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Abstract. The fault detection and identification problem in an intelligent restructurable controller is
addressed using a combination of algorithmic and artificial intelligence methods. An architecture is
developed to address this problem. The integration of a variety of distinct knowledge representations and
diagnostic reasoning techniques, and the system design and implementation is facilitated by the introduction
of a novel knowledge representation graph. 
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I. Introduction 

Intelligent restructurable control [I, 2] is a paradigm of future advanced adaptive
control of aircraft for the case when significant changes in the system's underlying
structure due to environment or component failures must be compensated for using
control reconfiguration if necessary. The actions of the intelligent controller, which
will depend on the detected changes, the avionic systems and the pilot, are made in
an intelligent manner involving on-line decision making processes. Central to the
restructurable controls problem is the issue of fault detection and identification (FDI)
since before any control law reconfiguration is possible, the failure must be reliably
detected, identified, and conveyed to the pilot and avionic systems.

Regardless of whether the aircraft is equipped with special control reconfiguration
capability, reliable FOi information is extremely important to the pilot. A case in
point is the Delta flight 1080 from San Diego to Los Angeles where the elevator
became jammed at 19 degrees up and the pilot was given no indication of this type
of failure [l]. Quick presentation of fault information to the pilot can often enable him
to accommodate for the failure. This pilot cannot, however, recover from some types
of failures so it becomes necessary to aid the pilot with special reconfiguration
strategies. 

Here we focus on the FDI problem but keep in mind that it must be integrated into
a system whose goal will be to accommodate for the failure. Consequently, the FOi
system must generate information useful for the control law reconfiguration, and the 
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interface issue with the pilot and avionics systems must be addressed. The approach 
taken here is a hierarchical one. At a low level , algorithmic techniques are used, for 
example, to detect failures; while at a higher level, artificial intelligence (AI) techniques 
are used to interpret data generated by various algorithms and to interface with the 
pilot. Although the FOi system and methodology developed here may be appropriate 
for other plants and component failures, our main interest in this paper is FDI 
problems for aircraft actuators. The architecture used to integrate the AI and 
algorithmic techniques, together with the emphasis on the pilot and avionics interface 
constitute a new approach to the problem. 

In the next section, the FDI problem is defined and the important issues and 
tradeoffs are identified and discussed. This is followed by a system description and 
some guidelines on types of approaches to be taken. AI approaches to FDI are 
overviewed and an expert system architecture for FOi is proposed. Cognitive modeling 
studies of pilots in a failure diagnosis task set the foundation for the architecture and 
indicate that wide varieties of knowledge and reasoning, both deep and shallow, 
should be used. For instance we will need shallow knowledge such as general diagnostic 
heuristics, but we will also need to reason from deep knowledge such as a causal model 
of the aircraft. To deal with the wide variety of knowledge representations we propose 
that a graphical approach called the knowledge representation graph (KR graph) be 
used to represent both the deep and shallow knowledge. From this unified represen
tation, the interface between deep and shallow reasoning becomes transparent and the 
expert system is relatively easy to code. The AI portion of the FOi system, named the 
'Fault Detection and Identification Expert System' (FDIES), was implemented using 
the OPS5 expert system development tool and was exercised to perform diagnosis on 
several types of actuator failures. 

2. Fault Detection and Identification on Aircraft 

2.1. ISSUES AND TRADE OFFS 

As is often done, we assume that all the faults occur abruptly in the aircraft. Then the 
FOi problem can be broken into three distinct tasks: [3] (i) Detection: making a 
binary decision, either that there is a fault or that there is not; (ii) Isolation: problem 
of determining the source of the failure; (iii) Estimation: determining the extent of the 
failure . Here we group isolation and estimation into identification and obtain FDI. 
Computational complexity increases as we go from detection, to isolation, and 
estimation, but if FDI capabilities are increased, costly hardware redundancy can be 
reduced. Generally for failure detection algorithms there is a trade-off between 
performance and speed of response, and performance generally increases with 
complexity, although reliability may not (e.g. sensitivity increases with complexity). 
For example, if one were to incorporate a priori knowledge concerning specific failure 
modes, both complexity and performance increase. The upper bound for complexity 
is dictated by the complexity-computational burden trade off. The implementation of 
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an FDI system may also require special failure sensors to be added or that current 

ones be properly repositioned [4]. 

