
disturbances and is therefore domain dependent. Notice that if the projection 
length is short, plan execution can be interleaved with planning and replanning. 
This sort of planning has been named reactive planning (Georgeff, 1987). A 
completely proactive planner always has a plan ready for execution (in a plan 
library) no matter what the situation is in the problem domain. These plans could 
be skeletal or scripts. Some mixture of proactive and reactive planning with 
varying projection length is probably most appropriate. These ideas are ex
plained from a different point of view in Hayes-Roth (1979). There opportunis
tic planning is introduced; one forms a partial plan and then begins execution 
with the hope that opportunities will arise during execution that will allow for 
the complete specification of the plan and its ultimate success. 

Planning with constraints is a planning methodology where certain con
straints on the planning process are set and the planner must ensure that these 
constraints are not violated (Stefik, 1981; Winslett, 1987). A planning system 
that uses several planners to solve different parts of the problem is explained in 
Hayes-Roth (1979), Firschein (1986), and Georgeff (1984). Some issues in hu
man interface to the planning process are discussed in Chamiak and McDermott 
(1985), Barr (1981, 1982), and Cohen and Feigenbaum (1982). 

Distributed planning occurs when a problem is solved by coordinating the 
results from several expert planners. It is also called multiagent planning. A 
relatively complete overview of distributed planning is contained in Tate (1985) 
and another bibliography is given in Kempf (1987). 

Metaplanning is the process of reasoning about how a planner reasons. It is 
used with world modeling and changes the planning strategy. A domain
dependent example of metaplanning is given in Stefik (1981). A general expla
nation of metaplanning is given in Wilensky (1983). Other information on meta
planning is found in Wilensky (1981) and Hayes-Roth and Hayes-Roth (1979). 
Planners can also be made to learn. For example, a simple form of learning is to 
save successful plans in a plan library for later use in the same situation. Other 
forms of learning are described in Chamiak (1985), Cohen and Feigenbaum 
(1982), and Fikes et al. (1972). 
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The objective of this paper is to begin the formulation of an approach for the 
quantitative study of AI planning systems that operate in uncertain, dynamic, 
and time-critical environments. One way to study planning system behavior is 
by the empirical method. Other more quantitative studies specify a computer 
language or formal model for the problem domain. (See all the representation 
research outlined above.) Formal modeling and analysis has used propositional 
dynamic logic for the verification of planning systems (Rosenschein, 1981). 
Several types of temporal logics have been used to model and analyze planning 
systems (McDermott, 1978, 1982, 1985; and Koomen, 1983). The work in 
Chapman ( 1987) using modal logic is also important. In Giordana and Saitta 
( 1985) the authors model a production system's data and rules and check for its 
consistency using a type of Petri net formalism. Recently, a different Petri net 
has been introduced for the modeling and analysis of AI planning problems 
(Passino and Antsaklis, 1988a, 1988b). The growing body of literature on expert 
system verification and validation also may be relevant. 

AI PLANNING AND CONTROL THEORY: 
ANALOGY AND RELATIONSHIPS 

Relationships and an extensive analogy between AI planning and control 
system architectures and concepts are developed in this section. This is possible 
because both are problem solving systems (as described earlier) with different 
problem domains. It is useful to draw the analogy since conventional problem
solving systems, such as control systems, are very well studied. They have a 
well-developed set of fundamental concepts and formal mathematical modeling, 
analysis, and design techniques. The analogy is used to derive a corresponding 
foundation of fundamental concepts for AI planning systems that can be used to 
develop modeling, analysis, and design techniques. 

The discussions below are meant to motivate the utility of using general 
systems theory for the study of AI planning systems. In particular, it is hoped 
that it is made clear that the general concepts of controllability, observability, 
stability, and so forth as defined in systems and control theory will be useful in 
the quantitative study of AI planning systems. The results here will probably 
need to be revised and expanded before a careful formulation of a mathematical 
theory of AI planning via control theory is possible. 

After discussing some fundamental system theoretic concepts and the prob
lem domain and plant analogy, open-loop planning is introduced. Feedback plan
ning with and without situation assessment is introduced and discussed. Adap
tive AI planning is introduced. The details of the internal architectures of the 
various planners introduced are given, but they are used only to discuss the 
concepts in this paper. A particular planner implementation may have a different 
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functional architecture. This section closes by highlighting some recent ideas 
from intelligent autonomous control relevant to AI planning. 

The Problem Domain-Plant Analogy 

In this section we shall give the structural analogy (functional analogy) be
tween the problem domain and the plant. In conventional control, the plant is a 
dynamical system whose behavior we wish to study and alter. It is generally 
described with linear or nonlinear differential/difference equations and is either 
deterministic or nondeterministic. The problem domain is the domain (environ
ment) the AI planner reasons about and takes actions on. It can be modeled 
using predicate or temporal logic or other symbolic techniques such as finite 
automata. We develop the analogy further using Fig. 1. 

As it is often done, we adopt the convention that actuators and sensors are 
part of the plant and thus part of the problem domain description. Plant actua

tors are hardware devices (transducers) that translate commands u(t) from the 
controller into actions taken on the physical system. The variable t represents 
time. 

In a problem domain, we take a more macroscopic view of an actuator, a 
view that depends on available hardware and the type of inputs generated by the 
planner. For example, in a robotic system a manipulator may be quite dexterous; 

Problem Domain 

Inputs, ui n, 
en Ou uts, y.

Physical ::, I 

System "' S; 
"' 

Problem 
Domain

' .. . . . . 
~-----------~---~---~---------~--~---~------------------~ 

...... ••. '-. •• •• Di~turbances, d(t) 

·. -r::---.------Plant .. .. ·. 
---::........ 

Outputs, 
en 
n, y(t)

Inputs, u..;.(t.;.)_1-11~ Physical ::, 

Systemj ~ 
Plant 

FIGURE 1. Problem domain/plant structure. 
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one may be able to send the simple command "pick up object," and it will know 
how to move to the object, grip it, and pick it up. Such a manipulator can be 
seen as an actuator, although simpler ones also exist. Clearly, the inputs to the 
problem domain can be more abstract than those of a plant; consequently, we 
describe them with symbols U; rather than numbers. The index i represents time 
in the problem domain. The symbols are quite general and allow for the repre
sentation of all possible actions that any planner can take on the problem do
main. For example, u1 = "pick up object" or u2 = "move manipulator from 
position 3 to position 7 ." Rather than an input u(t) for the plant, the problem 
domain input U; is a time sequence of symbols. 

The physical system for both the problem domain and the plant is some 
portion of the real world that we wish to study and alter. The difference between 
the two is in the types of systems that are normally considered and thus the 
modeling techniques that are used (see discussion in the section entitled Problem 
Domain). Aspects of the dynamical behavior of plants such as cars, antennas, 
satellites, or submarines can be modeled by differential equations. Problem do
mains studied in the AI planning literature include simple robot problems (Char
niak and McDermott, 1985), experiments in molecular genetics (Stefik, 1981), 
or running errands (Hayes-Roth and Hayes-Roth, 1979). Notice that problem 
domains cannot always be described by differential equations. Consequently, 
conventional control techniques are inappropriate for AI planning problems. 

The sensors in the plant and problem domain are used to measure variables 
of the physical system and translate this information to y(t) for the controller and 
Y; for the planner. The symbols Y; provide for the representation of all possible 
measured values of outputs of the problem domain. As with the actuators in the 
problem domain, we take a more macroscopic view of sensors. They can com
bine various data to form an aggregate representation of dynamic problem do
main information. This necessitates the use of symbolic representations of the 
measured outputs; consequently, Y; is a time sequence of symbols. For example, 
in the robot problem the positions of some of the objects to be moved could be 
represented with Y;• The outputs could be y 1 = "object 1 in position 5" and 
y 2 = "object 1 in position 3." The inputs U; can affect the physical system so 
that the outputs Y; can change over time. 

The state of the plant or problem domain ( or any dynamical system) is the 
information necessary to predict the future behavior of the system given the 
present and future system inputs. A particular state is a snapshot of the system's 
behavior. The initial state is the initial condition on the differential/difference 
equation that describes the plant, or the initial situation in the problem domain 
prior to the first time a plan is executed. We shall denote the state of the plant 
with x(t) and the problem domain with X;. The set of all possible states is loosely 
referred to as the state space. In our robot problem domain, the initial sate can 
be the initial positions of the manipulator and objects. For two objects, the initial 
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state might be x0 = "object 1 in position 3 and object 2 in position 7 and 
manipulator in position 5 ." Notice that part of the state is directly contained in 
the output for our example. The state describes the current actuation and sensing 
situation in addition to the physical system, since the sensors and actuators are 
considered part of the problem domain. 

The plant and problem domain are necessarily affected by disturbances d(t) 
or symbols d; respectively (see discussion under Problem Domain). These can 
appear as modeling inaccuracies, parameter variations, or noise in the actuators, 
physical system, and sensors. In our robotics problem domain a disturbance 
might be some external, unmodeled agent, who also moves the objects. Next we 
show how the functional analogy between the plant and problem domain extends 
to a mathematical analogy. 

The Plant-Problem Domain Model Analogy 

Because of their strong structural similarities it is not surprising that we can 
develop an analogy between the models that we use for the plant and the prob
lem domain and between fundamental systems concepts. Essentially this in
volves a discussion of the application of a general systems theory described in 
Kalman et al. (1969) to planning systems. We extract the essential control theo
retic ideas and adapt them to planning theory, without providing lengthly expla
nations of conventional control theory. The interested reader can find the rele
vant control theoretical ideas presented below in Kalman et al. (1969), D' Azzo 
and Houpis (1981) , Chen (1984), Miller and Michel (1982), Goodwin and Sin 
(1984), and Astrom and Wittenrnark (1984). We assume that the plant is de
scribed by a set of stochastic, possibly nonlinear, differential equations called 
the state equation and the output equation. They describe the dynamics of the 
plant, its structure, and its connections. We assume that we can describe the 
dynamics of the problem domain by a set of symbolic equations such as those 
used to describe finite-state automata (Hopcroft and Ullman, 1979). For systems 
described with, for instance, a Moore machine, there exist analogous state and 
output equations. These equations describe the dynamics of a system such as the 
problem domain (or the planner or planning system), its structure, and its con
nections. 

The mathematical analogy continues by studying certain properties of sys
tems that have been found to be of utmost importance in conventional control 
theory. 

