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Ad Astra: Simultaneous Tracking and Navigation
with Megaconstellation LEO Satellites

Zaher M. Kassas, Nadim Khairallah, and Sharbel Kozhaya

Abstract—We are witnessing a space renaissance. Tens of

thousands of broadband low Earth orbit (LEO) satellites are

expected to be launched by the end of this decade. These

planned megaconstellations of LEO satellites along with existing

constellations will shower the Earth with a plethora of signals

of opportunity, diverse in frequency and direction. These signals

could be exploited for navigation in the inevitable event that

global navigation satellite system (GNSS) signals become unavail-

able (e.g., in deep urban canyons, under dense foliage, during

unintentional interference, and intentional jamming) or untrust-

worthy (e.g., under malicious spoofing attacks). Nevertheless,

to exploit “uncooperative” LEO satellites opportunistically for

navigation, a number of incumbent challenges must be addressed,

namely, the unknown nature of their signals, ephemerides, and

clock errors. Recent advances in cognitive receiver design have

shown the ability to extract navigation observables (pseudorange,

Doppler, and/or carrier phase) from unknown LEO signals.

This tutorial focuses on addressing the latter challenges via a

framework termed STAN: simultaneous tracking and navigation.

STAN estimates the navigating vehicle’s states simultaneously

with the states of orbiting LEO satellites. STAN employs a

cognitive receiver that exploits LEO satellite downlink signals

to produce navigation observables, which are fused through an

extended Kalman filter (EKF) to aid the vehicle’s inertial naviga-

tion system (INS) in a tightly coupled fashion. First, this tutorial

presents the models governing the vehicle’s INS kinematics, LEO

satellite dynamics, clock error dynamics, and LEO measurements

(pseudorange, Doppler, and/or carrier phase). Next, the tutorial

formulates the EKF’s state vector and details the EKF’s time and

measurement updates. To demonstrate the efficacy of STAN, the

tutorial presents simulation results showcasing an aerial vehicle

navigating with unknown LEO satellites. The aerial vehicle is

assumed to be equipped with an altimeter and a tactical-grade

inertial measurement unit (IMU), navigating for 15.43 km in 300

seconds, in which GNSS signals were only available for the first

60 seconds. It is demonstrated that the final three-dimensional (3-

D) position error and position root mean squared error (RMSE)

of a typical tightly-coupled GNSS-aided INS grows to 1,536

m and 897 m, respectively. In contrast, the STAN framework

with 77 LEO satellites (resembling Orbcomm, Iridium NEXT,

and Starlink constellations) achieved a final 3-D position error

and 3-D position RMSE of 15.2 m and 7.3 m, respectively with

pseudorange measurements, and 37.1 m and 10.6 m, respectively

with Doppler measurements. To demonstrate the efficacy of STAN

in the real-world, the tutorial presents experimental results of a

ground vehicle navigating with multi-constellation LEO satellites.

The vehicle traversed 4.15 km in 150 seconds, in which GNSS
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signals were only available for the first 80 seconds. It is shown

that the final 3-D position error and 3-D position RMSE of the

vehicle’s GNSS-aided INS with an industrial-grade IMU and an

altimeter grew to 472.7 m and 118.5 m, respectively. In contrast,

the final 3-D position error and position RMSE of the STAN

framework with signals from 2 Orbcomm, 1 Iridium NEXT, and

3 Starlink LEO satellites were 27.1 m and 18.4 m, respectively.
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I. INTRODUCTION

We are witnessing a space renaissance. An ambitious image
of an Earth connected through a web woven from low Earth
orbit (LEO) satellites is taking the world by storm, promising
high-resolution images; remote sensing; and global, high-
availability, high-bandwidth, and low-latency Internet. Older
LEO constellations; like Orbcomm, Iridium, and Globalstar;
are welcoming a new wave of thousands of broadband mega-
constellations, funded by major technology giants, such as
SpaceX, Amazon, among others [1]. Fig. 1 shows some of the
existing and future LEO megaconstellations that will blanket
the Earth. These megaconstellations of LEO satellites will
shower the Earth with a plethora of signals of opportunity,
diverse in frequency and direction [2] (see Table I). These
signals could be exploited for positioning, navigation, and
timing in the inevitable event that global navigation satellite
system (GNSS) signals become unavailable [3] (e.g., in deep
urban canyons, under dense foliage, during unintentional in-
terference, and intentional jamming) or untrustworthy (e.g.,
under malicious spoofing attacks).

Fig. 1. Existing and future LEO satellite constellations

The concept of large LEO satellite constellations is not
new; however, recent developments in satellite technology,
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reduction in launch costs and commercialization of LEO
megaconstellations, have been key enablers to realize LEO
satellite megaconstellations. This rapidly developing frontier
is attracting many players, from government and defense
agencies, to private corporations, to international competitors.

TABLE I
SOME EXISTING AND FUTURE LEO SATELLITE CONSTELLATIONS

System Number of Frequency

satellites band

Ex
is

tin
g Orbcomm 36 VHF

Globalstar 48 S and C
Iridium NEXT 66 L and Ka

Fu
tu

re

Boeing 147 V and Ka
SpaceMobile 243 Ka and V

OneWeb 882 Ku and Ka
Telesat 1,671 Ku and Ka

Kuiper (Amazon) 3,236 Ku and Ka
Starlink (SpaceX) 11,943 Ku, Ka, and V

The promise of utilizing LEO satellites for navigation has
been the subject of numerous recent studies [4]–[24]. While
some studies call for tailoring the transmission protocol to
support navigation capabilities [25]–[31], other studies pro-
pose to exploit the transmitted signals for navigation in an
opportunistic fashion [32]–[41]. The former studies allow
for simpler receiver architectures and navigation algorithms.
However, they require significant investment in satellite in-
frastructure and spectrum allocation, the cost of which private
corporations; such as OneWeb, SpaceX, Amazon, Telesat,
Boeing, among others; which are planning to aggregately
launch tens of thousands of satellites into LEO may not
be willing to pay. Even if these corporations agree to that
additional cost, there will be no guarantees that they would
not charge for “extra navigation services.” As such, exploiting
LEO satellite signals opportunistically for navigation becomes
the more viable approach.

To address the limitations and vulnerabilities of GNSS,
opportunistic navigation has received significant attention over
the past decade or so. Opportunistic navigation is a paradigm
that relies on exploiting ambient radio signal of opportunity
for positioning, navigation, and timing [42]. Besides LEO
satellite signals, other signals of opportunity include AM/FM
radio [43], [44], digital television [45], [46], and cellular [47]–
[51], with the latter yielding submeter-accurate navigation on
unmanned aerial vehicles [52] and meter-level navigation on
ground vehicles [53].

This tutorial considers opportunistic navigation with mega-
constellation LEO satellites. In other words, it does not con-
sider LEO constellations specifically designed for navigation
purposes [54] (commonly referred to “cooperative” satellites)
but instead, it focuses on exploiting LEO satellite signals
of opportunity which are “non-cooperative,” i.e., those with
minimal and imperfect knowledge about their signals and
ephemerides. Opportunistic navigation with “non-cooperative”
satellites poses numerous intriguing scientific and engineering
design questions: Can one extract useful navigation observ-
ables (pseudorange, Doppler, and/or carrier phase) from un-

known LEO signals? How to deal with the large uncertainty
associated with the LEO ephemerides and the unknown nature
of their clock errors? Recent advances in cognitive receiver
design have shown the ability to extract navigation observables
(pseudorange, Doppler, and/or carrier phase) from unknown
LEO signals [55], [56]. This tutorial focuses on addressing the
latter challenges via a framework termed STAN: simultaneous
tracking and navigation.

It is worth noting that while LEO constellations with
dedicated navigation services could offer certain quality of ser-
vice guarantees (e.g., accuracy, coverage, and integrity), they
suffer from certain drawbacks when compared to opportunistic
approaches: (1) the user’s privacy could compromised since
the user’s location is revealed to the provider (upon commu-
nicating with the satellite and/or dedicated ground stations),
(2) navigation services are limited only to paying subscribers
and from a particular LEO constellation, (3) ambient LEO
signals transmitted by other constellations providers are not
exploited, and (4) considerable cost is required to launch and
maintain these dedicated constellations.

This tutorial presents the algorithmic formulation of STAN,
which addresses the challenges associated with navigating
with LEO satellites’ signals of opportunity whose states are
minimally known. STAN estimates the LEO satellites’ states
simultaneously with the vehicle’s states. STAN, originally
proposed in [5], is analogous to radio simultaneous localization
and mapping (radio SLAM) [57], which considered stationary
terrestrial signals of opportunity transmitters; with the added
complexity of tracking the mobile LEO satellites’ states. STAN
utilizes a LEO receiver to extract pseudorange, Doppler, and/or
carrier phase observables from LEO signals, which are used
to aid the vehicle-mounted inertial navigation system (INS) in
a tightly-coupled fashion.

