
315 Journal of Intelligent and Robotic Systems 1: 315- 342, 1989. 
© 1989 Kluwer Academic Publishers. Printed in the Netherlands. 

Towards Intelligent Autonomous Control Systems: 
Architecture and Fundamental Issues 

P.J. ANTSAKLIS , K.M . PASSINO 
Department of Electrical and Computer Engineering, University of Notre Dame, Notre Dame, 
IN 46556, U.S.A. 

and 

S.J. WANG 
Jet Propulsion Laboratory, MS 198-326, 4800 Oak Grove Drive, Pasadena, CA 91109 

(Received: 6 July 1988; revised: 12 December 1988) 

Abstract. Autonomous control systems are designed to perform well under significant uncertainties in the 
system and environment for extended periods of time, and they must be able to compensate for system failures 
without external intervention. Intelligent autonomous control systems use techniques from the field of arti­
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functional intelligent autonomous control architecture is introduced here and its functions are described 
in detail. The fundamental issues in autonomous control system modelling and analysis are discussed. 
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1. Introduction 

Autonomous control systems must perform well under significant uncertainties in the 
plant and the environment for extended periods of time and they must be able to 
compensate for system failures without external intervention. Such autonomous 
behavior is a very desirable characteristic of advanced systems. An autonomous con­
troller provides high-level adaptation to changes in the plant and environment. To 
achieve autonomy, the methods used for control system design should utilize both (i) 
algorithmic-numeric methods, based on the state-of-the-art conventional control, 
identification, estimation, and communication theory, and (ii) decision-making­
symbolic methods, such as the ones developed in computer science and specifically in 
the field of artificial intelligence (Al). In addition to supervising and tuning the control 
algorithms, the autonomous controller must also provide a high degree of tolerance 
to failures. To ensure system reliability, failures must first be detected, isolated, and 
identified, and subsequently a new control law must be designed if it is deemed 
necessary. The autonomous controller must be capable of planning the necessary 
sequence of control actions to be taken to accomplish a complicated task. It must be 
able to interface to other systems as well as with the operator, and it may need 
learning capabilities to enhance its performance while in operation. 
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Advanced planning, learning, and expert systems, among others, must work 

together with conventional control systems in order to achieve autonomy. The need 

for quantitative methods to model and analyze the dynamical behavior of such 

autonomous systems presents significant challenges well beyond current capabilities. 

It is clear that the development of autonomous controllers requires significant inter­

disciplinary research effort as it integrates concepts and methods from areas such as 

control, identification, estimation, and communication theory, computer science, 

especially artificial intelligence, and operations research. 

In this paper, an autonomous controller architecture is introduced and discussed in 

detail. For such controllers to become a reality, certain fundamental questions should .,,, 

be studied and resolved first. These fundamental problems are identified, formulated 

and discussed, and future research directions are outlined. Next, the focus of this 

paper is established and a detailed description of the results is given. 

Autonomous controllers can be used in a variety of systems from manufacturing 

to unmanned space, atmospheric, ground, and underwater exploratory vehicles. In 

this paper, we develop an autonomous controller architecture for future space 

vehicles. Referring to a particular class ofcontrol problems has the advantage that the 

development addresses relatively well-defined control needs rather than abstract 

requirements. Furthermore, the autonomous control of space vehicles is highly 

demanding; consequently the developed architecture is general enough to encompass 

all related autonomy issues. Future space vehicles must be capable of autonomous 

operation to accomplish their missions. Emerging aeromaneuvering vehicles such as 

the Aeroassisted Orbital Transfer Vehicle and the Aerospace Plane will be required 

to maneuver at high altitudes and hypersonic velocities in a flight regime characterized 

by significant uncertainty in atmospheric density and aerodynamic characteristics. 

Uncertainty in these parameters may cause significant deviation from the nominal 

trajectory, conceivably leading to the loss of the vehicle. Significant time and com­

munication constraints during the atmospheric flight dictate that the vehicles should 

perform autonomously for extended periods of time since pilot or ground support 

intervention may not be possible. Future space systems, such as manned space 

platforms, contain significant flexible structural components. Model uncertainties and 

system parameter variations require advanced adaptive control techniques to meet 

stability and performance specifications. An autonomous adaptive control system is 

needed to deal with gross fundamental and environmental changes in the system. For 

space systems these include hardware failures, docking disturbances, payload arti­

culation, and man-motion disturbances. 
It should be stressed that all the results presented here apply to any autonomous 

control system. In other classes of applications, the architecture, or parts of it, can be 

used directly and the same fundamental concepts and characteristics identified here 

are valid. 
The architecture of autonomous controllers necessary for the operation of 

advanced planetary and aeromaneuvering space vehicles is developed here. The 

concepts and methods needed to successfully design such an autonomous controller 
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are introduced and discussed. A hierarchical functional autonomous controller archi­
tecture is described in detail; it is designed to ensure the autonomous operation of the
control system and it allows interaction with the pilot/ground station and the systems
on board the autonomous vehicle. Note that a shorter version of these results has
appeared in [4]. 

Section 2 gives a brief history of the development of control systems to motivate
the necessity for autonomous controllers. The functions, characteristics, and benefits
of autonomous control are outlined . Next, it is explained that plant complexity and
design requirements dictate how sophisticated a controller must be. From this it can 
be seen that often it is appropriate to use methods from operations research or AI to
achieve autonomy. Such methods are studied in intelligent control theory. An over­
view of some relevant research literature in the field of intelligent autonomous control
is given together with references that ouline research directions. In Section 3, an
autonomous control functional architecture for future space vehicles is introduced .
The controller is hierarchical, with three levels, the execution level (lowest level), the
coordination level (middle level), and the management and organization level (highest
level). The general characteristics of the overall architecture, including those of the
three levels are explained, and an example to illustrate their functions is given. In
Section 4, fundamental issues and attributes of intelligent autonomous system archi­
tectures are described. An approach to the quantitative, systematic modelling, analy­
sis, and design of autonomous controllers is discussed . It is a 'hybrid' approach since
it is proposed to use both conventional analysis techniques based on difference and
differential equations, together with new techniques for the analysis of systems
described with a symbolic formalism such as finite automata. The more global,
macroscopic view of dynamical systems, taken in the development of autonomous
controllers, suggests the use of a model with a hybrid or nonuniform structure, which
in turn requires the use of a hybrid analysis. Finally, some concluding remarks are
given in Section 5. 

2. Conventional and Intelligent Autonomous Control Systems 

Autonomous means having the power for self government. Autonomous controllers
have the power and ability for self-governance in the performance of control func­
tions. They are composed of a collection of hardware and software, which can
perform the necessary control functions , without external intervention, over extended
time periods. To achieve autonomy, the controller must be able to perform a number
of functions in addition to the conventional control functions such as tracking and
regulation . These additional functions, which include the ability to tolerate failures,
are discussed later in this section. 

There are several degrees of autonomy . A fully autonomous controller should
perhaps have the ability to even perform hardware repair, if one of its components
fails . Note that conventional fixed controllers can be considered to have a low
degree of autonomy since they can only tolerate a restricted class of plant parameter 
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variations and disturbances. The autonomous controller architecture given in the next 
section provides the functions to attain a high level of autonomy. It can interface with 
both the crew, ground station and the on-board systems of the space vehicle. A 
command by the pilot or the ground station is executed by dividing it into appropriate 
subtasks which are then performed by the controller. The controller can deal with 
unexpected situations, new control tasks, and failures within limits. To achieve this, 
high-level decision-making techniques for reasoning under uncertainty and taking 
actions must be utilized. These techniques, if used by humans, are attributed to 
intelligent behavior. Hence, one way to achieve autonomy is to utilize high-level 
decision-making techniques, 'intelligent' methods, in the autonomous controller. 
Autonomy is the objective, and 'intelligent' controllers are one way to achieve it. The 
field of artificial intelligence [10, 56] and operations research offer some of the tools 
to add the higher level decision making abilities. 

Autonomous controllers are evolutionary and not revolutionary. They evolve from 
existing controllers in a natural way fueled by actual needs, as it is now discussed. 

2.1. DESIGN METHODOLOGY - HISTORY 

Conventional control systems are designed using mathematical models of physical 
systems. A mathematical model which captures the dynamical behavior of interest is 
chosen and then control design techniques are applied, aided by CAD packages, to 
design the mathematical model of an appropriate controller. The controller is then 
realized via hardware or software and it is used to control the physical system. The 
procedure may take several iterations. The mathematical model of the system 
must be 'simple enough' so that it can be analyzed with available mathematical 
techniques, and 'accurate enough' to describe the important aspects of the relevant 
dynamical behavior. It approximates the behavior of a plant in the neighborhood of 
an operating point. 

The first mathematical model to describe plant behavior for control purposes is 
attributed to J.C. Maxwell who in 1868 used differential equations to explain instability 
problems encountered with James Watt's flyball governor; the governor was intro­
duced in 1769 to regulate the speed of steam engine vehicles. Control theory made 
significant strides in the past 120 years, with the use of frequency domain methods and 
Laplace transforms in the 30s and 40s and the introduction of the state space analysis 
in the 60s. Optimal control in the 50s and 60s and stochastic, robust and adaptive 
control methods in the 60s to today have made it possible to control more accurately 
significantly more complex dynamical systems than the original flyball governor. 

The control methods and the underlying mathematical theory were developed to 
meet the ever-increasing control needs of our technology. The evolution in the control 
area was fueled by three major needs: 

(i) The need to deal with increasingly complex dynamical systems. 
(ii) The need to accomplish increasingly demanding design requirements. 
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(iii) The need to attain these design requirements with less precise advanced 
knowledge of the plant and its environment, that is, the need to control under 
increased uncertainty. 

The need to achieve the demanding control specifications for increasingly complex 
dynamical systems has been addressed by using more complex mathematical models 
such as nonlinear and stochastic ones, and by developing more sophisticated design 
algorithms for say, optimal control. The use of highly complex mathematical models, 
however, can seriously inhibit our ability to develop control algorithms. Fortunately, 
simpler plant models, for example linear models, can be used in the control design; 
this is possible because of the feedback used in control which can tolerate significant 
model uncertainties. Controllers can then be designed to meet the specifications 
around an operating point, where the linear model is valid and then via a scheduler 
a controller emerges which can accomplish the control objectives over the whole 
operating range. This is, for example, the method typically used for aircraft flight 
control. In autonomous control, we need to significantly increase the operating range 
of the plant. We must be able to deal with significant uncertainties in models of 
increasingly complex dynamical systems in addition to increasing the validity range 
of our control methods. This will involve the use of intelligent decision-making 
processes to generate control actions so that a performance level is maintained, even 
though there are drastic changes in the operating conditions. 