Controllability 

In control theory, and thus in planning theory, controllability refers to the 
ability of a system's inputs to change the state of the system. It is convenient to 
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consider a deterministic system for the discussion. A sequence of inputs U; can 

transfer or steer a state from one value to another. In the robot example, a 

sequence of input actions transfers the state from x0 = "object 1 in position 3 

and object 2 in position 7 and manipulator in position 5" to x7 = "object 1 in 

position 5 and object 2 in position 10 and manipulator in position l." 

A system is said to be completely controllable at time i if there exists a 

finite time j > i such that for any state X; and any state x there exists an input 

sequence U;, ... , ui that will transfer the state X; to the state x at time}, that 

is, xi = x.
Intuitively, this means that a problem domain is completely controllable at 

some time if and only if, for every two state values of the state space of the 

problem representation, there exists a finite sequence of inputs (that some 

planner could produce) that will move the state from one value to the other 

(one state to the other). Also notice that the time j - i is not necessarily the 

minimum possible. There might be another sequence of inputs that will bring 

one state to the other in fewer steps. In the robot example, the problem domain 

is completely controllable if, for any position of the manipulator and objects, 

there exist actions (inputs) that can change to any other position of the objects 

and manipulator. 
If a problem domain is completely controllable, then for any state there 

exists a planner that can achieve any specified goal state. Sometimes com

plete controllability is not a property of the system, but it may possess 

a weaker form of controllability, which we discuss next. To discuss a more 

realistic, weaker form of controllability we assume that the state space can be 

partitioned into disjoint sets of controllable and uncontrollable 

states. 
A system is said to be weakly controllable at time i if there exists a finite 

time j > i such that for any states X; and x, both in the set of controllable 

states, there exists an input sequence U;, ... , ui that will transfer the state X; 

to the state x at time j, that is, xi = x. 
If the initial state and the goal state are given and contained in the set of 

controllable states and the problem representation is weakly controllable, then 

there exists a planner that can move the initial state to the goal state. That is, 

there exists a planner that can solve the problem. In the robot example, if the 

problem representation is weakly controllable and the initial state begins in the 

set of controllable states, then there are actions (inputs) that can move the ma

nipulator and objects to a certain set of positions in the set of controllable states, 

the ones one might want to move them to. 
A problem representation that is not completely controllable may still be 

weakly controllable. If a problem representation is not weakly controllable, then 

it is not completely controllable. Note that there are corresponding definitions 

for output controllability. 
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Observability 

In control theory, and thus in planning theory, observability of the problem 
domain refers to the ability to determine the state of a system from the inputs, 
outputs, and model of the system. 

A system is said to be completely observable at time i if there exists a finite 
timej > i, such that for any state X; the problem representation, the sequence of 
inputs, and the corresponding sequence of outputs over the time interval [i, Jl 
uniquely determine the state X;. 

Intuitively, this means that a problem domain is completely observable at 
some time if and only if, for every sequence of domain inputs and their corre
sponding outputs, the model of the domain and the input and output sequences 
are all that is necessary to determine the state that the domain began in. A 
problem domain that is completely observable on some long time interval may 
not be completely observable on a shorter interval. It may take a longer se
quence of inputs and outputs to determine the state. 

In the robot example, if the problem domain is completely observable, then 
for every sequence of actions (inputs) there exists a situation assessor that can 
determine the position of the objects and manipulator from the input sequence, 
output sequence, and model of the problem domain. 

If a problem domain is completely observable, then for any initial state, 
there exists a situation assessor that can determine the state of the problem 
domain. This situation assessor needs both the inputs and the outputs of the 
problem domain, and there is the assumption that there are no disturbances in 
the domain. Sometimes complete observability is not a property of systems, 
but they may possess a weaker form of observability, which is defined next. To 
discuss a more realistic, weaker form of observability, we will assume that the 
state space can be partitioned into disjoint sets of observable and unobservable 
states. 

A system is said to be weakly observable at time i if there exists a finite time 
j > i such that, for any state X; in the set of observable states, the problem 
representation, the sequence of inputs, and the corresponding sequence of out
puts over the interval [i, Jl uniquely determine the state X;. 

If the problem domain is weakly observable, there exists a situation assessor 
that can determine the state of the problem domain given that the system state 
begins in the set of observable states. In the robot example, if the problem 
domain is weakly observable, then for any initial observable state and every 
sequence of actions (inputs) that any planner can produce, there exists a situation 
assessor that can determine the position of the objects and manipulator from the 
planner input sequence, output sequence, and model of the problem domain. 

If a problem domain is not completely observable, it may still be weakly 
observable. If it is completely observable, it is weakly observable. Like control-



Artificial Intelligence Planning Systems 17 

lability, observability is a property of systems in general; therefore it has mean
ing for the problem domain, planner, and planning system. 

In control, and thus planning, theory, a model of a system is minimal or 
irreducible if it uses the least number of state variables to describe the dynamical 
behavior. That is, it is minimal if there are no redundancies in the model. If a 
system is not minimal, then there exists a different system representation whose 
state space is of smaller dimension (size). The minimality property quantifies 
how well the problem domain was modeled. Minimality is also a property of the 
planner and the whole planning system. 

Stability 

In control, and thus in planning theory, we say that a system is internally 
stable if with no inputs, when the system begins in some particular set of states 
and the state is perturbed, it will always return to that set of states. For the 
discussion we partition the state space into disjoint sets of "good" states and 
"bad" states. Also, we define the null input for all problem domains as the input 
that has no effect on the problem domain. Assume that the input to the system is 
the null input for all time. A system is said to be internally stable if, when it 
begins in a good state and is perturbed into any other state, it will always return 
to a good state. 

To clarify the definition, a specific example is given. Suppose that we have 
the robot manipulator described above. Suppose further that the set of positions 
the manipulator can be in can be broken into two sets, the good positions and the 
bad positions. A good position might be one in some envelope of its reach, while 
a bad one might be where it would be dangerously close to some human opera
tor. If such a system was internally stable, then if the manipulator was in the 
good envelope and was bumped by something, it might come dangerously close 
to the human operator, but it would resituate itself back in the good envelope 
without any external intervention. 

We make the following definitions to produce one more definition of stabil
ity. We assume that we can partition the set of possible input and output symbols 
into disjoint sets of good and bad inputs and outputs. A system is said to be 
input-output stable if for all good input sequences the corresponding output 
sequences are good. 

In the robot example, suppose the inputs to the manipulator can be broken 
into two sets, the good ones and the bad ones. A bad input might be one that 
takes a lot of resources or time to execute, or it might be an input that takes 
some unreasonable action on the problem domain. Let the output of the robot 
problem domain be the position of the objects that the manipulator is to move. A 
bad output position would be to have an object obstruct the operation of some 
other machine or to have the objects stacked so that one would crush the other. 
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The robot problem domain is input-output stable if for all reasonable actions 
(good inputs) the manipulator is asked to perform, it produces a good position
ing of the objects (good outputs) in the problem domain. These stability defini
tions and ideas also apply to the planner and the planning system. We shall 
expand on this in a later section. 

Stabilizability refers to the ability to make a system stable. For a planning 
system it may, for instance, refer to the ability of any planner to stabilize the 
problem domain. A system is said to be stabilizable if the set of controllable 
states contains the bad states. For the robot example, the problem domain is 
stabilizable if, for all states that represent bad positions of the manipulator arm, 
there are inputs that can move the arm to its good (state) operating envelope. 
Detectability refers to the ability to detect instabilities in a system. For a plan
ning system it may, for instance, refer to the ability of the situation assessor to 
determine if there are instabilities in the problem domain. A system is said to be 
detectable if the set of observable states contains the bad states. For the robot 
example, if the problem domain is detectable, then for all input sequences that 
place the manipulator arm in a bad position, there exists a situation assessor that 
can determine the state. These definitions also apply to the planner and the 
planning system. 

Rate of a System 

The rate of a system in conventional control theory quantifies how quickly 
the system will react to its inputs or how fast the outputs will change for a given 
set of inputs. In the time domain, other terms used include time constant and rise 
time. For linear control theory, bandwidth is used in the frequency domain. In 
an AI planning system, rate is defined similarly. However, it cannot be properly 
defined mathematically until the form of the model is specified. For now we can 
think of it as some global measure of how many steps it takes for the system to 
react to some inputs. In the robot example, it is some measure of how many 
steps it will take to arrange the objects properly in some desired configuration. 

In this section we have developed a foundation of fundamental ideas for 
planning theory. When one begins to formulate a planning problem, one begins 
by modeling the problem domain; that is, the form of problem representation is 
chosen. Notice that the above properties are both domain and representation 
independent. Controllability and observability studies will quantify the feasibil
ity of solving the problem at hand. Minimality will tell how well the problem 
domain was modeled. Stability of the problem domain is an important qualitative 
property that must be understood so that a planner of the proper form is de
signed. Stabilizability and detectability studies will say whether it is possible to 
attain stability in a feedback planning system. Rate of the planning system quan-
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tifies how quickly the problem can be solved. We expand on these ideas for 
specific planners and planning system structures in the following sections. 

Open Loop AI Planning Systems 

In this section we define open loop planning systems and outline some of 
their characteristics. They are named "open loop" because they use no feedback 
information from the problem domain. We begin by drawing analogies with the 
structure of open loop control systems. 

Open Loop Control System-Planning System Structural Analogy 

Here we develop a structural analogy between open loop conventional control 
systems and open loop planning systems, beginning with Fig. 2. In conventional 
control theory, the open loop control system has the structure shown at the bottom 
of Fig. 2. The outputs of the controller are connected to the inputs of the plant so 
that they can change the behavior of the plant. The input to the controller is the 
reference input r(t), and it is what we desire the output of the plant to be. The 
controller is supposed to select the inputs of the plant u(t) so that y(t) - r(t), or 
y(t) - r(t) is appropriately small for all times greater than some value of t. 
Specifications on the performance of control systems speak of the quality of the 
response of y(t). For example, we might want some type of transient response or 
we might want to reduce the effect of the disturbance on the output y(t). However, 
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an open loop control system cannot reduce the effect of disturbances in any way; 
notice that, by definition, the disturbances cannot be measured. 

