
146 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 42, NO. 1, JANUARY 2024

Cognitive Sensing and Navigation With Unknown
OFDM Signals With Application to Terrestrial 5G

and Starlink LEO Satellites
Mohammad Neinavaie , Student Member, IEEE, and Zaher M. Kassas , Senior Member, IEEE

Abstract— A receiver architecture for cognitive sensing and
navigation with orthogonal frequency division multiplexing
(OFDM)-based systems is proposed. The proposed receiver
enables exploiting all the transmitted periodic beacons of 5G
new radio (NR) and Starlink low Earth orbit (LEO) signals to
draw navigation observables. Reference signals (RSs) of modern
OFDM-based systems, such as 5G NR, contain both always-on
and on-demand components. These components can be unknown
or known but subject to change. To leverage all transmitted
signals for navigation purposes, the RS signals should be detected
and tracked cognitively. Similar to conventional navigation
receivers, the proposed architecture involves acquisition and
tracking stages. However, both stages are supplemented by the
unorthodox capability of estimating and updating the RS signals.
The acquisition stage instructs the tracking stage by reporting
performance metrics, which are used to adjust the tracking loop
gains to update the RS accordingly. A chirp model is considered
to capture the high dynamics of Doppler frequency in intensive
Doppler scenarios, where the navigating vehicle is maneuvering
or the transmitting source is not static. The effect of Doppler rate
estimation error on frame length estimation is analyzed. Exper-
imental results are presented demonstrating the performance
of the proposed receiver by: (i) enabling an unmanned aerial
vehicle (UAV) to detect and exploit terrestrial 5G NR cellular
signals in a blind fashion for navigation purposes, achieving a
two-dimensional (2D) root-mean squared error (RMSE) of 4.2 m
over a total trajectory of 416 m; (ii) enabling a ground vehicle that
traversed a trajectory of 1.79 km to cognitively sense an unknown
gNB (blindly detect, track, and exploit transmitted always-on and
on-demand signals), localizing it with a 2D error of 5.83 m; and
(iii) tracking Starlink LEO OFDM signals, producing Doppler
measurements, which were fused to localize a stationary receiver
with a 2D error of 6.5 m, starting from an initial estimate 179 km
away from the receiver’s true position.

Index Terms— Cognitive radio, integrated sensing and com-
munications, 5G, OFDM, low earth orbit satellites, starlink,
positioning, navigation, receiver design.
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I. INTRODUCTION

DUE to significant advancements in cellular technologies
and dense deployment of cellular infrastructure, fifth-

generation (5G) and beyond cellular networks will be adopted
by intelligent transportation systems to enable reliable and safe
autonomous operations [1]. Several features in 5G and beyond
cellular networks depend on the ability to localize the user
equipment (UE) to a high degree of accuracy [2]. Estimation
of time-of-arrival (TOA), direction-of-arrival (DOA), and/or
frequency-of-arrival (FOA) of multiple users/targets is an
inseparable block of some 5G and beyond technologies, such
as joint sensing and communication [3].

Similar to 4G long-term evolution (LTE), 5G new radio
(NR) adopts orthogonal frequency division multiplexing
(OFDM) [4]. In addition, new constellations of broadband
low Earth orbit (LEO) space vehicles (SVs) will transmit
OFDM-type signals [5]. In OFDM-based systems, a part of
the transmitted power is dedicated to periodic synchronization
signals, referred to as reference signals (RSs), which are
transmitted for synchronization purposes. RSs are designed (or
selected) based on their distinctive bandwidth and correlation
properties and the physical channel type [6]. While the RSs
allocated to a single LTE channel have a predetermined band-
width of up to 20 MHz, the allocated bandwidth for the RSs
in a single 5G channel is dynamic, i.e., it adaptively changes
based on the transmission mode, and can go up to 100 MHz
and 400 MHz for frequency ranges 1 and 2 (FR1 and FR2),
respectively [7]. On the other hand, Starlink downlink signals
occupy 250 MHz bandwidth of the Ku-band to provide high-
rate broadband connectivity, but the allocated bandwidth (and
other signal characteristics) of the RSs are unknown [8].

Navigation receivers typically rely on known RSs trans-
mitted by the sources to draw TOA, DOA, and FOA
measurements [9]. Conventional opportunistic navigation
receivers (i.e., those only utilizing the downlink signals) will
either fail to operate or will be unable to exploit the entire
available bandwidth in situations where RSs are unknown
and/or dynamic, which is the case in 5G NR and private
networks, such as broadband LEO. Cognitive opportunistic
navigation [10] has been recently introduced to address the
following challenges of navigation with signals of unknown
and dynamic nature. First, unlike public networks where
the broadcast RSs are known at the UE and are universal
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across network operators, in private networks, the signal
specifications of some RSs may not be available to the public
or are subject to change. Second, in cellular LTE networks,
several RSs (e.g., cell-specific reference signal (CRS)) are
broadcast at regular and known time intervals, regardless of the
number of UEs in the environments. Ultra-lean design refers
to minimizing these always-on transmissions. 5G NR transmit
some of the RSs only when necessary or on-demand [11].
As such, designing cognitive receivers that can cognitively
acquire partially known, unknown, or dynamic beacon signals
(periodic synchronization signals) is an emerging need for the
future of navigation receivers [12], [13].

The problem of cognitively exploiting on-demand and
always-on 5G NR signals has been previously studied in
[10], [14], and [15]. These methods rely on the difference
between the Doppler frequencies of received signals to acquire
and track the unknown sources. However, the acquisition and
tracking of unknown sources may fail in the following extreme
scenarios: (i) an almost static scenario that may lead to a
Doppler subspace overlap and (ii) a high dynamic scenario
where the receiver or the transmitter are moving with high
dynamics which results in an intensive Doppler rate. These
two extreme scenarios introduce the following challenges in
the acquisition and tracking of the unknown sources:

The almost static scenario: When the receiver and trans-
mitter are almost static, the Doppler frequencies of the trans-
mitting sources will be very close to each other. This event
is referred to as the Doppler subspace overlap. Distinguishing
between the sources with Doppler subspace overlap becomes
very challenging for the cognitive navigation framework.

Intensive Doppler rate scenario: In cognitive navigation
frameworks, the unknown and dynamic parameters of the RSs
are estimated via a coherent accumulation of the received
samples over time. High values of Doppler rate limits the
coherence time, i.e., the time interval that the channel between
the transmitter and the receiver is static. A limited coherence
time affects the unknown source acquisition and tracking
performance. Therefore, considering the effect of the Doppler
rate in the signal model and selecting a proper coherent
processing interval (CPI) play a key role in intensive Doppler
rate scenarios.

This paper addresses the two challenges by: (i) presenting
a maximum likelihood (ML)-based detection method to esti-
mate the CPI jointly with the Doppler and the Doppler rate,
(ii) presenting a sequential matched subspace detector based
on a chirp Doppler model to distinguish between the sources
with Doppler subspace overlap, and (iii) designing tracking
loops with adaptive loop gains which enable RS tracking in
challenging scenarios. The contributions of this work are:
• A full receiver architecture is presented which could

jointly estimate the unknown RSs of multiple sources
in almost static and intensive Doppler rate scenarios.
The cognitive nature of the proposed receiver enables
estimating both always-on and on-demand RSs, the latter
of which are not necessarily always-on. Both components
were shown to be detected and refined in post-acquisition
and tracking stages via properly designed adaptive gains.
The adaptive gains are provided by the acquisition stage

and are designed based on the source detection perfor-
mance. Feeding this information to the tracking loops,
establishes a link between the acquisition and tracking
loops which is necessary in challenging scenarios and
distinguishes the proposed architecture from conven-
tional navigation algorithms. To the author’s knowledge,
this link between the acquisition and tracking stages
is not considered in both classic GNSS receivers, e.g.,
[16] and [17], and the state-of-the-art joint detection
and tracking techniques, e.g., [10]. One of the contri-
butions of this paper is demonstration of the importance
of reporting the detection performance to the tracking
loops by experimentally showing that the state-of-the-
art receiver architectures will fail to track the signals in
challenging scenarios without the proposed link between
the acquisition and tracking loops.