2.2. PILOT/AVIONICS INTERFACE IN FD! 

Pilot performance in the event of a failure is improved if only the most vital 

information is presented when a failure occurs. The FDI system can aid in filtering 

out insignificant data, could be particularly helpful by giving a graphical display of 

the failure problem, and could suggest corrective actions [5 - 7]. There is also a need 

for flow of information from the pilot to the FDI system. For instance, when a pilot 

is trying to determine what has failed in the aircraft, often he will perform, possibly 

at the suggestion of the FDI system, some form of 'active test' . That is, he will perturb 

the system and observe its response. From this he can formulate a failure hypothesis 

which could be used in the FDI system to validate a failure hypothesis or to resolve 

failure hypothesis conflicts [8]. Avionic systems can provide valuable information for 

the failure diagnosis task. For example, a weather monitoring system could provide 

cold temperature information which, if used in the diagnosis, would increase the 

probability of a stuck actuator. Failure information will also be given to the avionic 

systems for control law reconfiguration and mission planning. For example, estimation 

information will provide for the accurate determination of the failed aircraft model 

which is useful in reconfiguration. 

3. FDI System Description 

A general FDI system block diagram is shown in Figure I. The Inputs consists of the 

pilot commands for degrees of elevator, rudder, etc. The Outputs are airspeed, pitch 

angle, etc. The Other Information may be the state vector x , or it may also be actual 

Avionics System Interface Pilot Interface 

Fault Detection and 

Identification 

Expert System 

(FDIES) 

I puts Fault Fault 

Detection Isolation 

FOi Algorithms 

FOi SYSTEM 
Other Information (e .g . x) 

Fig. I. Fault detection and identification system. 
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surface positions, or special information from failure sensors. All the FDI subsystems 
have access to the information from the FDI system interface (e.g. u, y) . The fault 
detection algorithms monitor the systems for faults. Upon detection all other sub
systems are alerted, and using aircraft data the isolation and estimation subsystems 
begin identifying the failure . Concurrently, FDIES begins informing the pilot and 
other avionic systems. When it receives data from the algorithms, it begins a failure 
diagnosis which also considers the pilot and avionics information that is provided. 
Upon completion of the diagnosis, the processed information from the algorithms is 
provided to the pilot (e.g. 'Elevator jammed at 19°') and avionics systems for failure 
accommodation. 

4. Algorithmic Approaches to FDI 

Algorithmic approaches to FDI are well studied and basically all address the problems 
with voting techniques to achieve analytical rather than hardware redundancy [3, 9, 10]. 
There is, however, no unified algorithmic approach especially when one considers the 
necessity to extract essential information for the pilot and avionic system's failure 
accommodation task. For the present study, following the system vulnerability 
studies in [15] , the failure detection system was designed to monitor the system at the 
lowest level (hardware level) for failures. We concentrated on actuator failures and 
used the failure detection and identification filters (FDIF) described in [15, I6] for 
isolation and estimation. One could also use multiple hypothesis filter-detectors , jump 
process formulations, or an innovations based approach such as the generalized 
likelihood ratio method [11 - 14]. In Section 6 we show how to integrate the AI and 
algorithmic approaches to FDI. 