In the open loop planner, plan generation is the process of synthesizing a set 
of candidate plans to achieve the goal at step i, which we denote by g;. The goals 
g; may remain fixed, or change in time. In plan generation, the system projects 
(simulates, with a model of the problem domain) into the future, to determine if 
a developed plan will succeed. The system then uses heuristic plan decision 
rules based on resource utilization, probability of success, and so forth to choose 
which plan to execute. The plan executor translates the chosen plan into actions 
(inputs u;) to be taken on the problem domain. Many AI planners implemented 
to date are open loop planners. 

Characteristics ofAI Open Loop Planning 

We first consider the characteristics of the planner itself (not connected to 
the problem domain) by interpreting the results above. Then we outline the 
characteristics of open loop planning systems. 

Fundamental issues in the planner. It is useful to consider the planner to be a 
model of some human expert planner. The state of the planner is the situation 
describing the planner's problem-solving strategy at a particular instant. Planner 
controllability refers to the ability of the goal inputs to affect the state of the 
planner. Planner observability refers to the ability to determine the planner state 
using the goal inputs, planner outputs U;, and the model of the planner. Minimal
ity of the planner model reflects how well the planner was designed and modeled 
and thus, since an actual planner implementation depends on the model, how 
cheaply the planner can be implemented. Internal stability of the planner refers 
to its ability to stay in a problem-solving state of mind (ready to solve problems) 
when there are no goals to achieve (a null input). Input-output stability of the 
planner is attained if for all reasonable, admissible goals input the planner pro
duces reasonable, acceptable outputs U;. The planner is stabilizable if there exists 
a sequence of goals that will keep the planner properly focused on the problem. 
The planner is detectable if for all goal sequences that cause the planner to lose 
its focus of attention, the inputs, outputs, and model of the planner can be used 
to determine where the focus of attention is. The rate of the planner quantifies 
how quickly the planner can produce solutions with appropriate control actions. 

Fundamental issues in the open loop system. All of the interpretations given 
above for the planner are valid here, the difference being that since we cascade 
the problem domain we are thinking of solving a particular problem. If the 
problem domain is uncontrollable, there may not exist a planner capable of 
solving the problem. If it is controllable, a planner does exist. This does not 
mean that if the problem domain is completely controllable, we can choose any 
planner and it will solve the problem. It just says that one exists. Situation 
assessment and execution monitoring cannot be done since there is no connec-
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tion to the outputs of the problem domain. Consequently, there cannot be any 
replanning. If there are any disturbances in the problem domain, the planner 
canl become totally lost in its problem-solving process, because it has no ability 
to recover from plan failure; it is even unaware that there was a failure. We say 
that the planning system is sensitive to problem domain variations and open loop 
planners cannot reduce this sensitivity. This is closely related to the idea of 
sensitivity reduction in conventional control theory. Since, as explained under 
System Classification, there will always be some disturbances in the real world, 
open loop planners will necessarily fail at their task. However, they can work if 
the problem domain is well modeled and the disturbances are quite insignificant. 
This generally requires the use of a very complex, detailed model of the problem 
domain in the case of significant real-world problems.· Notice that since the 
outputs are not sensed, if the problem domain is unstable (input-output or inter
nally), then it is never stabilizable in open loop planning. Open loop stabilization 
requires absolutely exact knowledge of the problem domain. Since often this 
cannot be obtained, even insignificant disturbances can be catastrophic. The rate 
of the open loop system (planner and problem domain) can be increased over 
that of the problem domain, since the planner can choose shorter-path solutions. 
So analysis can be done to determine if certain specifications about the perfor
mance of the planning system can be achieved. World modeling and planner 
designing also cannot be done since the outputs are not sensed. 

The length of projection in plan generation can be quite long, since if one is 
using open loop planning the disturbances must be assumed nonexistent or insig
nificant. The only reason for making the projection length shorter would be to 
begin plan execution. If the projection length is too short for the plan generator 
to specify a set of plans that will work, there will be uncertainty in the plan 
execution that may lead to ultimate plan failure. This is why current open loop 
planners build the complete plan and then execute it. 

Open loop planners do have the advantage of simplicity. If the problem 
domain is stable and disturbances are insignificant, they should certainly be 
considered. They are cheaper to implement than the closed loop planners de
scribed in the next two sections, since one does not need to buy sensors to gather 
information about the states and outputs of the problem domain. 

AI Feedback Planning Systems 

AI feedback planning systems are analogous to conventional feedback con
trol systems that do not use state estimation; they do not use situation assess
ment. Charniak and McDermott (1985, chapter 9) point out the inherent feed
back in the planning process. They do not, however, make a clear distinction of 
the separation between the planner and problem domain and their interconnec-
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tions. In this section the distinctions will be clarified. In the next section we will
introduce AI feedback planning systems that use situation assessment. 

The Closed Loop System Structural Analogy 

The analogy between the feedback structures emerges from Fig. 3. The
structure is the same as for the open loop system except that there is the feed
back connection. This allows the planner to perform execution monitoring and
replanning. The feedback planning system can recover from plan failures due to
significant disturbances in the problem domain. The execution monitoring sys
tem uses the measured outputs, inputs, and domain model to determine if the
current plan has failed. If a plan fails, it informs the plan generator that it must
replan. 

Fundamental Issues in AI Feedback Planning Systems 

If the problem domain is not completely controllable, one can perhaps use
more elaborate actuator systems that will properly affect the state of the domain,
or perhaps rederive the model of the problem domain since controllability is a
property of the mathematical model used. Therefore, controllability studies can
be used for design guidelines for the problem domain, and likewise for observ
ability. Situation assessment is not needed in a planner if the full state of the
problem domain is measurable. This is analogous to full state feedback in con
ventional control theory. If observability studies show that some states of the 
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domain are unobservable, one can design and implement additional sensors that 
can provide the necessary information about the state. We see that there is a 
trade-off between expense of implementation of a planning system and planner 
complexity. It may be expensive to implement sensors to sense the whole state, 
but then situation assessment is not necessary, thus making the planner simpler. 

If the problem domain is completely controllable and observable with re
spect to the chosen inputs and outputs, there exists a feedback planner that can 
stabilize the problem domain if it is unstable. 

Goal Tracking/Following in AI Feedback Planning Systems 

For the controller to force the plant output to track or follow the reference 
input, it compares the output to the current reference input and decides what to 
input into the plant. In comparing r(t) and y(t), the controller simply uses the 
difference r(t) - y(t) to determine how well it is meeting its objective at any 
instant and takes appropriate actions. The difference r(t) - y(t), called the 
error, is a control measure. 

The planning system examines the difference between the current output 
situation and the goal to be achieved and takes subsequent actions. The error in 
the planning system is not as easy to form as in the conventional control case, 
because distance between symbols is more difficult to quantify. One could, how
ever, say that a problem domain output is closer to the goal if the components 
that make up the output are closer to satisfying the goal. If the goal is a conjunc
tion of several subgoals, it is closer to the output if the outputs make more of the 
subgoals true. 

Suppose we fix the goal input to the feedback planning system to be the 
same for all time, that is, g; = g0 for all i. The feedback planning system is then 
considered to be a regulatory planning system. It achieves the goal state and 
regulates the inputs to the problem domain to ensure that the goals are met for 
all time even in the face of problem domain disturbances. 

If the sequence of goals g;, the exogenous inputs to the planner, change over 
time and the planner achieves the goals sequentially, the planning system is said 
to be a goal-following or goal-tracking planning system. Notice that if the goals 
change too quickly, the planner may not be able to keep up, and there will be 
some tracking error. 

Design Issues in AI Feedback Planning Systems 

When one designs a feedback planning system, there are certain properties 
that are desirable for the closed loop planning system. We refer to these proper
ties collectively as the closed loop specifications. These could be stability, rate, 
performance measures, and so forth. 

Normally, stability is always a closed loop specification. The planner is 
designed so that stability is present in the closed loop system. Take special note 
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that even though feedback planning systems have the ability to stabilize any 
system that is stabilizable, they can also destabilize an otherwise stable problem 
domain. As an example, consider the case when, because of some delay in 
receiving feedback information, the planner applies the right plan but at the 
wrong time. One must be careful in the design so that this is avoided. Systems 
are often destabilized when one tries to increase the rate of the system. There
fore, if some rate is also a closed loop specification, it may be the case that only 
a certain rate is achievable, given that you want a safety margin to ensure that 
the system is stable. 

A very important advantage of feedback planning systems over their open 
loop counterparts is their ability to reject problem domain disturbances (reach 
and maintain a goal even with disturbances) and to be insensitive to problem 
domain variations (reach a goal even though the model is inaccurate). In conven
tional control theory these objectives are designed for, using techniques that will 
produce optimal disturbance rejection and sensitivity reduction. Systems that 
meet these objectives are said to be robust. The theory of robust control ad
dresses these questions. 

AI Feedback Planning Systems with Situation Assessment 

Analogous to the conventional controller that uses state estimation, there are 
AI feedback planning systems that use situation assessment. In Wilensky (1983) 
the author's description of planning and understanding is quite similar in charac
ter to what is presented below. Understanding corresponds to situation assess
ment. An understanding system, according to Wilensky (p. 10), "is given the 
'solution'" (the inputs and outputs of the problem domain) "and must recon
struct the goal and state of the world from it." In this section it is shown "that a 
good problem solver should incorporate some of the capabilities that were just 
attributed to understanding mechanisms" (Wilensky, 1983, p. 10). Wilensky 
also explains the ideas behind metaplanning, which are related to the next sec
tion on Al Adaptive planning. 

AI Feedback Planning System with Situation 
Assessment-Control Structural Analogy 

The structural analogy between the two feedback systems is shown in Fig. 
4. If the problem domain is observable, then there exists a situation assessor that 
can determine the state of the problem domain from the domain inputs, outputs, 
and model. If this condition is not met, situation assessment cannot be successful 
at all times. Situation assessment is particularly useful in stabilizing the problem 
domain when it is detectable. The state estimator (also called an observer) in the 
conventional controller is analogous to the situation assessor. Both estimate the 
state and provide the state estimate for use in determining what actions ought to 
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FIGURE 4. Closed loop structural analogy with situation assessment and state estimation. 

be taken next (by the control law or rest of the planner). Notice that with the 
situation assessor it is possible for the execution monitor to perform better. With 
complete state information it will be able to detect plan failure more accurately 
or in cases where it was not possible without situation assessment. 