There are needs today that cannot be successfully addressed with the existing 
conventional control theory. They mainly pertain to the area of uncertainty. Heuristic 
methods may be needed to tune the parameters of an adaptive control law. New 
control laws to perform novel control functions should be designed while the system 
is in operation. Learning from past experience and planning control actions may be 
necessary. Failure detection and identification is needed. These functions have been 
performed in the past by human operators. To increase the speed of response, to 
relieve the pilot from mundane tasks, and to protect operators from hazards, autonomy 
is desired . It should be pointed out that several functions proposed in later sections, 
to be part of the autonomous controller, have been performed in the past by separate 
systems; examples include fault trees in chemical process control for failure diagnosis 
and hazard analysis, and control system design via expert systems. 

2.2. FUNCTIONS OF AN AUTONOMOUS CONTROLLER 

There are certain functions, characteristics, and behaviors that autonomous systems 
should possess [62, 20]. These are outlined below. Some of the important character­
istics of autonomous controllers are that they relieve humans from time con­
suming mundane tasks thus increasing efficiency, enhance reliability since they 
monitor health of the system, enhance performance, protect the system from inter­
nally induced faults, and they have consistent performance in accomplishing complex 
tasks. 
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There are autonomy guidelines and goals that should be followed and sought after 

in the development of an autonomous system. Autonomy should reduce pilot/crew/ 

ground station work load requirements for the performance of routine functions. The 

gains due to autonomy would be superficial if the maintenance and operation of the 

autonomous controller taxed the operators. Autonomy should enhance the functional 

capability of the future space vehicle. Since the autonomous controller will be per­

forming the simpler routine tasks, men will be able to dedicate themselves to even 

more complex tasks. 
There are certain autonomous system architectural characteristics that should be 

sought after in the design process. The autonomous control architecture should be 

amenable to evolving future space vehicle needs and updates in the state of the art. 

The autonomous control architecture should be functionally hierarchical. Highest 

authority lies nearest the pilot, crew, or ground station; for lower level subsystems to 

take some actions, they have to clear it with a higher level authority. The system must, 

however, be able to have the lowest level subsystems, that are monitoring and 

reconfiguring for failures, act autonomously to enhance system safety. 

There are also certain operational characteristics of autonomous controllers. 

Ground controllers and/or the pilot or crew should have ultimate supervisory over­

ride control of future space vehicle autonomy functions. Autonomous activities 

should be highly visible, ' transparent' , to the ground controllers and the flight crew 

to the maximum extent possible. 

Finally, there must be certain features inherent in the autonomous system design. 

Autonomous design features should prevent failures that would jeopardize the overall 

space vehicle mission goals or safety. These features should enhance crew safety, and 

avoid false alarms and unnecessary hardware configuration. This implies that the 

controller should have self-test capability. Autonomous design features should also be 

tolerant of transient errors, they should not degrade the reliability or operational 

lifetime of future space vehicle functional elements, they should include adjustable 

fault detection thresholds, avoid irreversible state changes, and provide protection 

from erroneous or invalid external commands. 

2.3. INTELLIGENT AUTONOMOUS CONTROL 

The necessity for a succession of increasingly complex control systems from classical 

to adaptive and intelligent control, to meet the ever increasing performance require­

ments on the current and future complex dynamical systems, is described. The basic 

elements of intelligent controllers are highlighted and an outline of the relevant 

research on intelligent control is given. 

2.3.1 . Motivation: Sophistication and Complexity in Control 

The complexity of a dynamical system model in terms ofdeterminism, nonlinearities, 

etc. , and the increasingly demanding closed loop system performance requirements, 
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necessitate the use of more complex and sophisticated controllers. For example, 
highly nonlinear systems normally require the use of more complex controllers 
than low order linear ones when goals beyond stability are to be met. The increase 
in uncertainty, which corresponds to the decrease in how well the problem is 
structured or how well the control problem is formulated , and the necessity to 
allow human intervention in control, also necessitate the use of increasingly sophisti­
cated controllers. Controller complexity and sophistication is then directly pro­
portional to both the complexities of the plant model and of the control design 
requirements. 

Based on these ideas, [49, 24] suggest a hierarchical ranking of increasing controller 
sophistication on the path to intelligent controls. At the lowest level, deterministic 
feedback control based on conventional control theory is utilized for simple linear 
plants. As plant complexity increases, such controllers will need for instance, state 
estimators. When process noise is significant, Kalman filters may be needed. Also, if 
it is required to complete a control task in minimum time or with minimum energy, 
optimal control techniques are utilized. When there are many quantifiable, stochastic 
characteristics in the plant, stochastic control theory is used. If there are signficant 
variations of plant parameters, to the extent that linear robust control theory is 
inappropriate, adaptive control techniques are employed. For still more complex 
plants, self-organizing or learning control may be necessary. 

At the highest level in their hierarchical ranking, plant complexity is so high, and 
performance specifications so demanding, that intelligent control techniques are used. 
The plant is so complex that it is either inappropriate or impossible to describe it with 
conventional system models such as differential equations. For instance, even though 
it might be possible to accurately describe some system with very complex nonlinear 
differential equations, it may be inappropriate if this description makes subsequent 
analysis too difficult. 

The complexity of the plant model necessary for design depends both theon 
complexity of the physical system and on how demanding the design specifications 
are. There is a tradeoffbetween model complexity and our ability to perform analysis 
on the system via the model. However, if the performance specifications are not too 
demanding, a more abstract model can be utilized, which will make subsequent 
analysis simpler. This model intentionally ignores some of the system characteristics, 
specifically those that need not be considered in attempting to meet the particular 
performance specifications. Often, to obtain an abstract model, high level symbolic 
representations are utilized [60, 42, 33, 32, 46]. The choice of the modelling tech­
nique affects most aspects of analysis and design of a controller for the system; 
consequently, special control methodologies must be used with the abstract models. 
Such methodologies include advanced decision making techniques from the field of 
AI, which are used to reason over these representations and decide what control 
actions are appropriate to take. Since the AI techniques generally model the human 
decision-making processes, about what actions to take next, they can easily provide 
for human interface. 
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It is perhaps of interest to notice that all controllers in the hierarchy described 
above can be considered to be a type of problem solving system. (For an overview of 
the theory of problem solving see [56].) This is because there is a desirable goal 
behavior and the problem solver generates actions to change an initial undesirable 
behavior to the goal. It is our view that problem solving systems can be classified into 
two categories, conventional and Al. Several characteristics distinguish these two 
classes of problem solving systems. The conventional problem solving system is 
numeric-algorithmic, it is somewhat inflexible, it is based on the well developed theory 
of algorithms or differential equations, and it can thus be studied using a variety of 
methodical modelling, analysis, and design techniques. Classical control systems are 
an example of conventional problem solving systems. An AI problem solving system 
is a symbolic decision-maker, it is flexible with graceful performance degradation, and 
it is based on formalisms which are not well developed; actually there are very few 
systematic mathematical modelling, analysis, and design techniques for these systems. 
AI expert and planning systems are examples of AI problem solving systems. When 
comparing the characteristics of AI and non-AI systems, one can make the following 
observations: The decision rate in conventional systems is typically higher than that 
of AI systems. The abstractness and generality of the models used in AI systems is 
high compared with the fine granularity of models used in conventional systems. 
Symbolic representations, rather than numeric, are used in AI systems. High-level 
decision-making capabilities similar to those of humans exist in AI systems to a much 
greater extent than in conventional systems. The result is that a higher degree of 
autonomy exists in AI systems than in conventional ones. 

In the hierarchical ranking of increasingly sophisticated controllers described 
above, the decision to choose more sophisticated control techniques is made by 
studying the control problem using a controller of a certain complexity belonging to 
a certain class. When it is determined that the class of controllers being studied (e.g., 
adaptive controllers) is inadequate to meet the required objectives, a more sophisti­
cated class of controllers (e.g. intelligent controllers) is chosen. That is, if it is found 
that certain higher level decision-making processes are needed for the adaptive 
controller to meet the performance requirements, then these processes can be incor­
porated via the study of intelligent control theory. These intelligent autonomous 
controllers are the next level up in sophistication. They are enhanced adaptive 

controllers, in the sense that they can adapt to more significant global changes in the 
vehicle and its environment than conventional adaptive controllers, while meeting 
more stringent performance requirements. 

One turns to more sophisticated controllers only if simpler ones cannot meet the 
required objectives. Below we list some of the reasons why it is necessary to use 
intelligent autonomous control for future space vehicles: 

(i) Future space vehicles will be increasingly complex. Some characteristics that 
are needed in the model used to design their controller can only be described 
by symbolic representation techniques. 
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(ii) Control functions normally performed by the pilot, crew, or ground station

must be incorporated into the controller for autonomous operation.
Therefore, expert personnel's control decisions will have to be automated.

(iii) Human intervention in the control process should be allowed. A facility to
interrupt the autonomous operation of the controller in case of design objec­
tive changes or controller failures should be included. 

The need to use intelligent autonomous control stems from the need for an increased
level of autonomy in achieving complex control tasks. In the next section a number
of intelligent control research results which have appeared in the literature are
outlined. 

2.3.2. Intelligent Autonomous Control: A Literature Overview 

The field of intelligent autonomous control is new. Some of the recent research efforts
have been reported in the Proceedings of the 1985 Workshop on Intelligent Control,
1986 Intelligent Autonomous Systems Conference, the Space Telerobotics Workshop,
and the Proceedings of the 1987 Symposium on Intelligent Control, and a wealth of
useful references can be found there. Research that had a direct influence on our work
is outlined below. 

Intelligent controllers are hierarchical and the theory of hierarchical systems is
relevant [36]. This work sets some of the fundamental concepts in intelligent control
such as the need for varying degrees of abstractness in models used at the different
levels in the controller. It also presents a theory of coordination for all subsystems of
the intelligent controller. Coordination issues are also examined in [12]. The work in
[18] extends Mesarovic's work. Fundamentals of intelligent systems such as the
principle of increasing intelligence with decreasing precision, granularity, time scale
density, model abstractness are discussed in [53, 54, 37]; the need for the integration
of techniques from AI, operations research and conventional control theory to
perform intelligent control tasks is also discussed there. The integration of AI and
control theoretic methods is discussed in [13, 22, 11] .