• The effect of Doppler rate estimation error on the autocor-
relation function is presented analytically. A closed-form
solution for the autocorrelation attenuation is presented
which matches the experimental results. The analysis
of the effect of Doppler rate estimation error on the
autocorrelation function is crucial in navigation with LEO
satellites. This analysis, enables a novel blind Doppler
rate estimation technique for LEO satellite signals.

• Experimental results are presented showing an application
of the proposed receiver architecture by (i) enabling an
unmanned aerial vehicle (UAV) to detect and exploit
terrestrial 5G NR cellular signals for navigation purposes,
achieving a position root mean-squared error (RMSE) of
4.2 m over a total trajectory of 416 m; (ii) enabling a
ground vehicle to cognitively sense (detect and track)
an unknown 5G gNB in the environment, estimating the
position of the gNB with a two-dimensional (2D) error
of 5.83 m in a blind fashion; and (iii) exploiting Starlink
downlink OFDM signals to localize a stationary receiver,
showing that starting from an initial estimate of 179 km
away, the final 2D error converges to 6.5 m.

The rest of this paper is organized as follows. Section II
surveys relevant related work. Section III presents the received
baseband signal model. Section IV presents different stages of
the proposed receiver. Section V presents experimental results
for the utilization of the adaptive cognitive receiver in UAV
navigation. Section VI gives concluding remarks.

II. RELATED WORK

This section overviews related work in positioning with 5G
NR, unknown signals, and LEO SV signals.

1) Positioning With 5G NR: Positioning with 5G signals
has been studied in the literature [18], [19], [20], [21],
[22], [23]. High data rate in 5G signals necessitates a higher
transmission bandwidth and more advanced spatial and time-
domain-based multiplexing techniques. However, since the
unlicensed spectrum in lower frequencies is scarce, millimeter
waves (mmWaves) have been adopted for 5G FR2 [24].
To mitigate the high pathloss of propagated mmWave signals
different beamforming techniques and massive multiple-input,
multiple-output (mMIMO) antenna structures are proposed
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for the 5G protocol [25]. Since beamforming in 5G requires
the knowledge of the user’s location, 5G-based positioning
is essential for resource allocation [26]. The signal charac-
teristics of mmWave for positioning were studied in [27].
Reference [2] focuses on the integrated positioning methodol-
ogy of GNSS and device-to-device (D2D) measurements in 5G
communication networks. In [20], a tensor-based method for
channel estimation in mmWave systems was presented, which
enables positioning and mapping using diffuse multipath in
5G mmWave communication systems. Experimental results
in [28] showed meter-level navigation using TOA estimates
from 5G signals. All the aforementioned methods relied on
the knowledge of the beacon signals. The proposed cognitive
framework in this paper is capable of detecting and tracking
unknown on-demand and always-on beacons. This feature of
the proposed receiver architecture enables navigation with
systems with ultra-lean design, where dynamic and on-demand
beacons are adopted.

2) Positioning With Unknown Signals: The detection prob-
lem of an unknown source in the presence of other interfering
signals falls into the paradigm of matched subspace detectors,
which has been widely studied in the classic detection theory
literature [29], [30], [31], [32]. In the navigation literature,
detection of unknown signals has been studied to design
frameworks, which are capable of navigating with unknown
or partially known signals [33], [34]. Preliminary results for
navigation with partially known signals from low and medium
Earth orbit satellites were conducted in [12], [13], and [35].
In particular, a chirp parameter estimator was used in [35] to
blindly estimate the GPS pseudorandom noise (PRN) codes.

In [10] and [14], a cognitive opportunistic navigation
framework was developed to navigate with LTE and 5G NR
signals. None of the aforementioned methods have considered
the optimal selection of CPI, which dramatically affects the
performance. Such selection is addressed in the proposed
receiver in this paper, which is capable of jointly detecting and
tracking both always-on and on-demand RSs in a challenging
acquisition scenarios. Moreover, unlike conventional signal
acquisition and tracking methods, the proposed receiver
utilizes information about acquisition performance into the
tracking loops, which enables tracking weak signals in
challenging environments. Such a connection between the
acquisition and tracking stages is crucial for navigation with
unknown signals (whether terrestrial 5G NR or Starlink
LEO SV) in challenging scenarios, such as intensive
Doppler.

3) Navigation With Starlink LEO SV Signals: The first
positioning results with Starlink SV signals were presented
in [36], [37], and [38]. These papers exploited a train of
pure tones in the downlink of Starlink SV signals to obtain
carrier-phase and Doppler measurements. Starlink downlink
signals occupy 250 MHz bandwidth of the Ku-band to provide
a high-rate broadband connectivity [8]. In this paper, the
Starlink OFDM-based RSs are detected cognitively. It is shown
that the RSs of Starlink downlink signals have an ultra-lean-
like behavior, in which some of the RSs are not always-on.
The RSs of multiple Starlink SVs are estimated and the
whole available signal bandwidth is exploited and employed

Fig. 1. Autocorrelation of the recorded signal after Doppler wipe-off:
(a) Autocorrelation of the 100 ms of Starlink Downlink signal shows a frame
length of 1.33331 ms. (b) Autocorrelation of 40 ms of 5G NR downlink signal
which shows the frame length of 10 ms (5G NR standard frame length).

in tracking loops to provide code-phase and carrier-phase
observables.

III. SIGNAL MODEL

A. Overview of OFDM Frame

In OFDM-based transmission, the symbols are mapped onto
multiple carrier frequencies, referred to as subcarriers, with a
particular spacing known as subcarrier spacing.

The subcarrier spacing is either fixed, e.g., LTE standard,
or selected based on the carrier frequency, and/or other
requirements and scenarios, e.g., 5G NR. Once the subcarrier
spacing is configured, using a higher-level signalling, the
frame structure is identified. One of the challenges that should
be addressed in the proposed receiver design is the estimation
of the frame length of the OFDM signals. 5G NR frame has a
duration of 10 ms and consists of 10 subframes with durations
of 1 ms [7]. Due to the high Doppler dynamics in LEO
satellites, a smaller frame length should be selected to avoid
Doppler spread [39]. It should be pointed out that the frame
length is equal to the period of the synchronization signals.
The autocorrelation of a large enough time segment of the
received signal will result in a train of an impulse-like function
whose shape depends on the autocorrelation properties of the
synchronization signals. The distance between two consecutive
impulses is equal to the OFDM frame length. Fig. 1(a)
demonstrates the autocorrelation of a 100 ms time segment of
the Starlink downlink signal after Doppler rate wipe-off. The
details of the Doppler rate wipe-off process will be discussed
later. It can be seen that the distance between the impulses of
the resulting train is estimated to be 1.33331 ms. Also, as a
reference, Fig. 1(b) shows the same processing on a 40 ms
time segment of a 5G NR signal which results in a frame
length estimation of 10 ms which corroborates the standard
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Fig. 2. OFDM frame structure (always-on subcarriers): SS/PBCH block and
corresponding OFDM symbols and subcarriers are indicated in the red box.

frame length of 5G NR downlink signals. More details about
frame length estimation and the effect of Doppler rate on the
autocorrelation function will be discussed in Section IV-A.

In the frequency domain, each subframe is divided into
numerous resource grids, each of which has multiple resource
blocks with 12 subcarriers. The number of resource grids
in the frame is provided to the UE from higher-level sig-
nallings. A resource element is the smallest element of a
resource grid that is defined by its symbol and subcarrier
number [7]. To provide frame timing to the UE, a gNB broad-
casts synchronization signals (SS) on pre-specified symbol
numbers. An SS includes a primary synchronization signal
(PSS) and a secondary synchronization signal (SSS), which
provide symbol and frame timing, respectively. The PSS and
SSS are transmitted along with the PBCH signal and its
associated demodulation reference signal (DM-RS) on a block
called SS/PBCH block. The SS/PBCH block consists of four
consecutive OFDM symbols and 240 consecutive subcarriers.
The SS/PBCH block is transmitted numerous times on one
of the half frames, which is also known as SS/PBCH burst.
Fig. 2 demonstrates the SS/PBCH subcarriers and non-active
subcarriers which are color-coded by dark-blue. A non-active
subcarrier can be a subcarrier that is allocated to data or
on-demand RSs.