5. Artificial Intelligence Approaches to FDI 

5.1. INTRODUCTION 

The field of artificial intelligence (AI) is receiving an increasing amount of attention 
from the scientific and engineering communities. In particular there has been mounting 
excitement over a field of applied AI called '(Knowledge Based) Expert Systems' . The 
excitement should not however, eliminate an objective analysis of where they are most 
useful in FDI. Since this type of problem has only recently developed no firm criteria 
exist for the choice; however, some guidelines can be useful [2]. It is our belief that 
using AI techniques for problems that are better suited for an algorithmic approach, 
generally produces complicated, computationally intensive AI programs with large 
portions of code used for nonsymbolic data processing, and the necessity to ignore 
certain vital information about the system such as noise, continuous change, delays, 
and time. We also believe that using algorithmic techniques for problems that 
are better suited for an AI approach generally produces a breakdown of 'unified' 
algorithmic approaches, and an inability to deal with combinatorial explosion, 
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heuristics, and symbolic information. Combinatorial explosion occurs in FOi since 

we try to find the change in the underlying structure of the system which is causing 

the difference in behavior [19]. Often there is an overwhelming number of possible 

failures. We use these guidelines to justify the various FOi subsystem divisions. 

In Section 2.2, 'Pilot/Avionics Interface in FOi' , there were several issues which 

suggested the need for AI techniques. These were: 

(I) The proper presentation of failure information to the pilot for accommodation . 

(2) The need for the capability to use the pilot's inputs in the diagnosis. 

(3) The need for a coordinated Active test. 

The first issue is often studied under the title of 'natural language interface' or 'expert 

interface' and is also a topic to be addressed in the reconfiguration portion of the 

intelligent controller. For the second issue, an expert system approach enables the 

pilot to put information into the diagnostic process. Moreover, if the pilot does not 

have any inputs, the performance of the expert system should degrade gracefully [17]; 

the expert system can conclude that no diagnosis is possible with the current 

information or present a diagnosis with a small attached certainty. In this case the 

expert system could suggest an active test so that the FOi system and the pilot can 

gather more information, so that a more certain diagnosis could be performed. The 

expert system could provide a facility for the pilot to ask the system to give an 

explanation of why it came up with a diagnosis. The expert system is designed to 

capture the knowledge of how an expert pilot would perform the diagnosis task. 

Judging from some pilots' past successful recoveries from major failures [I] this seems 

useful. 
As discussed in Section 4, there are currently many good algorithmic approaches 

to parts of the FDI problem; however, there are not any general solutions. The 

consequence of this is that there is a need to combine and interpret various bits of 

dynamic information from different algorithms. That the inference engine ofan expert 

system is valid for such a dynamic environment is evidenced by the fact that expert 

systems are designed to gather data, arrive at conclusions, decide upon actions, and 

carry them out in an environment of continuously changing circumstances [18]. 

Hence, as shown in Figure I, we use good algorithmic approaches at the lowest level, 

and an expert system at the highest level to interpret the algorithmic data, perform 

failure diagnoses, and to interface to the pilot and avionic systems. Next we shall 

develop the expert system. 

5.2. COGNITIVE MODELING OF PILOTS 

In the expert system approach to FDI we begin by studying how to model the 

behavior of an expert pilot at a fault diagnosis task [20- 23]. In [8] the author 

combined such studies with interviews of pilots and formulated a model of their 

behavior. This is depicted in Figure 2 below. The system contains a fault monitoring 

portion which drives the diagnosis portion. The fault monitoring system is the 
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Fig. 2. General diagnostic process. 
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Fig. 3. Pilot failure diagnostic processes. 

hardware system that alerts the pilot when there is a suspected failure . The fault
diagnosis block will be the model of the expert pilot's behavior in response to the
failure symptoms obtained from the monitoring system. A detailed illustration of the
fault diagnosis block is given in Figure 3 [8] . The pilot receives fault symptoms from
the fault monitoring system and associates them with commonly occurring faults . If
there is a match, then fault identification is immediate, if not then he reasons from his
knowledge of how the aircraft acts. That is, he has a model of the aircraft's behavior
in mind and compares how the plane should act, with how it is acting, to ma_ke
conclusions about the origins of the fault. If he has insufficient information to perform
the diagnosis or has multiple hypotheses he may decide to perturb the system in a
controlled manner so that more information can be gathered. This is called an Active
Test. Any step in the process may be able to-identify the fault, but steps 1, 2, 3 take
increasingly more time to perform. Notice that due to the feedback inherent in the
process one could perform steps 1, 2, and 3, get the results of the active test ·and
succeed in fault identification via step 1. This reflects the human's ability to prune the
solution search space. 