Situation Assessment in AI Feedback Planning 

The observability condition suggests that the situation assessor will need the 
problem domain inputs, outputs, and model to perform its task. When projection 
is done with a model of the domain, the planner knows where the state of the 
domain ought to be. The situation assessor uses this information and the domain 
inputs, outputs, and model to modify its own estimate of the state. This idea has 
already been mentioned in Hawker and Nagel (1987). There is the need for a 
measurement (of the error) between where the state ought to be and the current 
estimate of the state. This control measure is used to help determine where the 
state really is. 
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Kalman filtering in conventional control theory is a form of optimal state 
estimation that involves specific assumptions about the stochastic properties of 
the disturbances, including the initial conditions. If we have done our situation 
assessment by optimizing the state estimate for a particular class of disturbances 
in the problem domain, we have the Kalman filter analogy. It is important to 
note that the planner is likely to be less robust with a situation assessor in the 
control loop, since there is an increased possibility for it to make errors. For 
example, the planner might act before the situation assessor has adequately im
proved its assessment. There is a similar loss of robustness in conventional 
control theory when a state estimator is used instead of full state feedback. There 
are, however, procedures for recovering the robustness properties in control 
theory. 

The separation principle in conventional control theory says that the control 
law and state estimator can be designed separately; the state feedback control 
law is designed as if the state were prefectly known. Then, when the designs are 
combined, the behavior of the resulting system will be as good as if the control
ler was designed all at once. Similar separation could exist between the designs 
of the planning of control actions and the situation assessor. 

AI Adaptive Planning Systems 

In conventional adaptive control, the system identification unit determines 
the changes to the plant and informs the controller designer, which changes the 
control laws so that closed loop specifications are met. Ideally, an AI adaptive 
planning system automatically models the problem domain and develops a plan
ner that will solve the new problem in the domain. The structural analogy be
tween the two is shown in Fig. 5. 

A simpler adaptive planner begins with a model of the problem domain, and 
if there are domain structural changes, it updates the model of the domain. This 
is called world modeling. Using this updated model, the planner designer de
cides if it is necessary to make changes to the current planning strategy so that 
the problem represented by the new problem domain will be solvable. The AI 
adaptive planning structure is used to implement metaplanning. Metaplanning, 
discussed earlier, is examined in Wilensky (1983). 

Notice that if the planner is not executing actions that excite the domain 
properly, the world modeler and thus the planner designer may not be able to 
perform their tasks. This is the problem of sufficient and persistent excitation in 
conventional control theory. Note that world modeling is not always needed; a 
planner designer can just change the strategy of the planner based on the occur
rence of certain logical combinations of events. Notice also that the adaptive 
planner can perform fault detection and identification and ultimate accommoda
tion for the failure. 
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One important difference between the two structures is that in the AI adap
tive planning system there is an input from a human or other supervisory sys
tem. A high-level goal that can be input at this level could be "go to manufactur
ing facility 4 and work there" (where it has never worked before). The adaptive 
planner would plan to achieve this goal by going to the facility, developing a 
world model, choosing a planning strategy, and forming subsequent plans and 

https://Distur.es
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taking actions to solve problems so that low-level goals are met. The AI adaptive 
planner is more autonomous than the others. Autonomy is a characteristic of 
increasingly intelligent systems. 

It is interesting to notice the similarities between the AI adaptive planner 
architecture and the model of helping developed in Egan (1986). We give one 
possible interpretation of the similarity here; many others are possible. Suppose 
we have a "helper" who is to aid in the solution of a problem by guiding the 
actions of a "subject." In Egan's theory of effective helping the "Present Sce
nario" corresponds to the problem representation of the problem that the subject 
is trying to solve and the planner, which represents the problem solving strategy 
of the subject. The "Preferred Scenario" consists of the accurate problem repre
sentation developed by the helper (world modeler) and the revised problem 
solving strategy designed by the helper (planner designer) for the subject. The 
"Action-Getting the New Scenario on Line" is the series of actions taken by 
the world modeler and planner designer to implement the methods used in the AI 
adaptive planner. 

Issues Relevant to AI Planning Theory 
from Intelligent Autonomous Control 

The AI planners described in this report are special cases of intelligent 
autonomous control structures. The area of intelligent autonomous control, stud
ied from a control theorist's viewpoint, has been called the intersection or inte
gration of AI, operations research, and control theory (Fu, 1971; DeJong, 
1983). It has also been pointed out that intelligent controllers are at the top of the 
controller complexity scale and thus have the ability to solve increasingly diffi
cult, poorly formulated, ill-structured problems (Saridis, 1979). Intelligent au
tonomous controllers coordinate the use of higher-level decision-making pro
cesses and conventional control techniques to control complex dynamical 
systems. An appropriate intelligent autonomous controller architecture and study 
of fundamental issues in intelligent autonomous control have recently been com
pleted (Antsaklis and Passino, 1988). The field of intelligent control is in its 
infancy, yet some important ideas relevant to planning are valuable. We high
light these here. 

Planning systems are hierarchical. There are three levels in the hierarchy. 
The lowest level is the execution level. At this level we find the system hardware 
and highly numeric-algorithmic techniques in use. In the robot example, the 
execution level contains the manipulator and the servomechanism that is used in 
the gripper. The next level up is the coordination level. At this level various 
execution-level controller actions are coordinated and supervised. It plans the 
actions of the low-level algorithms and hardware. Some intelligent decision 
making is used to perform the coordination and to interface to the highest level. 
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In the robot example, the coordination level would coordinate the movements of 
two manipulators so that they do not collide and plan their movements so that 
together they achieve some task. The highest level, the organization or manage
ment level, manages the systems actions and uses high-level decision-making 
processes and learning. It guides the actions of the coordination level and dele
gates duties to the various subsystems in the coordination and execution levels. 
In the robot example, the management level would, for instance, decide that a 
certain task needed two manipulators to achieve the goal efficiently. It is desir
able to have hierarchical models to use with the hierarchical controller for com
patibility reasons. Note that "hierarchical" as used here has different meaning 
from that in the section on AI planning systems. 

As we go up the hierarchy, the model abstractness needed for the problem
solving processes increases, and as we go down, the needed model granularity 
increases. For example, differential equations are used to develop the gripper 
control laws, while higher-level decision-making processes might use a rule
based model of the robot's environment. Both symbolic and numeric processing 
and modeling are necessary. 

The time scale density increases as we go from the management to the 
execution levels. This occurs because the management level has a macroscopic 
view of the actions that occur. It is not concerned with the details of force 
feedback of the manipulator but is only concerned that the object was properly 
moved. Consequently, the decision rate, or rate at which different parts of the 
controller take actions, decreases as we go from the execution to the manage
ment level. 

CONCLUDING REMARKS 

Although a foundation of fundamental concepts has been formed for AI 
planning systems by drawing an extensive analogy with control theoretic ideas, 
much work needs to be done to formalize mathematically the work presented 
here. At best, the results of this paper raise many questions and clarify some of 
the issues that may be important in quantitative studies of AI planning systems. 
Extensive research must be done on developing particular methods for model
ing, analyzing, and designing AI planning systems. Because the results in this 
paper are independent of both domain and problem representation, they are 
applicable no matter what modeling and analysis methodology is chosen as long 
as the methodology provides for the study of the fundamental concepts devel
oped here. 

As it is quite fundamental to the quantitative study of AI planning systems, 
the modeling issue must be addressed first. Various questions must be answered: 
(1) What mathematical formalism should be used for the problem representa
tion? (2) What is the expressive power of this formalism? That is, what class of 
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problem domains can be modeled? (3) Does the formalism lend itself to analy
sis, design, and implementation? Which properties of the models will be impor
tant to study? 

Second, systematic analysis methods must be developed so that planning 
system behavior can be studied quantitatively within the developed modeling 
framework. Before this is done, however, it will be important to determine what 
is important to analyze. Are there properties other than the ones developed here 
that need to be analyzed? It is also expected that planning methodologies that 
lend themselves to analysis will have to be developed. The question of what 
constitutes good planning system behavior must be answered. Finally, planning 
system design must be addressed. It is hoped that a systematic procedure for 
design is obtained-one that is similar in character to the control system design 
process. 
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	A state of the problem domain is a "snapshot" of its behavior. It is shown how one can relate the mathematical models of the plant and problem domain. The ideas that are developed for planning theory are independent of both domain and representation. Controllability refers to the ability of the inputs of a problem domain to change its state. If a problem domain is uncontrollable, there does not exist a planner that can achieve arbitrary desired goals. We define two types of controllability, of which one is 
	A problem domain is said to be internally stable if, when the system begins in some particular set of states and is perturbed, it will always return to that set 
	Artificial Intelligence Planning Systems 3 
	of states without control actions. It is said to be input-output stable " reasonable" inputs, the outputs are acceptable. A problem ble if there exists a planner that can make it stable. It is detea situation assessor that can determine if it is not stabldomain specifies some measure of the speed of itFor the planner alone, the fundamental concepts borrowed from theory have a special meaning. The state of the planne's problem solving strategy at a particular instant. Planner observability refers to the abi
	if, 
	for 
	all 
	d
	o
	main 
	is 
	sta
	bili
	za
	c
	table 
	if 
	th
	er
	e exists 
	e. 
	The 
	rate 
	of 
	a 
	probl
	em 
	s re
	s
	pon
	s
	e. 
	control 
	r 
	is 
	the 
	s
	ituati
	o
	n de
	sc
	rib
	ing 
	the 
	planner
	l 
	turban
	ces 
	in 
	the 
	probl
	em 
	do
	main. 
	They 
	cannot 
	s
	tabili
	ze 
	an 
	do
	main 
	to 
	be 
	un
	co
	ntroll
	a
	Although 
	the 
	rate 
	of 
	the 
	sys
	t
	em 
	feedback 
	plan
	the 
	outputs 
	of 
	the 
	problem 
	ners 
	e probl
	em 
	c
	an 
	be 
	use
	d 
	for 
	actuator 
	and 
	e
	re 
	is 
	a trade
	-off 
	betw
	ee
	n 
	Feedback 
	. 
	Desig
	n 
	is
	sse
	d. 
	tio
	n 
	assessme
	nt
	, obse
	r
	va
	bil
	
	it
	y s
	ptimal 
	s
	itu
	ati
	on 
	asse
	ss
	m
	ent 
	and 
	Kalman 
	filtering 
	is 
	s
	to 
	implem
	ent 
	meta
	pl
	annin
	g. 
	They 
	a
	lso 
	a
	llow 
	for 
	hum

	the planner. Certain concepts recently introduced in the field of intelligent control helpful here. Planning systems can be viewed as having a threthe execution level, the coordination level, and the manat higher levels are more abstract. The time scale density and decision rate are higher at the execution level. For the ideas just outlined to be useful for Al planning system analysis design, there must be appropriate formalisms and methodolo
	ar
	e 
	e-
	l
	evel 
	hierar
	c
	hy: 
	age
	me
	nt 
	level. 
	M
	ode
	ls 
	u
	sed 
	and 
	gies 
	for 
	stud
	y
	in
	g 