B. Baseband Signal Model

The common feature of always-on and on-demand RSs is
periodicity. If a subcarrier is being periodically transmitted,
it will be detected by the receiver, estimated, and used to derive
navigation observables.

The channel between the ith source and the UE is consid-
ered to have a single tap with the complex channel gain αi.
The received baseband signal samples can be modeled as

r[n]=
N∑

i=1

αi (ci (τr[n]) + di (τr[n])) exp (jθi[n]) + w[n], (1)

where r[n] is the received signal at the nth time instant; αi[n]
is the complex channel gain between the UE and the ith source
at the nth time instant; and τr[n] ≜ τn−tsi [n], where tsi [n] is
the code-delay corresponding to the UE and the ith source at
the nth time instant, and τn is the sample time expressed in the
receiver time. Moreover, N is the number of unknown sources;
ci[n] represents the samples of the continuous-time waveform
ci(t) of the periodic RS corresponding to the ith source with a
period of L samples; θi[n] = 2πfDi [n]Tsn is the carrier-phase
in radians, where fDi

[n] is the Doppler frequency at the nth
time instant and Ts is the sampling time; di[n] represents the

samples of some data transmitted from the ith source; and
w[n] is a zero-mean independent and identically distributed
noise with E {w[m]w∗[n]} = σ2

wδ[m − n], where δ[n] is
the Kronecker delta function, and w∗[n] denotes the complex
conjugate of random variable w[n]. The received signals can
be expressed in terms of equivalent RS from the ith source,
denoted by si[n], and the equivalent noise, denoted by weqi

,
which are defined as

si[n] ≜ αici[τn − tsi
[n]] exp (jθi[τn]) , (2)

weqi
[n] = di[τn − tsi

[n]] exp (jθi[τn]) + w[n]. (3)

Hence, the baseband samples can be rewritten as

r[n] =
N∑

i=1

(
si[n] + weqi

[n]
)
. (4)

Remark 1: In this paper, the Doppler frequency is modeled
as a linear chirp, i.e., fDi [n] = fDi0

[n] + βi[n]Tsn, where
fDi0

[n] is the initial Doppler frequency, and βi[n] is the
Doppler rate.

Definition 1: The CPI is defined as the number of periods
of an RS in a time interval during which the Doppler fDi0

[n],
Doppler rate βi[n], delay tsi [n], and channel gains αi are
considered to be constant.

IV. RECEIVER ARCHITECTURE

This section describes the proposed receiver.

A. Frame Length Estimation

Detection and tracking of unknown sources rely on two fun-
damental features of the RS: (i) periodicity and (ii) correlation
properties in the time- and frequency-domains. In broadband
communication systems, the RS waveform is designed based
on the correlation properties of the so-called synchroniza-
tion sequences. Different sequences have distinct correlation
behaviors and can be adopted in a particular system based
on the physical considerations. For instance, Zadoff-Chu
sequences are known for their low autocorrelation sidelobes at
zero Doppler shift, and Bjorck sequences can more effectively
decouple the effect of time and frequency shifts [6].

The correlation properties of a sequence are usually char-
acterized using the so-called ambiguity function.

Definition 2: Let p[n] be a sequence of numbers of
length L, where n = 0, . . . , L−1. Define the periodic sequence
c[n] as the periodic extension of p[n], i.e., c[m] = p[k], for
m ∈ Z, where 0 ≤ k ≤ L − 1 and k ≡ (m mod L). The
discrete ambiguity function of periodic code c[m] is defined
as [6]

Ac(m,n) =
1
L

L−1∑
k=0

c[m+ k]c⋆[k] exp
(
−j2πkn

L

)
. (5)

In order for the acquisition stage to be able to detect always-on
and on-demand RSs, having an estimate (or the exact value) of
the RS period is necessary. While the frame length is known
for public networks (e.g., 5G NR), in private networks, the
frame length might be unknown or dynamically change based
on the transmission mode [7]. The first stage of the proposed
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receiver involves frame length estimation. The autocorrelation
of a large enough time segment of the received signal results
in a periodic train of ambiguity functions in the time-domain.
If the transmitted sequences have good correlation properties,
the ambiguity functions will have an impulse-like shape.
Good autocorrelation means that the RS waveform of the
RS is nearly uncorrelated with its own time-shifted versions,
while good crosscorrelation indicates that the RSs of different
satellites’ waveforms are nearly uncorrelated.

The following Lemma gives a closed-form solution for the
autocorrelation function in the presence of Doppler rate.

Lemma 1: Denoting the autocorrelation function of a large
enough and arbitrary time segment of length L′ of the received
signal by Rrr[m] ≜ 1

L′

∑L′

k=0 r[m + k]r⋆[k], where L′ ≫ L,
the following equality holds

Rrr[m] = ᾱiĀci(m, 0)
sin

(
2πβT 2

smL
′)

sin (2πβT 2
sm)

+Rww[m], (6)

where |ᾱi| = 1, Āci
(m, 0) = E {Aci

(m, 0)} is the expected
value of the periodic ambiguity function of the RS corre-
sponding to the ith satellite and Rww[m] is the autocorrelation
function of noise.

Proof: See Appendix A.

Note that the term
sin(2πβT 2

s mL′)
sin(2πβT 2

s m) in (6) has a sinc
function-like behavior in terms of m for a nonzero Doppler
rate. Assuming that the RS has good correlation properties,
the term Aci(m, 0) contains a periodic train of impulse-like
functions with a period of L samples (the RS period). For
a non-zero Doppler rate, due to sinc-like behavior of the

term
sin(2πβT 2

s mL′)
sin(2πβT 2

s m) , the autocorrelation function Rrr[m] is not
periodic as the periodic impulse-like functions are attenuated
by the effect of the sinc.

To validate Lemma 1 practically, real Starlink LEO SV sig-
nals are analyzed to demonstrate the effect of the Doppler rate
on the autocorrelation function. The details of the hardware
setup which is used to record Starlink LEO SV signals is
presented in Section V-C. Fig. 3 demonstrates the autocorre-
lation function of 150 ms of real Starlink downlink signal
for different values of the Doppler rate: (a) β = 1323,
(b) β = 523, (c) β = 323, and (d) β = 0 Hz/s. To achieve
these Doppler rate values in Fig. 3, the actual Doppler rates
of the Starlink LEO SV was estimated using the receiver that
will be described in Section IV. The estimated Doppler rate is
partially wiped-off to obtain the different β values in Fig. 3.
The large impulse in the center of the autocorrelation function
contains the summation of the autocorrelation function, the RS
ambiguity function, and noise autocorrelation at m = 0, i.e.,

Rrr[0] = ᾱiL
′Āci

(0, 0) +Rww[0]. (7)

Assuming white Gaussian noise, i.e., Rww[m] = 0 for m ̸= 0,
(7) can be used to estimate the carrier-to-noise ratio (CNR) of
the received signal. For the white Gaussian noise case, the
amplitude of the impulses for m ̸= 0 correspond to the term∣∣∣∣Āci

(m, 0)
sin(2πβT 2

s mL′)
sin(2πβT 2

s m)

∣∣∣∣ in (6). The train of the impulse-like

functions, i.e., |Āci(m, 0)|, is associated with the ambiguity
function of the always-on and on-demand RSs which have

Fig. 3. Theoretical and experimental autocorrelation function of a time
segment of 150 ms for different values of β.

good correlation properties. The period of |Āci
(m, 0)| is

approximately 1.33 ms. It can be seen in Fig. 3 that the
amplitude of the impulse train follow the sinc function-like

behavior of
∣∣∣∣ sin(2πβT 2

s mL′)
sin(2πβT 2

s m)

∣∣∣∣ which matches the results of

Lemma 1.
It should be pointed out that for large Doppler rate val-

ues, the term
∣∣∣∣ sin(2πβT 2

s mL′)
sin(2πβT 2

s m)

∣∣∣∣ approaches a Kronecker delta.