5.3. AI TECHNIQUES FOR FDI 

In the following we will outline previous results on deep and shallow reasoning that
will be used to model various portions of the pilot's diagnostic process. Al-FOi
methods can be broken into two categories depending on whether they use shallow or
deep knowledge about the domain of interest [18]. The shallow knowledge approach
depends on prespecified relationships between fault symptoms and malfunctions, 
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while the deep knowledge approach utilizes intricate information about the structureof the system. 

5.3.1. The Shallow Knowledge Approach 

In the shallow knowledge approach, associations between symptoms of malfunctionsand malfunctions themselves are made empirically. Typically, in the shallow knowledgeapproach, production rules are used to emulate the knowledge of a pilot who is verygood at failure diagnoses. An example system that could be a candidate for thisapproach would be a MYCIN-type expert system.
The major bottleneck of the formation of an expert system of this type is properknowledge acquisition and organization. This is the case since (I) enough knowledgemust be encoded to cover a wide range of malfunctions, (2) the rules are formedempirically, (3) the knowledge base is specific to the particular plant and, (4) thenumber of rules may exceed practical limitations considering that many failures canoccur over a continuum of values. To solve some of these knowledge acquisition andorganization problems, the deep knowledge approach is used for parts of the FOisystem. 

5.3.2. The Deep Knowledge Approach 

When we consider the knowledge about aircraft behavior, physical laws can beincorporated into the diagnosis. Since the underlying principles of the domain areencoded in the knowledge, the need to consider every possible fault scenario iseliminated and more complex diagnosis tasks can be addressed . We shall discuss threedeep knowledge approaches here.
In the causal search approach [18, 26], diagnosis is viewed as the task of tracingprocess disturbances back to their source. The disturbances are linked to their sourcesby cause and effect relationships. These relationships can be just binary (e.g., yes, afailure in the right stabilator can adversely affect pitch) or it could have attached amagnitude of its effect. For even more complex systems one can attach the associateddelay between cause and effect or probabilities. One must limit the addition of suchinformation or efficiency can be degraded.
The governing equations method [18, 24], involves associating the differentialequations of the aircraft with certain fault conditions that will be violated if a failureoccurs. The diagnosis proceeds by a logical inference on the pattern of violated faultconditions. This amounts to comparing expected plant behavior to current behaviorby examining the outputs of the plant and checking whether their difference is greaterthan some threshold. Notice that the analog of this method in the algorithmicapproaches is the innovations approach.
In the hypothesis/test method [18, 19] a series of hypotheses are formulated, tested,and selected. The approach emulates a human postulating a cause for a failure and 
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comparing hypothesized behavior with actual aircraft behavior. As with the algorithmicapproaches of this type it can be computationally demanding. There are virtually aninfinite number of types of failures possible on the aircraft so a correspondingly largenumber of hypotheses must be stored or generated. The hypothesis/test method isdifferent from the governing equations method in that it can also be used for higherlevel diagnostic reasoning. 

5.3.3. Combining Shallow and Deep Inference 
It is important to note the advantages and disadvantages of each of the techniquesabove. For instance, although the shallow knowledge approach does have knowledgeacquisition and organization disadvantages, it does have the advantage that high leveldiagnostic heuristics can be added to the FOi process. An example of such a heuristicmight be 'use the governing equations method first, if after one second it fails, try acausal search'. This can result in a more efficient diagnostic process. The disadvantage~of the deep knowledge approaches, such as computational complexity, are avoided byincorporating the algorithmic techniques into the FOi system. This points to thenecessity to use both AI and algorithmic approaches to FOi. Only in this way canefficient systems be built. 