First, this tutorial presents the models governing the ve-
hicle’s INS kinematics, LEO satellite dynamics, clock error
dynamics, and LEO measurements (pseudorange, Doppler,
and/or carrier phase). Next, the tutorial formulates the EKF’s
state vector and details the EKF’s time and measurement
updates. The efficacy of the STAN framework is illustrated
via high fidelity numerical simulations. These simulations
assumed an aerial vehicle to be equipped with an altimeter and
a tactical-grade inertial measurement unit (IMU), navigating
for 15.43 km in 300 seconds, in which GNSS signals were only
available for the first 60 seconds. It is demonstrated that the
final three-dimensional (3-D) position error and position root
mean squared error (RMSE) of a tightly-coupled GNSS-aided
INS grew to 1,536 m and 897 m, respectively. In contrast,
the STAN framework with 77 LEO satellites (resembling Or-
bcomm, Iridium NEXT, and Starlink constellations) achieved
a final 3-D position error and position RMSE of 15.2 m and
7.3 m, respectively, with pseudorange measurements; and 7.1
m and 10.6 m, respectively, with Doppler measurements. The
first multi-constellation LEO navigation experimental results
of their kind are presented of a ground vehicle traversing 4.15
km in 150 seconds, in which GNSS signals were only available
for the first 80 seconds. It is shown that while the final 3-D
position error and position RMSE of the vehicle’s GNSS-aided
INS with an industrial-grade IMU and an altimeter was 472.7
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m and 118.5 m, respectively; in contrast, the LEO-aided INS
STAN framework with signals from 2 Orbcomm, 1 Iridium
NEXT, and 3 Starlink LEO satellites achieved a final 3-D
position error and position RMSE of 27.1 m and 18.4 m,
respectively.

The rest of the tutorial is organized as follows. Section
II overviews the opportunities and challenges associated with
navigation with megaconstellation LEO satellites. Section III
describes the STAN framework. Section IV presents simula-
tion results to study the efficacy of aerial vehicle navigation
with STAN using simulated Starlink, Orbcomm, and Iridium
NEXT LEO satellites. Section V shows experimental results
of a ground vehicle navigating via the proposed STAN frame-
work with carrier phase measurements from Orbcomm and
Doppler measurements from Starlink and Iridium NEXT LEO
satellites. Section VI gives concluding remarks.

II. NAVIGATION WITH MEGACONSTELLATION LEO
SATELLITES: OPPORTUNITIES AND CHALLENGES

LEO satellites possess desirable attributes for navigation
[58], [59]:

• LEO satellites are around twenty-times closer to Earth
compared to GNSS satellites that reside in medium-
Earth orbit (MEO), which results in less spreading loss,
improving the carrier-to-noise ratio (C/N0) by about 30
dB (the reader is referred to Fig. 2 in [60], which shows
the spreading loss (dB) and slant range (km) as a function
of altitude for LEO, MEO, and geostationary orbit (GSO)
satellites).

• LEO satellites orbit the Earth at much faster rates com-
pared to GNSS satellites, making (i) LEO satellites’
Doppler measurements attractive to exploit, whether in
a standalone fashion or fused with pseudorange measure-
ments [61] or (ii) enabling receiver positioning with as
few as one satellite within a relatively short period of
time [62].

• LEO megaconstellations will shower Earth with signals
that span a wide swath of frequency spectrum (see
Table I), which improves robustness to interference and
cyberattacks.

• LEO megaconstellation satellites will provide virtually
a blanket cover around the globe. The sheer number of
LEO satellites will compensate for their smaller footprint
compared to GNSS satellites. Essentially, with planned
megaconstellations, each spot on Earth could have many
times more visible LEO satellites than GNSS. This would
offset the requirement that one needs about ten-times
more LEO satellites than those in MEO to get the same
geometric dilution of precision (GDOP). These are not
ungrounded promises. As of early 2022, SpaceX has
launched over 2,000 Starlink satellites into LEO, with the
total being projected to be up to 42,000 satellites, nearly
12,000 of which are already approved by the Federal
Communications Commission (FCC).

However, there is no such thing as a free lunch. A multi-
tude of challenges must be addressed to be able to exploit
“non-cooperative” LEO satellite signals in an opportunistic

fashion. First, since these LEO satellites are not designed for
navigation purposes, they do not necessarily transmit their
satellites’ ephemerides and in occasions that they do [63],
non-subscribers might not have access to such data. The
position and velocity of a satellite can be parametrized by
its Keplerian elements: eccentricity, semi-major axis, inclina-
tion, longitude of the ascending node, argument of periapsis,
and true anomaly. With time, these orbital elements will
drift from their nominal values due to several perturbing
forces acting on the LEO satellite. In contrast to GNSS,
where corrections to the orbital elements and clock errors
are periodically transmitted to the receiver in the navigation
message, this may not be the case for LEO satellites; in
which case they must be estimated. An orbit propagator
and initialization scheme should be selected to carry out
this estimation problem [64]. Orbit propagators consist of
equations of motion governed by force models, which fall into
two main categories: analytical and numerical [65], [66]. They
differ by trading-off accuracy with computational complexity.
On one hand, in order to achieve a computationally efficient
analytical solution, analytical propagators reduce model fi-
delity, which in turn degrades the propagation accuracy. On
the other hand, numerical approaches achieve higher accuracy
by performing costly numerical integrations of complicated
force models. For instance, the LEO analytical propagator
known as simplified general perturbations 4 (SGP4), uses two-
line element (TLE) files that contain orbital elements and
corrective terms to initialize and propagate the position and
velocity of a satellite [67]. TLEs are produced daily by the
North American Aerospace Defense Command (NORAD) to
support the on-going usage of SGP4 as an orbit determination
method. The information in TLE files can be used to initialize
any SGP model to propagate a satellite in its obit. However,
the simplified models of perturbing forces, which include
non-uniform Earth gravitational field, atmospheric drag, solar
radiation pressure, third-body gravitational forces (e.g., gravity
of the Moon and Sun), and general relativity, cause errors in
a propagated satellite orbit of around 3–10 km, 24-hours after
a TLE is produced [68]. In contrast, numerical propagators,
also known as precise orbit determination (POD) methods,
yield accurate ephemerides with errors on the order of tens-
of-meters, in the radial, along-track, and cross-track directions
for a satellite, with more error occurring in the along-track
direction [69]. Unlike SGP propagators, POD propagators do
not have a TLE-equivalent initialization file that is publicly
available. It is worth noting that GNSS-aided orbital filtering
[70]–[72] provides a decimeter-level and millimiter-per-second
accuracy of LEO satellite position and velocity, respectively.
However, a ground receiver might not have access to the
navigation solution of GNSS receivers onboard the LEO satel-
lite, which is the rationale behind the opportunistic navigation
paradigm. Recently, machine learning approaches have shown
great promise for improved orbit propagation [73]–[76].

Second, unlike GNSS satellites, LEO satellites are not
necessarily equipped with highly stable atomic clocks, nor they
are as tightly synchronized. The stability of LEO satellites’
clocks and their synchronicity are unknown. In contrast to
GNSS, where the satellites’ clock errors are periodically
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transmitted to the receiver in the navigation message, this may
not be the case for LEO satellites.

Finally, LEO satellites are owned and operated by private
entities, which adopt proprietary transmission protocols; mak-
ing their signals “mysterious” for non-subscribers. As such, to
exploit these signals, specialized receivers that are capable of
extracting navigation observables must be designed.

The proposed STAN framework presented in this tutorial
addresses the aforementioned challenges. STAN considers a
navigating vehicle equipped with a software-defined LEO
satellite receiver (e.g., [77], [78]), which is capable of pro-
ducing navigation observables: pseudorange, Doppler, and/or
carrier phase from received LEO satellite signals. These ob-
servables are used to aid the vehicle-mounted INS in a tightly
coupled fashion via an extended Kalman filter (EKF), which
estimates the LEO satellites’ states (position and velocity)
simultaneously with the vehicle’s INS’ states (orientation,
position, velocity, and gyroscope and accelerometer biases), as
well as the clock bias and drift difference between the vehicle-
mounted receiver and each of the LEO satellites.

III. STAN: SIMULTANEOUS TRACKING AND NAVIGATION
WITH LEO SATELLITE SIGNALS

Unlike GNSS satellites that periodically transmit accurate
information about their positions and clock errors, such in-
formation about LEO satellites is generally unavailable. The
STAN framework addresses this by extracting pseudorange,
Doppler, and/or carrier phase measurements from LEO satel-
lite to aid the vehicle’s INS, while simultaneously tracking
the LEO satellites. The STAN framework employs a nonlinear
filter to estimate the vehicle’s states simultaneously with the
LEO satellites’ states [5]. Fig. 2 depicts a block diagram of
the STAN framework. To avoid issues of unobservability and
poor estimability, it is assumed that the vehicle initially has
access to GNSS signals, which enables the vehicle-mounted
GNSS receiver to obtain initial filter estimates [79]. The STAN
framework operates similarly to a traditional tightly-coupled
GNSS-aided INS with two main differences: (i) the position
and clock states of the LEO satellites are unknown to the
vehicle-mounted receiver; hence, they are estimated along with
the states of the navigating vehicle and (ii) LEO pseudorange,
Doppler, and/or carrier phase measurements are used to aid
the INS instead of GNSS pseudoranges. The STAN framework
operates in two modes:

1) Tracking Mode: GNSS measurements are available.
Here, GNSS and LEO measurements are are fused in the
filter to aid the INS, producing a more accurate estimate
of the vehicle’s states, while tracking the LEO satellites.

2) STAN Mode: GNSS measurements are unavailable.
Here, LEO measurements aid the INS to simultaneously
estimate the vehicle’s states, while continuing to track
the LEO satellites.