Therefore, large values of Doppler rate will attenuate the
impulses. On the other hand,

lim
β→0

∣∣∣∣∣ sin
(
2πβT 2

smL
′)

sin (2πβT 2
sm)

∣∣∣∣∣ = L′ ∀m, (8)

which is the case in Fig. 3(d).
Remark 2: Lemma 1 shows that when the Doppler rate

is perfectly wiped-off, the autocorrelation function is almost
constant as the impulses will have equal amplitudes. Therefore,
Lemma 1 can be used to obtain a rough estimate of the
Doppler rate by searching over different values of the Doppler
rate to find the one that results in a constant autocorrelation
function. Assume that the estimated Doppler rate is denoted by
β̂ = β+eβ , where β is the actual Doppler rate of the satellite
and eβ is the estimation error for the Doppler rate. β∗ denotes
an arbitrarily guessed Doppler rate value. The received signal
at the nth time instant when the Doppler rate is wiped off by
β∗ is denoted by r′[n]

r′[n] ≜ exp(−j2πβ⋆T 2
s n

2)r[n]. (9)

The r′[n] contains a residual Doppler rate denoted by β̃ =
β − β⋆. Note that if β∗ = β, the Doppler rate is wiped off

perfectly and, since lim
β→0

sin(2πβT 2
s mL′)

sin(2πβT 2
s m) = L′, it is expected

from Lemma 2 that

Rr′r′ [m] = ᾱiĀci(m, 0)L′ +Rww[m], (10)

for β∗ = β.
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B. Acquisition

The received signal at the nth time instant when the Doppler
rate is wiped-off according to r′[n] ≜ exp(−j2πβiT

2
s n

2)r[n].
Due to the periodicity of c(τn), si[n] has the following
property

si[n+mL] = si[n] exp (jωimL) 0 ≤ n ≤ L− 1, (11)

where ωi = 2πfDi0
Ts is the normalized Doppler correspond-

ing to the ith transmitting source, and −π ≤ ωi ≤ π. A vector
of L observation samples corresponding to the mth period of
the signal is formed as zm ≜ [r′[mL], r′[mL+1], . . . , r′[(m+
1)L−1]]T. The CPI vector is constructed by concatenating K
aggregates of zm vectors to form the KL× 1 vector

y =
N∑

i=1

Hisi + w, (12)

where si = [si[1], . . . , si[L]]T; the KL × L Doppler
matrix is defined as Hi ≜ [IL, exp (jωiL) IL, . . . , exp
(jωi(M − 1)L) IL]T, where IL denotes an L × L identity
matrix; and w is the noise vector.

Similar to [10], the concept of sequential matched sub-
space detection is used to provide an initial estimate for
the unknown parameters which are: (i) number of unknown
sources, (ii) corresponding RSs, (iii) chirp parameters, and
(iv) CPI. A hypothesis testing problem is solved sequentially in
multiple stages to detect the active sources in the environment.
Unlike [10], where a constant Doppler subspace was used
to distinguish between different sources. In this, paper the
matched subspace is defined based on the chirp parameters
of each source. At each stage, a test is performed to detect
the most powerful source, while the chirp subspace of the
previously detected sources are nulled.

The so-called general linear detector [40] is used at each
stage of the sequential detection algorithm.

In the first stage of the sequential algorithm, the presence
of a single source is tested, and if the null hypothesis is
accepted, then N̂ ≡ 0, which means that no source is detected
to be present in the environment. If the test rejects the null
hypothesis, the algorithm asserts the presence of at least one
source and performs the test to detect the presence of other
sources in the presence of the previously detected source. The
unknown chirp parameters, the RSs of each sources, and the
corresponding CPIs are estimated at each stage.

In general, if the null hypothesis at the ith level of the
sequential algorithm is accepted, the algorithm is terminated
and the estimated number of sources will be N̂ ≡ i− 1.

The detection problem of ith RS is defined as a binary
hypothesis test {

Hi
0 : ith source is absent

Hi
1 : ith source is present. (13)

Under Hi
1, the signal model can be modeled as

y = Hisi + Bi−1θi−1 + weqi
, (14)

where Bi−1 ≜ [H1,H2, . . . ,Hi−1] and θi−1 ≜
[sT

1 , s
T
2 , . . . , s

T
i−1]

T stores the chirp parameters and estimated
RS in the previous steps. The decision criteria for the source

detection is developed based on the generalize likelihood
ratio (GLR). A matched subspace detector for a generic form
of (13) is derived in [29]. Based on the specific characteristics
of the Doppler subspace matrix in (12), an alternative
derivation of the matched subspace detector is presented in
Appendix B. The likelihood of the GLR detector is

Li(y|ωi, βi,Ki) =
yHPSi

y
yHP⊥Bi−1

P⊥Si
P⊥Bi−1

y
, (15)

for a given normalized Doppler frequency ωi, Doppler rate βi,
and CPI Ki. Vector yH is the Hermitian transpose of y, PX ≜
X(XHX)−1XH denotes the projection matrix to the column
space of X, and P⊥X ≜ I−PX denotes the projection matrix
onto the space orthogonal to the column space of X. Also,
Si ≜ P⊥Bi−1

Hi. It should be pointed out that HH
i P⊥Bi−1

Hi =
λiI, where the scalar λi is the Schur complement of block
Ci−1, i.e., the upper (i− 1)× (i− 1) block of the matrix Ci,
whose ijth element is (see Appendix B)

cij ≜
K−1∑
k=0

exp (j(ωj − ωi)Lk) . (16)

It can be seen from (16) that the elements of the matrix Ci,
and consequently the scalar λi, are scalar functions of the
Doppler frequency difference between ith source and the
previously detected sources.

Remark 3: Similar calculation to Theorem 9.1 in [40] to
derive the probability of detection results in

Pdi = exp (−ρi + Lηi)
∞∑

k=0

ρk
i

k!

L+k−1∑
n=0

(Lηi)n

n!
, (17)

where Pdi
is the probability of detection of the ith source and

ρi = βacqλi
∥si∥2

σ2
w

, (18)

is the effective SNR of ith source. The probability of detection
is a monotonically increasing function of the scalar λi. In other
words, λi provides a measure for the reliability of detection of
the ith source. When the Doppler frequencies of the ith source
and other sources are very close, λi the becomes small which
result in a poor detection performance, i.e., lim

λi→0
Pdi = 0.

The simplified likelihood can be written as (Appendix B)

L∗i (y) = arg max
ωi,βi,Ki

∥λ−1
i ĤH

i P̂⊥Bi−1
y∥2

∥P̂⊥Bi−1
y∥2 − ∥λ−1

i ĤH
i P̂⊥

B̂i−1
y∥2

.

(19)

The likelihood should be compared with predetermined
threshold ηi which is designed based on a particular probabil-
ity of false alarm. For known subspaces and the corresponding
projection matrices, the probability of false alarm for the
ith stage of the likelihood in (15) asymptotically tends to
(cf. Theorem 7.1 in [40])

Pfai
= exp (−Lηi)

L−1∑
n=0

(Lηi)
n

n!
, (20)
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for a large number of observation samples. In the experimental
results presented in Section V, (20) is used to determine the
threshold.