	K. M . Passino and P. J. Antsaklis 
	them. They must be able to tell if a particular planning system possesses the properties. For instance, we need a simple systematic method for determining whether a problem domain is controllable, observable, or stable. The concluding remarks discuss the importance of analyzing these properties of planning systems. 
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	In this section the essential components and ideas of AI planning systems are outlined briefly and distinctions are drawn between AI planning systems and other similar problem-solving systems. This sets the terminology for this paper. A planning system reasons from the measured initial state of its problem domain and determines and then executes the sequence of actions that will achieve some final goal state in the problem domain. Before we discuss the essential elements of AI planning systems and describe 
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	System Classification 
	In general, it is our view that we can classify problem-solving systems into two categories: conventional and AI. Several distinct characteristics distinguish these two classes of problem-solving systems. The conventional problemsolving system is numeric-algorithmic; it is somewhat inflexible; it is based on the well-developed theory of algorithms or differential/difference equations; and thus it can be studied using a variety of systematic modeling, analysis, and design techniques. Control systems are an 
	An AI problem-solving system is a symbolic-decision maker. It is flexible with graceful performance degradation, and it is based on formalisms that are not well developed; actually there are very few methodical modeling, analysis, and design techniques for these systems. AI planning system are examples of AI problem-solving systems. When comparing the characteristics of AI and non-AI systems, one can make the following observations: The decision rate in conventional systems is typically higher than that of
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	autonomy exists in AI systems than in conventional ones. A general discussion on problem solving is given in Shapiro (1987). 
	Although clear, distinct characteristics separate AI from non-AI planning systems, as planning systems evolve the distinction becomes less clear. Systems that were originally AI planners evolve to gain more character of non-AI planning systems. An example is a route planner. As problems like route planning become better understood, more conventional numeric-algorithmic solutions are developed. The AI approaches help to organize and synthesize approaches to problem solving, in addition to being problem-solv
	AI planning systems use models for the problem domain called problem representations. For instance, in the past, predicate or temporal logic has been used. A planner's reasoning methodology is modeled after the way a human expert planner would behave. Therefore, the planning systems use heuristics to reason under uncertainty. Conventional expert systems have many of the elements of planning; they use similar representations for knowledge and heuristic inference strategies. The planning systems that are stu
	In an expert system there exists an analogous loop. The knowledge base is the problem domain and the inference strategy is the planner. For rule-based expert systems the premises of rules are matched to current working memory ( outputs are measured and interpreted), and then a heuristic inference strategy decides which rule to fire, that is, what actions to take to change the state of working memory (the knowledge base) and so on. The expert system has an inherent goal of generating some diagnosis, configur
	A further distinction must be made between AI planning and scheduling systems. It is the task of a planner to generate sequences of actions so that some goal is attained without expending too many resources. A scheduling system is concerned with when the action should be accomplished and uses the availability 
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	of resources to assign resources to times and actions (Kempf, 1987). In the next section we briefly describe the elements of AI planning systems. 

	Elements of AI Planning Systems 
	Elements of AI Planning Systems 
	An AI planning system consists of the planner, the problem domain, their interconnections, and the exogenous inputs. The outputs of the planner are the inputs to the problem domain. They are the control actions taken on the domain. The outputs of the problem domain are inputs to the planner. They are measured by the planner and used to determine the progress in the problem-solving process. In addition, there are unmeasured exogenous inputs to the problem domain, which are called disturbances. They represe
	goals may be generated, and allow varying degrees of human intervention in the planning process. 
	Problem Domain 
	The problem domain is the domain (environment) the planner reasons about and takes actions on. The problem domain is composed of a collection of problems that the planner desires to solve. The planner takes actions on the problem domain via the inputs to solve a particular problem. The planner measures the effect of these actions via the outputs of the problem domain. The disturbances 
	represent uncertainty in the problem domain. The solution of a problem is composed of the sequence of inputs and outputs (possibly states) generated in achieving the goal. 
	One develops a model of the real problem domain to study planning systems. This is called the problem representation. The real problem domain is in some sense infinite; that is, no model could ever capture all the information in it. 
	The problem representation is necessarily inaccurate. It may even be inaccurate by choice, such as when the planning system designer ignores certain problem domain characteristics in favor of using a simpler representation. Simpler models are desirable, since there is an inversely proportional relationship between modeling complexity and analysis power. The characteristics of the problem domain that are ignored or missed are collectively represented by disturbances in the model. The result is that distur
	nondeterministic character. Clearly, disturbances occur in every problem domain; they can be ignored when they are small, but their effect should always be studied to avoid erroneous planner designs. 
	Artificial Intelligence Planning Systems 
	AI Planner 
	In this section we describe the functional components of an Al planner. The AI planner's task is to solve problems. To do so, it coordinates several functions: Plan generation is the process of synthesizing a set of candidate plans to achieve the current goal. This can be done for the initial plan or for replanning if there is a plan failure. In plan generation, the system projects (simulates, with a model of the problem domain) into the future, to determine if a developed plan will succeed. The system the
	A world modeler produces an update to a world model or a completely new world model. The world modeler determines the structure of the problem domain rather than just the state of the problem domain, as is done by the situation assessor. It also determines what must be modeled for a problem to be solved; hence it partially determines what may be disturbances in the problem domain. The term "world modeler" is thus used to indicate that it must be cognizant of the entire modeling process. Its final output is
	Issues and Techniques in AI Planning Systems 
	Issues and Techniques in AI Planning Systems 
	In this section we briefly outline some of the issues and techniques in AI planning systems, giving reference to the relevant literature. General information is given in Charniak and McDermott (1985), Nilsson (1980), Barr and Feigenbaum (1981, 1982), Cohen and Feigenbaum (1982), Wilensky (1983), 
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	Shapiro (1987), Gevarter (1984), Fu et al. (1987), and Tanimoto (1987). Plan
	ning has its roots in the study of problem solving (Ernst and Newell, 1969). A 
	complete summary of planning ideas and an extensive bibliography on 
	relatively 

	planning are given in Tate (1985). The goal of this section is to set the terminol
	ogy of the report, not to create an extensive bibliography. As active research is 
	progressing in many areas of planning, the terminology is also evolving; conse
	quently, the definitions and terminology used here are tentative. 
	Representation is fundamental to all issues and techniques in 
	Al 
	planning. 
	It 

	refers to the methods used to model the problem domain and the planner and it 
	sets the framework and restrictions on the planning system. Often, it amounts to 
	the specification of a formalism for representing the planner and 
	problem 
	do

	mains in special structures in a computer language. Alternatively, it could con
	stitute a mathematical formalism for studying planning problems. 
	Different 

	types of symbolic representations such as finite automata and predicate or tem
	been used. Some methods allow for the modeling of different 
	poral 
	logics 
	have 

	characteristics. Some do not allow for the modeling of nondeterminism. sentational issues are examined in Charniak and McDermott (1980), Barr and Feigenbaum (1981), Wilensky (1983), Tanimoto (1987), Fu al. (1987), McDermott (1982, 1985), Warren (1974), Hayes-Roth (1979), Rosenschein (1981), Allen and Koomen (1983), Wilkins (1983), Firschein et al. (1986), Chapman (1987), Stephanopoulos et al. (1987), Hodgson (1987), Drummond et al. (1987), and many others. One should be very careful in the choice of how m
	Repre
	(1985), 
	Nilsson 
	et 

	The generality of developed planning techniques depends 
	heavily 

	on whether the approach is domain dependent or domain independent. Techniques for one specific problem domain without concern for their applicabilto other domains are domain dependent. An example of domain-dependent work is given in Stefik (1981), and Dudziak et al. (1987). An example of a more general domain-independent planner is given in Sacerdoti (1975), Nilsson (1971), or McDermott (1985). Other work that examines domain dependence is given in Wilkins (1983, 1984). The results in the next section of 
	developed 
	ity 
	Fikes 
	and 

	Planners can be classified broadly as either hierarchical or nonhierarchical. A nonhierarchical planner makes all of its decisions at one hierarchical planner there is delegation of duties to lower levels distribution of decision making. Their fundamental operation Cohen and Feigenbaum (1982), and Nilsson (1980). Characteristics of and a comparison between these two types of planners are given (1981). Some of the original work was done in Sacerdoti (1973). Other impor
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	and 
	a 
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	tant work is given in Tate (1977), Adams (1985), Hayes-Roth (1979), Fikes (1971), Sacerdoti (1975), Chamiak and McDermott (1985), and Stefik (1981). 
	Planners can also be classified as linear or nonlinear. A linear planner produces a strict sequence of actions as a plan, while a nonlinear planner produces a partially ordered sequence where coordination between the tasks and subtasks to be executed is carefully considered. The original work on nonlinear 
	planning is given in the classic work of Sacerdoti (1975). Extensions to this work are given in Tate (1977), Allen and Koomen (1983), Vere (1983), and Wilkins (1983, 1984). A good summary is given in Tate (1985). 
	Several types of interactions can occur in planning. One is the interaction between subtasks or subplans that requires their proper coordination. Another is between different goals we might want to achieve, Waldinger (1975). Still another is between different planning modules or with the human interface. Important work in this area is found in Broverman and Croft (1987), Bruce and Newman (1978), and Hayes (1987). A nice categorization of types of interac
	tions and summary of ideas is given in Tate (1985). 
	Search is used in planning systems, for instance, to find a feasible plan. There are many types of search, such as the heuristic search algorithms called A* and AO*. A good introduction to the topic is given in Pearl (1984), Nilsson (1980), or Barr and Feigenbaum (1981). A summary of search techniques used in planning is given in Tate (1985) or in Shapiro (1987). In Korf (1987) the author uses results from the theory of search to quantify some time and space 
	complexities of planning. In Passino and Antsaklis (1988a, 1988b) planning problems are solved using heuristic search in a Petri net framework. An application to a robot problem is given in Graglia and Meystel (1987) and to mission control/decision support in Deutsch et al. (1985). Skeletal plans, plan schemata, and scripts are all representations of plans with varying degrees of abstraction. Skeletal plans are plans that to some extent 
	do not have all the details filled in. A script is a knowledge structure containing a stereotypic sequence of actions. Plan schemata are similar. Often planners that use these forms for plans store them in a plan library. Hypothetical planning is 
	planning where the planner hypothesizes a goal, produces a subsequent plan, and stores it in a plan library for later use, all while the current plan is executing. Good explanations of some of these ideas are given in Shaprio (1987), Cohen and Feigenbaum (1982), and Adams et al. (1985). 
	Replanning is the process by which plans are generated so that the system recovers after a plan has failed. There are two types of plan failures. One occurs in plan generation, where the planner fails to generate a plan. In this case, replanning can be successful only if a planner redesigner makes some changes to the planner strategy. The second type of plan failure occurs in the execution of the plan and is due to disturbances in the problem domain. This plan failure can be accommodated by replanning in th
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	not due to a significant structural change in the problem domain. If it is, then 
	the 