6. An Al/Algorithmic Approach to FDI 
Next, we introduce the architecture for the FOi system, choose reasoning techniquesfor the subsystems, and introduce the knowledge representation graph to integrate thevarious knowledge representation and reasoning techniques and facilitate the expertsystem implementation. 

6.1. FDI SYSTEM BLOCK DIAGRAM 

In this section we combine the algorithmic and AI approaches to FOi to obtain ahybrid system. The general FOi block diagram with the expert system architectureincluded is shown in Figure 4. We add the expert interface to make for a friendlyinterface to the pilot, to parse the information given to various avionic systems, andto carefully manage information flow into the system. The information from the FOialgorithms such as the FOIF and fault detection systems is made available to all thereasoning processes in the expert system. The aircraft data is made available to allparts of the system. Notice that an 'Executive' sub-module was added. This modulerepresents the highest level diagnostic reasoning processes of the pilot. It managesinformation flow at a high level and makes decisions about, for example, switchingthe type of diagnosis being performed. Each sub-module is shadowed with a differentshade. The black indicates a pure algorithmic approach. The other three shades rangefrom dark to much lighter corresponding to deeper, deep, and shallow reasoning. The 
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Fig. 4. FOi system block diagram and expert system architecture. 

fault symptom association module uses the deep knowledge approach of 'governing
equations', while the model based reasoning module uses 'causal search'. The active
test module is in between a shallow and deep approach in that it must work with deep
knowledge information, multiple hypotheses from deep reasoning processes, algorith
mic data, and some type of coordination with the pilot. It is for these same reasons
that the expert interface uses both shallow and deep knowledge approaches. The
Executive uses only shallow reasoning. 
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Premises ____.Actions 

Fig. 5. Knowledge representation graph building block. 

6.2. KNOWLEDGE REPRESENTATION 

Since the FDI approach taken here is a hybrid one, the knowledge representation 

(KR) schemes normally chosen will be quite distinct. For instance, for the deep 

knowledge approach one might build a causal model whereas for the shallow 

approach one would carefully begin writing rules. If we suppose that our expert 

system will be rule based then the lack of homogeneity between these representations 

can be minimized in the following manner. Regardless of which KR scheme is used, 

for the rule based approach, our thought process is: 

(1) We are in some state of mind where we are considering what to do next, 

(2) Some particular premises become satisfied which lead us to 

(3) Execute some actions; consequently we find ourselves back at step (1). 

The inference mechanism is embedded in these three steps. We represent this 

graphically in Figure 5. In proceeding between the two states of mind, when the 

Premises are true, the Actions occur instantaneously. In the general case we obtain a 

connected graph where the structure and organization of the knowledge becomes 

evident. We shall call this the KR graph. The effect of the choice of inference strategy 

on how the graph is traversed also becomes clear. For the shallow and deep knowledge 

approaches all that changes is the type of states of mind, premises, and actions. 

6.3. KR FOR THE FAULT DETECTION AND IDENTIFICATION EXPERT SYSTEM 

The knowledge representation for the Fault Detection and Identification Expert 

System (FDIES) whose architecture is shown in Figure 4 is developed here. The 

development begins by giving an example of KR for the fault symptom association 

module. 