The ML estimates of the CPI, denoted by K̂i, and the chirp
parameters, (f̂Di

, β̂i) can be obtained by maximizing Li(y).
Accordingly, the least squares (LS) estimate of the ith source,
i.e., si, is given by

ŝacqi
= λ−1

i HH
i P⊥Bi−1

y. (21)

The conventional and the proposed cognitive methods
use tracking loops which involve the same computational
complexity. The main difference between the computational
complexity of the proposed cognitive receiver and a conven-
tional receiver stems from the acquisition stage. The number of
complex operations is considered as a metric for computational
complexity. In the likelihood function (15), the size of the
projection matrices increases with the detection stage, i.e., i.
However, in [41] (Appendix 8B), a recursive formula is
provided to calculate the projection matrix at the ith stage
based on the already calculated projection matrix at (i− 1)th
stage. Using the recursive formula presented in this appendix,
the complexity of the projection matrix is O(K2) where
O(·) denotes the rate of growth of a function, i.e., its order.
Consequently, the number of complex operations to calculate
the matched subspace detector is O((5(KL)2 +KL)N).

C. Tracking

The initial estimate of the chirp parameters f̂Di
and β̂i,

the estimated CPI K̂i, and the associated likelihood functions
L∗i s are fed to the tracking stage along with the estimated
RS. By employing the a phase-locked loop (PLL) and a
delay-locked loop (DLL) the delay and the Doppler are tracked
over time. The major difference between the proposed tracking
loops and the conventional tracking loops is the RS-locked
loop (RSLL). The tracked Doppler and the delay are used to
lock the estimated RS signal along with the code and carrier-
phase. The details of the tracking loops are discussed next.

1) RS-Locked Loop (RSLL): The RS in the tracking loop
for the ith source is initialized with the RS estimated in the
acquisition stage ŝacqi

. Therefore, ŝ0i
= ŝacqi

. Assuming that
the ith source is being tracked, in this subsection the subscript i
is dropped for convenience of notation. Let t̂sk

and f̂Dk
be

the code-phase and the Doppler estimates at time-step k in the
tracking loop, respectively. In the kth time-step of the tracking
loop, the estimated RS is updated by coherently accumulating
the measurement at the kth step of the tracking loop when the
delay and Doppler are wiped-off. If the subspace spanned by
the columns of Si = P⊥Bi−1

Hi is viewed as the ith source’s
signal subspace, and the orthogonal subspace as the noise
subspace, then the likelihood L∗i in (19) can be interpreted as
an estimated SNR corresponding to the ith gNB. The reader is
referred to [29] for further interpretations of matched subspace
detectors. The gain loop of the RSLL is designed based on the
performance of the acquisition. If the estimated SNR of the
ith source, i.e., L∗i , is large, the tracking loop relies more
on the acquisition by diluting the contribution of the new
measurements in the estimation of the RS. Hence, the metric

Fig. 4. Tracking loops: The main difference between the proposed tracking
loop and conventional tracking loops [42] is the local RS generator with
adaptive gains which is highlighted in red color as described in Section IV-C.1.

L∗i informs the performance of the detection of the ith source
to the tracking loops. It will be shown that this link between
the acquisition and the tracking results in a dramatic effect on
the navigation performance.

The nth sample of the updated RS at kth time-step of
tracking loop is calculated as

ŝk[n] =
k

k+1
· ŝk−1[n]
||ŝk−1[n]||

+
Gi

k+1
·
yk[n+n̂dk

]exp
(
−j2πf̂Dk

n
)

||yk[n+n̂dk
]||

, (22)

where n̂dk
≜

⌊
t̂sk

Ts

⌉
and ⌊·⌉ denotes rounding to the closest

integer, and Gi = 1
K̂i
· 1
L∗i
, denotes the loop-gain for the RSLL.

2) PLL and DLL: To track the phase of the received signals,
a PLL, consisting of a phase discriminator, a loop filter, and a
numerically-controlled oscillator (NCO) with a second-order
PLL with a loop filter transfer function is employed. The
estimate of the Doppler frequency at each time-step k is
deduced by dividing the rate of change of the carrier-phase
error vPLL,k in rad/s by 2π. Assuming a zero initial carrier-
phase, the estimate of the carrier-phase estimate at time-step k
is updated according to θ̂k = θ̂k−1+vPLL ·Tsub, where Tsub is
the time length of coherent accumulation in the tracking loop.

Subsequently, a carrier-aided DLL, consisting of an early-
minus-late discriminator and a simple gain loop filter is used to
follow the delay of each Tsub of the measured signals. The rate
of change of the code-phase vDLL is used to update code-phase
of the received signals, assuming low-side mixing at the radio
frequency front-end, according to

t̂sk+1 = t̂sk
−

(
vDLL,k +

vPLL,k

2πfc

)
· Tsub. (23)

Fig. 4 illustrates the proposed tracking loops.
The difference between the proposed tracking loop and

conventional tracking loops is highlighted in red color. The
core blocks of the proposed tracking loop are similar to the
traditional carrier and code-phase tracking architectures [42].
In order to track the time-variations of the carrier-phase,
a traditional PLL is composed of three basic constituent
blocks: (i) a code and carrier-phase discriminator, which is
in charge of providing output measurements that, on average,
are proportional to the code-phase and carrier-phase error to
be compensated; (ii) a loop filter, which is nothing but a very
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Fig. 5. Experimental environment for the 5G NR scenario showing UAV
trajectory and the two gNBs.

narrow low-pass filter that smoothes the variability caused
by thermal noise at the phase detector output; and (iii) a
numerically-controlled oscillator (NCO) for generating the
local carrier replica based on the corrections imposed by the
loop filter output. The main difference between the proposed
tracking loop and conventional tracking loops is the local RS
generator with adaptive gains as described in Section IV-C.1.

V. EXPERIMENTAL RESULTS

The performance of the proposed receiver is assessed in
three different scenarios: (i) to navigate a UAV with terrestrial
5G NR signals, (ii) to localize an unknown 5G gNB in the
environment from measurements made by a mobile ground
vehicle, and (iii) to localize a stationary receiver with Starlink
LEO SV downlink signals. The objectives of the experiments
are to: (i) demonstrate the performance of the acquisition of
unknown signals in the almost static and intensive Doppler
rate scenarios, (ii) assess the effect of CPI estimation on
the navigation performance, (iii) examine the effect of the
proposed RSLL tracking loop on the quality of RS estimation,
and (iv) analyze the transmission of Starlink unknown signals
to detect the always-on and on-demand modes of Starlink LEO
SVs. In the following experiments, (20) is used to calculate
the threshold ηi for a probability of false alarm of 10−4 for
all the stages.

A. Experiment 1: UAV Navigation With 5G NR Signals

An Autel Robotics X-Star Premium UAV equipped with
a single-channel Ettus 312 universal software radio periph-
eral (USRP) connected to a consumer-grade 800/1900 MHz
cellular antenna. The cellular receivers were tuned to the
cellular carrier frequency 632.55 MHz, which is a 5G NR
frequency allocated to the U.S. cellular provider T-Mobile.
Samples of the received signals were stored for off-line post-
processing. The experimetnal layout is presented in Fig. 5.
During the course of the experiment, the receiver was listening
to two gNBs referred to as gNB1 and gNB2 in Fig. 5. The
ground-truth reference trajectory was taken from the on-board
Ettus 312 USRP GPS solution.

The main limitations of the algorithm are: (i) the pro-
posed receiver, requires periodic RSs in the downlink signal,

and (ii) in the signal model, a single tap channel which
corresponds to the LOS path with arbitrary channel gain α
is considered. More precisely, the channel impulse response is
modeled as h[n] = αδ[n−nd], where α is the complex channel
gain between the transmitter and the receiver, and nd is the
code-delay corresponding to the transmitter and the receiver.
This channel model considers a flat fading scenario, where
the effect of multiple “close” paths is considered in a single
path gain α. Based on the underlying distribution of α, the
considered h[n] can model a Rayleigh or Rician flat fading
channel.