	will produce a new world model and the planner designer will 
	world 
	modeler 

	make the appropriate changes to the planner so that it can replan. Some 
	of 
	these 

	ideas are discussed in Chamiak and McDermott (1985). 
	is used in plan generation to look into the future so that the 
	Projection 

	feasibility of a candidate plan can be decided. If it is assumed 
	that 
	there 
	are 
	no 

	disturbances in the problem domain, and a plan can be generated, 
	then 
	it 
	can 
	be 

	executed with complete confidence in plan success. Disturbances cannot be igproblem domains associated with real-world dynamic environments; complete projection is often futile. The chosen projection length (number of steps in symbolic simulation) depends on the type and frequency of disturbances and is therefore domain dependent. Notice that length is short, plan execution can be interleaved with planning and replanning. 
	nored 
	in 
	therefore, 
	if 
	the 
	projection 

	sort of planning has been named reactive planning (Georgeff, 1987). A completely proactive planner always has a plan ready for library) no matter what the situation is in the problem domain. These plans could be skeletal or scripts. Some mixture of proactive and reactive planning with varying projection length is probably most appropriate. These ideas are explained from a different point of view in Hayes-Roth (1979). There opportunistic planning is introduced; one forms a partial plan and then begins exec
	This 
	execution 
	(in 
	a plan 

	Planning with constraints is a planning methodology where certain constraints on the planning process are set and the planner must ensure constraints are not violated (Stefik, 1981; Winslett, 1987). 
	that 
	these 
	A 
	planning 
	system 

	that uses several planners to solve different parts of the problem is explained in Hayes-Roth (1979), Firschein (1986), and Georgeff (1984). man interface to the planning process are discussed in Chamiak and McDermott (1985), Barr (1981, 1982), and Cohen and Feigenbaum (1982). 
	Some 
	issues 
	in 
	hu

	planning occurs when a problem is solved by coordinating the results from several expert planners. It is also called multiagent planning. A relatively complete overview of distributed planning is contained in Tate (1985) and another bibliography is given in Kempf (1987). 
	Distributed 

	Metaplanning is the process of reasoning about how a planner used with world modeling and changes the planning strategy. A domain
	reasons. 
	It 
	is 

	dependent example of metaplanning is given in Stefik (1981). A general explanation of metaplanning is given in Wilensky (1983). Other information planning is found in Wilensky (1981) and Hayes-Roth and Hayes-Roth (1979). Planners can also be made to learn. For example, a simple form of learning is to save successful plans in a plan library for later use in the same situation. Other learning are described in Chamiak (1985), Cohen and Feigenbaum 
	on 
	meta
	forms 
	of 

	(1982), and Fikes et al. (1972). 
	Artificial Intelligence Planning Systems 
	The objective of this paper is to begin the formulation of an approach for the quantitative study of AI planning systems that operate in uncertain, dynamic, and time-critical environments. One way to study planning system behavior is by the empirical method. Other more quantitative studies specify a computer language or formal model for the problem domain. (See all the representation research outlined above.) Formal modeling and analysis has used propositional dynamic logic for the verification of planning 
	AI PLANNING AND CONTROL THEORY: ANALOGY AND RELATIONSHIPS 
	AI PLANNING AND CONTROL THEORY: ANALOGY AND RELATIONSHIPS 
	Relationships and an extensive analogy between AI planning and control system architectures and concepts are developed in this section. This is possible because both are problem solving systems (as described earlier) with different problem domains. It is useful to draw the analogy since conventional problemsolving systems, such as control systems, are very well studied. They have a well-developed set of fundamental concepts and formal mathematical modeling, analysis, and design techniques. The analogy is u
	The discussions below are meant to motivate the utility of using general systems theory for the study of AI planning systems. In particular, it is hoped that it is made clear that the general concepts of controllability, observability, stability, and so forth as defined in systems and control theory will be useful in the quantitative study of AI planning systems. The results here will probably need to be revised and expanded before a careful formulation of a mathematical theory of AI planning via control th
	After discussing some fundamental system theoretic concepts and the problem domain and plant analogy, open-loop planning is introduced. Feedback planning with and without situation assessment is introduced and discussed. Adaptive AI planning is introduced. The details of the internal architectures of the various planners introduced are given, but they are used only to discuss the concepts in this paper. A particular planner implementation may have a different 
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	functional architecture. This section closes by highlighting some recent ideas from intelligent autonomous control relevant to AI planning. 

	The Problem Domain-Plant Analogy 
	The Problem Domain-Plant Analogy 
	In this section we shall give the structural analogy (functional analogy) between the problem domain and the plant. In conventional control, the plant is a dynamical system whose behavior we wish to study and alter. It is generally described with linear or nonlinear differential/difference equations and is either deterministic or nondeterministic. The problem domain is the domain (environ
	ment) the AI planner reasons about and takes actions on. It can be modeled using predicate or temporal logic or other symbolic techniques such as finite automata. We develop the analogy further using Fig. 1. 
	As it is often done, we adopt the convention that actuators and sensors are part of the plant and thus part of the problem domain description. Plant actuators are hardware devices (transducers) that translate commands u(t) from the controller into actions taken on the physical system. The variable t represents time. 
	In a problem domain, we take a more macroscopic view of an actuator, a view that depends on available hardware and the type of inputs generated by the planner. For example, in a robotic system a manipulator may be quite dexterous; 
	Problem Domain 
	n, Ou uts, y.
	Inputs, ui 
	en 

	::, I System "' S; "' 
	Physical 

	Problem Domain
	' .
	. . . . . 




	~-----------~---~---~---------~--~---~------------------~ 
	~-----------~---~---~---------~--~---~------------------~ 
	...... ••. '-. •• •• Di~turbances, d(t) 
	·. 
	-r::---.-----
	-

	Plant 
	.. .. ·. 
	---::........ 
	Outputs, 
	en 
	n, y(t)
	Inputs, u..;.(t.;.)_1-11~ Physical ::, System
	j 
	j 
	~ 

	Plant 
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	one may be able to send the simple command "pick up object," and it will know how to move to the object, grip it, and pick it up. Such a manipulator can be seen as an actuator, although simpler ones also exist. Clearly, the inputs to the problem domain can be more abstract than those of a plant; consequently, we describe them with symbols U; rather than numbers. The index i represents time in the problem domain. The symbols are quite general and allow for the representation of all possible actions that any
	domain input U; is a time sequence of symbols. 
	The physical system for both the problem domain and the plant is some portion of the real world that we wish to study and alter. The difference between the two is in the types of systems that are normally considered and thus the modeling techniques that are used (see discussion in the section entitled Problem Domain). Aspects of the dynamical behavior of plants such as cars, antennas, satellites, or submarines can be modeled by differential equations. Problem domains studied in the AI planning literature i
	domains cannot always be described by differential equations. Consequently, conventional control techniques are inappropriate for AI planning problems. 
	The sensors in the plant and problem domain are used to measure variables of the physical system and translate this information to y(t) for the controller and Y; for the planner. The symbols Y; provide for the representation of all possible measured values of outputs of the problem domain. As with the actuators in the problem domain, we take a more macroscopic view of sensors. They can combine various data to form an aggregate representation of dynamic problem domain information. This necessitates the use
	1 

	y2 = "object 1 in position 3." The inputs U; can affect the physical system so that the outputs Y; can change over time. The state of the plant or problem domain ( or any dynamical system) is the information necessary to predict the future behavior of the system given the 
	present and future system inputs. A particular state is a snapshot of the system's behavior. The initial state is the initial condition on the differential/difference equation that describes the plant, or the initial situation in the problem domain prior to the first time a plan is executed. We shall denote the state of the plant with x(t) and the problem domain with X;. The set of all possible states is loosely referred to as the state space. In our robot problem domain, the initial sate can be the initial
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	state might be x0 = "object 1 in position 3 and object 2 in position 7 and manipulator in position 5 ." Notice that part of the state is directly contained in the output for our example. The state describes the current actuation and sensing situation in addition to the physical system, since the sensors and actuators are considered part of the problem domain. 
	The plant and problem domain are necessarily affected by disturbances d(t) or symbols d; respectively (see discussion under Problem Domain). These can appear as modeling inaccuracies, parameter variations, or noise in the actuators, physical system, and sensors. In our robotics problem domain a disturbance might be some external, unmodeled agent, who also moves the objects. Next we show how the functional analogy between the plant and problem domain extends to a mathematical analogy. 
	The Plant-Problem Domain Model Analogy 
	The Plant-Problem Domain Model Analogy 
	Because of their strong structural similarities it is not surprising that we can develop an analogy between the models that we use for the plant and the problem domain and between fundamental systems concepts. Essentially this involves a discussion of the application of a general systems theory described in Kalman et al. (1969) to planning systems. We extract the essential control theoretic ideas and adapt them to planning theory, without providing lengthly explanations of conventional control theory. T
	The mathematical analogy continues by studying certain properties of systems that have been found to be of utmost importance in conventional control theory. 