In [20] the authors explain how a wide variety of AI techniques will be useful in
enhancing space station autonomy, capability, safety, etc. This project oriented book
points to relevant AI techniques, research areas, and progress in solving the posed
problems. In the Space Telerobotics Workshop, the work of several researchers from
NASA, the Jet Propulsion Laboratory, Ames, Johnson Space Center [55, 21 , 30, 6]
and others, e.g. , [57], is outlined and specific details of their programs and research
directions are given. In [62] a detailed study of characteristics of autonomous space
systems is given and an architecture for the complete autonomous operation of the
space station is presented; examples are used to illustrate the behavior of the auto­
nomous system. 

There has been much work on developing intelligent controllers for robots. A good
overview is given in [51]. The work in [7] describes an initial effort towards a 
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hierarchical intelligent controller based on AI planning methods. Balaram developed 

an architecture for the planning system that incorporates intelligent control funda­

mentals and that is accurately structured for his control task. Other intelligent 

controllers that use planning techniques are given in [26, 25, 8, 15, I 6, 47]. The vision 

problem for intelligent controllers is examined in [I 7]. 

The work by Saridis and Valvanis in [49-54], and [63-66] probably represents the 

most complete mathematical approach to the analysis of intelligent machines. They 

stress a three level hierarchy for intelligent systems with execution, coordination, and 

management levels, and the " principle of increasing intelligence with decreasing 

precision" . They use entropy as an unified quantification of disorder in each of the 

three levels in their intelligent system. In an intelligent controller, they choose the 

control action that will decrease the entropy in their system. 

Other important work in the field of intelligent control is given in [I , 2, 37- 40, 29, 

19, 67]; a nested hierarchical controller is described in [38, 68]; some similarities 

between planning and intelligent control are given in [28]; and an interesting black­

board architecture is studied in [9]. Supervisory control with distributed intelligence 

is examined in [69], and heuristic control of real time processes is reported in [48]. The 

intelligent restructurable controls problem for aircraft was studied in [61 , 58, 43]. The 

fault detection and identification problem in an intelligent controller was examined in 

[27, 44-45]. 
There have been numerous studies on the use of expert systems to control various 

process. For instance, in [23] the authors use an expert system in the adaptive control 

of large space structures. In [5] expert systems have been used in chemical process 

control and the term 'expert control' has been coined. There are interesting relation­

ships between the type of problems examined in intelligent autonomous control, 

'fuzzy control' [71], and 'automated reasoning' [70] . There exist numerous books and 

articles on these topics. As reported in the above literature, several limited versions 

of autonomous systems have been constructed. There are many sorts of robots and 

vehicles, each achieving a certain level of autonomy. They have been used for 

manufacturing [34], underwater exploration [41], and other applications. 

A detailed functional architecture for autonomous controllers is the essential first 

step in their development. Such an architecture is introduced in the next section. It will 

show how to combine intelligent functions in a controller to achieve autonomy. Based 

on this architecture, the fundamental concepts and methods that need to be developed 

are identified. 

3. An Intelligent Autonomous Control Architecture for Future Space 

Vehicles 

In this section, a fundamental architecture of an autonomous controller for future 

space vehicles is introduced and discussed. This hierarchical architecture has three 

levels, the execution level, the coordination level, and the management and organiza­

tion level. The functions of each level are described in detail. The architecture exhibits 
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certain characteristics, as discussed below, which have been shown in the literature to 
be necessary and desirable in autonomous systems. Based on this architecture we 
identify the important fundamental issues and concepts that are needed for an 
autonomous control theory. 

3.1. ARCHITECTURE OVERVIEW: STRUCTURE AND CHARACTERISTICS 

The overall functional architecture for an autonomous controller is given by the 
architectural schematic of Figure 1. This is a functional architecture rather than a 
hardware processing one, therefore it does not specify the arrangement and duties of 
the hardware used to implement the functions described. Note that the processing 
architecture also depends on the characteristics of the current processing technology; 
centralized or distributed processing may be chosen for function implementation 
depending on available computer technology. 

The architecture in Figure 1 has three levels. At the lowest level, the execution level, 
there is the interface to the vehicle and its environment via the sensors and actuators. 
At the highest level, the management and organization level, there is the interface to 
the pilot and crew, ground station, or onboard systems. The middle level, called the 
coordination level, provides the link between the execution level and the management 
level. Note that we follow the somewhat standard viewpoint that there are three major 
levels in the hierarchy. It must be stressed that the system may have more or fewer 
levels. For instance, see the architecture developed in [62]. Some characteristics of the 
system which dictate the number of levels are the extent to which the operator can 
intervene in the system's operations, the degree of autonomy or level of intelligence 
in the various subsystems, the dexterity of the subsystems, and the hierarchical 
characteristics of the plant. 

The sensors and actuators are implemented mainly with hardware. They are the 
connection between the physical system and the controller. Software and perhaps 
hardware are used to implement the execution level. Mainly software is used for 
both coordination and management levels. Note that the multiple copies of the 
different levels reflect the distinct character the various controlof functions 
necessary to achieve autonomy. For example, there may be one control manager 
which directs a number of different adaptive control algorithms to control the 
flexible modes of the vehicle via appropriate sensors and actuators. Another control 
manager is responsible for the control functions of a robot arm for satellite repair. 
The control executive issues commands to the managers and coordinates their 
actions. 

Note that the autonomous controller is only one of the autonomous systems on the 
vehicle. It is responsible for all the functions related to the control of the physical 
system and allows for continuous online development of the autonomous controller 
and to provide for various phases of mission operations. The tier structure of the 
architecture allows us to build on existing advanced control theory. Development 
progresses, creating each time, higher-level adaptation and a new system which can 
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Fig. I. Autonomous controller architectural schematic. 

be operated and tested independently. The autonomous controller performs many of 

the functions currently performed by the pilot, crew, or ground station. The pilot 

and crew are thus relieved from mundane tasks and some of the ground station 

functions are brought aboard the vehicle. In this way the vehicle becomes more 

autonomous. 



327 TOWARDS INTELLIGENT AUTONOMOUS CONTROL SYSTEMS 

3.2. FUNCTIONAL OPERATION 

Commands are issued by higher levels to lower levels and response data flows from 
lower levels upwards. Parameters of subsystems can be altered by systems one level 
above them in the hierarchy. There is a delegation and distribution of tasks from 
higher to lower levels and a layered distribution of decision-making authority. At each 
level, some preprocessing occurs before information is sent to higher levels. If requested, 
data can be passed from the lowest subsystem to the highest, e.g., for display. All 
subsystems provide status and health information to higher levels. Human inter­
vention is allowed even at the control implementation supervisor level (lib). 

The specific functions at each level are described in detail in later sections. Here we 
present a simple illustrative example to clarify the overall operation of the auto­
nomous controller. Suppose that the pilot desires to repair a satellite. After dialogue 
with the control executive via the interface, the task is refined to 'repair satellite using 
robot A'. This is arrived at using the capability assessing, performance monitoring, 
and planning functions of the control executive. The control executive decides if the 
repair is possible, under the current performance level of the system, and in view of 
near term planned functions. The control executive, using its planning capabilities, 
sends a sequence of subtasks sufficient to achieve the repair to the control manager. This 
sequence could be to order robot A to: 'go to satellite at coordinates xyz', 'open repair 
hatch', 'repair'. The control manager, using its planner, divides say the first subtask, 
'go to satellite at coordinates xyz', into smaller subtasks: 'go from start to x, y, z1', 

then 'maneuver around obstacle' , 'move to x2y 2zi', ... , 'arrive at the repair site and 
wait' . The other subtasks are divided in a similar manner. This information is passed 
to the control implementation supervisor, which recognizes the task, and uses stored 
control laws to accomplish the objective. The subtask 'go from start to x1y 1z1', can 
for example, be implemented using stored control algorithms to first, proceed forward 
IO meters, to the right 15 degrees, etc. These control algorithms are executed in the 
controller at the execution level utilizing sensor information; the control actions are 
implemented via the actuators. 

It is important at this point to discuss the dexterity of the controller. The execution 
level of a highly dexterous controller is very sophisticated and it can accomplish 
complex control tasks. The implementation supervisor can issue commands to the 
controller such as 'move 15 centimeters to the right', and 'grip standard, fixed 
dimension cylinder', in a dexterous controller, or it can completely dictate each mode 
of each joint (in a manipulator) 'move joint I 15 degrees', then 'move joint 5 3 
degrees', etc. in a less dexterous one. The simplicity, and level of abstractness of macro 
commands in an autonomous controller depends on its dexterity. The more sophisti­
cated the execution level is, the simpler are the commands that the control imple­
mentation supervisor needs to issue. Notice that a very dexterous robot arm may itself 
have a number of autonomous functions. If two such dexterous arms were used to 
complete a task which required the coordination of their actions, then the arms would 
be considered to be two dexterous actuators and a new supervisory autonomous 
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controller would be placed on top for the supervision and coordination task. In 

general, this can happen recursively, adding more intelligent autonomous controllers 

as the lower level tasks, accomplished by autonomous systems, need to be supervised. 

3.3. THE EXECUTION LEVEL (III) 

The functional architecture for the execution level of the autonomous controller is 

shown in Figure 2. Its main function is to generate, via the use of numeric algorithms, 

low level control actions as dictated by the higher levels of the controller, and apply 

them to the vehicle. It senses the responses of the vehicle and environment, processes 

it to identify parameters, estimates states, or detects vehicle failures , and passes this 

information to the higher levels. 

The Sensor and Actuator subsystems are depicted in Figure 2. These devices which 

physically accomplish the functions for the autonomous controller are at the lowest 

level of the architecture. The complexity of these devices depends on the dexterity of 

the controller. All sensors which provide information from the vehicle and environ­

ment to any component in the autonomous controller are included here. On the 

execution level, the controller will need feedback information about control variables. 

The state estimator and parameter identifier also use such outputs for their respective 

tasks. The failure detection and identification (FOi) algorithms need these outputs 

and those of special failure sensors to enable them to detect failures. To perform 

for the planning systems at the higher levels, the dynamical'execution monitoring' 
response of the system must be sensed and passed to the planning system so that 

it can determine if a plan has failed. The implementation supervisor also needs 

sensor information so that it can, for instance, make the smooth transition in the 

Control Information Control 
Implementation Supervisor Assessor Implementation Supervisor FOi IIb 

---- -------------;--------------- -------------- ---

Adaptive
Parameter FOi
Identifier & Algorithms

StateExecution Estimator 

Vehicle and Environment 
Fig. 2. Execution level. 
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implementation of a newly designed control law. Sensory information is also used in 
performance monitoring, capabilities assessing, tuning, scheduling, and display to the 
pilot, crew, ground station, or other onboard systems. The actuators are the usual 
control actuators (transducers) which translate the outputs of the controller to actions 
meaningful to the vehicle. For a highly dexterous controller, a whole manipulator 
may be considered to be an 'actuator'. 