Recall from (16) and (17) that when the apparent Doppler
frequencies of the unknown sources are close to each other,
the effective SNR, i.e., ρi defined in (18), will have a small
value which in turn results in a poor detection/acquisition
performance. Therefore, in order for the unknown sources
to have enough separation in the Doppler subspace, it is
practically preferred to perform the acquisition stage when the
UAV is moving. However, to challenge the proposed receiver,
the acquisition is performed in the starting phase of the flight
when the UAV is almost stationary. The Doppler frequency
depends on the LOS velocity between the UAV and the gNBs.
When the UAV is almost stationary, the Doppler subspaces of
the two gNBs will overlap which results in a small ρi. It will
be seen that in the starting phase of the flight, there is only
going to be a very slight separation in the Doppler subspace
(on the order of 1 Hz) which is due to very small movements
of the UAV.

1) Detection and Tracking: The ML estimate of the CPI
was obtained to be 100 for both gNBs. The likelihoods in the
two different stages of the acquisition are plotted in Fig. 6(a).
The blue curve demonstrates the likelihood in the first stage.
It can be seen that the only one peak at -1 Hz is observed in the
blue curve which corresponds to the first detected gNB. Due
to the mentioned Doppler subspace overlap, the two sources
are masking each other in the Doppler subspace. In the second
stage the first gNB is nulled (red curve in 6(a)). After nulling
the first gNB, a second peak appears in the likelihood function
which is located at 0 Hz and corresponds to the second gNB.
Fig. 6(b) demonstrates the carrier-phase errors corresponding
to the two gNBs, showing that the two gNBs are being tracked.

2) Post-Acquisition and Post-Tracking Reconstructed
Frame: After the detection of each gNB, (21) is used
to estimate the corresponding RS. In this subsection, the
reconstructed RS frame structure is presented for the
post-acquisition stage where the estimate of the RS is given
in (21), and after the estimated RS is refined in the tracking
loops using (22). Fig. 7 demonstrates the frame structure of
the estimated RS for gNB1. Fig. 7(a) shows the resulting
RS frame structure after acquisition, and Fig. 7(b) shows
the refined estimated RS after tracking. Comparing the
reconstructed frame in 7 with Fig. 2 shows that other than the
broad cast signals (SS/PBCH blcok), several on-demand active
subcarriers are also detected. As discussed in Section III, the
subcarriers indicated with dark blue color code in the OFDM
frame are the subcarrier that do not correspond to the RSs.
Ideally, in the estimated RS, the energy of these subcarriers
should be zero (darker blue). However, due to the effect of
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Fig. 6. Acquisition and tracking 5G gNBs: (a) The two gNBs are detected
although their Doppler frequencies are almost right on the top of each other.
The likelihood in the first stage (blue curve) exceeds the threshold which
means that the first gNB is detected. In the likelihood of the second stage (the
red curve) the first gNB is nulled, and the second gNB is detected. (b) The
carrier-phase error in the tracking loops for the two gNBs. The carrier-phase
errors of both detected sources are converging which means that the tracking
loops are locked for both detected sources.

noise, these subcarriers may not appear in dark blue color.
It can also be observed that the post-tracking estimated RS
is less noisy (darker) than the RS obtained by (21) in the
acquisition.

3) Navigation Framework: Next, the pseudorange observ-
ables from the two gNBs will be used to estimate the 2D
position of the UAV-mounted receiver, denoted by rr. The
code-phase in (23) can be used to readily deduce the pseu-
dorange observables. The pseudorange, expressed in meters,
from the n-th gNB can be modeled as

zn(k)=∥rr(k)−rsn
∥+c · [δtr(k)−δtsn

(k)]+vn(k), (24)

where rsn is the 2D position of the n-th gNB, c is the
speed of light, δtr and δtsn are the receiver ’sand n-th gNB’s
clock biases, respectively, and vn is the measurement noise,
which is modeled as a zero-mean white Gaussian sequence
with variance σ2

n. The location of the gNBs were mapped
prior to the experiment, therefore, rsn

is known. The terms
c · [δtr(k)− δtsn(k)] are combined into one term as they do
not need to be estimated separately, yielding

cδtn(k) ≜ c · [δtr(k)− δtsn
(k)] . (25)

Cellular gNBs possess tighter carrier frequency syn-
chronization than time (code-phase) synchronization– the
code-phase synchronization requirement as per the cellular
protocol is typically within 1.1 µs [43]. It is assumed that
the resulting clock biases in the TOA estimates will be very

Fig. 7. The reconstructed frame structure: (a) post-acquisition stage,
and (b) post-tracking stage. The blue subcarriers correspond to non-active
subcarriers or the subcarriers which do not correspond to the RS. Ideally
these subcarriers should have zero energy in the detected RS. The non-active
subcarriers in (b) have less energy in the detected RS which means that the
post-tracking version of the estimated RS is less noisy.

similar, up to an initial bias. Consequently, one may leverage
this relative frequency stability to eliminate parameters that
need to be estimated. The following re-parametrization is
proposed

cδ̄tn(k) ≜ cδtn(k)− cδtn(0) ≡ cδt(k) + ϵn(k), ∀n (26)

where cδt is a time-varying common bias term independent of
the nth gNB, and ϵn is the deviation of cδ̄tn from this common
bias and is treated as measurement noise. Using (26), the TOA
measurement (24) can be re-parameterized as

zn(k) = ∥rr(k)− rsn
∥+ cδt(k) + cδt0n

+ ηn(k), (27)

where cδt0n ≜ cδtn(0) and ηn(k) ≜ ϵn(k) + vn(k) is the
overall measurement noise.

Note that cδt0n
can be obtained by knowing the initial

receiver’s position and from the initial measurement zn(0),
according to cδt0n

≈ zn(0)− ∥rr(0)− rsn
∥.

The TOA measurements were fed to an extended
Kalman filter (EKF) to estimate the state vector x ≜[
rT

r , ṙ
T
r , cδt, cδ̇t

]T

, where ṙr is the UAV’s 2–D velocity vector

and δ̇t is the clock drift. A white noise acceleration model was
used for the UAV’s dynamics, and a standard double integrator
driven by process noise was used to model the clock bias
and drift dynamics [44]. As such, the discrete-time dynamics
model of x is given by

x(k + 1) = Fx(k) + w(k), (28)

where F = diag [Fpv,Fclk],

Fpv =
[

I2 T I2

02×2 I2

]
, Fclk =

[
1 T
0 1

]
, (29)
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Fig. 8. The effect of the loop gain on the navigation RMSE. The minimum
RMSE is obtained when G1 = 1

K̂1
· 1
L∗1

and G2 = 1
K̂2

· 1
L∗2

.

and T is the time interval between two measurements;
and w(k) is the process noise, which is modeled as a
zero-mean white random sequence with covariance matrix
Q = diag [Qpv,Qclk] where

Qpv =

[
T 3

3 Q̃xy
T 2

2 Q̃xy
T 2

2 Q̃xy T Q̃xy

]
, (30)

Qclk = c2

[
Sw̃δt

T + Sw̃δ̇t

T 3

3 Sw̃δ̇t

T 2

2

Sw̃δ̇t

T 2

2 Sw̃δ̇t
T

]
, (31)

Q̃xy ≜ diag [q̃x, q̃y], and the x, y acceleration process
noise spectra of the white noise acceleration model were
set to q̃x = q̃y = 5 m2/s3, the time interval
between two measurements was T = 0.0267 s, and the
receiver’s clock process noise spectra were chosen to be
Sw̃δt

= 1.3 × 10−22 and Sw̃δ̇t
= 7.9 × 10−25 which are

that of a typical temperature-compensated crystal oscillator
(TCXO) [45]. Note that rr is expressed in an east-north-up
(ENU) frame centered at the UAV’s true initial position. The
EKF state estimate was initialized at x̂(0) = 06×1 with an
initial covariance of P(0) = diag[3·I2×2, I2×2, 10−2, 10−4].
The measurement noise covariance was set to R = I2×2.

Effect of RSLL loop gain on the navigation results: Next,
the effect of the RSLL loop gain on the navigation results is
assessed. The RSLL loop gain is set to be Gi = 1

K̂i
· 1
L∗i

,

where L∗i is the likelihood of the ith Rs, and the K̂i is the
estimated CPI corresponding to the ith RS.