The vehicle kinematics and LEO dynamics, receiver’s mea-
surements, and filter formulation are discussed next.

A. Vehicle Kinematics
The vehicle’s orientation, position, and velocity are modeled

to evolve in time according to the standard strapdown INS

INS

LEO

IMU

State

Initialization

SGP4 Orbit
Determination

Clock Models

Filter Prediction

Filter

GNSS
Receiver

LEO

Receiver

Propagation Update

Navigating Vehicle

from TLE

Fig. 2. LEO-aided INS STAN framework.

kinematic equations, driven by b!b, a three-dimensional (3-D)
rotation rate vector of the body frame {b} expressed in {b},
and gab, a 3-D acceleration vector of the body in the global
frame {g} [80]. The vehicle’s 3-D orientation vector of {b}
with respect to {g}, denoted ✓b, and 3-D position rb expressed
in {g} are related to the true 3-D rotation rate vector b!b and
3-D acceleration vector gab through the following kinematic
differential equations

✓̇b(t) =
b!b(t) (1)

r̈b(t) =
gab(t). (2)

The vehicle-mounted IMU contains a triad-gyroscope and
triad-accelerometer and produces angular rate !imu and spe-
cific force aimu measurements, which are modeled as

!imu(k) =
b!b(k) + bg(k) + ng(k) (3)

aimu(k) = Rb
g(k) [

gab(k)� gg(k)] (4)
+ ba(k) + na(k), k = 1, 2, . . .

where Rb
g(k) is the rotation matrix from {g} to {b}; gg is the

acceleration due to gravity in {g}; bg and ba are the gyroscope
and accelerometer biases, respectively; and ng and na are
measurement noise vectors, which are modeled as white noise
sequences with covariances Qng and Qna, respectively.

The gyroscope and accelerometer biases are assumed to
evolve according to velocity random walk dynamics, namely

bg(k + 1) = bg(k) +wbg(k) (5)
ba(k + 1) = ba(k) +wba(k), (6)

where wbg and wba are bias instability process noise vectors,
which are modeled as a discrete-time white noise sequences
with covariances Qbg and Qba, respectively.

B. LEO Satellite Dynamics Model
This subsection gives an overview of LEO satellite orbital

dynamics, which are used in the navigation filter to estimate
the LEO satellites’ states in the STAN framework.

A two-body model including the most significant non-
zero mean perturbing acceleration is adopted as the LEO
satellite orbital dynamics model in the Earth-centered inertial
(ECI) reference frame. This model offers a trade-off between
accurate open-loop state prediction while maintaining a simple
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analytical Jacobian for estimation error covariance propaga-
tion. The most significant perturbing accelerations for a LEO
satellite are due to Earth’s non-uniform gravity agrav. The
two-body model can be written generally as

r̈leol = agravl
+ w̃leol , agravl

=
dUl

drleol
, (7)

where rleol , [xleol , yleol , zleol ]
T is the position vector of

the l-th LEO satellite in the ECI frame, Ul is the non-uniform
gravity potential of Earth at the satellite, and w̃leol is a process
noise vector with power spectral density (PSD) Q̃leol , which
attempts to capture the overall acceleration perturbations in-
cluding the unmodeled non-uniformity of Earth’s gravitational
field, atmospheric drag, solar radiation pressure, third-body
gravitational forces (e.g., gravity of the Moon and Sun), and
general relativity [68].

Several models have been developed for U . For a satellite
requiring accuracies of a few meters, the JGM-3 model devel-
oped by Goddard Space Flight Center is usually sufficient [81].
Here, the tesseral and sectoral terms of the JGM-3 model are
neglected, since they are several orders of magnitude smaller
than the zonal terms (denoted {Jn}1n=2

). This yields [82]

Ul =
µ

krleolk

"
1�

NX

n=2

Jn
Rn

E

krleolkn
Pn [sin(✓l)]

#
, (8)

where µ is Earth’s standard gravitational parameter, Pn is a
Legendre polynomial with harmonic n, Jn is the n-th zonal
coefficient, RE is the mean radius of the Earth, sin(✓l) =
zleol/krleolk, and N = 1. Since the acceleration due to
the J2 coefficient is approximately three orders of magnitude
greater than the acceleration due to the other zonal coefficients
modeling Earth’s oblateness, the perturbation due to non-
uniform gravity will be approximated by using only the term
corresponding to J2. Taking the partial derivative of (8) with
respect to the components of rleol with N ⌘ 2 gives the
components of agravl

=
⇥
ẍgravl

, ÿgravl
, z̈gravl

⇤T as

ẍgravl
= � µxleol

krleolk3

"
1 + J2

3

2

✓
RE

krleolk

◆2
 
1� 5

z2
leol

krleolk2

!#
,

ÿgravl
= � µyleol

krleolk3

"
1 + J2

3

2

✓
RE

krleolk

◆2
 
1� 5

z2
leol

krleolk2

!#
,

z̈gravl
= � µzleol

krleolk3

"
1 + J2

3

2

✓
RE

krleolk

◆2
 
3� 5

z2
leol

krleolk2

!#
.

(9)

Further analysis comparing different LEO orbital models
can be found in [83], [84].

C. Clock Dynamics Model

The receiver’s and LEO satellites’ clock error state dynam-
ics are assumed evolve according to [85]

xclk,i (k + 1) = Fclk xclk,i(k) +wclk,i(k), (10)

xclk,i ,
h
c�ti, c�̇ti

iT
, Fclk =


1 T
0 1

�
,

where i = {r, leol}, �ti is the clock bias, �̇ti is the clock drift,
c is the speed of light, T is the constant sampling interval, and
wclk,i is the process noise, which is modeled as a discrete-time
white noise sequence with covariance

Qclk,i = c2 ·
"

Sw̃�ti
T + Sw̃�̇ti

T 3

3
Sw̃�̇ti

T 2

2

Sw̃�̇ti

T 2

2
Sw̃�̇ti

T

#
, (11)

The terms Sw̃�ti
and Sw̃�̇ti

are the clock bias and drift
process noise PSDs, respectively, which can be related to the
power-law coefficients, {h↵i}

2

↵i=�2
, which have been shown

through laboratory experiments to characterize the power
spectral density of the fractional frequency deviation of an
oscillator from nominal frequency according to Sw̃�ti

t h0,i

2

and Sw̃�̇ti
t 2⇡2h�2,i [86]. The receiver’s and LEO satellites’

process noise covariances Qclkr and Qclkleo are calculated
from (11) using the PSDs associated with the receiver’s and
LEO satellites’ oscillator quality, respectively.

The dynamics of the difference between the receiver’s and
LEO satellites’ clock error states is given by

�xclk(k + 1) = F�clk�xclk(k) +�wclk(k), (12)

�xclk ,
h
c��tleo1 , c��̇tleo1 , . . . , c��tleoL , c��̇tleoL

iT
,

c��tleol , c · [�tr � �tleol ] , c��̇tleol , c ·
h
�̇tr � �̇tleol

i
,

where F�clk = IL⇥L ⌦ Fclk, with ⌦ denoting the Kro-
necker product, and �wclk is the process noise which has
a covariance Q�clk that encapsulates the correlation between
entries of �xclk resulting from the common process noise of
the receiver clock states. Assuming the LEO satellites to be
equipped with identical oscillators, Q�clk simplifies to

Q�clk = L⇥L ⌦Qclkr + IL⇥L ⌦Qclkleo ,

where L⇥L is the L ⇥ L matrix with all entries equal to 1
and IL⇥L is the L⇥ L identity matrix.

D. Measurement Models
It is assumed that the vehicle is equipped with a receiver

[87] capable of extracting navigation observables (pseudorange
[28], [88], [89]; Doppler [33], [40], [77], [78], [90]; and/or
carrier phase [7], [91]) from LEO satellite signals. It is
worth mentioning that the amenability of extracting certain
navigation observables varies among LEO constellations. This
has to do with the sophistication of their transmitted sig-
nals and the amount of publicly disclosed information about
their signals. For instance, while it is less challenging to
design a receiver capable of producing Doppler measurements
from Orbcomm satellites or pseudorange measurements from
Globalstar satellites, it is much more involved to design
a receiver capable of producing pseudorange measurements
from Starlink satellites. The recently established paradigm,
termed cognitive opportunistic navigation, is showing promise
in producing navigation observables from minimally known
LEO satellite signals [89], [92], [93]. While the receiver design
details is beyond the scope of this tutorial, the focus herein
is to study the navigation potential with different navigation
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observables via the STAN framework. Models of the measure-
ments produced by the vehicle-mounted LEO receiver, relating
the vehicle’s states to the LEO satellites’ states are presented
next.