The main function of the Controller in Figure 2 is to execute the control algorithms 
and to issue commands to the actuators. It performs advanced conventional adaptive 
control functions. It receives, in real time, all the necessary data (from the information 
distributor) to execute the current control algorithm. The information consists of 
current output values from the sensors, model parameter estimates and state esti­
mates, as they are generated from the identifier. The adaptation part of the controller 
algorithmically interprets the values of the measured plant variables and the estimated 
plant parameters and states; and it adjusts, on-line, the coefficients of the control law 
which runs in the execution part of the controller. These functions correspond to 
conventional adaptive control. The adaptation algorithm can contain information 
about the model to be followed, thus implementing 'model following' adaptive 
control. Since the model parameters are explicitly estimated and then used in the 
control law adaptation, the structure appears to suggest an 'indirect' adaptive control 
approach. However, notice that this is not necessarily the case since the model 
parameter estimates from the identifier can simply be ignored and the adaptation 
algorithm can directly process the information from sensors to directly estimate the 
control law coefficients, thus implementing 'direct' adaptive control. If a fixed control 
law is used, then the appropriate sensor data are simply fed back to the control law 
which is being executed. The sensor data are values of measured variables; these 
include states as well. 

All possible conventional control functions can be performed via the proposed 
achitecture. For fixed control laws, one could envision a loop containing the sensors 
providing feedback information, through the information distributor, to the con­
troller; the control actions are performed via the actuators. For adaptive control this 
also involves the model parameter identifier. In addition to advanced adapative 
control functions, the controller has the following capabilities: The controller allows 
intervention from above. It of course allows the introduction of reference signals for 
set points and tracking as conventional controllers do. In addition it receives com­
mands: (i) To alter the parameters of adaptation (as determined by the tuner in the 
coordination level), and (ii) To switch to different control laws altogether suggested 
by the scheduler or the control redesigner. 

If the higher levels of the architecture are ignored, the intervention to the controller 
can be envisioned as being that of a human operator who adjusts certain parameters 
depending on performance, sets the set points, switches to different algorithms 
from time to time or to new control laws when failures occur. It returns status infor­
mation to the higher level, such as what particular control law is currently running; 
also information about the health of the system (errors in implementation, etc.). 
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The controller has access to a variety of stored control laws. The particular location 

of the stored programs is not important in this functional architecture. They could be 

located in the controller, or in the level above (implementation supervisor). If they are 

located above, then one should allow for down loading these programs. Since control 

law switching is desirable, transition programs, for smooth control law switching are 

necessary. When the scheduler and control redesigner send new control laws to be 

implemented they should also attach a program to ensure the smooth transition from 

the current to the new control law. The controller consists basically of software plus 

hardware as is necessary. 
The main function of the information distributor shown in Figure 2, is to distribute 

sensor, parameter, and state information where it is needed. Since the control models 

and therefore the control, identification, estimation, and FOi algorithms do change, , , 

it is essential to guarantee that the execution level subsystems receive each time the 

correct information. Information about the current control models and current 

algorithms is provided from above. Using stored information, the distributor 

provides the correct sensor information to the controller for control feedback pur-

poses, to the identifier for model parameter identification and state estimation, and 

to the FOi for detection and isolation. After perhaps some preprocessing, it also 

provides this information to higher levels. 

The main function of the adaptive parameter identifier and state estimator shown in 

Figure 2 is to execute parameter identification algorithms and state estimation 

algorithms and to continuously pass this information to the controller, to the FOi 

algorithms, and to higher levels. It receives all appropriate sensor information from 

the information distributor. The parameters and the states, the estimates of which are 

sought, depend on the particular control model used. Since the control model and the 

control law do change, the parameter identifier and state estimator should be able to 

switch control models and identification and estimation algorithms. This information 

is given from above. It provides the necessary parameter and state estimates to the 

controller and to the FOi algorithms via the information distributor. It returns to the 

higher level , parameter estimates and state estimates of the current model (via the 

information distributor) and information as to the status and health of the system 

directly. 
The main function of the FD/ algorithms shown in Figure 2, is to execute FOi 

algorithms for failures detected at the execution level of the autonomous controller. 

It receives all appropriate sensor information via the information distributor. This 

includes information from sensors specifically located to detect failures at the actuator 

level of the control system; it also includes model parameter and state estimates from 

the identifier. It has the ability to switch algorithms and plant models. The FOi 

algorithms return information to the higher level FOi subsystems. 

3.4. COORDINATION LEVEL (Ilb) 

The functional architecture for coordination level Ilb is shown in Figure 3. Coordina­

tion level Ilb receives commands to perform predetermined specific control tasks from 
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Fig. 3. Coordination level Ilb. 

the control manager in the level above. It provides the appropriate sequence of
control and identification algorithms to the execution level below. Its ability to deal
with extensive uncertainties is limited.

The main function of the control implementation supervisor shown in Figure 3, is to
carry out the sequence of control actions dictated by the control manager. It can
accomplish predetermined control actions and cope with limited predetermined crisis
situations. The supervisor receives the sequence of control tasks to be accomplished
from the control manager and it has access to a variety ofcontrol models, and control,
identification and estimation algorithms. It selects appropriate reference signals for
the controller and it optimizes the subsequences of actions to accomplish the tasks
dictated by the above levels in the best way possible. The supervisor uses the scheduler
to decide what models and algorithms to use in the controller and identifier; it uses 
the tuner to decide how to adapt parameters in the algorithms, which are currently
used, and it sends this information to the execution level. It monitors the status of the
system at Ilb and III, i.e., what algorithms and models are currently used, and the
health of the systems. The supervisor does performance monitoring on IIb and III
levels using information provided by the information assessor and FDI IIb. It 
contains a crisis management facility to deal with certain failures. This includes a
number of methods to maintain performance or to maintain a certain degree of safety
in operations, while degrading performance gracefully. For example, if a failure in an
actuator or sensor is detected, it can switch to an alternative control method using
other actuators or sensors to maintain performance. If performance cannot be main­
tained, it should degrade gracefully, guaranteeing safety (stability). It will take the
necessary steps to maintain stability after a failure is detected and it is isolated
and identified. The control implementation supervisor uses learning to improve the 
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implementation of the (predetermined) control forms. It thus improves the speed and 

accuracy of tuning with experience, it improves its crisis management and the schedul­

ing of algorithms, and it learns how to more efficiently optimize the overall opera­

tions, as a good human supervisor would do; it also learns completely new control 

methods sent from the level above. It informs the control manager about the health 

of the system in levels Ilb and III, about its status (the progress in performing the 

tasks) and it notifies the manager if failures, and unexplained (at that level) per­

formance degradation is occurring. 

The main function of the Scheduler shown in Figure 3, is to determine, during the 

performance of a specific control function, if certain conditions are met in order to 

switch to alternative control laws (and plant models) and to appropriate identifica­

tion, estimation and FDI algorithms. It receives information from the implementation 

supervisor as to the control function to be performed, together with information 

about the plant models and their validity range, the corresponding control laws, and 

the rest of the algorithms. Based on information it receives from the supervisor it 

decides when to switch to the proper algorithms and models. The criteria for switching 

are predetermined, in perhaps tabular form, and they also depend on information from 

environmental sensors. This information is transmitted from the higher level through 

the supervisor. Examples will be the schedulers used for docking control. Depending, 

for example, on approaching speed and attitude, an appropriate new control law is 

selected. Here, the scheduler also selects corresponding plant model when necessary. 

The scheduler does not deal with crisis situations. 

The main function of the adaptive tuner shown in Figure 3 is to determine, during 

the execution of particular algorithms, if specific conditions are met in order to adjust, 

tune, certain parameters in the adaptation laws. It receives information from the 

implementation supervisor as to the current algorithm being executed, control and 

identification algorithms, and also information from the information assessor (via the 

supervisor) necessary to decide first if timing is appropriate. Then based on predeter­

mined criteria, it selects the new values for the parameters in the adaptation laws. The 

criteria for tuning will be based on excessive output, state, and parameter errors, and 

the selection of the new adaptive parameter values will depend on algorithms or 

heuristic rules using performance measures and actual past and present inputs 

and outputs. In this way parameter tuning of identification and control algorithms 

(adaptive, robust, optimal) is accomplished. 

The main fun1,:tion of the information assessor shown in Figure 3 is to process and 

distribute sens?r, state and parameter information to the information distributor 

(execution level) and the implementation supervisor. It receives information from the 

supervisor as to the current plant model, control, estimation and identification, and 

FDI algorithms, and it instructs the information distributor to pass the necessary 

sensor information to the controller, identifier, and FDI systems. It receives, from the 

identifier via the distributor, information about the current model parameter and 

state estimates. After instruction from the supervisor it supplies to the supervisor 

processed information such as errors in state and parameter estimation. To do this, 
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it uses sensor data supplied by the distributor and models supplied by the supervisor. 
This processed information is used by the tuner, the scheduler, and the control 
implementation supervisor for performance monitoring. 

The main function of the FD! Ilb subsystem shown in Figure 3 is to supervise the 
FDI algorithms (execution level) and to detect and identify, using algorithms and 

heuristic methods, failures that occurred at the execution level. It passes the informa­
tion about the current models used from the supervisor to the FDI algorithms. It 
sends appropriate FDI algorithms to be executed to the lower level. It receives the 
outputs of those algorithms. It compares them with additional information from the 
supervisor, and it proceeds, after detecting a failure, to isolate and identify it. It 
informs the FDI Ila subsystem about the status of the failure and it also informs the 
supervisor so that predetermined crisis measures can be taken if necessary and 
possible. If the crisis cannot be dealt with at that level , the information is passed to 
the FDI Ila, and the designer via the control manager. 

3.5. COORDINATION LEVEL Ila 

The functional architecture for coordination level Ila is shown in Figure 4. Coordina­
tion level Ila receives commands from the management level which it must determine 
how to perform using the designer and planner and considering information from 
FDI Ila and the control implementation supervisor. It generates a sequence ofcontrol 
actions that the control implementation supervisor can recognize and passes them to 
it. This coordination level has abilities to deal with significant uncertainties. 