Fig. 8 demonstrates the position RMSE in terms of the
RSLL loop gain.

According to the obtained values of K̂i, and L∗i in this
experiment, the designed RSLL loop gains are G1 = 1

K̂1
· 1
L∗1

=
0.002 and G2 = 1

K̂2
· 1
L∗2

= 0.005. To assess the effect of
the loop gain on the navigation RMSE, the loop gain for
the second RS is set to 0.002, and the loop gain for the
first RS is swept between different orders of magnitude as
5 × [10−6, 10−5, . . . , 10−1] (blue curve). Similarly, the loop
gain for the first RS is set to be 0.005, and sweeping the
loop gain for the second RS different orders of magnitude
as 2 × [10−6, 10−5, . . . , 10−1]. It can be seen that the least
navigation RMSE is obtained by selecting G1 = 1

K̂1
· 1
L∗1

, and
G2 = 1

K̂2
· 1
L∗2

as the loop gains corresponding to the first and
the second sources, respectively.

Effect of CPI on the navigation solution: Next, the effect
of CPI selection on the navigation results is assessed.

Fig. 9. (a) The navigation solution for different values of CPIs demonstrates a
region where the solution does not converge. (b) The estimated trajectories via
the proposed receiver and the receiver in [46] which only uses the SS/PBCH
block, and the ground truth trajectory.

Fig. 9(a) compares the RMSE for different values of CPI.
It can be seen that if one selects a CPI which is less than
a particular value, the navigation solution does not converge.
It can also be observed that for a range of CPIs the error
would be bounded between 4.2 to 5.8 m in the 416 m of
flight trajectory. Fig. 9(b) shows the estimated trajectories via
the proposed receiver and the receiver in [46] which only uses
the SS/PBCH block, and the ground truth trajectory. Fig. 8
demonstrates the position RMSE in terms of the RSLL loop
gain.

B. Experiment 2: Cognitive Sensing a 5G NR gNB on a
Ground Vehicle

A ground vehicle was equipped with a quad-channel
National Instrument (NI) USRP-2955 and two consumer-
grade 800/1900 MHz cellular antennas to sample 5G signals
near Ohio Stadium in Columbus, Ohio, USA. One chan-
nel from the USRP was tuned to a 632.55 MHz carrier
frequency, which is a 5G NR frequency allocated to the
U.S. cellular provider T-Mobile. The sampling rate was set
to 20 Mega-samples per second (MSps) and the sampled
5G signals were stored on a laptop for post-processing.
In order to obtain the vehicle’s trajectory, the vehicle was
equipped with a Septentrio AsteRx SBi3 Pro+ with a dual
antenna multi-frequency GNSS receiver with real-time kine-
matic (RTK) and an industrial-grade inertial measurement unit
(IMU). The vehicle’s traversed a trajectory of 1.79 km. Fig. 10
shows the environment layout, the vehicle trajectory, and the
experiment setup.
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Fig. 10. Environment layout, vehicle trajectory, and hardware setup. The true
location and a photo of the location of the blindly detected gNB are shown.

Fig. 11. Acquisition results: Five sources are detected in the acquisition
stage. The red dashed horizontal line is the threshold and the green vertical
line corresponds to the detected source at each stage. The gray vertical lines
are the previously detected sources at each stage.

The location of the gNB and the transmitted RS from
the gNB were unknown to the receiver. The goal of this
experiment was to cognitively sense the location of the gNB
via the proposed receiver. Only the carrier frequency of the
transmitted signal was known to the receiver. Fig. 11 demon-
strates the acquisition results. It can be seen that five sources
were detected by the receiver. The detected sources could
correspond to either gNBs or false alarm due to multipath. The
first detected source in Stage 1 of the acquisition algorithm has
the largest likelihood, therefore, it corresponds to the strongest
path.

The transmitter and receiver clock terms, i.e., δtr(k) and
δtsn

(k) in (24), are both unknown to the receiver. Assuming
a first-order clock model for both the gNB and the receiver,
the combined clock term in (24) can be written as cδtn(k) =
c · [δtr(k) − δtsn(k)] ≜ ξ + ψk where ξ is the clock bias
and ψ is the clock drift [47]. Note that rr(k) is known
and the receiver uses pseudorange observables to estimate
the gNB’s position rs. Next, define the parameter vector
x ≜ [rT

s , ξ, ψ]T. Let z denote the vector of all the pseudo-
range observables stacked together. Then, one can write the
measurement equation given by z = g(x)+vz , where g(x) is

Fig. 12. Delay tracking results of the detected sources versus the true delay
corresponding to the gNB. The delay of one of the sources matches the true
delay.

Fig. 13. Cognitive sensing results: The True position of the gNB and the
blindly estimated position are plotted. The 2D error was found to be 5.83 m.

a vector-valued function that maps the parameter vector x to
the pseudorange observables according to (24), and vz denotes
the vector of all measurement noises stacked together. Next,
a nonlinear least-squares (NLS) estimator was used to estimate
x denoted by x̂. The estimated position was validated by on-
site verification. The 2D position error of the estimated gNB
found to be 5.83 m. The true location of the gNB and the
estimated location of the gNB are shown in Fig. 13.

Fig. 12 demonstrates the delay tracking results for each
source versus the true delay which was obtained according
to the true location of the gNB and the ground truth trajectory
of the receiver. In this paper, cognitive sensing of the gNB
is considered. The cognitive sensing of multipath and other
interfering components can be considered in future work.

Fig. 14(a) demonstrates the autocorrelation of the estimated
RS in comparison with the autocorrelation of the always-on
signals (PSS, SSS, and PBCH block). It can be seen that
the autocorrelation function of the estimated RS is sharper in
comparison with the autocorrelation of the always-on signals
which results in a better TOA tracking performance. In order to
demonstrate the effect of better autocorrelation properties the
estimated RS in comparison with the always-on components,
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Fig. 14. Autocorrelation of the estimated RS in comparison with the
autocorrelation of always-on signals. (b) The estimated Doppler using the
proposed method which exploits the always-on and on-demand components
versus the method in [46].

Fig. 15. Acquisition stages in the proposed receiver for Starlink downlink
signals showing the likelihood function (48) at each stage and the detected
and nulled source. In the first stage, a source is detected at 200 Hz (dashed
green line). In the second stage the first detected source is nulled.

the estimated Doppler is plotted in Fig. 14(b). It can be seen
that the tracked Doppler using the method in [46] which only
relies on always-on signals has a larger estimation variance
compared to the proposed method.

C. Experiment 3: Stationary Positioning With Starlink LEO
SV Signals

A stationary National Instrument (NI) universal soft-
ware radio peripheral (USRP) 2945R was equipped with
a consumergrade Ku antenna and low-noise block (LNB)
downconverter to receive Starlink signals in the Ku-band. The
sampling rate was set to 2.5 MHz and the carrier frequency
was set to 11.325 GHz to record Ku signals over a period
of 800 s. Six SVs were detected this period. To avoid
redundancy, the acquisition and tracking results of one of the
Starlink SVs are presented next.

Fig. 16. Carrier-phase error for arbitrary selected CPI of 40, and the ML
estimated CPI of 300.

TABLE I
POSITIONING RESULTS COMPARISON BETWEEN VALUES OF CPI

Fig. 17. (a) Starlink SV trajectories, (b) ground truth position and initial
position estimate, (c) ground truth position and estimated poisition.

1) Acquisition: The acquisition stages in the proposed
receiver is shown in Fig. 15. As it can be seen in this figure,
in the first stage of the acquisition, one source is detected at
the normalized Dopplre frequency of 199 Hz. Finally, In the
second stage, the Doppler subspace of the first source is
nulled and the resulting likelihood is less than the threshold
or equivalently N̂ = 1.