1) Pseudorange Measurement Model: A LEO receiver ex-
tracts pseudorange measurements ⇢ from LEO satellites by
estimating the time-of-arrival. The pseudorange ⇢l from the l-
th LEO satellite at time-step k, which represents discrete-time
instant tk = kT + t0 for an initial time t0, is modeled as

⇢l(k) = krr(k)� rleol(k
0
l)k2

+ c · [�tr(k)� �tleol(k
0
l)]

+ c�tionol(k) + c�ttropol(k) + v⇢l(k), (13)
l = 1, . . . , L k = 1, 2, . . .

where k0l represents discrete-time at tk0 = kT + t0 � �tTOFl ,
with �tTOFl being the true time-of-flight of the signal from the
l-th LEO satellite; rr and rleol are the receiver’s and l-th LEO
satellite’s 3-D position vectors expressed in the same reference
frame, respectively; �tr and �tleol are the receiver’s and l-th
LEO satellite transmitter’s clock biases, respectively; �tionol
and �ttropol are the ionospheric and tropospheric delays,
respectively, affecting the l-th LEO satellite’s signal; L is
the total number of visible LEO satellites; and v⇢l is the
pseudorange measurement noise, which is modeled as a white
Gaussian random sequence with variance �2

⇢,l.
2) Doppler Measurement Model: A LEO receiver extracts

Doppler frequency measurements fD from LEO satellites by
subtracting the nominal carrier frequency from the received
signal frequency. A pseudorange rate measurement ⇢̇ can be
obtained from

⇢̇ = � c

fc
fD, (14)

where fc is the carrier frequency.
A pseudorange rate measurement ⇢̇ from the l-th LEO

satellite is modeled by

⇢̇l(k) = [ṙr(k)� ṙleol(k
0
l)]

T [rr(k)� rleol(k
0
l)]

krr(k)� rleol(k
0
l)k2

+

c ·
h
�̇tr(k)� �̇tleol(k

0
l)
i
+ c�̇tionol(k) + c�̇ttropol(k) + v⇢̇l(k),

(15)

where ṙr and ṙleol are the receiver’s and l-th LEO satellite’s
3-D velocity vectors expressed in the same reference frame,
respectively; �̇tr and �̇tleol are the receiver’s and l-th LEO
satellite’s transmitter clock drifts, respectively; �̇tionol and
�̇ttropol are the ionospheric and tropospheric delay rates,
respectively, affecting the l-th LEO satellite’s signal; and v⇢̇l

is the pseudorange rate measurement noise, which is modeled
as a white Gaussian random sequence with variance �2

⇢̇,l.
3) Carrier Phase Measurement Model: The continuous-

time carrier phase observable can be obtained by integrating
the Doppler measurement over time [94]. The carrier phase
measurement (expressed in meters) made by the receiver on
the l-th LEO satellite can be modeled in discrete-time as

�l(k) = krr(k)� rleol(k
0
l)k2

+ c [�tr(k)� �tleol(k
0
l)] + �lNl

+ c�tiono,l(k) + c�ttropo,l(k) + vl(k), (16)

where �l is the wavelength of the carrier signal transmitted
by the l-th LEO satellite, Nl is the carrier phase ambiguity of

the l-th LEO satellite carrier phase measurement, and vl is the
measurement noise, which is modeled as a zero-mean white
Gaussian random sequence with variance �2

�,l.

E. Filter Formulation
This section formulates the EKF adopted in the STAN

framework to fuse navigation observables extracted oppor-
tunistically from the LEO satellites’ signals with the IMU
measurements, to aid the vehicle-mounted INS.

1) EKF State Vector: The EKF state vector is given by

x =
⇥
xT
r
, xT

leo1
, . . . , xT

leoL

⇤T

xr =
h
b
gq̄

T, rT
r
, ṙT

r
, bT

g
, bT

a

iT

xleol =
h
rT
leol

, ṙT
leol

, c��tleol , c��̇tleol

iT
,

where xr is the vehicle’s state vector, composed of b
gq̄ ,⇥

b
gq

T, b
gq
⇤T, which is a 4-D unit quaternion representing the

orientation of {b} fixed at the IMU with respect to {g}, rr and
ṙr are the 3-D position and velocity of the vehicle expressed in
{g}, and bg and ba are 3-D biases of the IMU’s gyroscopes and
accelerometers, respectively, expressed in {b}. Quaternions
were chosen to represent the orientation of the vehicle with
respect to {g}, since they offer minimal attitude representation
without suffering from the singularity of other mathematical
attitude representations (e.g., Euler angles). However, since the
4-D quaternion is an overdetermined representation of attitude,
the estimation error covariance associated with orientation is
represented by three-by-three matrix corresponding to a three-
axis error angle vector to prevent degeneracy. The vector xleol

is the l-th LEO satellite state vector, composed of the LEO
satellite’s position rleol and velocity ṙleol vectors, expressed
in the ECI frame, and the difference between the receiver’s and
l-th LEO satellite’s clock bias c��tleol and drift c��̇tleol .

2) EKF Prediction: The EKF prediction step produces an
estimate x̂(k|j) , E[x(k)|Zj ] of x(k), and an associated
estimation error covariance Px(k|j), where E[·|·] denotes
the conditional expectation, Zj , {z(i)}ji=1

is the set of
measurements available up to and including time index j, and
k > j. The measurements z are the pseudorange, Doppler,
and/or carrier phase measurements discussed in Subsection
III-D.

The IMU measurements (3) and (4) are processed through
a vector-valued function of strapdown INS equations in {g}
that discretize (1) and (2) to obtain [57], [95]

x̂r(k + 1|j) = f{g}
ins

[x̂r(k|j),!imu(k),aimu(k)] ,

where the gyroscope and accelerometer bias predictions b̂g(k+
1|j) and b̂a(k+1|j) follow from (5) and (6), respectively.
The INS mechanization equations are performed with the ECI
frame as {g} since the LEO satellites’ position and velocity
states are also expressed in ECI. This facilitates the EKF
update step as the receiver’s and LEO satellites’ position
and velocity states and the corresponding estimation error
covariances are all expressed in the same reference frame
in this case. The ECI strapdown mechanization equations are
presented in Appendix A and their linearization to propagate
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the estimation error covariance are detailed in Appendix B.
The prediction of the differenced clock states between the
receiver and the LEO satellite transmitter follow from (12).
The prediction of the LEO satellites’ position and velocity is
performed by numerical integration of (7) using the gravita-
tional accelerations obtained from the two-body model with
J2 perturbations in (9).

3) EKF Update: The vehicle-mounted receiver makes pseu-
dorange ⇢leo, Doppler fD,leo, and/or carrier phase �leo mea-
surements whose models are discussed in Subsection III-D.
The measurement vector z processed by the EKF update step
is defined by stacking all the extracted LEO navigation ob-
servables. In the tracking mode of STAN, GNSS pseudoranges
⇢gnss are processed by the receiver to produce a GNSS-only
navigation solution, which gets augmented into z. In the STAN
mode, only LEO navigation observables in z are processed
in the EKF update step. The EKF update step produces an
estimate x̂(k|k) and an associated posterior estimation error
covariance Px(k|k). Details on the EKF update equations are
given in Appendix C.

It is worth noting that tight coupling of GNSS pseudoranges
⇢gnss with the INS can be readily implemented into the STAN
framework with little modification to the EKF formulation.
First, in the tracking mode, the EKF state vector is augmented
to include the receiver’s clock bias and drift states, in which
case the LEO satellites’ clock error states can also be estimated
individually (i.e., instead of the differenced clock error states).
The measurement vector z is also augmented by including the
GNSS pseudoranges ⇢gnss to perform tight coupling during
the EKF update. Second, in the STAN mode, a transformation
is performed on the estimated states and associated error
covariance to form the differenced clock error states, thus
preventing stochastic unobservability issues [96]. More details
on the GNSS tight coupling implementation can be found in
[57], which performed a similar approach in the context of
radio SLAM with terrestrial signals of opportunity. It is worth
noting that while the receiver’s clock process noise covariance
Qclk,r can be readily found from specification sheets, the
satellite’s clock process noise covariance Qclk,leol is typically
unknown, in which case one could adopt either standard off-
line filter tuning techniques or online adaptive estimation [97].

Remark: The strapdown INS mechanization equations can
be performed in any global reference frame instead of ECI
with some additional considerations. For the simulation and
experimental results of this tutorial, the Earth-centered Earth-
fixed (ECEF) frame was used to perform the INS prediction
to facilitate the conversion of the receiver’s position and
velocity estimates to a local East-North-Up (ENU) reference
frame. However, before each EKF update, the LEO satellites’
states and associated covariances were converted from ECI to
ECEF, the STAN update was performed in ECEF using LEO
satellite measurements, and then the LEO satellites’ states
and covariances were converted back to ECI for the next
EKF prediction step. The ECI to ECEF and ECI to ECEF
conversions were performed by accounting for Earth’s rotation,
precession and nutation effects, and polar motion.

IV. SIMULATION RESULTS

This section presents a glimpse of the future with simulation
results illustrating the potential of the STAN framework with
existing Orbcomm and Iridium NEXT constellations and the
future Starlink megaconstellation.

A. Scenario Description

The simulations considered a fixed-wing aerial vehicle with
comparable performance to a small private plane with a cruise
speed of roughly 50 m/s. The aerial vehicle was equipped
with a tactical-grade IMU, an altimeter, and a GNSS receiver.
This aerial vehicle fused altimeter measurements and GNSS
pseudoranges to aid the onboard INS. The aerial vehicle was
also equipped with Starlink, Orbcomm, and Iridium NEXT
LEO receivers that produced pseudorange and Doppler mea-
surements from the downlink signals of these constellations’
satellites. It is assumed in these simulations that the LEO
receivers can extract navigation observables from all LEO
satellites above a specified elevation mask, which are referred
to as “visible” satellites. The aerial vehicle flew a 300-
second trajectory covering 15.43 km, over Irvine, California,
USA. The trajectory consisted of a straight climbing segment,
followed by a figure-eight pattern, and then a final descent into
a straight segment. The aerial vehicle, initially at 1 km altitude,
climbed to an altitude of 1.5 km, where it began executing
rolling and yawing maneuvers before descending back down
to 1 km in the straight segment.