The main function of the control manager shown in Figure 4 is to accomplish the 
control tasks given by the control executive. It can accomplish predetermined control 
actions, using the lower levels, but also it can cope with failures to a large degree. In 
general it is equipped to successfully carry out the control tasks under a wide variety 
of unanticipated vehicle and environmental conditions. It can also be directed to 
prepare for future requirements, building new control laws and contingency methods 
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Planner 

Control Mana~er 
0 Performance Evaluation 
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Control Implementation Supervisor FDI Ilb 

Fig. 4. Coordination level Ila. 
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using the designer. When a control task is given, it breaks it down into a sequence of 

control actions, using the planner, and it passes it to the implementation supervisor. 

It receives processed sensor information from the supervisor about the current 

positions and information from the above about the goals so that it can plan its 

actions. It also passes to the supervisor newly designed algorithms and contingency 

plans. It receives, from the implementation supervisor, status and health information 

and it passes its status and health information to the executive. It does performance 

evaluation and monitoring on II and III levels. For example, it evaluates the per­

formance of a sequence of tasks so that, changes in the next sequence are implemented 

if necessary. It also contains a crisis management facility to deal with failures . It is 
similar to the one in the implementation supervisor but it deals with higher level 

contingencies. It has significant learning abilities to improve its performance. It does 

optimization of the system below it using the planned actions, and it suggests new 
strategies in algorithm selection to the implementation supervisor. 

The main function of the designer shown in Figure 4 is to develop methodologies 

to deal with novel situations for which no prior designs have been made. These include 

detected failures via the FDI system, in which case new control laws must be designed 

on-line, using the models and specifications provided by the control manager. They 

also include dealing with new control tasks suggested by the manager or the higher 
level. When there are no requirements to develop new methods in real time, the 

designer, under direction of the manager, works on developing new methods to build 
up the crisis management algorithm inventory, and the inventory of algorithms to 

deal with new control tasks needed some time in the future. These algorithms are 
passed to the control implementation supervisor at the direction of the control 

manager. In this way, the system is enriched and improved, it becomes more experi­

enced, as it can deal with a greater number of contingencies and tasks. The designer 

uses decision-making under uncertainty (symbolic based methods) to select design 
algorithms. When the designer must react in a very short time to deal with, say a major 

failure, it may decide to initially suggest a method which will preserve the system 

integrity without meeting all the performance specifications. In the mean time it can 
work to produce a full solution to the problem. 

The main function of the planner, shown in Figure 4, is to plan the sequence of 

control actions, to be given to the control implementation supervisor (Ilb), in order 

to accomplish a higher level control task. If, for example, the control executive orders 

the robot to move to a specific location, the planner, based on the current and possible 

future robot locations, will devise a sequence of actions to be taken so that tasks will 
be accomplished. It will, perhaps at the beginning, suggest a skeleton plan which will 

be refined as it is being executed. For example, start moving to the right 15 degrees, 
report if passage blocked, etc. 

The main function of the FD/ Ila system shown in Figure 4 is to detect and identify 

failures which occurred at levels Ilb and III. It also supervises the FDI Ilb system. It 

receives failure information from the execution level {III) via FDI Ilb and additional 

information from the control manager. It informs the manager about the failure 
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location and its severity, so that measures can be taken, using perhaps the services of 
the designer. It directly informs the control executive about the status of the failures 
detected at any level since they are very important in capability assessment. It uses 
high level decision-making involving heuristics and few algorithms. 

3.6. MANAGEMENT AND ORGANIZATION LEVEL (I) 

The functional architecture for the management and organization level (I) is shown 
in Figure 5. It interfaces to the pilot, crew, ground station, and other on board systems 
and performs the highest level control functions. It oversees and directs all the 
activities at both the coordination and execution levels. It is the most 'intelligent' of 
the three levels. 

The main function of the control executive shown in Figure 5 is to accomplish high 
level control tasks given by the pilot, crew, ground station, or other onboard systems. 
Such a task could be: Change orbit to ... , deploy satellite (open door, turn, etc, then 
deploy), repair satellite via robot A (send robot to satellite, open hatch, repair), 
retrieve satellite, etc. It performs high level planning. It optimally breaks down the 
'macro commands' into simpler commands for the control manager (Ila). It performs 
capability assessing of the control system. It receives information about faults from 
FDI and about status and health from the control manager and performs high level 
performance monitoring. It evaluates the current situation and it predicts what can be 
reasonably expected to be accomplished in a certain time. For example, 'docking 
procedures under way, estimated docking in 30 seconds'. It provides this information 
to the goal generation facility, which by exchanging information, having a dialogue, 
with other onboard systems, pilot, or ground station via the interface, generates 
attainable realistic goals to be accomplished by the autonomous controller. For 
example, in view of the current situation, 'docking can be achieved in 30 seconds but 
not in 20 seconds as requested'. These goals are then used by the planner in the control 
executive, to plan the necessary steps which lead to their accomplishment. The control 
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executive has significant learning abilities. It uses past experience to increase its 

efficiency and to improve its capability assessment. It is informed by the control 

manager about new capabilities possible, by newly generated control methods. It 

suggests preparation for future control tasks. It uses decision making exclusively. It 

interprets reports from below and execution commands from above. It can request, 

through interface, additional information from the pilot, crew, ground station, or 

other onboard systems which may be useful in the control system. This includes 

navigation information, future uses of the autonomous controller, etc. 
Learning is essential to the development of a true autonomous system. High-level 

learning will occur at the management and organization level. At each level of 
learning, beginning at coordination level lib, information is for instance, successively 

generalized via induction. The controller may need to learn the model of the plant, 
the problem solving strategy, the goals to obtain, and the required performance level. 

The main function of the interface, shown in Figure 5, is to provide the liaison, 

interface, between the autonomous control system and the pilot and crew/ground 

station/other onboard systems. It is an intelligent interface as it allows user friendly 

dialogue. It is a language translator, translating language of other systems or the crew 

or ground station into a language familiar to the autonomous controller. It displays 

data from the control subsystems if requested. It passes the control status to the crew 

etc., and desired behavior, and goals, to the control executive. 

4. Fundamental Characteristics and Issues 

Based on this architecture we identify the important fundamental concepts and 

characteristics that are needed for an autonomous control theory. Note that several 
of these have been discussed in the literature as outlined in Section 2.3.2. Here, these 

characteristics are brought together for completeness. Furthermore, the fundamental 

issues which must be addressed for a quantitative theory of intelligent autonomous 

control are introduced and discussed. 
There is a successive delegation ofduties from the higher to lower levels; consequently 

the number ofdistinct tasks increases as we go down the hierarchy. Higher levels are 
concerned with slower aspects of the system's behavior and with its larger portions, 

or broader aspects. There is then a smaller contextual horizon at lower levels. Also 
notice that higher levels are concerned with longer time horizons than lower levels. Due 

to the fact that there is the need for high level decision making abilities at the higher 

levels in the hierarchy, there is increasing intelligence as one moves from the lower to 
the higher levels. This is reflected in the use offewer conventional numeric-algorithmic 

methods at higher levels as well as the use of more symbolic-decision making methods. 
This is the "principle of increasing intelligence with decreasing precision" by Saridis. 

The decreasing precision is reflected by a decrease in time scale density, decrease in 

bandwidth or system rate, and a decrease in the decision (control action) rate. All these 

characteristics lead to a decrease in granularity ofmodels used, or equivalently, to an 
increase in model abstractness. Model granularity also depends on the dexterity of the 
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autonomous controller as discussed in Sections 3.2 and 3.3. Next we discuss an 
approach which, in our opinion, is especially suitable for an analytical study of 
intelligent autonomous control systems. 

The quantitative, systematic techniques for modelling, analysis, and design of 
control systems are of central and utmost practical importance in conventional 
control theory. Similar techniques for intelligent autonomous controllers do not exist. 
This is ofcourse because of their novelty, but for the most part, it is due to the 'hybrid' 
structure (nonuniform, nonhomogeneous nature) of the dynamical systems under 
consideration. The systems are hybrid since in order to examine autonomy issues, a 
more global, macroscopic view of a dynamical system must be taken than in conven­
tional control theory. Modelling techniques for intelligent autonomous systems must 
be able to support this macroscopic view of the dynamical system, hence it is necessary 
to represent both numeric and symbolic information (see discussion in Section 2). We 
need modelling methods that can gather all information necessary for analysis and 
design. For example, we need to model the dynamical system to be controlled (e.g., 
a space platform), failures that might occur in the system, the conventional adaptive 
controller, and the high level decision making processes at the management and 
organization level of the intelligent autonomous controller (e.g., an AI planning 
system performing actions that were once the responsibility of the ground station). 
The nonuniform components of the intelligent controller all take part in the genera­
tion of the low level control inputs to the dynamical system, therefore they all must 
be considered in a complete analysis. For an extended discussion on the modelling of 
hybrid systems consult [72]. 

It is our viewpoint that conventional modelling, analysis, and design methods 
should be used whenevever they are applicable. For instance, they should be used at 
the execution level of many autonomous controllers. We propose to augment and 
enhance existing theories rather than develop a completely new theory for the hybrid 
systems described above; we wish to build upon existing, well understood and proven 
conventional methods. The symbolic/numeric interface is a very important issue; 
consequently it should be included in any analysis. There is a need for systematically 
generating less detailed, more abstract models from differential/difference equation 
models to be used in higher levels of the autonomous controller (coordination level). 
There is also a need for systematically extracting the necessary information from 
lower level symbolic models to generate higher level symbolic models to be used in the 
hierarchy where appropriate. Tools for the analysis of this information extraction also 
need to be developed. Research in this area is underway. In this way conventional 
analysis can be used in conjunction with the developed analysis methods to obtain an 
overall quantitative, systematic analysis paradigm for intelligent autonomous control 
systems. In short, we propose to use hybrid modelling, analysis, and design techniques 
for nonuniform systems. This approach is not unlike the approaches used in the study 
of any complex phenomena by the scientific and engineering communities. 

A practical but very important issue is the simulation of hybrid systems. This 
requires simulation of both conventional differential equations and symbolic decision 
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making processes. Normally, numeric-algorithmic processing is done with languages 

like FORTRAN and symbolic decision making can be implemented with LISP or 

PROLOG. Sometimes the two types of processing are done on computers with quite 

different architectures. There is then the problem of combining symbolic and numeric 

processing on one computer. If the computing is done on separate computers, the 

communication link normally presents a serious bottleneck. Combining AI and 

conventional numeric processing is currently being addressed by many researchers 

and some promising results have been reported in [31] and [14]. 

It was pointed out in Section 2 that complex control problems required a controller 

sophistication that involved the use of AI methodologies. It is interesting to observe 

the following [35]: Although there are characteristics which separate intelligent from 

nonintelligent systems, as intelligent systems evolve, the distinction becomes less clear. 