	Controllability 
	Controllability 
	In control theory, and thus in planning theory, controllability refers to the ability of a system's inputs to change the state of the system. It is convenient to 
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	consider a deterministic system for the discussion. transfer or steer a state from one value to another. In the robot example, sequence of input actions transfers the state from x0 = "object 1 and object 2 in position 7 and manipulator in position 5" to x7 = "object 5 and object 2 in position 10 and manipulator in position l." A system is said to be completely controllable at time i if there exists a finite time j > i such that for any state X; and any state x there exists sequence U;, ... , ui that will tr
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	Observability 
	In control theory, and thus in planning theory, observability of the problem domain refers to the ability to determine the state of a system from the inputs, outputs, and model of the system. 
	A system is said to be completely observable at time i if there exists a finite timej > i, such that for any state X; the problem representation, the sequence of inputs, and the corresponding sequence of outputs over the time interval [i, Jl uniquely determine the state X;. 
	Intuitively, this means that a problem domain is completely observable at some time if and only if, for every sequence of domain inputs and their corresponding outputs, the model of the domain and the input and output sequences are all that is necessary to determine the state that the domain began in. A problem domain that is completely observable on some long time interval may not be completely observable on a shorter interval. It may take a longer sequence of inputs and outputs to determine the state. 
	In the robot example, if the problem domain is completely observable, then for every sequence of actions (inputs) there exists a situation assessor that can determine the position of the objects and manipulator from the input sequence, output sequence, and model of the problem domain. 
	If a problem domain is completely observable, then for any initial state, there exists a situation assessor that can determine the state of the problem domain. This situation assessor needs both the inputs and the outputs of the problem domain, and there is the assumption that there are no disturbances in the domain. Sometimes complete observability is not a property of systems, but they may possess a weaker form of observability, which is defined next. To discuss a more realistic, weaker form of observabil
	A system is said to be weakly observable at time i if there exists a finite time 
	j > i such that, for any state X; in the set of observable states, the problem representation, the sequence of inputs, and the corresponding sequence of outputs over the interval [i, Jl uniquely determine the state X;. 
	If the problem domain is weakly observable, there exists a situation assessor that can determine the state of the problem domain given that the system state begins in the set of observable states. In the robot example, if the problem domain is weakly observable, then for any initial observable state and every sequence of actions (inputs) that any planner can produce, there exists a situation assessor that can determine the position of the objects and manipulator from the planner input sequence, output seque
	If a problem domain is not completely observable, it may still be weakly observable. If it is completely observable, it is weakly observable. Like control
	If a problem domain is not completely observable, it may still be weakly observable. If it is completely observable, it is weakly observable. Like control
	-

	lability, observability is a property of systems in general; therefore it has meaning for the problem domain, planner, and planning system. 

	In control, and thus planning, theory, a model of a system is minimal or irreducible if it uses the least number of state variables to describe the dynamical behavior. That is, it is minimal if there are no redundancies in the model. If a system is not minimal, then there exists a different system representation whose state space is of smaller dimension (size). The minimality property quantifies how well the problem domain was modeled. Minimality is also a property of the planner and the whole planning syst
	Stability 
	Stability 
	In control, and thus in planning theory, we say that a system is internally stable if with no inputs, when the system begins in some particular set of states and the state is perturbed, it will always return to that set of states. For the discussion we partition the state space into disjoint sets of "good" states and "bad" states. Also, we define the null input for all problem domains as the input that has no effect on the problem domain. Assume that the input to the system is the null input for all time. A
	To clarify the definition, a specific example is given. Suppose that we have the robot manipulator described above. Suppose further that the set of positions the manipulator can be in can be broken into two sets, the good positions and the bad positions. A good position might be one in some envelope of its reach, while a bad one might be where it would be dangerously close to some human operator. If such a system was internally stable, then if the manipulator was in the good envelope and was bumped by some
	We make the following definitions to produce one more definition of stability. We assume that we can partition the set of possible input and output symbols into disjoint sets of good and bad inputs and outputs. A system is said to be input-output stable if for all good input sequences the corresponding output sequences are good. 
	In the robot example, suppose the inputs to the manipulator can be broken into two sets, the good ones and the bad ones. A bad input might be one that takes a lot of resources or time to execute, or it might be an input that takes some unreasonable action on the problem domain. Let the output of the robot problem domain be the position of the objects that the manipulator is to move. A bad output position would be to have an object obstruct the operation of some other machine or to have the objects stacked s
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	The robot problem domain is input-output stable if for all reasonable actions (good inputs) the manipulator is asked to perform, it produces a good positioning of the objects (good outputs) in the problem domain. These stability definitions and ideas also apply to the planner and the planning system. We shall expand on this in a later section. 
	Stabilizability refers to the ability to make a system stable. For a planning system it may, for instance, refer to the ability of any planner to stabilize the problem domain. A system is said to be stabilizable if the set of controllable states contains the bad states. For the robot example, the problem domain is stabilizable if, for all states that represent bad positions of the manipulator arm, there are inputs that can move the arm to its good (state) operating envelope. Detectability refers to the abil



	Rate of a System 
	Rate of a System 
	The rate of a system in conventional control theory quantifies how quickly the system will react to its inputs or how fast the outputs will change for a given set of inputs. In the time domain, other terms used include time constant and rise time. For linear control theory, bandwidth is used in the frequency domain. In an AI planning system, rate is defined similarly. However, it cannot be properly defined mathematically until the form of the model is specified. For now we can think of it as some global mea
	In this section we have developed a foundation of fundamental ideas for planning theory. When one begins to formulate a planning problem, one begins by modeling the problem domain; that is, the form of problem representation is chosen. Notice that the above properties are both domain and representation independent. Controllability and observability studies will quantify the feasibility of solving the problem at hand. Minimality will tell how well the problem domain was modeled. Stability of the problem dom
	-
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	tifies how quickly the problem can be solved. We expand on these ideas for specific planners and planning system structures in the following sections. 

	Open Loop AI Planning Systems 
	Open Loop AI Planning Systems 
	In this section we define open loop planning systems and outline some of their characteristics. They are named "open loop" because they use no feedback information from the problem domain. We begin by drawing analogies with the structure of open loop control systems. 
	Open Loop Control System-Planning System Structural Analogy 
	Here we develop a structural analogy between open loop conventional control systems and open loop planning systems, beginning with Fig. 2. In conventional control theory, the open loop control system has the structure shown at the bottom of Fig. 2. The outputs of the controller are connected to the inputs of the plant so that they can change the behavior of the plant. The input to the controller is the reference input r(t), and it is what we desire the output of the plant to be. The controller is supposed t
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	an open loop control system cannot reduce the effect of disturbances in any way; notice that, by definition, the disturbances cannot be measured. 
	In the open loop planner, plan generation is the process of synthesizing a set of candidate plans to achieve the goal at step i, which we denote by g;. The goals g; may remain fixed, or change in time. In plan generation, the system projects (simulates, with a model of the problem domain) into the future, to determine if a developed plan will succeed. The system then uses heuristic plan decision rules based on resource utilization, probability of success, and so forth to choose which plan to execute. The pl
	Characteristics ofAI Open Loop Planning 
	We first consider the characteristics of the planner itself (not connected to the problem domain) by interpreting the results above. Then we outline the characteristics of open loop planning systems. 
	Fundamental issues in the planner. It is useful to consider the planner to be a model of some human expert planner. The state of the planner is the situation describing the planner's problem-solving strategy at a particular instant. Planner controllability refers to the ability of the goal inputs to affect the state of the planner. Planner observability refers to the ability to determine the planner state using the goal inputs, planner outputs U;, and the model of the planner. Minimality of the planner mod
	Fundamental issues in the open loop system. All of the interpretations given above for the planner are valid here, the difference being that since we cascade the problem domain we are thinking of solving a particular problem. If the problem domain is uncontrollable, there may not exist a planner capable of solving the problem. If it is controllable, a planner does exist. This does not mean that if the problem domain is completely controllable, we can choose any planner and it will solve the problem. It just
	Fundamental issues in the open loop system. All of the interpretations given above for the planner are valid here, the difference being that since we cascade the problem domain we are thinking of solving a particular problem. If the problem domain is uncontrollable, there may not exist a planner capable of solving the problem. If it is controllable, a planner does exist. This does not mean that if the problem domain is completely controllable, we can choose any planner and it will solve the problem. It just
	-

	tion to the outputs of the problem domain. Consequently, there cannot be any replanning. If there are any disturbances in the problem domain, the planner canl become totally lost in its problem-solving process, because it has no ability to recover from plan failure; it is even unaware that there was a failure. We say that the planning system is sensitive to problem domain variations and open loop planners cannot reduce this sensitivity. This is closely related to the idea of sensitivity reduction in convent

	The length of projection in plan generation can be quite long, since if one is using open loop planning the disturbances must be assumed nonexistent or insignificant. The only reason for making the projection length shorter would be to begin plan execution. If the projection length is too short for the plan generator to specify a set of plans that will work, there will be uncertainty in the plan execution that may lead to ultimate plan failure. This is why current open loop planners build the complete plan
	Open loop planners do have the advantage of simplicity. If the problem domain is stable and disturbances are insignificant, they should certainly be considered. They are cheaper to implement than the closed loop planners described in the next two sections, since one does not need to buy sensors to gather information about the states and outputs of the problem domain. 