The state vector x defined in Subsection III-E1 was es-
timated by the aerial vehicle. GNSS signals were initially
available for the first 60 seconds of the flight, during which the
aerial vehicle was in Tracking Mode: altimeter measurements
and the navigation solution produced by the GNSS receiver
aided the INS in a loosely coupled fashion, while the observ-
ables extracted opportunistically from the LEO signals were
processed to refine the LEO satellites’ ephemeris and estimate
the clock error states. The GNSS signals were then fictitiously
cut off and the aerial vehicle flew the last 240 seconds
of the trajectory in an emulated GNSS-denied environment.
Operating now in the STAN mode, the aerial vehicle fused the
altimeter measurements with the LEO satellites’ observables to
aid the INS, while simultaneously tracking the LEO satellites’
ephemeris and estimating the clock error states.

B. Simulation Setup

This subsection details the simulation environment setup:
generation of IMU measurements, LEO satellite trajectories,
clock error states, and Doppler and pseudorange measure-
ments.

1) IMU Measurements: The aerial vehicle was equipped
with a tactical-grade IMU with bias instability and noise den-
sity parameters for all axes summarized in Table II. Gyroscope
and accelerometer measurements were generated at a rate of
100 Hz along the aerial vehicle trajectory according to (3)-
(4). The gyroscope and accelerometer bias instability process
noise covariances are expressed as Qbg = �2

bg
I3⇥3 and

Qba = �2

ba
I3⇥3, where �2

bg
and �2

ba
are computed by squaring
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the bias instability parameters of Table II, expressed in rad/s
and m/s2, respectively. The gyroscope and accelerometer mea-
surement noise covariances are expressed as Qng = �2

ng
I3⇥3

and Qna = �2
na
I3⇥3, where �2

ng
and �2

na
are computed by

first multiplying the noise density parameters of Table II by
the square root of the IMU sampling rate and then squaring the
resulting quantities expressed in rad/s and m/s2, respectively.

TABLE II
AERIAL VEHICLE’S TACTICAL-GRADE IMU PARAMETERS

Gyroscope Accelerometer

Bias Instability 1.5�/hr 100µg

Noise Density 1.5�/hr/
p
Hz 110µg/

p
Hz

2) LEO Satellites’ Trajectories: The FCC-approved
12,000-satellite Starlink constellation was simulated using
orbital parameters found in the FCC filings. In addition,
currently active second-generation Orbcomm satellites and the
Iridium NEXT constellation were simulated to take advantage
of LEO satellites’ geometric and spectral diversities. The
LEO satellites’ trajectories were obtained through SGP4
propagations of simulated TLEs for the 12,000 Starlink
constellation and existing TLEs for Orbcomm and Iridium
NEXT constellations.

3) Clock Errors: The aerial vehicle was equipped with a
high-quality oven-controlled crystal oscillator (OCXO) and the
LEO satellites were assumed to have chip-scale atomic clocks
(CSACs). The power-law coefficients of these oscillators are
given in Table III. The clock bias and drift of the aerial vehicle-
mounted LEO receiver and LEO satellite transmitters were
simulated according to the models described in Subsection
III-C. The values of the aerial vehicle clock error states
xclk,r(0) were initialized as xclk,r(0) ⇠ N [02⇥1, Pclk,r],
where Pclk,r = diag

⇥
9⇥ 104, 9⇥ 10�2

⇤
with units of [m2,

(m/s)2] corresponding to a 1� of 1 µs and 10�9 s/s for
the clock bias and drift, respectively. The values of the l-th
LEO satellite clock error states xclk,leol(0) were initialized
as xclk,leol(0) ⇠ N

⇥
02⇥1, Pclk,leol

⇤
, where Pclk,leol =

diag
⇥
9⇥ 102, 9⇥ 10�4

⇤
with units of [m2, (m/s)2] corre-

sponding to a 1� of 0.1 µs and 10�10 s/s for the clock bias
and drift, respectively.

TABLE III
AERIAL VEHICLE’S AND LEO SATELLITES’ OSCILLATOR PARAMETERS

Quality Coefficients
�
h0, h�2

 

Aerial vehicle’s high-quality OCXO
�
2.6⇥ 10

�22, 4.0⇥ 10
�26

 

LEO satellites’ CSAC
�
7.2⇥ 10

�21, 2.7⇥ 10
�27

 

4) Measurements: Pseudorange rate measurements to all
visible LEO satellites were generated according to (15).
Pseudorange rate measurements are directly proportional to
Doppler frequency observables (14) but are independent of the
carrier frequency. As a result, pseudorange rate measurements
were preferred over Doppler to obtain comparable measure-
ments from different constellations which transmit downlink
signals at frequencies that are orders of magnitude apart. The
pseudorange rate measurement noise variances were calculated

from the predicted C/N0, which was found from the log-
distance path loss model

(C/N0)l(k) = P0 � 10 · log10 (dl(k)/D0) , (17)

where P0 = 56 dB-Hz is the nominal C/N0 at a distance
D0 = 1, 000 km and dl(k) , krr(k)� rleo,l(k)k is the
distance between the receiver and the l-th LEO satellite. The
pseudorange rate measurement noise variances are propor-
tional to the square root of the inverse of C/N0, expressed
in linear units, and ranged between 0.14 and 1.1 (m/s)2.

Pseudorange navigation observables to all visible LEO
satellites were generated according to (13). The time-varying
pseudorange measurement noise variances were calculated
from the predicted C/N0 from (17) and ranged between 0.43
and 3.52 m2, based on the distance between the aerial vehicle
and the satellites.

C. Filter Initialization
The aerial vehicle’s state estimates were initialized by

corrupting the aerial vehicle’s true initial states with a random
sample x̃r(0|0) drawn from a zero-mean multivariate Gaussian
distribution with covariance Pxr(0|0) as follows

x̃r(0|0) ⇠ N [015⇥1, Pxr(0|0)]
Pxr(0|0) , diag [Pqrṙ(0|0),Pbimu(0|0)]
Pqrṙ(0|0) =

⇥
10�2 ⇥ I3⇥3, 10⇥ I3⇥3, I3⇥3

⇤

Pbimu(0|0) =
⇥
10�3 ⇥ I3⇥3, 10

�2 ⇥ I3⇥3

⇤
,

where Pqrṙ(0|0) is the initial aerial vehicle orientation, posi-
tion, and velocity covariance with units of [rad2, m2, (m/s)2]
and Pbimu(0|0) is the initial IMU gyroscope and accelerometer
biases covariances with units of [(rad/s)2, (m/s2)2]. The first
three components of x̃r(0|0), which correspond to the vector
of angle errors, were used to corrupt the true initial Euler
angles of the aerial vehicle. The corrupted initial Euler angles
were then converted to a unit quaternion to initialize the
EKF’s orientation states. The remaining elements of the initial
aerial vehicle’s state estimates were corrupted by adding the
corresponding initial error terms to the true initial states.

The l-th LEO satellite’s position and velocity state estimates
x̂rṙleo,l(0|0) were initialized in the ECI frame, denoted by {i},
as follows

x̂rṙleo,l(0|0) ⇠ N
h
xrṙleo,l(0|0), Pxrṙleo,l

(0|0)
i

Pxrṙleo,l
(0|0) , diag

h
Pxrleo,l

(0|0),Pxṙleo,l
(0|0)

i

Pxrleo,l
(0|0) = Ri

bleo,l(0)P
bleo
xrleo

(0|0)
h
Ri

bleo,l(0)
iT

Pxṙleo,l
(0|0) = Ri

bleo,l(0)P
bleo
xṙleo

(0|0)
h
Ri

bleo,l(0)
iT

,

where xrṙleo,l(0|0) is the l-th LEO satellite’s true position
and velocity states in ECI and Pxrṙleo,l

(0|0) is the associated
initial covariance; Pbleo

xrleo
(0|0) , diag

⇥
106, 101, 104

⇤
m2

and Pbleo
xṙleo

(0|0) , diag
⇥
10�2, 10�4, 10�1

⇤
(m/s)2 are the

initial LEO satellite’s position and velocity covariances in
the satellite’s body frame {bleo}; and Ri

bleo,l
(0) is the initial

rotation matrix from the l-th LEO satellite’s body frame {bleol}
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to the ECI frame {i}. The first entry of the LEO satellite’s
position and velocity covariances in the satellite’s body frame
corresponds to the satellites’ along-track axis, the second entry
is associated with the cross-track direction, and the last entry
is for the radial axis. These values were carefully selected
to closely match the uncertainties inherent to TLE files with
the most uncertainty being in the along-track position and
radial velocity, while the cross-track direction TLE errors are
the least substantial as the satellites’ motion is constrained in
the orbital (along-track – radial) plane. The LEO satellites’
process noise covariance found in [61] using a Monte Carlo
analysis was used in the EKF to account for the effect of
unmodeled uncertainties in the LEO satellites’ orbital motion.
This process noise covariance was expressed in the satellites’
body frame to leverage its invariance in this frame and promote
generalization. Subsequently, this process noise covariance
was rotated to the ECI frame at each EKF prediction step
for all LEO satellites.