6.3.1. KR for the Fault Symptom Association Module 

This module gets inputs from the FDI algorithms and tries to associate various 

sets of failure indicators with pre-specified failure scenarios. The deep knowledge 

approach of governing equations is used. The 'Premises' of Figure 5 are logical 

combinations of the failure indicators and the 'Actions' are results of the associations 

such as 'failures indicate that the right stabilator is stuck'. They could also be 'the 

right stabilator actuator appears to have failed but there is insufficient information to 

determine exactly how'. In this last case the module fails to identify the failure and 
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the Executive decides to invoke model based diagnostic reasoning. As an example of 

the KR graph knowledge representation scheme, we consider actuator failures and 

use the FDIF to provide the algorithmic information to the expert system. Make the 

following definitions: (propositional connectives & means and, V means or, - means 

not, - - > means implication) . 

States of Mind: M , = Waiting for a failure 

M2 = Suspect a failure 

M 3 = Confirmed failure , What is it? 

Premises : i = Refers to the ith actuator 

failure(i) = Indication from the fault monitoring system that some 

type of failure has occurred in the ith actuator 

fdif(i, f, v) = Information from the FDIF about the ith actuator 

being/= stuck or f = biased at magnitude of v 

fm(i, stuck) = Indication from the failure monitor that the ith 

actuator is stuck 

Actions : wait(Td) = Wait T d seconds 

fsa-diagnosis(h) = Fault Symptom Association module's diagnosis; 

either h = valid, lack enough info. for diagnosis, or none made yet 

stuck(i, v) = ith actuator stuck at position v 

biased(i, v) = ith actuator biased with the value v . 

With these definitions we develop the KR graph. It is shown in Figure 6. Consider one 

possible thought process: In state of mind M 1, we are waiting for a failure. Once the 

detection algorithm flags a failure, we wait T d seconds, then decide to confirm the 

failure. If the failure is confirmed we take no actions but change our state of mind to 

M 3 ; deciding what the failure is. Using the governing equations method we make 

logical inference on the combination of failures. This is represented graphically by the 

three arcs leaving M 3 . For example, on the top arc leaving M 3 , if the failure 

monitoring system is still indicating a failure and it is indicating that the ith actuator 

is stuck and the FDIF also indicates a 'stuck' failure then our diagnosis is that we have 

failure(i)& 
failure(i)---+ ~M:,

E'"~'-:3M 
-failure(i) 

failure( i)&fm(i,stuck)&fdif( i,s tuck,v)-->stuck(i, v )&fsa-diagnosis(valid) 

failure(i)&fdif(i,bias,v )-->biased(i, v)&fsa-diagnosis(valid) 

failure(i)&-(fdif(i,f,v) V fm(i!stuck))-->fsa-diagnosis(lack-info) 

Fig. 6. KR graph for fault symptom association module. 
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the ith actuator stuck and the diagnosis is valid. If the failure combination does not
match any of the premises associated with the three arcs leaving M3 then the Executive
automatically switches to model based reasoning. 

6.3.2. KR f or the Model Based Reasoning and Active Test Modules 

Here we use the deep knowledge approach of a causal search and hence must develop
a causal model of our system. A more detailed example of the development of a causal
model for an aircraft is given in [25, 26] . We consider how an actuator failure will
affect certain aircraft variables and develop the simple causal model shown in
Figure 7. To develop the KR graph the following definitions are made: 

States of Mind: What aircraft variables are misbehaving?
What failure would produce this behavior?
What conclusions can be made?

Premises/Actions: x = An aircraft output 
misbehave(x) = Aircraft variable x is misbehaving
(e.g. x = pitch, yaw) 
mbr-suspect(x) = Suspect failure in the aircraft variable x
mbr-diag(i, n) = Model Based Reasoning diagnosis is that
n = suspect or no conclusions possible
(none) for the ith actuator 

The KR graph is shown in Figure 8. From state of mind M 4 we determine which
aircraft variable is misbehaving then from M 5 we make the causal relationship
between the misbehaving variable and the actuator that we suspect has failed . From
M 6 we make the diagnosis. 

Actuator Varjab)e 

S<abBam,~~Ploci, 
Rudder----~ Airspeed 

Thrust ~------- Yaw 

Fig. 7. Simple causal relationships. 