Systems which were originally considered intelligent evolve to gain more character of 

what are considered to be non-intelligent, numeric-algorithmic systems. An example 

is a route planner. Although there are AI route planning systems, as problems like 

route planning become better understood, more conventional numeric-algorithmic 

solutions are developed. The AI methods which are used in intelligent systems, help 

us to understand complex problems so we can organize and synthesize new approaches 

to problem solving, in addition to being problem solving techniques themselves. AI 

techniques can be viewed as research vehicles for solving very complex problems. As 

the problem solution develops, purely algorithmic approaches, which have desirable 

implementation characteristics, substitute AI techniques and play a greater role in the 

solution of the problem. It is for this reason that we concentrate on achieving 

autonomy and not on whether the underlying system can be considered ' intelligent' . 

5. Concluding Remarks 

A hierarchical functional autonomous controller architecture was introduced. In 

particular, the architecture for the control of future space vehicles was described in 

detail; it was designed to ensure the autonomous operation of the control system and 

it allowed interaction with the pilot and crew/ground station, and the systems on 

board the autonomous vehicle. The fundamental issues in autonomous control system 

modelling and analysis were discussed. It was proposed to utilize a hybrid approach 

to modelling and analysis of autonomous systems. This will incorporate conventional 

control methods based on differential equations and new techniques for the analysis 

of systems described with a symbolic formalism . In this way, the well developed 

theory of conventional control can be fully utilized. It should be stressed that auto­

nomy is the design requirement and intelligent control methods appear, at present, to 

offer some of the necessary tools to achieve autonomy. A conventional approach may 

evolve and replace some or all of the 'intelligent' functions . Note that this paper is 

based on the results presented in [3]. 

It was shown that in addition to conventional controllers, the autonomous control 

system incorporates planning, learning, and FDI. An initial study of the FOi problem 
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incorporating both conventional and AI FOi techniques was reported in [45]. Fur­
thermore, AI planning systems were modelled and analyzed in a Petri net framework
in [46]. 

It must be stressed that the results presented here apply to any autonomous control
system. For other applications, the architecture, or parts ofit, and the ideas discussed
here are valid. For instance, to achieve a certain level of autonomy for a particular
application one may modify the functional architecture by removing the management
and organization level. In this case, the limited version of the autonomous controller
would not provide for a user interface, goal generation, high level learning, etc. In
general, modifying the controller for certain applications entails the removal of
portions of the functional architecture which limits the attainable degree of auto­
nomy. Hence, to use the above results for a different application one must decide what
level of autonomy is needed and then include in the autonomous controller architec­
ture those components necessary to achieve it. 
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	It is perhaps of interest to notice that all controllers in the hierarchy described above can be considered to be a type of problem solving system. (For an overview of the theory of problem solving see [56].) This is because there is a desirable goal behavior and the problem solver generates actions to change an initial undesirable behavior to the goal. It is our view that problem solving systems can be classified into two categories, conventional and Al. Several characteristics distinguish these two classe
	In the hierarchical ranking of increasingly sophisticated controllers described above, the decision to choose more sophisticated control techniques is made by studying the control problem using a controller of a certain complexity belonging to a certain class. When it is determined that the class of controllers being studied (e.g., adaptive controllers) is inadequate to meet the required objectives, a more sophisti­cated class of controllers (e.g. intelligent controllers) is chosen. That is, if it is found 
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	of 
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	much work on developing intelligent controllers for robots. A goodis given in [51]. The work in [7] describes an initial effort towards 
	There 
	has 
	been 
	overview 
	a 
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	hierarchical intelligent controller based on AI planning an architecture for the planning system that incorporates intelligent control structured for his control task. Other intelligent 
	methods. 
	Balaram 
	developed 
	funda­
	mentals 
	and 
	that 
	is 
	accurately 

	controllers that use planning techniques are given in problem for intelligent controllers is examined in [I 7]. and Valvanis in [49-54], and [63-66] probably represents the 
	[26
	, 25
	, 
	8, 15
	, 
	I 6, 
	47]. 
	The 
	vision 
	The 
	work 
	by 
	Saridis 

	most complete mathematical approach to the analysis of intelligent hierarchy for intelligent systems with execution, coordination, and levels, and the "principle of increasing intelligence with decreasing precision". They use entropy as an unified quantification of disorder in each of the three levels in their intelligent system. In an intelligent controller, they choose the control action that will decrease the entropy in their system. Other important work in the field of intelligent control is given in [I
	machines. 
	They 
	stress 
	a three 
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	management 
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	control 
	chemical 
	process 
	control 
	and 
	the 
	ships 
	and 
	used 
	for 
	other 
	applications
	. 
	first 
	. It 
	will 
	. Based 
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	be 
	developed 

	3. An Intelligent Autonomous Control Architecture for Future Space Vehicles 
	In this section, a fundamental architecture of an autonomous controller for future vehicles is introduced and discussed. This hierarchical architecture has three levels, the execution level, the coordination level, and the management and organiza­functions ofeach level are described in detail. The architecture exhibits 
	space 
	tion 
	level. 
	The 

	certain characteristics, as discussed below, which have been shown in the 
	literature 
	to 

	and desirable in autonomous systems. Based on this architecture we identify the important fundamental issues and concepts that are needed for an autonomous control theory. 
	be 
	necessary 


	3.1. ARCHITECTURE OVERVIEW: STRUCTURE AND CHARACTERISTICS 
	3.1. ARCHITECTURE OVERVIEW: STRUCTURE AND CHARACTERISTICS 
	The overall functional architecture for an autonomous controller is given by the architectural schematic of Figure 1. This is a functional architecture 
	rather 
	than 
	a 

	hardware processing one, therefore it does not specify the arrangement and duties of 
	hardware used to implement the functions described. Note that the processing 
	the 

	architecture also depends on the characteristics of the current processing technology; 
	or distributed processing may be chosen for function implementation 
	centralized 

	depending on available computer technology. 
	The architecture in Figure 1 has three levels. At the lowest level, the execution there is the interface to the vehicle and its environment via the sensors and actuators. At the highest level, the management and organization level, there is the interface to the pilot and crew, ground station, or onboard systems. The middle level, called the 
	level, 

	coordination level, provides the link between the execution level level. Note that we follow the somewhat standard viewpoint that there are three major levels in the hierarchy. It must be stressed that the system may have more or For instance, see the architecture developed in [62]. Some characteristics of the dictate the number of levels are the extent to which the operator can 
	and 
	the 
	management 
	fewer 
	levels. 
	system 
	which 

	in the system's operations, the degree of autonomy or level of intelligence subsystems, the dexterity of the subsystems, and the hierarchical characteristics of the plant. 
	intervene 
	in 
	the 
	various 

	The sensors and actuators are implemented mainly with hardware. They are the connection between the physical system and the controller. Software and perhaps hardware are used to implement the execution level. Mainly software is used for both coordination and management levels. Note that the multiple different levels reflect the distinct character the various 
	copies 
	of 
	the 
	control

	of functions necessary to achieve autonomy. For example, there may be one control which directs a number of different adaptive control algorithms to control the flexible modes of the vehicle via appropriate sensors and actuators. Another control 
	manager 

	manager is responsible for the control functions of a robot arm for satellite control executive issues commands to the managers and coordinates their actions. 
	repair. 
	The 

	Note that the autonomous controller is only one of the autonomous systems on the vehicle. It is responsible for all the functions related to the control of the physical system and allows for continuous online development of the autonomous controller and to provide for various phases of mission operations. The tier structure of the architecture allows us to build on existing advanced control progresses, creating each time, higher-level adaptation and a new system which can 
	theory. 
	Development 
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	Fig. I. Autonomous controller architectural schematic. 
	be operated and tested independently. The autonomous controller performs the functions currently performed by the pilot, crew, or ground and crew are thus relieved from mundane tasks and some of the ground functions are brought aboard the vehicle. In this autonomous. 
	many 
	of 
	station. 
	The 
	pilot 
	station 
	way 
	the 
	vehicle 
	becomes 
	more 


	3.2. FUNCTIONAL OPERATION 
	3.2. FUNCTIONAL OPERATION 
	Commands are issued by higher levels to lower levels and response data flows from lower levels upwards. Parameters of subsystems can be altered by systems one level above them in the hierarchy. There is a delegation and distribution of tasks from higher to lower levels and a layered distribution of decision-making authority. At each level, some preprocessing occurs before information is sent to higher levels. If requested, data can be passed from the lowest subsystem to the highest, e.g., for display. All s
	The specific functions at each level are described in detail in later sections. Here we present a simple illustrative example to clarify the overall operation of the auto­nomous controller. Suppose that the pilot desires to repair a satellite. After dialogue with the control executive via the interface, the task is refined to 'repair satellite using robot A'. This is arrived at using the capability assessing, performance monitoring, and planning functions of the control executive. The control executive deci
	1
	2
	2

	wait'. The other subtasks are divided in a similar manner. This information is passed to the control implementation supervisor, which recognizes the task, and uses stored control laws to accomplish the objective. The subtask 'go from start to xy z', can for example, be implemented using stored control algorithms to first, proceed forward 
	1
	1
	1

	IO meters, to the right 15 degrees, etc. These control algorithms are executed in the controller at the execution level utilizing sensor information; the control actions are implemented via the actuators. 
	It is important at this point to discuss the dexterity of the controller. The execution level of a highly dexterous controller is very sophisticated and it can accomplish complex control tasks. The implementation supervisor can issue commands to the controller such as 'move 15 centimeters to the right', and 'grip standard, fixed dimension cylinder', in a dexterous controller, or it can completely dictate each mode of each joint (in a manipulator) 'move joint I 15 degrees', then 'move joint 5 3 degrees', etc
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	328 on top for the supervision and coordination task. In general, this can happen recursively, adding more intelligent autonomous as the lower level tasks, accomplished by autonomous systems
	controller 
	would 
	be 
	placed 
	controllers 
	, need 
	to 
	be 
	supervised
	. 