The filter clock error states consisted of the difference
between the receiver and each LEO satellite’s clock error
states. The filter’s clock bias state estimates were initialized
by subtracting the estimated range from the pseudorange or
carrier phase measurements while the filter’s clock drift state
estimates were initialized to 0.

An EKF was implemented to perform STAN and aid the
INS of the aerial vehicle with navigation observables extracted
from Starlink, Orbcomm, and Iridium NEXT LEO satellites’
signals. Both Doppler (i.e., pseudorange rate) and pseudorange
measurements were considered with an update rate of 1 Hz.
Loosely-coupled GNSS updates were also performed at 1 Hz
before GNSS cutoff by corrupting the aerial vehicle’s true
3-D ENU position with measurement noise with covariance
Rgnss = diag [3, 3, 9] m2. After the first 60 seconds, GNSS
updates were stopped as GNSS signals became unavailable.
Altimeter updates at 1 Hz were performed throughout the
flight by corrupting the aerial vehicle’s true altitude with
measurement noise with variance �2

alt
= 3 m2. The elevation

mask was set to 20� and LEO satellites visible for at least 200
seconds of the 300-second trajectory were considered. This
visibility duration threshold was set so that the aerial vehicle
neglects LEO satellites available for a short time period. The
minimum number of LEO satellites visible simultaneously to
the aerial vehicle was 51 and the maximum number reached
77 visible satellites (74 Starlink, 1 Orbcomm, and 2 Iridium
NEXT satellites) for 108 seconds. The satellites’ trajectory are
shown in Fig. 3.

D. Discussion

Fig. 4 shows the aerial vehicle’s true trajectory, estimated
GNSS-INS trajectory, and STAN trajectories computed with
Doppler and pseudorange measurements. Figs. 5-6 and 9-
10 show the EKF estimation error plots and associated ±3�
bounds for Starlink satellites 66 and 36, which were tracked
when above the 20� elevation mask (i.e., within the satellite
viability period) using Doppler and pseudorange measure-
ments opportunistically extracted by the LEO receiver onboard
the aerial vehicle, respectively. Moreover, Fig. 3(b) and 3(c)

Irvine, California (a)

Estimated trajectory
Simulated trajectory

(b)
(c)cross-track

along-track 44.9 m

27.83 m

along-track

52.45 m

cross-track

108.3 m

Fig. 3. (a) Simulated trajectories of 74 Starlink, 1 Orbcomm, and 2 Iridium
NEXT LEO satellites. The trajectories are colored in red when the LEO
satellites are below the 20

� elevation mask. Starlink, Orbcomm, and Iridium
NEXT trajectories are respectively colored in green, yellow, and pink when
the satellites are visible to the aerial vehicle. (b) Estimated and true trajectories
for Starlink satellite 15 tracked using Doppler measurements along with 95%
uncertainty ellipsoid. (c) Estimated and true trajectories for Starlink satellite
73 tracked using pseudorange measurements along with 95% uncertainty
ellipsoid. Map data: Google Earth.

depict the 95% uncertainty ellipsoid of Starlink satellites 15
and 73, which were tracked using Doppler and pseudorange
measurements, respectively, as well as the true and estimated
satellite trajectories. Finally, the GNSS-INS and STAN EKF
plots for the aerial vehicle states are shown in Fig. 8 for STAN
using Doppler frequency measurements and Fig. 12 for STAN
using pseudorange measurements. Table IV summarizes the
navigation performance of the different frameworks.

TABLE IV
SIMULATION RESULTS: COMPARISON OF DIFFERENT NAVIGATION

FRAMEWORKS

GNSS-INS STAN (Doppler) STAN (pseudorange)

Position RMSE (m) 897.4 10.6 7.3
Final Error (m) 1,536.1 37.1 15.2

Maximum Error (m) 1,536.1 37.1 15.2

The following conclusions can be drawn from these results.
First, as expected, upon GNSS cut off, the GNSS-INS errors
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Aerial vehicle's trajectory

GNSS-aided INS

STAN LEO Doppler-aided INS

Position RMSE: 897.4 m

Position RMSE: 10.6 m

STAN LEO pseudorange-aided INS

Position RMSE: 7.3 m

Total distance: 15.43 km

Distance after GNSS cutoff: 12.28 km

Total time: 300 s

Time after GNSS cutoff: 240 s

N

E

GNSS cutoff

Fig. 4. Simulation results showing the aerial vehicle’s trajectory and estimated trajectory with GNSS-aided INS and STAN with LEO Doppler-aided INS and
LEO pseudorange-aided INS. The minimum number of LEO satellites visible simultaneously to the aerial vehicle was 51 and the maximum number reached
77 visible satellites (74 Starlink, 1 Orbcomm, and 2 Iridium NEXT satellites). Map data: Google Earth.

Fig. 5. Position EKF plots in the ECEF reference frame for Starlink satellite
66, tracked using Doppler measurements.

quickly diverge. In contrast, the STAN East and North EKF
errors of the aerial vehicle’s position slowly diverge, while
the altimeter updates seem to prevent the Up EKF error
from diverging. Similarly, the STAN East and North EKF
errors of the aerial vehicle’s velocity also diverge when GNSS
is cut off, but at a much slower rate than their position
counterparts. This divergence could be attributed to stochastic
observability issues. The rate of divergence is a function of
number of LEO satellites, vehicle’s IMU grade, and receiver
and LEO satellite transmitter clock qualities [79]. Note that the
divergence rate of these errors is slower in the case of STAN
using pseudorange measurements compared to STAN using
Doppler measurements. This is consistent with the findings in
[61].

Fig. 6. Velocity EKF plots in the ECEF reference frame for Starlink satellite
66, tracked using Doppler measurements.

Fig. 7. Differenced clock drift EKF plot for Starlink satellite 66, tracked
using Doppler measurements.

Second, the orientation and IMU bias estimation errors with
STAN appear to be bounded.

Third, the LEO satellites’ position and velocity estimation
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Fig. 8. EKF plots of aerial vehicle states for GNSS-INS and STAN LEO Doppler-aided INS. The first row corresponds to the orientation states of the aerial
vehicle’s body frame with respect to the ENU frame represented using Euler angles. The second and third rows correspond to the position and velocity states
of the aerial vehicle in the ENU frame, respectively. The fourth and fifth rows correspond to the IMU’s gyroscope and accelerometer biases in the aerial
vehicle’s body frame, respectively.

Fig. 9. Position EKF plots in the ECEF reference frame for Starlink satellite
36, tracked using pseudorange measurements.

errors are bounded and consistent during STAN with both
Doppler and pseudorange measurements. Moreover, most of
the initial satellite errors are corrected in the first few seconds
during the STAN tracking mode when GNSS measurements
are available. It was noticed that LEO satellites with visibility

Fig. 10. Velocity EKF plots in the ECEF reference frame for Starlink satellite
36, tracked using pseudorange measurements.

period starting before GNSS cutoff are tracked more efficiently
than satellites becoming visible after GNSS cutoff as the
tracking receiver has a more certain estimate of its own
states when GNSS is available. This observation highlights
the importance of the tracking phase in satellite ephemeris
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Fig. 11. Differenced clock states EKF plots for Starlink satellite 36, tracked
using pseudorange measurements.

refinement to enable LEO-based opportunistic navigation with
the STAN framework.

Fourth, the ellipsoids in Figs. 3(b)-(c) are elongated mostly
in the cross-track direction at the end of the simulation run
despite having the initial uncertainty mainly in the along-track
direction. This can be attributed to the fact that the cross-
track direction is poorly estimable, leading to larger error and
uncertainty along this axis, while the along-track error gets
quickly corrected during tracking, as this direction is more
estimable.

Fifth, Figs. 7 and 11 show the estimation errors EKF plots
of the clock drift difference between the receiver and Starlink
satellite 66, tracked using Doppler measurements and the
differenced clock error states (bias and drift) between the
receiver and Starlink satellite 36, tracked using pseudorange
measurements, respectively, along with the associated ±3�
bounds. During tracking (i.e., satellite visibility period), it
can be seen that the differenced clock error states’ estimates
are consistent (i.e., within the ±3� bounds). Additionally, it
is worth noting that the clock bias difference term between
the receiver and LEO satellite transmitters is unobservable
with Doppler measurements and is consequently not estimated
when performing STAN with this type of observables.