. . rX•pitch · · > mbr-suspect(stabilators)mbr-d1ag(1,none)& ( .........,
misbehave(x)~ ( ~ f\. JI .._--- ----'"-ll► IV'5-x.yaw ··> mbr-suspect(rudder) _..

J '--- . .,,,Kx-airspeed ··> mbr-suspect(thrust) 

mbr-suspect(i) •·> mbr-diag(i ,sus e 

Fig. 8. KR graph of model based reasoning. 
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Due to our guidelines in the choice of whether to use AI or algorithmic techniques 

we chose not to use an extremely complex causal model. Reasoning over a very 

complex causal model can easily become computationally unmanageable. Due to the 

simple model's lack of resolution all that is produced is either a suspected diagnosis 

or none at all . For the diagnosis by active test module we use a combined shallow and 

deep knowledge approach . The expert knowledge of what active test should be chosen 

is loaded into the KR graph. This graph was produced for the implementation. The 

only significant difference with it is that some 'actions' call for communication with 

the pilot as they do in the expert interface. 

6.3.3. KRfor the Expert Interface to the Pilot 

Here we study only a portion of the full expert interface. We do not address the 

problems associated with the natural language interface, or 'friendliness' problems. 

What we propose is that an up-to-date model of the current failure status of the 

aircraft be kept inside the expert interface. The diagnoses from all modules and the 

FDI algorithms will update this model. Information on this model will be accessible 

by both the avionic systems and the pilot. Again we can use a KR graph approach 

but with some differences: 

(I) We change states ofmind to locations in which parts of the process dwell (e.g., 

whether an actuator is floating in the up or down position). 

(2) The 'Premises' will take the form of logical combinations of events such as a 

position change of an actuator or the outcome of a diagnosis. 

(3) The 'Actions' will be communications to the pilot and avionic system. 

To form the KR graph for the ith actuator define the following: 

Locations: U -up D -down S -stuck 

UB -Surface in the up position with a bias failure 

DB -Surface in the down position with a bias failure 

UF -Surface floating in the up position 

DF -Surface floating in the down position 

Premises: pd(i) = event that the position of the surface goes down 

pu(i) = event that the position of the surface goes up 

s(i) = ith actuator jammed, b(i) = ith actuator biased, f(i) = ith 

surface floating 
atd(x) = active test diagnosis x 

Actions: pilot(x, y) = alert pilot/avionic systems where: xis either pu(i) or pd(i), 

and y is s(i), b(i), or f(i) 

The KR graph is shown in Figure 9. The events pd(i) and pu(i) continually update 

the failure model and the informaton such as s(i), f(i), and b(i) is the result of 
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~s~
s(i) •·> pilot(pd(i),s(i)) s(i) •·>pilot(pu(i) ,s(i)) 

1___ I
o ◄ pd(i)~u

I '------pu(i) ~ I 
b(i) ··> pilot(pd(i),b(i)) b(i) ··> pilot(pu(i),b(i)) 

+ ......------pd(i) ~+DB UB
.,_____pu(i) 

atd(f(i)) •·> pilot(pd(i),f(i)) atd(f(i)) •·> pilot(pu(i),f(i))

'----...oF......------pd(i) ~uF...---' 
--------pu(i) ~ 

Fig. 9. KR graph for portion of the expert interface. 

diagnostic reasoning done in the system. For instance, if the ith actuator is in the
down position and it becomes stuck, the pilot is informed and the failure model goes
to the 'stuck' state. 