	3.3. THE EXECUTION LEVEL (III) 
	The functional architecture for the execution level of main function is to generate, via the use ofnumeric algorithms, dictated by the higher levels of the controller, and apply of the vehicle and environment, processes 
	the 
	autonomous 
	controller 
	is 
	shown 
	in 
	Figure 
	2
	. Its 
	low 
	level 
	control 
	actions 
	as 
	them 
	to 
	the 
	vehicle. 
	It 
	senses 
	the 
	responses 

	it to identify parameters, estimates states, or detects information to the higher levels. The Sensor and Actuator subsystems are depicted in Figure 2physically accomplish the functions for the autonomous controller level of the architecture. The complexity of these . All sensors which provide information from the vehicle and environ­to any component in the autonomous controller are included here. the controller will need feedback information about control variablesand parameter identifier also use such outp
	vehicle 
	failures
	, 
	and 
	passes 
	this 
	. These 
	devices 
	which 
	are 
	at 
	the 
	lowest 
	devices 
	depends 
	on 
	the 
	dexterity 
	of 
	the 
	controller
	ment 
	On 
	the 
	execution 
	level, 
	. 
	The 
	state 
	estimator 
	these 
	outputs 
	and 
	those 
	of 
	special 
	failure 
	for 
	the 
	planning 

	'execution monitoring' response of the system must be sensed and passed to the planning if a plan has failed. The implementation supervisor also needs sensor information so that it can, for instance
	system 
	so 
	that 
	it 
	can 
	determine 
	, 
	make 
	the 
	smooth 
	transition 
	in 
	the 
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	Fig. 2. Execution level. 
	implementation of a newly designed control law. Sensory information is also used in 
	performance monitoring, capabilities assessing, tuning, scheduling, and display to the 
	pilot, crew, ground station, or other onboard systems. The actuators are the usual control actuators (transducers) which translate the outputs of the controller to actions meaningful to the vehicle. For a highly dexterous controller, a whole manipulator may be considered to be an 'actuator'. 
	The main function of the Controller in Figure 2 is to execute the control algorithms and to issue commands to the actuators. It performs advanced conventional adaptive control functions. It receives, in real time, all the necessary data (from the information 
	distributor) to execute the current control algorithm. The information consists of current output values from the sensors, model parameter estimates and state esti­mates, as they are generated from the identifier. The adaptation part of the controller algorithmically interprets the values of the measured plant variables and the estimated plant parameters and states; and it adjusts, on-line, the coefficients of the control law which runs in the execution part of the controller. These functions correspond to 
	which is being executed. The sensor data are values of measured variables; these include states as well. All possible conventional control functions can be performed via the proposed achitecture. For fixed control laws, one could envision a loop containing the sensors providing feedback information, through the information distributor, to the con­troller; the control actions are performed via the actuators. For adaptive control this also involves the model parameter identifier. In addition to advanced adapa
	set points and tracking as conventional controllers do. In addition it receives com­mands: (i) To alter the parameters of adaptation (as determined by the tuner in the coordination level), and (ii) To switch to different control laws altogether suggested 
	by the scheduler or the control redesigner. 
	Ifthe higher levels of the architecture are ignored, the intervention to the controller can be envisioned as being that of a human operator who adjusts certain parameters depending on performance, sets the set points, switches to different algorithms from time to time or to new control laws when failures occur. It returns status infor­mation to the higher level, such as what particular control law is currently running; also information about the health of the system (errors in implementation, etc.). 
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	The controller has access to a variety of stored control laws. The particular location stored programs is not important in this functional architecture. They could be located in the controller, or in the level above (implementation supervisor). If they are then one should allow for down loading these programs. Since control law switching is desirable, transition programs, for smooth control law switching necessary. When the scheduler and control redesigner send new control implemented they should also attac
	of the 
	located 
	above, 
	are 
	laws 
	to 
	be 
	the 
	smooth 
	transition 
	from 
	, 
	, 
	models 
	and 
	current 
	algorithms 
	pur
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	controller 
	model 
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	health 
	of 
	the 
	system 
	algorithms 
	for 
	failures 
	It 
	receives 
	all 
	appropriate 
	level 
	of the 
	and 
	plant 
	models. 
	The 
	FOi 

	3.4. COORDINATION LEVEL (Ilb) 
	The functional architecture for coordination level Ilb is shown in Figure tion level Ilb receives commands to perform predetermined specific control tasks from 
	3. Coordina­
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	in the level above. It provides the appropriate sequence ofcontrol and identification algorithms to the execution level with extensive uncertainties is limited.The main function of the control implementation supervisor shown in Figure carry out the sequence of control actions dictated by the control manageraccomplish predetermined control actions and cope with limited predetermined crisisthe sequence of control tasks to be accomplishedaccess to a variety ofcontrol models, and control,identification and esti
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	implementation of the (predetermined) control forms. , it improves its crisis management and the schedul­ing of algorithms, and it learns how to more efficiently human supervisor would do; it also learns completely sent from the level above. It informs the control manager its status (the progress in performing the manager if failures, and unexplained (at that level) 
	It 
	thus 
	improves 
	the 
	speed 
	and 
	accuracy 
	of
	tuning 
	with 
	experience
	optimize 
	the 
	overall 
	opera­
	tions
	, 
	as 
	a 
	good 
	new 
	control 
	methods 
	about 
	the 
	health 
	of 
	the 
	system 
	in 
	levels 
	Ilb 
	and 
	III, 
	about 
	tasks) 
	and 
	it 
	notifies 
	the 
	per­

	formance degradation is occurring. The main function of the Scheduler shown in Figure 3performance of a specific control alternative control laws (and plant models) and to appropriate information from the implementation performed, together with information and their validity range, the corresponding control laws, the algorithms. Based on information it receives from to switch to the proper algorithms and models. The criteria 
	, 
	is 
	to 
	determine
	, 
	during 
	the 
	function, 
	if 
	certain 
	condition
	s 
	are 
	met 
	in 
	order 
	to 
	switch 
	to 
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	and 
	FDI 
	algorithms. 
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	supervisor 
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	function 
	to 
	be 
	about 
	the 
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	models 
	and 
	the 
	rest 
	of 
	the 
	supervisor 
	it 
	decides 
	when 
	for 
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	are predetermined, in perhaps tabular environmental sensors. This the supervisor. Examples will be on approaching speed and attitude, an appropriate , the scheduler also selects corresponding plant model does not deal with crisis situations. shown in Figure 3 is to determine, during 
	form, 
	and 
	they 
	also 
	depend 
	on 
	information 
	from 
	information 
	is 
	transmitted 
	from 
	the 
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	level 
	through 
	the 
	schedulers 
	used 
	for 
	docking 
	control. 
	Depending
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	for 
	example, 
	new 
	control 
	law 
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	The 
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	the execution ofparticular algorithms, ifspecific conditions laws. It receives information from the 
	are 
	met 
	in 
	order 
	to 
	adjust, 
	tune, 
	certain 
	parameters 
	in 
	the 
	adaptation 

	implementation supervisor as identification algorithms, and to decide first if timing is appropriate. Then based on predeter­new values for the parameters in the adaptation laws. The be based on excessive output, state, and parameter errorsvalues will depend on algorithms or 
	to 
	the 
	current 
	algorithm 
	being 
	executed
	, 
	control 
	and 
	also 
	information 
	from 
	the 
	information 
	assessor 
	(via 
	the 
	supervisor) 
	necessary 
	mined 
	criteria, 
	it 
	selects 
	the 
	criteria 
	for 
	tuning 
	will 
	, and 
	the 
	selection 
	of 
	the 
	new 
	adaptive 
	parameter 

	heuristic rules using performance measures and way parameter tuning of identification and control algorithms robust, optimal) is accomplished. The main fun1,:tion of the information assessor shown in information to the information distributor 
	actual 
	past 
	and 
	present 
	inputs 
	and 
	outputs. 
	In 
	this 
	(adaptive, 
	Figure 
	3 
	is 
	to 
	process 
	and 
	distribute 
	sens?r
	, 
	state 
	and 
	parameter 

	(execution level) and the implementation supervisor. It control, estimation and identification, and and it instructs the information distributor to pass the sensor information to the controller, identifier, and FDI identifier via the distributor, information about state estimates. After instruction from the supervisor information such as errors in state and parameter estimation. 
	receives 
	information 
	from 
	the 
	supervisor 
	as 
	to 
	the 
	current 
	plant 
	model, 
	FDI 
	algorithms
	, 
	necessary 
	systems. 
	It 
	receives, 
	from 
	the 
	the 
	current 
	model 
	parameter 
	and 
	it 
	supplies 
	to 
	the 
	supervisor 
	processed 
	To 
	do 
	this
	, 

	it uses sensor data supplied by the distributor and models supplied by the supervisor. This processed information is used by the tuner, the scheduler, and the control implementation supervisor for performance monitoring. 
	The main function of the FD! Ilb subsystem shown in Figure 3 is to supervise the FDI algorithms (execution level) and to detect and identify, using algorithms and heuristic methods, failures that occurred at the execution level. It passes the informa­tion about the current models used from the supervisor to the FDI algorithms. It sends appropriate FDI algorithms to be executed to the lower level. It receives the outputs of those algorithms. It compares them with additional information from the supervisor, a

	3.5. COORDINATION LEVEL Ila 
	3.5. COORDINATION LEVEL Ila 
	The functional architecture for coordination level Ila is shown in Figure 4. Coordina­tion level Ila receives commands from the management level which it must determine how to perform using the designer and planner and considering information from FDI Ila and the control implementation supervisor. It generates a sequence ofcontrol actions that the control implementation supervisor can recognize and passes them to it. This coordination level has abilities to deal with significant uncertainties. 
	The main function of the control manager shown in Figure 4 is to accomplish the control tasks given by the control executive. It can accomplish predetermined control actions, using the lower levels, but also it can cope with failures to a large degree. In general it is equipped to successfully carry out the control tasks under a wide variety of unanticipated vehicle and environmental conditions. It can also be directed to prepare for future requirements, building new control laws and contingency methods 
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	using the designer. When a control task is given, it breaks it down into a sequence of control actions, using the planner, and it passes it to the implementation supervisor. It receives processed sensor information from the supervisor about the current positions and information from the above about the goals so that it can plan its actions. It also passes to the supervisor newly designed algorithms and contingency 
	plans. It receives, from the implementation supervisor, status and health information and it passes its status and health information to the executive. It does performance evaluation and monitoring on II and III levels. For example, it evaluates the per­formance of a sequence of tasks so that, changes in the next sequence are implemented if necessary. It also contains a crisis management facility to deal with failures . It is similar to the one in the implementation supervisor but it deals with higher level
	The main function of the designer shown in Figure 4 is to develop methodologies to deal with novel situations for which no prior designs have been made. These include detected failures via the FDI system, in which case new control laws must be designed on-line, using the models and specifications provided by the control manager. They also include dealing with new control tasks suggested by the manager or the higher level. When there are no requirements to develop new methods in real time, the designer, unde
	deal with new control tasks needed some time in the future. These algorithms are passed to the control implementation supervisor at the direction of the control manager. In this way, the system is enriched and improved, it becomes more experi­enced, as it can deal with a greater number of contingencies and tasks. The designer uses decision-making under uncertainty (symbolic based methods) to select design algorithms. When the designer must react in a very short time to deal with, say a major failure, it may
	The main function of the planner, shown in Figure 4, is to plan the sequence of control actions, to be given to the control implementation supervisor (Ilb), in order to accomplish a higher level control task. If, for example, the control executive orders the robot to move to a specific location, the planner, based on the current and possible future robot locations, will devise a sequence of actions to be taken so that tasks will be accomplished. It will, perhaps at the beginning, suggest a skeleton plan whi
	The main function of the FD/ Ila system shown in Figure 4 is to detect and identify 
	failures which occurred at levels Ilb and III. It also supervises the FDI Ilb system. It 
	receives failure information from the execution level {III) via FDI Ilb and additional 
	information from the control manager. It informs the manager about the failure 
	information from the control manager. It informs the manager about the failure 
	location and its severity, so that measures can be taken, using perhaps the services of the designer. It directly informs the control executive about the status of the failures detected at any level since they are very important in capability assessment. It uses 