Sixth, Table V summarizes the positioning results of STAN
with different combinations of LEO constellations. It can be
seen that no significant difference is observed between the
performance of STAN with 3 LEO constellations comprising
77 satellites and that with the standalone Starlink megacon-
stellation (74 satellites used). As expected, the positioning
errors increase as the number of LEO satellites used while
performing STAN decreases. Moreover, the performance of
STAN using 1 LEO satellite (Orbcomm constellation only)
yields positioning errors on the same order of magnitude
as a drifting GNSS-INS system (see Tables IV and V). In
fact, the errors of STAN with 1 LEO satellite were a bit
larger than the unaided GNSS-INS, which indicates faster filter
divergence due to unobservability conditions. However, with
2 LEO satellites (Iridium NEXT constellation only) and 3
LEO satellites (Orbcomm and Iridium NEXT constellations),
the STAN performance significantly improves, suggesting that
at least 2 LEO satellites are needed to outperform a drifting

GNSS-INS system.
Seventh, while the dilution of precision (DOP) concept

is applicable to point solution estimation (i.e., batch least
squares), it can be adapted to sequential filtering to quantify
the effect of LEO satellite geometry. For the purpose of DOP
analysis, it is assumed that only the receiver’s 3-D position and
clock bias are estimated in the case of STAN with pseudorange
measurements and that only the receiver’s 3-D position, 3-D
velocity, and clock drift are estimated in the case of STAN
with Doppler measurements. These assumptions are required
to ensure that the number of measurements is greater than the
number of estimated states, yielding an overdetermined system
for which DOP calculations can be performed. The rescaling
scheme from [14] was used to obtain the nondimensional
DOP matrix for Doppler measurements. Moreover, a direct
comparison between the pseudorange and Doppler DOP values
is not fair as the three additional states estimated with Doppler
measurements further contributes to the dilution of precision.
Table VI shows the minimum and maximum values of geo-
metric DOP (GDOP), horizontal DOP (HDOP), and vertical
DOP (VDOP) for pseudorange and Doppler measurements. It
is interesting to note that in the pseudorange DOP calculations,
the VDOP is higher than the HDOP while for the Doppler
DOP values, the VDOP is lower than the HDOP. This can be
attributed to the measurement type since Doppler observables
give more information in the vertical direction while pseudo-
range measurements give less information in this direction as
the LEO satellites travel overhead the receiver. The VDOP
values using pseudorange measurements can be effectively
lowered by the addition of terrestrial SOPs to increase the
diversity in the vertical direction, as demonstrated in [98].
Finally, note that the DOP values attain their minimums around
the middle of the aerial vehicle’s trajectory, where the number
of visible LEO satellites is the greatest.

Eighth, previous work showed that in radio simultaneous
localization and mapping (radio SLAM) with stationary ter-
restrial SOPs, prescribed receiver motion planning strategies
could significantly improve the convergence accuracy [99]
and in some circumstances, they could be necessary to avoid
filter divergence [100]. In STAN with megaconstellation LEO
satellites, the speed and trajectory of the vehicle play less
of a role in the filter convergence. This is due to the fact
that the relative geometry between the receiver and the LEO
satellites, represented by the unit line-of-sight (LOS) vector, is
not significantly affected with changes in receiver trajectory.
For reasonable vehicle-mounted receiver speeds (e.g., the
aircraft considered in the simulations (Section IV) and ground
vehicle considered in the experiments (Section V), the relative
geometry is dictated by the LEO satellites that travel at around
7 km/s. To demonstrate the effect of changing the vehicle’s
trajectory on navigation performance, another trajectory was
simulated in which the aerial vehicle traversed 16.34 km,
the last 13.33 km of which was without GNSS. Two aerial
vehicles were considered: (i) a slow vehicle, which traversed
the trajectory in 300 seconds, the last 240 seconds of which
without GNSS, at an average speed of 54.46 m/s; and (ii) a
fast vehicle, which traversed the trajectory in 100 seconds,
the last 80 seconds of which without GNSS, at an average
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Fig. 12. EKF plots of aerial vehicle states for GNSS-INS and STAN LEO pseudorange-aided INS. The first row corresponds to the orientation states of the
aerial vehicle’s body frame with respect to the ENU frame represented using Euler angles. The second and third rows correspond to the position and velocity
states of the aerial vehicle in the ENU frame, respectively. The fourth and fifth rows correspond to the IMU’s gyroscope and accelerometer biases in the aerial
vehicle’s body frame, respectively.

speed of 163.38 m/s. It was observed that the position RMSE,
final error, and maximum error for the slow vehicle were
11.45 m, 39.46 m, and 39.46 m, respectively; while for the
fast vehicle, the values were 25.14 m, 13.55 m, and 54.33
m, respectively. Future work could consider performing a
comprehensive Monte Carlo analysis to assess the effect of
varying the vehicle’s speed and trajectory (including motion
planning strategies) on the positioning and timing performance
in STAN.

TABLE V
SIMULATION RESULTS: COMPARISON OF STAN USING DIFFERENT

COMBINATIONS OF LEO CONSTELLATIONS

Doppler Pseudorange

Po
s.

R
M

SE
(m

) Starlink + Orbcomm + Iridium NEXT 10.6 7.3
Starlink 12.0 15.6

Orbcomm + Iridium NEXT 70.6 45.2
Iridium NEXT 136.7 94.9

Orbcomm 1,142.1 527.9

Fi
na

lE
rr

or
(m

) Starlink + Orbcomm + Iridium NEXT 37.1 15.2
Starlink 34.4 19.2

Orbcomm + Iridium NEXT 108.4 99.6
Iridium NEXT 125.7 457.8

Orbcomm 2,694.9 961.6

TABLE VI
MINIMUM AND MAXIMUM GDOP, HDOP, AND VDOP

Doppler Pseudorange

Minimum GDOP 1.529 0.862
Maximum GDOP 2.230 1.061
Minimum HDOP 0.906 0.306
Maximum HDOP 1.455 0.414
Minimum VDOP 0.626 0.679
Maximum VDOP 0.956 0.811

V. EXPERIMENTAL RESULTS

This section presents the first multi-constellation LEO nav-
igation experimental results of their kind with Orbcomm,
Iridium NEXT, and Starlink LEO satellites, to demonstrate
the efficacy of STAN.

A ground vehicle was equipped with a VectorNav VN-
100 microelectro-mechanical systems (MEMS) industrial-
grade IMU, two low-noise block (LNB) downconverters to
receive Starlink signals at 11.325 GHz from two different
angles, a very-high frequency (VHF) antenna to receive to
Orbcomm signals at 137 MHz, and an AT1621-12 Iridium
antenna to receive Iridium NEXT signals at 1626.2708 MHz.
The received Starlink signals were sampled at 2.5 mega
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samples per seconds (Msps) with a National Instrument (NI)
2974 Universal Software Radio Peripheral (USRP), while
Orbcomm and Iridium NEXT signals were sampled at 2.4
Msps with two Ettus E312 USRPs. It is worth noting that
the USRPs’ oscillators were synchronized and driven by an
external, freely-running CDA-2990 OctoClock. The vehicle
was also equipped with a Septentrio AsteRx-I V integrated
GNSS-INS system, from which the ground truth was derived.
The experimental setup is shown in Fig. 13.

E312 USRPs

Helix Antenna

NI USRP 2974

CDA-2990

AsteRx-i V

LNB Downconverter

VHF Quadrifilar

Septentrio

OctoClock

Antenna
Iridium

Fig. 13. Hardware setup for the ground vehicle experiment.

The vehicle was driven on the CA-55 freeway next to
Irvine, California, USA, for 4.15 km in 150 seconds. During
the experiment, signals from 3 Starlink, 2 Orbcomm, and 1
Iridium NEXT satellites were recorded. The LEO satellites’
trajectory during the experiment are shown in Fig. 14. Carrier
phase navigation observables were extracted from Orbcomm
satellites’ signals [7] and Doppler measurements were ex-
tracted from Starlink [88] and Iridium NEXT satellites’ [77]
signals by an opportunistic receiver onboard the navigating
vehicle. Since Iridium employs a time-division multiple-access
(TDMA) scheme with a frame duration of 90 ms, one can
measure the Doppler shift of the signal at discrete instances,
separated by the frame duration. To stitch these discontinuous
Doppler measurements, the observables were interpolated at
a rate that matched the measurement rate of the navigation
framework.

GNSS signals were available for the first 80 seconds of the
experiment but were fictitiously cut off for the last 70 seconds,
during which the vehicle traveled 1.82 km. The GNSS-INS
navigation solution drifted to a final heading error of 42.36�

and a final 3-D position error of 472.69 m with a heading
RMSE of 10.43� and a 3-D position RMSE of 118.47 m over
the true trajectory. The STAN LEO-aided INS yielded a final
heading error of 5.33� and a final 3-D position error of 27.13
m with a heading RMSE of 4.62 � and a 3-D position RMSE
of 18.43 m. These navigation results are shown in Fig. 17 and
summarized in Table VII.

Figs. 15-16 show the estimates of the clock drift difference
between the receiver and Iridium NEXT LEO satellite trans-
mitters and the differenced clock error states (bias with the
lumped carrier phase ambiguity from (16) and drift) between
the receiver and the Orbcom FM112 satellite, respectively,
along with the associated ±3� bounds. Unfortunately, the state
estimate errors are not computable since the true differenced

clock error states are not known. However, the decreasing
magnitude of the ±3� bounds reveal the convergence of the
estimates. It is interesting to note how the clock error states
estimates get updated and the associated �-bounds decrease as
soon as measurements become available at the beginning of the
tracking period in Fig. 16. Finally, the empirical differenced
clock drift rates were calculated by computing the drift of the
carrier phase residuals (i.e., predicted ranges subtracted from
the carrier phase measurements) for the Orbcomm satellites
and the Doppler residuals (i.e., predicted Dopplers subtracted
from the Doppler measurements) for the Iridium NEXT and
Starlink satellites. These empirical differenced drift values
range between 2.2 ⇥ 10�10 s/s for the Starlink 46048 LEO
satellite and 8.1 ⇥ 10�8 s/s for Orbcomm FM112 satellite
(equivalent to 24.2 m/s as seen in drift state plot in Fig. 16),
which are characteristic of medium- to high-quality OCXOs.