2) The Effect of CPI on Tracking Performance: Fig. 16
demonstrates the carrier-phase error for the different values
of K1 = 40 and the K1 = 300 which was the ML estimate of
the CPI obtained by maximizing (15) over different values
of CPI. As it can be seen in Fig. 16, the standard deviation of
the carrier-phase error for K1 = 300 is smaller than that of
the case where CPI is arbitrary selected to be K1 = 40.

3) Navigation Results: The navigation results can be seen in
Fig. 17. The experimental setup and the navigation framework
is similar to the setup in [37]. Six starlink satellite was
tracked using the proposed receiver. The receiver position was
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initialized as the centroid of all SV positions, projected onto
the surface of the earth, yielding an initial position error of
179 km. The final two dimensional error was 6.5 m using the
six Starlink LEO SVs. Table I compares the 2D positioning
results for different values of CPI. It can be seen that if one
select CPI = 30, the 2D navigation solution does not converge.
The skyplot of the satellites and the navigation results are
shown in Fig. 17.

VI. CONCLUSION

An adaptive cognitive receiver architecture was proposed
to extract navigation observables from Starlink LEO SV and
5G NR signals, without requiring knowledge of the RSs. The
cognitive nature of the proposed receiver enables estimating
both always-on and on-demand RSs which are not neces-
sarily always-on. The parameters of the proposed receiver
is designed to enable deciphering RSs in both intensive and
non-intensive Doppler scenarios. It was shown that the esti-
mated RSs contain both always-on and on-demand component
of the transmitted signals. The proposed cognitive structure
was modified based on an iterative algorithm for the ML
CPI estimator. Tracking loops were also designed in order
to refine and maintain the estimates of the RS provided by
the acquisition stage and follow the delay and Doppler of the
received signals. Experimental results were presented showing
the performance of the proposed receiver by: (i) enabling an
unmanned aerial vehicle (UAV) to detect and exploit terrestrial
5G NR cellular signals for navigation purposes showing a
root-mean-square error (RMSE) which is bounded between
4.2m and 5.8 m in a total trajectory of 416 m, (ii) enabling a
ground vehicle to cognitively sense (detect blindly, exploit all
the information, and track) an unknown gNB in a traversed
trajectory of 1.79 km, and estimating the position of the gNB
with a two-dimensional error of 5.83 m in a blind fashion,
and (iii) exploiting Starlink OFDM signals for positioning a
stationary receiver showing a two-dimensional error of 6.5 m
when the initial estimate is 179 km away from the true position
of the receiver.

APPENDIX A
PROOF OF LEMMA 1

The autocorrelation of a time segment of length L′ of the
observation samples r[n] is equal to

Rrr[m] =
|αi|2 exp

(
j2π(fDi0

mTs + βi

2 2m2T 2
s )

)
L′

×
L′−1∑
k=0

ci[m+ k − tsi [n]]c⋆i [k − tsi [n]]

× exp
(
j2πβimkT

2
s

)
+

1
L′

L′−1∑
k=0

weqi
[m+ k]w⋆

eqi
[k]. (32)

By modeling the OFDM-based RSs as a wide sense cyclo-
stationary (WSCS) random process and assuming a large

enough L′, the following equality holds [48]

Rrr[m] = ᾱ2
i

1
L′

× Āci
(m, 0)

L′−1∑
k=0

exp
(
j2πβimkT

2
s

)
+Rww[m].

(33)

where ᾱi ≜ |αi|2 exp
(
j2π(fDi0

mTs + βi

2 2m2T 2
s )

)
,

Āci(m, 0) ≜ E {ci[m+ k]c⋆i [k]}, and E {X} denotes the
expected value of the random variable X . Solving the
geometric sequence on the right hand of (33) proves
Lemma 1.

APPENDIX B
DERIVATION OF LIKELIHOOD FUNCTION (15)

The binary hypothesis test in (13) can be written as{
Hi

0 : Aθi = 0
Hi

1 : Aθi ̸= 0. (34)

where, A = [IL,0, . . . ,0] is an L× iL matrix. Given Wi, for
the general linear detection model (34), the GLR is derived as
[40, Section 9.4.3]

L(y) =

(
Aθ̂

)H (
A

(
BH

i Bi

)−1
AH

)−1 (
Aθ̂

)
y

(
IL −Bi

(
BH

i Bi

)−1
BH

i

) , (35)

Since, y = Hisi + Bi−1θi−1 + weqi
, the least squares

estimation of si is denoted by

ŝi = J−1
i HH

i P⊥Bi−1
y. (36)

where Ji =
(
HH

i P⊥Bi−1
Hi

)
. Also, PX ≜ X(XHX)−1XH,

denotes the projection matrix to the column space of X, and

P⊥X ≜ IL −X
(
XHX

)−1
XH, (37)

denotes the projection matrix onto the space orthogonal to the
column space of X.

Using the matrix inversion lemma, one can show that(
BH

i Bi

)−1
=

[
Q1 Q2

Q3 Q4

]
,

Q1 = J−1
i ,

Q2 =
(
H†

iP
⊥
Bi−1

− J−1
i HT

i

)
(B†

i−1)
H,

Q3 = QH
2 ,

Q4 = B†
i−1

(
IL + HiJ−1

i HH
i

) (
B†

i−1

)H

, (38)

where H† ≜
(
HHH

)−1
HH.

It should be pointed out that the observation vector can
be written as y = Biθi + weqi . Hence, the least squares
estimation is obtained as

θ̂ = (BiBi)
−1 BH

i y. (39)
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In the numerator of (35), one has

Aiθ̂i = Ai

[
Q1 Q2

Q3 Q4

]
BH

i y

=
(
Q1HH

i + Q2Bi−1

)
y

= J−1
i−1H

H
i

(
IL −PBi−1

)
y.

Therefore, using (36), one has

Aiθ̂i = ŝi. (40)

Moreover, using (38), one has

Bi

(
BH

i Bi

)−1
BH

i = IL −P⊥Bi−1
+ P⊥Bi−1

HiJ−1
i HH

i P⊥Bi−1
.

(41)

Replacing (40) and (41) in (35) yields

Li(y|Wi) =
yHPSiy

yHP⊥Bi−1
P⊥Si

P⊥Bi−1
y
. (42)

The matrices Hi and P⊥Bi−1
can be written as

Hi = hi ⊗ IL, P⊥Bi−1
= P̄⊥i−1 ⊗ IL, (43)

where, hi ≜ [1, exp (jωiL) , . . . , exp (jωi(K − 1)L)]T,
P̄⊥i−1 ≜

(
IL −Bi−1

(
BH

i−1Bi−1

)
BH

i−1

)
, Bi−1 ≜

[h1, . . . ,hi−1], and ⊗ denotes the Kronecker product.
Hence, one can write

HH
i P⊥Bi−1

Hi =
(
hH

i P̄⊥i−1hi

)
⊗ IL. (44)

The scalar hH
i P̄⊥i−1hi can be written as

hH
i P̄⊥i−1hi = cii −

[
ci1, . . . , ci(i−1)

]
·


c11 c12 . . . c1(i−1)

c21 c22 . . . c2i

...
. . . . . .

...
ci1 ci2 . . . c(i−1)(i−1)


−1 

c1i

c2i

...
c(i−1)i

 ,
(45)

which is the Schur complement of Ci−1 of matrix Ci where

Ci =


c11 c12 . . . c1i

c21 c22 . . . c2i

...
. . . . . .

...
ci1 ci2 . . . cii

 , (46)

with cij ≜
∑K−1

k=0 exp (j(ωj − ωi)Lk). Hence, the following
equality holds

HH
i P⊥Bi−1

Hi = λiIL, (47)

where the scalar λi is the Schur complement of block Ci−1.
Consequently, the likelihood (15) at the ith stage can be
simplified as

∥λ−1
i ĤH

i P⊥Bi−1
y∥2

∥P⊥Bi−1
y∥2 − ∥λ−1

i ĤH
i P⊥

B̂i−1
y∥2

Hi
1

≷
Hi

0

ηi. (48)

where ηi is a predetermined threshold at the ith stage.
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