	high level decision-making involving heuristics and few algorithms. 
	3.6. MANAGEMENT AND ORGANIZATION LEVEL (I) 
	The functional architecture for the management and organization level (I) is shown in Figure 5. It interfaces to the pilot, crew, ground station, and other on board systems and performs the highest level control functions. It oversees and directs all the activities at both the coordination and execution levels. It is the most 'intelligent' of the three levels. 
	The main function of the control executive shown in Figure 5 is to accomplish high level control tasks given by the pilot, crew, ground station, or other onboard systems. Such a task could be: Change orbit to ... , deploy satellite (open door, turn, etc, then deploy), repair satellite via robot A (send robot to satellite, open hatch, repair), retrieve satellite, etc. It performs high level planning. It optimally breaks down the 'macro commands' into simpler commands for the control manager (Ila). It perform
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	executive has significant learning abilities. It uses past experience to increase its efficiency and to improve its capability assessment. It is informed by the control manager about new capabilities possible, by newly generated control methods. It suggests preparation for future control tasks. It uses decision making exclusively. It 
	interprets reports from below and execution commands from above. It can request, through interface, additional information from the pilot, crew, ground station, or other onboard systems which may be useful in the control system. This includes 
	navigation information, future uses of the autonomous controller, etc. 
	Learning is essential to the development of a true autonomous system. High-level learning will occur at the management and organization level. At each level of learning, beginning at coordination level lib, information is for instance, successively generalized via induction. The controller may need to learn the model of the plant, the problem solving strategy, the goals to obtain, and the required performance level. 
	The main function of the interface, shown in Figure 5, is to provide the liaison, interface, between the autonomous control system and the pilot and crew/ground station/other onboard systems. It is an intelligent interface as it allows user friendly dialogue. It is a language translator, translating language of other systems or the crew or ground station into a language familiar to the autonomous controller. It displays data from the control subsystems if requested. It passes the control status to the crew 
	4. Fundamental Characteristics and Issues 
	Based on this architecture we identify the important fundamental concepts and characteristics that are needed for an autonomous control theory. Note that several of these have been discussed in the literature as outlined in Section 2.3.2. Here, these characteristics are brought together for completeness. Furthermore, the fundamental issues which must be addressed for a quantitative theory of intelligent autonomous control are introduced and discussed. 
	There is a successive delegation ofduties from the higher to lower levels; consequently the number ofdistinct tasks increases as we go down the hierarchy. Higher levels are concerned with slower aspects of the system's behavior and with its larger portions, or broader aspects. There is then a smaller contextual horizon at lower levels. Also notice that higher levels are concerned with longer time horizons than lower levels. Due to the fact that there is the need for high level decision making abilities at t
	autonomous controller as discussed in Sections 3.2 and 3.3. Next we discuss an 
	approach which, in our opinion, is especially suitable for an analytical study of 
	intelligent autonomous control systems. 
	The quantitative, systematic techniques for modelling, analysis, and 
	design 
	of 

	systems are of central and utmost practical importance in conventional 
	control 

	control theory. Similar techniques for intelligent autonomous controllers do not exist. 
	This is ofcourse because of their novelty, but for the most part, it is due to the 'hybrid
	' 

	structure (nonuniform, nonhomogeneous nature) of the dynamical systems under 
	consideration. The systems are hybrid since in order to examine autonomy 
	issues, 
	a 

	more global, macroscopic view of a dynamical system must be taken than in 
	conven­

	tional control theory. Modelling techniques for intelligent autonomous systems must 
	be able to support this macroscopic view of the dynamical system, hence it is necessary 
	to represent both numeric and symbolic information (see discussion in Section 2). We 
	need modelling methods that can gather all information necessary for analysis and 
	. For example, we need to model the dynamical system to be controlled (e.g., 
	design

	space platform), failures that might occur in the system, the conventional adaptive 
	a 

	, and the high level decision making processes at the management and 
	controller

	organization level of the intelligent autonomous controller system performing actions that were once the responsibility of the ground station). The nonuniform components of the intelligent controller all take part in the genera­tion of the low level control inputs to the dynamical system, therefore they all must be considered in a complete analysis. For an extended discussion on the modelling of hybrid systems consult [72]. 
	(e.g., 
	an 
	AI 
	planning 

	It is our viewpoint that conventional modelling, analysis, and design methods should be used whenevever they are applicable. For instance, they should be used the execution level of many autonomous controllers. We propose to augment and 
	at 

	enhance existing theories rather than develop a completely new theory for the hybrid systems described above; we wish to build upon existing, well understood and proven conventional methods. The symbolic/numeric interface is a it should be included in any analysis. There is a need for systematically generating less detailed, more abstract models from differential/difference equation to be used in higher levels of the autonomous controller (coordination level). 
	very 
	important 
	issue
	; 
	consequently 
	models 

	There is also a need for systematically extracting the necessary information from lower level symbolic models to generate higher level symbolic models to be used in the hierarchy where appropriate. Tools for the analysis of this information extraction also be developed. Research in this area is underway. In this way conventional analysis can be used in conjunction with the developed analysis methods to obtain an overall quantitative, systematic analysis paradigm for intelligent autonomous control systems. I
	need 
	to 

	A practical but very important issue is the simulation of hybrid systems. This requires simulation of both conventional differential equations and symbolic decision 
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	making processes. Normally, numeric-algorithmic processing is done with and symbolic decision making can be implemented with LISP or PROLOG. Sometimes the two types of processing are done on computers with quite different architectures. There is then the problem ofcombining processing on one computer. If the computing is done on separate computers, 
	languages 
	like 
	FORTRAN 
	symbolic 
	and 
	numeric 
	the 

	communication link normally presents a conventional numeric processing is currently and some promising results have been reported in [31] that complex control problems required a controller 
	serious 
	bottleneck. 
	Combining 
	AI 
	and 
	being 
	addressed 
	by 
	many 
	researchers 
	and 
	[14]. 
	It 
	was 
	pointed 
	out 
	in 
	Section 
	2 

	sophistication that involved the use of AI methodologiesthe following [35]: Although there are characteristics which separate intelligent from nonintelligent systems, as intelligent systems Systems which were originally considered intelligent evolve to gain more character of are considered to be non-intelligent, numeric-algorithmic systems. An example is a route planner. Although there are AI route planning systems, as problems better understood, more conventional numeric-algorithmic The AI methods which ar
	. It 
	is 
	interesting 
	to 
	observe 
	evolve, 
	the 
	distinction 
	becomes 
	less 
	cle
	ar. 
	what 
	like 
	route 
	planning 
	become 
	solutions 
	are 
	developed. 
	us 
	to 
	to 
	problem 
	solving, 

	techniques can be viewed as research vehicles 
	for 
	solving 
	very 
	complex 
	problems. 
	As 

	the problem solution develops, purely algorithmic approaches, which have desirable 
	implementation characteristics, substitute AI techniques 
	and 
	play 
	a 
	greater 
	role 
	in 
	the 

	problem. It is for this reason that we concentrate on achieving 
	solution 
	of 
	the 

	the underlying system can be considered 'intelligent'. 
	autonomy 
	and 
	not 
	on 
	whether 

	5. Concluding Remarks 
	A hierarchical functional autonomous controller architecture was 
	introduced
	. In 

	particular, the architecture for the control of future space 
	vehicles 
	was 
	described 
	in 

	detail; it was designed to ensure the autonomous operation of the control system 
	and 

	it allowed interaction with the pilot and crew/ground 
	station
	, 
	and 
	the 
	systems 
	on 

	board the autonomous vehicle. The fundamental issues in autonomous control system 
	modelling and analysis were discussed. It was proposed to utilize a hybrid 
	approach 

	systems. This will incorporate conventional 
	to 
	modelling 
	and 
	analysis 
	of
	autonomous 

	control methods based on differential equations and new techniques 
	for 
	the 
	analysis 

	systems described with a symbolic formalism. In this way, the well developed 
	of 

	theory of conventional control can be fully utilized. 
	It 
	should 
	be 
	stressed 
	that 
	auto­

	nomy is the design requirement and intelligent control methods appear
	, 
	at 
	present
	, to 

	necessary tools to achieve autonomy. A conventional approach may 
	offer 
	some 
	of
	the 

	evolve and replace some or all of the 'intelligent' functions. Note that this paper 
	is 

	based on the results presented in [3]. 
	It was shown that in addition to conventional controllers, the autonomous control 
	system incorporates planning, learning, and FDI. 
	An 
	initial 
	study 
	of
	the 
	FOi 
	problem 
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	incorporating both conventional and AI FOi 
	techniques 
	was 
	reported 
	in 
	[45]. 
	Fur­

	thermore, AI planning systems were modelled and analyzed in a Petri net framework
	in [46]. 
	that the results presented here apply to any autonomous controlsystem. For other applications, the architecture, or parts ofit, and the 
	It 
	must 
	be 
	stressed 
	ideas 
	discussed

	a certain level of autonomy for a particularone may modify the functional architecture by removing the managementand organization level. In this case, the limited version not provide for a user interface, goal generation, high level learning, etc. Inmodifying the controller for certain applications entails the removal ofportions of the functional architecture which limits the attainable degree to use the above results for a different application one must decide whatis needed and then include in the autonomo
	here 
	are 
	valid
	. For 
	instance, 
	to 
	achieve 
	application 
	of 
	the 
	autonomous 
	controller
	would 
	general, 
	of 
	auto­
	nomy. 
	Hence, 
	level 
	of 
	autonomy 
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