South

North

EastWest

North

Fig. 14. Skyplot of the 3 Starlink, 2 Orbcomm, and 1 Iridium NEXT
trajectories during the 150-second ground vehicle experiment (dashed) and
portion of the trajectories during which the receiver opportunistically extracted
navigation observables from the LEO satellites’ signals (solid).

Fig. 15. Clock drift difference EKF plot for Iridium NEXT LEO satellite.

VI. CONCLUSION

This tutorial presented STAN, a navigation framework to
exploit megaconstellation LEO satellite signals for navigation.
STAN estimates the navigating vehicle’s states simultaneously
with the states of LEO satellites. STAN employs a receiver that
produces navigation observables from downlink LEO satellite
signals. These observables are fused through an EKF to aid
the vehicle’s INS in a tightly coupled fashion. Simulation
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Fig. 16. Clock bias difference with lumped carrier phase ambiguity (top)
and differenced clock drift (bottom) EKF plots for Orbcomm FM112 LEO
satellite.

TABLE VII
EXPERIMENTAL RESULTS: COMPARISON OF DIFFERENT NAVIGATION

FRAMEWORKS

GNSS-aided INS STAN: LEO-aided INS

Position RMSE (m) 118.5 18.4
Final Position Error (m) 472.7 27.1

Maximum Position Error (m) 472.7 57.8

Heading RMSE (�) 10.4 4.6
Final Heading Error (�) 42.4 5.3

Maximum Heading Error (�) 42.4 17.7

results were presented to demonstrate the efficacy of STAN,
in which an aerial vehicle navigated for 15.43 km in 300
seconds, the last 240 seconds of which were without GNSS
signals. The final position error and position RMSE of a
tightly-coupled GNSS-aided INS grew to 1,536 m and 897 m,
respectively. In contrast, the STAN framework with 77 LEO
satellites (resembling Orbcomm, Iridium NEXT, and Starlink
constellations) achieved a final position error and position
RMSE of 15.2 m and 7.3 m, respectively, with pseudorange
measurements; and 37.1 m and 10.6 m, respectively, with
Doppler measurements. The first multi-constellation LEO nav-
igation experimental results of their kind were presented of a
ground vehicle traversing 4.15 km in 150 seconds, in which
GNSS signals were only available for the first 80 seconds.
While the final position error and position RMSE of the
vehicle’s GNSS-aided INS with an industrial-grade IMU grew
to 472.7 and 118.5 m, respectively; the final position error
and position RMSE of STAN with received signals from 2
Orbcomm, 1 Iridium NEXT, and 3 Starlink LEO satellites
were 27.1 m and 18.4 m, respectively.

APPENDIX A
EKF PREDICTION OF xr

The time update of xr is performed using strapdown mech-
anization equations in the ECI frame.

A. Orientation Time Update
The orientation time update is given by

b
i
ˆ̄q(k + 1|j) = bk+1

bk
ˆ̄q ⇤ b

i
ˆ̄q(k|j), (18)

where bk+1

bk
ˆ̄q represents an estimate of the rotation quaternion

between the IMU’s body frame at time k and k + 1 and ⇤
denotes the quaternion product. The quaternion bk+1

bk
ˆ̄q is com-

puted by integrating gyroscope rotation rate data !imu(k) and
!imu(k + 1) using a fourth-order Runge-Kutta according to

bk+1

bk
ˆ̄q = q̄0 +

T

6
(d1 + 2d2 + 2d3 + d4) ,

where

d1 =
1

2
⌦
⇥
b!̂(k)

⇤
· q̄0, d2 =

1

2
⌦ [!̄] ·

✓
q̄0 +

1

2
Td1

◆
,

d3 =
1

2
⌦ [!̄] ·

✓
q̄0 +

1

2
Td2

◆
,

d4 =
1

2
⌦
⇥
b!̂(k + 1)

⇤
· (q̄0 + Td3) , q̄0 , [ 0, 0, 0, 1 ]T ,

!̄ , 1

2

⇥
b!̂(k) + b!̂(k + 1)

⇤
,

where ⌦ [ · ] 2 R4⇥4 is given by

⌦ [a] ,


�ba⇥c a
�aT 0

�
, a , [a1, a2, a3]

T ,

ba⇥c 2 R3⇥3 is the skew-symmetric matrix form of a and is
found by

ba⇥c ,

2

4
0 �a3 a2
a3 0 �a1
�a2 a1 0

3

5 ,

and b!̂(k) is the bias-compensated rotation rate measurement,
which is computed according to

b!̂(k) = !imu(k)� b̂gyr(k|j), (19)

B. Velocity and Position Time Update

IMU specific force measurements are integrated using trape-
zoidal integration to perform a time update of the position
and velocity in the ECI coordinate frame. Assuming that the
variation of the gravity acceleration ig is negligible over the
integration interval, the velocity time update is performed as

iˆ̇rb(k + 1|j) =iˆ̇rb(k|j) +
T

2

⇥
iâ(k) + iâ(k + 1)

⇤
(20)

+ ig(irb(k))T,

where iâ and ba are the transformed bias-compensated spe-
cific force and untransformed bias-compensated specific force,
respectively, which are given by

iâ(k) , R̂T(k)bâ(k), (21)

ba(k) = âimu(k)� b̂acc(k|j), (22)

and R̂(k) , R
⇥
b
i
ˆ̄q(k|j)

⇤
is the rotation matrix from frame

{i} to frame {b} associated with the quaternion b
i
ˆ̄q(k|j).

The position time update is performed according to

ir̂b(k + 1|j) =ir̂b(k|j) +
T

2

h
iˆ̇rb(k|j) + iˆ̇r(k + 1|j)

i
.
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GNSS cutoff

True trajectory

GNSS-aided INS

LEO-aided INS

Total distance: 4.15 km

Distance after GNSS cutoff: 1.82 km

Total time: 150 s

Time after GNSS cutoff: 70 s

Position RMSE: 118.47 m

Position RMSE: 18.43 m

Fig. 17. Experimental results showing the ground vehicle’s trajectory and estimated trajectory with GNSS-aided INS and STAN with LEO-aided INS using
signals from 3 Starlink, 2 Orbcomm, and 1 Iridium NEXT satellites. Map data: Google Earth.

APPENDIX B
INS STATE TRANSITION AND PROCESS NOISE

COVARIANCE MATRICES

The calculation of the discrete-time linearized INS state
transition matrix �ins and process noise covariance Qins are
performed using strapdown INS equations as described in [80],
[95]. The discrete-time linearized INS state transition matrix
�ins is given by

�ins =

2

66664

I3⇥3 03⇥3 03⇥3 �qbgyr 03⇥3

�rq I3⇥3 T I3⇥3 �rbgyr �rbacc

�ṙq 03⇥3 I3⇥3 �ṙbgyr �ṙbacc

03⇥3 03⇥3 03⇥3 I3⇥3 03⇥3

03⇥3 03⇥3 03⇥3 03⇥3 I3⇥3

3

77775
,

where
�qbgyr = �T

2

h
R̂T(k) + R̂T(k + 1)

i
,
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2

⌅⇥
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⇤
⇥
⇧
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T

2
�ṙq,
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2

⌅
iâ(k)⇥
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2
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2
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The discrete-time linearized INS process noise covariance
Qins is given by

Qins =
T

2

⇣
�insNc�

T
ins

+Nc

⌘
,

where
Nc = diag[Sng, 03⇥3, Sna, Sbg, Sba] ,

with Sng = TQng and Sna = TQna are the PSD ma-
trices of the gyroscope’s and accelerometer’s random noise,
respectively, and Sbg = Qbg/T and Sba = Qba/T are the
PSD matrices of the gyroscope’s and accelerometer’s bias
instability, respectively.

APPENDIX C
EKF STATE MEASUREMENT UPDATE EQUATIONS

The standard EKF equations are modified to deal with
the 3-D orientation error correction, which contains one less
dimension than the 4-D orientation quaternion estimate, as
described in Subsection III-E1. To this end, the state estimate

is separated into two parts according to x̂ ,
h
b
i
ˆ̄q
T
, ŷT

iT
,

where b
i
ˆ̄q 2 R4 is the orientation quaternion estimate and

ŷ 2 R12+8M is a vector containing the remaining estimates of
x. Next, the EKF correction vector x̆(k + 1), which is to be
applied to the current state prediction x̂(k + 1|j) to produce
the EKF state measurement update x̂(k+1|k+1), is computed
and partitioned according to

x̆(k+1) = K(k+1)⌫(k+1|j) ,


✓̆(k+1)
y̆(k+1)

�
,

where K(k+1) is the standard Kalman gain, ⌫(k+1|j) ,
z(k+1)� ẑ(k+1|j) is the measurement innovations, ✓̆ 2 R3

is the orientation correction, and y̆ 2 R12+8M is a vector
containing the remaining corrections. Finally, the EKF state
measurement update x̂(k+1|k+1) is computed by applying
✓̆(k+1) to b

i
ˆ̄q(k+1|j) and y̆(k+1) to ŷ(k+1|j) as follows

x̂(k + 1|k + 1) =
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