6.3.4. Remarks on Knowledge Representation/FD/ES 

The KR graphs provide a nice tool to check consistency and completeness of
knowledge. They also illustrate the structure of the knowledge. The characteristics of
the inference strategy of a production system (OPS5) [27] can be defined in terms of
the KR graph. For example, the conflict set is a subset of the arcs emanating from a
state of mind (the ones with their associated premises satisfied). Refraction is seen
from the fact that one moves forward on the graph (when forward chaining is used).
Recency is illustrated by examining any particular state of mind; if we look back, the
working memory element created as the result of the last Action has the highest
recency, and so on. We see recency-specificity by examining the number of premises
of each arc emanating·from a particular state of mind. Test-specificity is illustrated by
examining the number of relational tests contained in particular premises of each arc
emanating from a particular state of mind. Efficiency issues in the production system
become clear when the KR graph is used. For example, it is desirable to minimize th~
size of the conflict set and to properly order the premises. Each of the KR graphs
produced for the actuator failure case is modular. That is they represent the diagnostic
processes needed no matter which particular actuator failed. This feature essentially
reduces the need for say k rules to k/m rules, where mis the number of actuators. This
is a good example of why the number of rules alone is a poor measure of the expert
system's quality. The KR graphs are good documentation vehicles and mak~ the task
of explaining the actions of the expert system easier. 
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Premises--> Actions 

~ ----- ----►•Mj 

Fig. 10. General KR graph link. 

(p rule-name (Mi) (Premises) --> (Actions) (Mi) ) 

Fig. 11. General OPS5 rule. 

6.4. IMPLEMENTATION OF OPS5 

6.4. l. Translating the KR Graph to OPS5 

If the KR graphs are specified, then programming the expert system in OPS5 [27] is 

nearly automatic. Consider the general link in the KR graph shown in Figure 10. The 
translation of this to a general OPS5 rule produces Figure 11 . Where M; is properly 
set up as an element class and ~ is input into working memory in an appropriate 
manner. This characteristic was not obtained free of charge; the work has been 

transferred into the formation of KR graphs. 

6.4.2. FD/ES. Example Diagnoses: 

Using the KR graphs an expert system was developed in OPS5 to perform the failure 

detection and identification task. With the algorithmic data from the FDIF, several 
actuator failure scenarios were created for the expert system. Besides these failure 
scenarios, the expert system allowed the user to enter failure scenarios. FDIES would 
then begin reasoning from the data, first with fault-symptom association (implemented 

with the governing equations approach to diagnosis). For the biased and jammed 

cases, FQIES performed the diagnosis task using only fault-symptom association. 
This is the case since the FDIF algorithms performed well for these failure types. For 

the actuator floating case the fault monitoring system appropriately detected a failure 

but the FDIF algorithms could not estimate the failure. Fault symptom association 

failed and the executive switched the reasoning method to model based reasoning using 
causal search; consequently the system determined which actuator it suspected as 
having failed. The executive switched the type of reasoning to 'active test' and using 
the 'suspect hypothesis' from the model based reasoning module it suggested to the 

pilot (FDIES user) how to perturb the aircraft so that more failure information might 

be gathered. The failure diagnosis for the actuator jammed case is successful at this 

step. In any of the cases described above, once a diagnosis is successful, the executive 
interrupted, the failure model in the expert interface was updated, and the pilot and 

avionic systems (user) were alerted to the diagnosis results. 

7. Conclusions 

The fault diagnosis problem on an aircraft is appropriate for AI techniques. An expert 

system approach can produce an invaluable assistant to the pilot when a failure 
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occurs. The architecture of the FOi system is necessarily hierarchical. We take
advantage of well understood algorithms to perform some of the detection and
identification and use AI techniques to solve some of the less well structured problems
in the FDI process. To unify the representation of all sorts of information used in the
FDI of a physical system, the KR graph was introduced. Besides being a good
knowledge acquisition and organization tool, since it helps to clarify complex
relationships in the knowledge base, it also helps to implement and document the
expert system. 

The work presented here represents the first step at the development of a complete
FDI system. A number of issues need to be examined. The interface between the pilot
and avionics must be considered in detail, additional algorithms need to be developed,
and many other types of failures need to be considered. It is hoped that the necessity
for the integrated AI-algorithmic approach has been established in this paper. 
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