	AI Feedback Planning Systems 
	AI Feedback Planning Systems 
	AI feedback planning systems are analogous to conventional feedback control systems that do not use state estimation; they do not use situation assessment. Charniak and McDermott (1985, chapter 9) point out the inherent feedback in the planning process. They do not, however, make a clear distinction of the separation between the planner and problem domain and their interconnec
	-
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	tions. In this section the distinctions will be clarified. In the next section AI feedback planning systems that use situation assessment. 
	we 
	will
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	The Closed Loop System Structural Analogy 
	The analogy between the feedback structures emerges from Fig. 3. Thestructure is the same as for the open loop system back connection. This allows the planner to perform replanning. The feedback planning system can recover significant disturbances in the problem domain. The execution outputs, inputs, and domain model to determine if thehas failed. If a plan fails, it informs the plan generator that it mustreplan. 
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	Fundamental Issues in AI Feedback Planning Systems 
	If the problem domain is not completely controllable, one can perhaps usemore elaborate actuator systems that will properly affect the model of the problem domain since controllability is aof the mathematical model used. Therefore, controllability studies canbe used for design guidelines for the problem domain, and likewise ability. Situation assessment is not needed in a planner if the full problem domain is measurable. This is analogous to full state feedback ventional control theory. If observability stu
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	FIGURE 3. Closed loop structural analogy. 
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	domain are unobservable, one can design and implement additional sensors that can provide the necessary information about the state. We see that there is a trade-off between expense of implementation of a planning system and planner complexity. It may be expensive to implement sensors to sense the whole state, but then situation assessment is not necessary, thus making the planner simpler. 
	If the problem domain is completely controllable and observable with respect to the chosen inputs and outputs, there exists a feedback planner that can stabilize the problem domain if it is unstable. 
	Goal Tracking/Following in AI Feedback Planning Systems 
	For the controller to force the plant output to track or follow the reference input, it compares the output to the current reference input and decides what to input into the plant. In comparing r(t) and y(t), the controller simply uses the difference r(t) -y(t) to determine how well it is meeting its objective at any instant and takes appropriate actions. The difference r(t) -y(t), called the error, is a control measure. 
	The planning system examines the difference between the current output situation and the goal to be achieved and takes subsequent actions. The error in the planning system is not as easy to form as in the conventional control case, because distance between symbols is more difficult to quantify. One could, however, say that a problem domain output is closer to the goal if the components that make up the output are closer to satisfying the goal. If the goal is a conjunction of several subgoals, it is closer
	Suppose we fix the goal input to the feedback planning system to be the same for all time, that is, g; = g0 for all i. The feedback planning system is then considered to be a regulatory planning system. It achieves the goal state and regulates the inputs to the problem domain to ensure that the goals are met for all time even in the face of problem domain disturbances. 
	If the sequence of goals g;, the exogenous inputs to the planner, change over time and the planner achieves the goals sequentially, the planning system is said to be a goal-following or goal-tracking planning system. Notice that if the goals change too quickly, the planner may not be able to keep up, and there will be some tracking error. 
	Design Issues in AI Feedback Planning Systems 
	When one designs a feedback planning system, there are certain properties that are desirable for the closed loop planning system. We refer to these properties collectively as the closed loop specifications. These could be stability, rate, performance measures, and so forth. 
	Normally, stability is always a closed loop specification. The planner is designed so that stability is present in the closed loop system. Take special note 
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	though feedback planning systems have the ability to stabilize any 
	that 
	even 

	system that is stabilizable, they can also destabilize an otherwise stable problem 
	domain. As an example, consider the case when, because of some delay in 
	receiving feedback information, the planner applies the right plan but at the 
	time. One must be careful in the design so that this is avoided. Systems 
	wrong 

	are often destabilized when one tries to increase the rate of the system. fore, if some rate is also a closed loop specification, it may be the case that only a certain rate is achievable, given that you want a safety margin to ensure the system is stable. 
	There
	that 

	A very important advantage of feedback planning systems over their open loop counterparts is their ability to reject problem domain disturbances (reach and maintain a goal even with disturbances) and to be insensitive to problem domain variations (reach a goal even though the model is inaccurate). In conventional control theory these objectives are designed for, using techniques that will produce optimal disturbance rejection and sensitivity reduction. Systems that meet these objectives are said to be robu
	ad


	AI Feedback Planning Systems with Situation Assessment 
	AI Feedback Planning Systems with Situation Assessment 
	Analogous to the conventional controller that uses state estimation, there are AI feedback planning systems that use situation assessment. In Wilensky (1983) the author's description of planning and understanding is quite similar in character to what is presented below. Understanding corresponds to situation assess
	ment. An understanding system, according to Wilensky (p. 10), "is 
	given 
	the 

	'solution'" (the inputs and outputs of the problem domain) the goal and state of the world from it." In this section it is shown "that a good problem solver should incorporate some of the capabilities that were just attributed to understanding mechanisms" (Wilensky, 1983, p. 10). Wilensky also explains the ideas behind metaplanning, which are related to the next section on Al Adaptive planning. 
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	AI Feedback Planning System with Situation Assessment-Control Structural Analogy 
	The structural analogy between the two feedback systems is shown 4. If the problem domain is observable, then there exists a situation assessor that can determine the state of the problem domain from the domain model. If this condition is not met, situation assessment cannot be successful at all times. Situation assessment is particularly useful in stabilizing the problem domain when it is detectable. The state estimator (also called an observer) in the conventional controller is analogous to the situation 
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	FIGURE 4. Closed loop structural analogy with situation assessment and state estimation. 
	be taken next (by the control law or rest of the planner). Notice that with the situation assessor it is possible for the execution monitor to perform better. With complete state information it will be able to detect plan failure more accurately or in cases where it was not possible without situation assessment. 
	Situation Assessment in AI Feedback Planning 
	The observability condition suggests that the situation assessor will need the problem domain inputs, outputs, and model to perform its task. When projection is done with a model of the domain, the planner knows where the state of the domain ought to be. The situation assessor uses this information and the domain inputs, outputs, and model to modify its own estimate of the state. This idea has already been mentioned in Hawker and Nagel (1987). There is the need for a measurement (of the error) between where
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	Kalman filtering in conventional control theory is a form of optimal state estimation that involves specific assumptions about the stochastic properties of the disturbances, including the initial conditions. If we have done our situation assessment by optimizing the state estimate for a particular class of disturbances in the problem domain, we have the Kalman filter analogy. It is important to note that the planner is likely to be less robust with a situation assessor in the control loop, since there is an
	The separation principle in conventional control theory says that the control law and state estimator can be designed separately; the state feedback control law is designed as if the state were prefectly known. Then, when the designs are combined, the behavior of the resulting system will be as good as if the controller was designed all at once. Similar separation could exist between the designs of the planning of control actions and the situation assessor. 

	AI Adaptive Planning Systems 
	AI Adaptive Planning Systems 
	In conventional adaptive control, the system identification unit determines the changes to the plant and informs the controller designer, which changes the control laws so that closed loop specifications are met. Ideally, an AI adaptive planning system automatically models the problem domain and develops a planner that will solve the new problem in the domain. The structural analogy between the two is shown in Fig. 5. 
	A simpler adaptive planner begins with a model of the problem domain, and if there are domain structural changes, it updates the model of the domain. This is called world modeling. Using this updated model, the planner designer decides if it is necessary to make changes to the current planning strategy so that the problem represented by the new problem domain will be solvable. The AI adaptive planning structure is used to implement metaplanning. Metaplanning, discussed earlier, is examined in Wilensky (198
	Notice that if the planner is not executing actions that excite the domain properly, the world modeler and thus the planner designer may not be able to perform their tasks. This is the problem of sufficient and persistent excitation in conventional control theory. Note that world modeling is not always needed; a planner designer can just change the strategy of the planner based on the occurrence of certain logical combinations of events. Notice also that the adaptive planner can perform fault detection and
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	FIGURE 5. Adaptive structural analogy. 
	One important difference between the two structures is that in the AI adaptive planning system there is an input from a human or other supervisory system. A high-level goal that can be input at this level could be "go to manufacturing facility 4 and work there" (where it has never worked before). The adaptive planner would plan to achieve this goal by going to the facility, developing a world model, choosing a planning strategy, and forming subsequent plans and 
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	taking actions to solve problems so that low-level goals are met. The AI adaptive planner is more autonomous than the others. Autonomy is a characteristic of increasingly intelligent systems. 
	It is interesting to notice the similarities between the AI adaptive planner architecture and the model of helping developed in Egan (1986). We give one possible interpretation of the similarity here; many others are possible. Suppose we have a "helper" who is to aid in the solution of a problem by guiding the actions of a "subject." In Egan's theory of effective helping the "Present Scenario" corresponds to the problem representation of the problem that the subject is trying to solve and the planner, whic
	Issues Relevant to AI Planning Theory from Intelligent Autonomous Control 
	Issues Relevant to AI Planning Theory from Intelligent Autonomous Control 
	The AI planners described in this report are special cases of intelligent autonomous control structures. The area of intelligent autonomous control, studied from a control theorist's viewpoint, has been called the intersection or integration of AI, operations research, and control theory (Fu, 1971; DeJong, 1983). It has also been pointed out that intelligent controllers are at the top of the controller complexity scale and thus have the ability to solve increasingly difficult, poorly formulated, ill-stru
	Planning systems are hierarchical. There are three levels in the hierarchy. The lowest level is the execution level. At this level we find the system hardware and highly numeric-algorithmic techniques in use. In the robot example, the execution level contains the manipulator and the servomechanism that is used in the gripper. The next level up is the coordination level. At this level various execution-level controller actions are coordinated and supervised. It plans the actions of the low-level algorithms a
	Artificial Intelligence Planning Systems 29 
	In the robot example, the coordination level would coordinate the movements of two manipulators so that they do not collide and plan their movements so that together they achieve some task. The highest level, the organization or management level, manages the systems actions and uses high-level decision-making processes and learning. It guides the actions of the coordination level and delegates duties to the various subsystems in the coordination and execution levels. In the robot example, the management l
	As we go up the hierarchy, the model abstractness needed for the problemsolving processes increases, and as we go down, the needed model granularity increases. For example, differential equations are used to develop the gripper control laws, while higher-level decision-making processes might use a rulebased model of the robot's environment. Both symbolic and numeric processing and modeling are necessary. 
	The time scale density increases as we go from the management to the execution levels. This occurs because the management level has a macroscopic view of the actions that occur. It is not concerned with the details of force feedback of the manipulator but is only concerned that the object was properly moved. Consequently, the decision rate, or rate at which different parts of the controller take actions, decreases as we go from the execution to the management level. 

	CONCLUDING REMARKS 
	CONCLUDING REMARKS 
	Although a foundation of fundamental concepts has been formed for AI planning systems by drawing an extensive analogy with control theoretic ideas, much work needs to be done to formalize mathematically the work presented here. At best, the results of this paper raise many questions and clarify some of the issues that may be important in quantitative studies of AI planning systems. Extensive research must be done on developing particular methods for modeling, analyzing, and designing AI planning systems. B
	As it is quite fundamental to the quantitative study of AI planning systems, the modeling issue must be addressed first. Various questions must be answered: 
	(1) What mathematical formalism should be used for the problem representation? (2) What is the expressive power of this formalism? That is, what class of 
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	problem domains can be modeled? (3) Does the formalism lend itself to analysis, design, and implementation? Which properties of the models will be important to study? 
	Second, systematic analysis methods must be developed so that planning system behavior can be studied quantitatively within the developed modeling framework. Before this is done, however, it will be important to determine what is important to analyze. Are there properties other than the ones developed here that need to be analyzed? It is also expected that planning methodologies that lend themselves to analysis will have to be developed. The question of what constitutes good planning system behavior must be
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